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Abstract. NewHope and NewHope-Simple are two recently proposed
post-quantum key exchange protocols based on the hardness of the Ring-
LWE problem. Due to their high security margins and performance,
there have been already discussions and proposals for integrating them
into Internet standards, like TLS, and anonymity network protocols, like
Tor. In this work, we present time-constant and vector-optimized imple-
mentations of NewHope and NewHope-Simple for ARMv8-A 64-bit
processors which target high-speed applications. This architecture is im-
plemented in a growing number of smart phone and tablet processors,
and features powerful 128-bit SIMD operations provided by the NEON
engine. In particular, we propose the use of three alternative modu-
lar reduction methods, which allow to better exploit NEON parallelism
by avoiding larger data types during the Number Theoretic Transform
(NTT) and remove the need to transform input coefficients into Mont-
gomery domain during pointwise multiplications. The NEON vectorized
NTT uses a 16-bit unsigned integer representation and executes in only
18, 909 clock cycles on an ARM Cortex-A53 core. Our implementation
improves previous assembly-optimized results on ARM NEON platforms
by a factor of 3.4 and outperforms the C reference implementation on the
same platform by a factor of 8.3. The total time spent on the key ex-
change was reduced by more than a factor of 3.5 for both protocols.

Keywords: ARMv8-A, NEON, ARM Cortex-A53, Post-Quantum Key
Exchange, Ring-LWE, NewHope, NewHope-Simple, NTT.

1 Introduction

The National Institute of Standards and Technology (NIST) has recently ini-
tiated the process of identifying and evaluating post-quantum public-key cryp-
tographic algorithms for the upcoming future, when large quantum computers
might be constructed [15]. Yet, the immediate deployment of post-quantum algo-
rithms, along with elliptic-curve or RSA based algorithms, is necessary to avoid
the risk of current network traffic being recorded and broken in the future. A first
passively secure key exchange protocol based on the Ring Learning with Errors
problem (Ring-LWE) employing an error reconciliation mechanism was proposed



by Ding, Xie, and Lin in [16, 17]. A tweaked version of it was later on put forward
by Chris Peikert in [26] as a “drop-in component” for Internet standard proto-
cols. A first instantiation of this protocol with concrete parameters was then
proposed by Bos, Costello, Naehrig, and Stebila in [13] and implemented into
the Transport Layer Security (TLS) protocol of OpenSSL. A further improve-
ment was suggested by Alkim, Ducas, Pöppelmann, and Schwabe in [3], also re-
ferred to as NewHope. Some of the main improvements of [3] over the previous
proposal [13] are the simplified noise distribution, which is a centered binomial
noise distribution, and an improved selection of the ring parameters geared to-
wards higher performance and security. Real world applications of NewHope
were tested by Google [20] and an integration into the anonymity network Tor
was proposed in [14]. Finally, a very recent update was made to the protocol
and called NewHope-Simple, which replaces the reconciliation mechanism by
a simple key encapsulation method [2].

State-of-the-Art Implementations The authors of NewHope provide a
portable reference C implementation, as well as an assembly-optimized ver-
sion targeting high-end Intel Haswell processors using AVX2 vector operations3.
Gueron and Schlieker [21] further parallelized the sampling step using AVX2
and proposed techniques to reduce the rejection rate of pseudorandom numbers,
which was also independently proposed by Yawning Angel [5]. The implemen-
tation of the Number Theoretic Transform (NTT) using AVX2 instructions was
later on optimized by Longa and Naehrig in [23], using an alternative modular re-
duction technique and a signed representation of integers. NewHope was ported
to ARM Cortex-M embedded processors by Alkim, Jakubeit, and Schwabe in
[4]. They reduced the memory accesses in the NTT and optimized subroutines
in assembly to gain improved performance from the available instruction set.

Our Contribution All implementations of NewHope so far target either high-
end desktop (e.g. AVX2) or low-end embedded processors (e.g. ARM Cortex-M).
In this work, we close this gap by presenting constant-time4 assembly-optimized
implementations of NewHope and NewHope-Simple protocols for ARMv8-A
64-bit processors. This architecture includes the NEON SIMD vector extension
by default, which has been already successfully used many times in the past to
speed up a variety of cryptographic algorithms [11], including other Ring-LWE
based algorithms [7]. In particular, we fully vectorized all ring operations, while
optimizing pipelining. Further, we use alternative reductions which are more effi-
cient and suited for NEON ARMv8-A SIMD than previously used methods. For
the computation of the NTT, an improved fast reduction mechanism is proposed,
which is similar to Barrett reduction, but does not need to extend intermediate
values to larger data types. A full Barrett reduction routine is used during the
pointwise multiplication of two polynomials, removing the need to transform
the coefficients into Montgomery domain. Further, a reduction “by minimum”
is proposed for addition and subtraction.

3 https://cryptojedi.org/crypto/#newhope
4 The generation of public parameters is not constant-time [3].



2 NewHope and NewHope-Simple

NewHope is an ephemeral key exchange protocol proposed by Alkim, Ducas,
Pöppelmann, and Schwabe [3] in 2015 and aimed at 128-bit post-quantum secu-
rity. An overview of NewHope is provided in Figure 1. The protocol performs
computations in the ring Rq = Zq[X]/(Xn + 1) with n = 1024 and q = 12289.
To enable efficient computations in Rq, NewHope uses the negacyclic Number
Theoretic Transform (NTT) to transform polynomials into Fourier space. Let

a =
∑1023

i=0 aiX
i ∈ Rq, then

â = NTT(a) =

1023∑
i,j=0

γjajω
ijXi, (1)

with ω = 49 being the 1024th primitive root of unity and γ =
√
ω = 7 being the

twiddle factor of the negacyclic NTT. The inverse transform NTT−1 is defined
as:

a = NTT−1(â) =

1023∑
i,j=0

n−1γ−iâjω
−ijXi. (2)

These transforms allow to compute the polynomial multiplication a∗b simply as
NTT−1(NTT(a) ◦NTT(b)), thus replacing expensive polynomial multiplications
(denoted by ∗) with NTT/NTT−1 and pointwise multiplications (denoted by ◦).
In NewHope, two entities A and B agree on a shared secret in three steps:

1. A initiates the protocol via an offer() to B by computing a public polynomial
b̂ from a 256-bit seed σ and a secret polynomial ŝ. First, Parse() generates a
random polynomial â using a variable amount of output of SHAKE-128 [18]
stretched from σ. Then, the coefficients of the secret polynomial s and the
error polynomial e are sampled at random from a centered binomial distri-
bution Ψ16 =

∑15
i=0 bi − b′i using uniform random bits bi, b

′
i ∈ {0, 1}. Finally,

the public polynomial b̂ is obtained by multiplying the NTT-transformed
secret polynomial ŝ by â and adding the NTT of the error polynomial e
to the result. The public seed σ and the polynomial b̂ are encoded into a
byte-string mA via encodeA(), and sent over to B.

2. B performs an accept() to derive a second public polynomial û, a helper
polynomial r ∈ R4, and a shared secret µ ∈ {0, 1}256. First, the polynomi-
als t,e′, and e′′ are sampled from Ψ16. By decoding mA back to (b̂, σ) via
decodeA(), â is recreated via Parse(). The public polynomial û is derived in
a similar way as for b̂, by multiplying t̂ by â and adding NTT(e′) to the
result. Then, the public polynomial b̂ is used to generate the shared polyno-
mial v by multiplying it with the secret polynomial t̂, applying the NTT−1

to the result, and finally adding the error polynomial e′′. Finally, the shared
secret µ is computed by reconciliation as follows: The helper polynomial r
is generated via HelpRec() from the shared polynomial v. With this helper
data and v a common secret value ν is reconstructed via Rec(), and finally
whitened using SHA3-256. The public polynomial û along with the helper
data r is byte-wise encoded via encodeB(), and sent back to A.



Entity A Entity B

offer() :

σ←$ {0, 1}256

â← ParseSHAKE-128(σ) accept(mA) :

s, e←$Ψn
16 t, e′, e′′ ←$Ψn

16

ŝ← NTT(s) t̂← NTT(t)

b̂← â ◦ ŝ + NTT(e)
mA = encodeA(b̂, σ)

1824 bytes
(b̂, σ)← decodeA(mA)

â← ParseSHAKE-128(σ)

û← â ◦ t̂ + NTT(e′)

finalize(̂s,mB) : v← NTT−1(b̂ ◦ t̂) + e′′

(û, r)← decodeB(mB)
mB = encodeB(û, r)

2048 bytes
r←$ HelpRec(v)

v′ ← NTT−1(û ◦ ŝ)

ν ← Rec(v′, r) ν ← Rec(v, r)

µ← SHA3-256(ν) µ← SHA3-256(ν)

Fig. 1. The NewHope protocol [3].

3. A derives the shared secret µ from (̂s,mB) via finalize() also by reconciliation.
It multiplies û by ŝ to obtain almost an identical copy of v which is denoted
by v′. Finally, it uses the helper polynomial r to reconciliate v′ back to ν
via Rec(), and hashes the result to obtain µ.

Very recently, a simplified version of NewHope was proposed by Alkim,
Ducas, Pöppelmann, and Schwabe in [2] under the name of NewHope-Simple.
Compared to the original proposal, the reconciliation mechanism is replaced by
a simple Ring-LWE encryption, as shown in Figure 2. The cost of this simpli-
fication is an increase in size of the reply message to 2176 bytes (6.25% more).
Further, B generates a 256-bit random key ν, in contrast to the 256 random bits
used in HelpRec() in NewHope. The common secret ν is hashed using SHA3-256
and each bit is encoded into the upper bits of four coefficients of k in NHSEn-
code(). The ciphertext polynomial c is computed by a pointwise multiplication
of b̂ and t̂, transformed back to normal domain with NTT−1 followed by an
addition of e′′ and k. It is then transferred compressed to A using NHSCom-
press(), removing the unnecessary lower bits by modulus switching and restored
on the initiators side as c′ with NHSDecompress(). By subtracting the NTT−1

of the product û ◦ ŝ from c′, A is able to restore an approximate copy of k. By
combining each four coefficients the hashed key ν′ is extracted in NHSDecode().
Similar to the original NewHope protocol the common secret ν is finally hashed
to the shared secret µ using SHA3-256().



Entity A Entity B

offer() :

σ←$ {0, 1}256

â← ParseSHAKE-128(σ) accept(mA) :

s, e←$Ψn
16 t, e′, e′′ ←$Ψn

16

ŝ← NTT(s) t̂← NTT(t)

b̂← â ◦ ŝ + NTT(e)
mA = encodeA(b̂, σ)

1824 bytes
(b̂, σ)← decodeA(mA)

â← ParseSHAKE-128(σ)

û← â ◦ t̂ + NTT(e′)

ν ←$ {0, 1}256

ν′ ← SHA3-256(ν)

k← NHSEncode(ν′)

finalize(̂s,mB) : c← NTT−1(b̂ ◦ t̂) + e′′ + k

(û, c̄)← decodeB(mB)
mB = encodeB(û, c̄)

2176 bytes
c̄← NHSCompress(c)

c′ ← NHSDecompress(c̄)

k′ ← c′ − NTT−1(û ◦ ŝ)

ν′ ← NHSDecode(k′)

µ← SHA3-256(ν′) µ← SHA3-256(ν′)

Fig. 2. The NewHope-Simple protocol [2].

3 ARMv8-A Architecture

ARMv8-A is a 64-bit RISC architecture with 31 general purpose registers (r0
to r30) [1]. These can either contain 64-bit values (denoted by Xn) or 32-bit
values (denoted by Wn). The ARMv8-A architecture further features 32× SIMD
and floating point 128-bit registers (v0 to v31). For non-vector operations these
registers can be referenced by the number of bits used in the computation (Bn for
8-bit, Hn for 16-bit, Sn for 32-bit, Dn for 64-bit, Qn for 128-bit). When accessed as
vectors, the registers are referenced as vn.xy, with n being the register number,
x being the number of elements, and y being the element size encoded in the
letters according to the non-vector access. Single elements of a vector can be
accessed by square brackets, e.g. v0.h[2] for the third half-word of v0.

The NEON extension offers very powerful vector SIMD operations which
process the elements of input vectors in parallel. They include the regular arith-
metic operations ADD, SUB and MUL as well as bitwise operations like AND and
ORR. For multiplications followed by an addition it offers multiply and accu-
mulate (MLA) as well as multiply and subtract (MLS) instructions. Further, long
multiplications are available (UMULL/2), resulting in the output elements being



twice as large as the inputs. Also, wide operations are supported, with one in-
put vector consisting of half-width elements compared to the output, e.g. signed
wide addition (SADDW/2). Values can be narrowed to half-width data-types us-
ing extract narrow (XTN/2). Along with regular shifts, like unsigned right shift
(USHR), it also offers advanced shifts, e.g. shift and accumulate (USRA) as well
as narrowing shifts (SHRN/2). Finally, UMIN instruction selects the minimum of
each element out of two input vectors, while CNT counts the number of ‘1’s in
each byte. Loading of vectors can be done using LD1, which loads consecutive
elements into one vector, as well as LD2, LD3 and LD4 which load consecutive
elements de-interleaved into 2, 3 and 4 vectors respectively. The elements of a
vector can be also easily reordered, e.g. by TRN1/2, which merge either even or
odd elements of two vectors, respectively.

4 Implementation Details

In this section, implementation details about NTT/NTT−1, pointwise multipli-
cation (◦), polynomial addition (+), polynomial subtraction (−), as well as noise
sampling from Ψn

16 are discussed. In particular, the proposed reduction methods
are elaborated.

4.1 NTT and NTT−1

The NTT as well as its inverse NTT−1 (see Equations (1) and (2)) can be im-
plemented efficiently using Gentleman-Sande (GS) butterfly operations [19] in a
Fast Fourier Transform (FFT) structure. For n = 1024, the NTT can be com-
puted in 10 levels, each consisting of 512 GS-butterfly operations which combine
two polynomial coefficients by the means of an addition, and a subtraction fol-
lowed by a multiplication with a power of ω. This excludes the multiplication by
the powers of γ for the NTT as well as the powers of γ−1 and n−1 for the NTT−1,
which are performed before the NTT and after the NTT−1. GS-butterfly based
NTT/NTT−1 generally need the input polynomial to be in bit-reversed ordering.
However, in NewHope the bit-reversal of the NTT is not performed, as it is only
applied to randomly generated polynomials.

Parallelism vs Laziness Trade-Off Evaluation The coefficients of R12289

are integers < 214. The ARMv8-A NEON supports SIMD instructions on 8× 16-
bit, 4× 32-bit, or 2× 64-bit unsigned integers. When performing operations on
two coefficients, the size of the result can increase till a certain size before being
reduced. This allows for different trade-offs depending on the size of elements
and the laziness of reductions during GS operations. Using smaller values allows
for higher parallelism, but requires more reductions. On the other hand, using
larger values allows for less parallelism, but increased laziness in the reductions.
Our investigations suggest that 16-bit unsigned integers representation is the
best choice in terms of speed for ARMv8-A NEON platforms, as the parallelism
outweighs the advantage of lazy reductions.



Listing 1 GS-Butterfly Operation for 14-bit Inputs.

Input: va.8h = [a0,...,a7], vb.8h = [b0,...,b7],
vω.8h = [ω0,...,ω7], vq.8h = [3q,...,3q].

Output: vc.8h = [c0,...,c7], vd.4s = [d0,...,d3], ve.4s = [e0,...,e3].
1: ADD ve.8h, va.8h, vq.8h . e = a+ 3q
2: SUB ve.8h, ve.8h, vb.8h . e = e− b
3: ADD vc.8h, va.8h, vb.8h . c = a+ b
4: UMULL vd.4s, ve.4h, vω.4h . d = e · ω
5: UMULL2 ve.4s, ve.8h, vω.8h . e = e · ω

Merging of Levels Using 16-bit integers and having 32 registers available,
then 256 values can be loaded. This allows merging of up to 7 levels of the NTT,
which requires loading 128 coefficients and 64 powers of ω, in order to reduce the
total number of load and store instructions. As the number of different powers
of ω needed in the levels of the NTT decreases for higher levels, an asymmetrical
split in two blocks is favorable, with the first consisting of 4 levels and the second
of 6 levels. Using this approach all the 32 powers of ω for the second block can
be loaded during the computation and thus do not need to be reloaded in each
iteration. For the first block, each iteration needs a different selection of the 512
available powers of ω, thus they are loaded for each level separately during each
iteration. Constants needed for the reduction routines are stored in three vector
registers, removing the need to transfer them from standard registers for each
reduction. Each block is iterated 16 times performing GS-butterfly operations
on 64 coefficients, which are loaded at the beginning and stored at the end of
the block, thus reducing the number of load and store instructions to 2n, each.

Gentleman-Sande Butterfly GS-butterfly operations are applied to pairs of
coefficient with a distance equal to the powers of 2, i.e. from 20 to 29 with each
level. Hence, in the first level, neighboring values need to be combined, in order
to enable vector operations between them. Thus, they are loaded de-interleaved
with LD2. For the second level, transposing with TRN1/2 rearranges the elements
to align each coefficient with its second neighboring coefficient in two consecutive
vectors. Applying TRN1/2 to blocks of elements, aligns the coefficients in the
consecutive levels. In the first level and all other odd levels, the result after
addition is < 215 as the input coefficients < 214. In the remaining even levels,
the inputs are < 215 and the output is < 216 and is reduced to < 214 using a
fast Barrett reduction. In case of subtraction, the inputs are always < 215 for
all levels, hence the addition of 215 < 3q < 216 makes the results always positive
< 217. In contrast to [3], this work takes advantage of the fact that the inputs
in odd levels are further < 214, and thus the result of subtraction is < 216 which
allows further NEON parallelism in all odd levels, as shown in Listing 1. In all
levels, the powers of ω are precomputed in Montgomery domain and multiplied
by the result of subtractions. This allows for efficient Montgomery reductions
[25].



Listing 2 Vectorized Montgomery Reduction.

Input: va.4s = [a0,...,a3], vb.4s = [b0,...,b3],
vq.4s = [q,q’,...], vr.4s = [r-1,...,r-1].

Output: vc.8h = [c0,...,c7].
1: MUL vc.4s, va.4s, vq.s[1] . c← a · q′
2: AND vc.16b, vc.16b, vr.16b . c← c mod r
3: MLA va.4s, vc.4s, vq.s[0] . a← a+ c · q
4: MUL vc.4s, vb.4s, vq.s[1] . c← b · q′
5: AND vc.16b, vc.16b, vr.16b . c← c mod r
6: MLA vb.4s, vc.4s, vq.s[0] . b← b+ c · q
7: SHRN vc.4h, va.4s, 16 . c = a÷ 216

8: SHRN2 vc.8h, vb.4s, 16 . c = b÷ 216

9: USHR vc.8h, vc.8h, 2 . c = c÷ 22

Montgomery Reduction By using fully reduced powers of ω, the inputs of
Montgomery reduction are limited by ≤ (215−1+3 ·q) ·(q−1) = 855, 662, 592 ≈
229.67. Equivalent to [3], only 32-bit intermediate values are used and the pa-
rameter selected as r = 218. This restricts the input range to < 232−q · (r−1) =
1, 073, 491, 969 ≈ 229.99, limited by the final addition during the reduction. In
Listing 2, a vectorized Montgomery reduction for ARMv8-A is shown. It takes
two vectors with 4 × 32-bit elements each as an input and merges them in one
vector with 8× 16-bit elements, with values reduced to 14-bit in 9 instructions.

Longa-Naehrig Reduction In [23], an alternative method for modular reduc-
tions by expressing the modulus as q = 12289 = 3 · 212 + 1 is shown. For larger
data types this approach offers performance enhancements. However, our choice
of using 16-bit intermediates causes it to be less efficient than Montgomery re-
ductions, as it needs two iterations to reduce 32-bit inputs to a 16-bit output.

Fast 16-bit Barrett Reduction The reduction after addition in every second
level was implemented using fast 16-bit Barrett reduction. In [3] an extension to
32-bit is required by multiplying the input by a factor A = 5 before division. We
propose the use of an improved version for ARMv8-A NEON, without the need to
extend the intermediate value to 32-bit, as shown in Listing 3. The initial division
by r1 = 23 ensures 16-bit intermediate values after the multiplication of A = 5,
while limiting the output to ≤ 16379 < 214. Furthermore, the multiplication

Listing 3 Fast 16-bit Barrett Reduction.

Input: va.8h = [a0,...,a7], vq.8h = [q,...].
Output: va.8h = [a0,...,a7].

1: USHR vt.8h, va.8h, 3 . t← a÷ 23

2: USRA vt.8h, va.8h, 1 . t← t · 5
3: USHR vt.8h, vt.8h, 13 . t← t÷ 213

4: MLS va.8h, vt.8h, vq.h[0] . a← a− t · q



was replaced by a shift and accumulate operation to avoid the need of storing
a constant in register. This approach is similar to the original version used by
Paul Barrett in 1986 [8], as well as to the SAMS2 approach taken in [27] [7], but
specialized for NewHope.

Bit-Reversal For NTT−1 an initial reordering step is needed. Due to its non-
consecutive access vectorization is not applicable on ARMv8-A. Therefore, it
was optimized by unrolling the swapping of elements in assembly.

Multiplication by γ The multiplication of the coefficients with the powers of
γ and γ−1 for the NTT and NTT−1 was vectorized using NEON instructions.
It uses precomputed powers of γ in the Montgomery domain, further including
n−1 for the NTT−1. A vectorized Montgomery reduction is applied afterwards.

4.2 Pointwise Multiplication ◦

This operation multiplies the coefficients of two vectors with each other in a
pointwise way, i.e. each element only with the corresponding element of the other
vector. It was vectorized, and further optimized for pipelining, by performing the
pointwise multiplication of 2× 64 coefficients in an interleaved order in 16 loop
iterations. With input values up to 16-bit, this results in 32-bit output values.

In [3], two Montgomery reductions are used to first transform one input
polynomial to Montgomery domain and later reduce the final result. Instead, we
propose the use of a full 32-bit Barrett reduction, which removes the need of
domain transformation and thus only needs a single iteration.

Full 32-bit Barrett Reduction Selecting A = 2, 863, 078, 533 and r = 245

for the Barrett reduction a′ = a− b(a · A)÷ rc · q yields a full reduction for all
32-bit unsigned integers. However, this requires extending the intermediate data
type to 64-bit values and therefore needs 14 instructions on ARMv8-A NEON
to reduce 8× 32-bit values.

A Note on 28-bit Barrett Reduction As an alternative for platforms with-
out efficient long multiplications for 32-bit values, we propose a fast 28-bit Bar-
rett Reduction similar to our 16-bit version. Selecting A = 43687, r1 = 212 and
r1 = 217 in a′ = a− b(ba÷ r1c ·A)÷ r2c · q reduces values ≤ 17006 < 2q < 215.
Thus, an extra reduction step is necessary to limit the output to 14-bit, as well
as care has to be taken to not exceed the 28-bit input range. On ARMv8-A
NEON it needs 10 instructions to reduce 8× 28-bit values to 15-bit.

4.3 Polynomial Addition + and Subtraction −

Polynomial addition and subtraction calculate the sum and difference of two vec-
tors element-wise, respectively. They were vectorized and interleaved for pipelin-
ing iterating over 2×64 coefficients in a loop. For the subtraction an extra factor



Listing 4 Vectorized Reduction by Minimum.

Input: va.8h = [a0,...,a7], vq.8h = [q,...,q].
Output: vb.8h = [b0,...,b7].

1: SUB vb.8h, va.8h, vq.8h . b = a− q, underflow for a < q
2: UMIN vb.8h, va.8h, vb.8h . b = min(a, b), unsigned

of 2q was added to avoid negative output values, together with the minuend al-
ways being fully reduced, the output is limited to < 3q. For the addition the
input values are limited to 14-bit and thus the output to 15-bit < 3q. Hence,
both can be reduced by two reductions of a single factor of q each. This re-
sults in a full reduction, removing the need to further reduce the polynomials in
encodeA() and encodeB().

Reduction by Minimum This reduction is based on the instruction UMIN,
which selects the minimum element out of two vectors. It needs only two in-
structions in order to reduce 8× 16-bit vector elements, as shown in Listing 4.

4.4 Noise Sampling from Ψn
16

Similar to the reference C implementation, the seed is taken from /dev/urandom

and extended using ChaCha20 [9]. An ARMv8-A NEON optimized version of
ChaCha20 was used from the Linux Kernel development branch [12]. An alter-
native would have been to use AES-CTR by employing the AES instructions
in ARMv8-A. However, this would have required the optional Cryptographic
Extension to be integrated into the processor, which was not available on our
testing platform.

The uniform noise is converted to the centered polynomial distribution Ψn
16 by

bit-wise accumulation followed by addition and subtraction using NEON vector
operations. Together with a final addition of q in order to avoid negative output,
16 noise coefficients are generated in 9 instructions, as shown in Listing 5.

Listing 5 Vectorized Noise Sampling from Ψn
16.

Input: va.16b, vb.16b, vc.16b, vd.16b ←$ {0, 1}128, vq.8h = [q,...,q]

Output: ve.8h, vf.8h ←$Ψ8
16

1: CNT va.16b, va.16b . Sum up each 8-bit
2: CNT vb.16b, vb.16b

3: CNT vc.16b, vc.16b

4: CNT vd.16b, vd.16b

5: ADD va.16b, va.16b, vb.16b . Add two bytes
6: ADD vb.16b, vc.16b, vd.16b

7: SUB va.16b, va.16b, vb.16b . Subtract two bytes
8: SADDW2 vf.8h, vq.8h, va.16b . Add q & extend to 16-bit
9: SADDW ve.8h, vq.8h, va.8b



Table 1. Cycle count of NewHope and NewHope-Simple on ARM Cortex-A53.

Operation C Reference NEON Assembly-Optimized
[Cycles] [Cycles]

NTT 156,564 18,909
NTT−1 165,325 21,054
Pointwise Multiplication ◦ 31,814 2,526
Polynomial Addition + 14,408 1,505
Polynomial Subtraction − 25,672 1,590
Noise Sampling Ψn

16 50,556 22,338

NewHope offer() 555,328 165,956
NewHope accept() 846,013 243,199
NewHope finalize() 220,141 47,027

NewHope-Simple offer() 555,301 166,028
NewHope-Simple accept() 853,453 238,478
NewHope-Simple finalize() 237,893 41,048

5 Performance Results

The performance was measured on an Odroid-C2 single-board computer [22]
running Arch Linux ARM [6]. This board features an Amlogic S905 ARM
Cortex-A53 1.5GHz quad-core CPU with 32KB L1 cache per core and 512KB
L2 cache as well as 2GByte DDR3 SDRAM. Each ARM Cortex-A53 core im-
plements the ARMv8-A RISC architecture with an 8-stage pipeline. The bina-
ries were compiled with gcc 6.2.1 using the flags -O3 -fomit-frame-pointer

-march=native. Performance was measured using the Linux kernel performance
monitoring system call [24]. This enables user processes to accurately measure
the performance on a multi-core platform using hardware counters. The mea-
surements include only the cycles spent on the specific process and thus excludes
all kernel interrupts and time spent by other processes on the same core. The
reported cycle counts represent the median of 216 consecutive measurements ex-
cluding the overheads of system calls. Table 1 provides a comparison between
our NEON assembly-optimized version and the C reference implementation by
[3] for NewHope and our modifications for NewHope-Simple. Our assembly-
optimized implementation of the NTT (including a multiplication with γ) is
faster by a factor of 8.3 compared to the C reference implementation. This is
comparable to the speedup by a factor of 6.6 achieved with AVX2 by Alkim,
Ducas, Pöppelmann, and Schwabe in [3]. Note that the AVX2 processor ex-
tension features 256-bit SIMD registers, while our platform features only 128-bit
SIMD registers. Pointwise multiplication, as well as the polynomial addition and
subtraction, were improved by factors between 9.6 and 16.1, when compared to
the non-vectorized versions. A direct comparison with previous optimizations of
Ring-LWE on the same platform is not applicable, as there are no optimized
implementations known to the authors at the moment of writing. However, a



Table 2. Cycle Count of the NTT on ARM NEON Platforms.

Architecture Processor Ring Cycles

ARMv7-A [7] Cortex-A9 Z7681[x]/(x256 + 1) 25, 574 127, 870†

ARMv7-A [27] Cortex-A9 Z12289[x]/(x512 + 1) 62, 160 138, 133†

ARMv8-A [TW] Cortex-A53 Z12289[x]/(x1024 + 1) 18,909 -

† Scaled to n = 1024 for comparison.

Table 3. Cycle Count of Ephemeral Key-Exchange on ARM NEON Platforms.

Architecture Processor Protocol A-Cycles B-Cycles

ARMv7-A [10] Cortex-A9 X25519, NEON 1, 144, 299† 1, 144, 299†

ARMv8-A [10] Cortex-A53 X25519, C ref. 952, 022† 952, 022†

ARMv8-A [TW] Cortex-A53 NewHope 212,983 243,199
ARMv8-A [TW] Cortex-A53 NewHope-Simple 207,076 238,478

† Computed as the sum of key pair generation and shared secret computation.

comparison with previously optimized implementations of the NTT on other
NEON platforms is provided in Table 2. The numbers from [7, 27] are scaled by
a factor of 5 and 20/9 considering the used dimensions n = 256 and n = 512,
respectively. However, the experimental platform ARM Cortex-A9 employed in
these implementations is less powerful and thus a comparison has to be done
with care, e.g. the NEON extension on ARM Cortex-A9 only processes 64-bit
of the 128-bit vector registers at a time. Therefore, if we consider a roughly es-
timated scaling factor of 2, our implementation outperforms these implementa-
tions by a factor of 3.4. Finally, for offer(), accept() and finalize() the performance
is improved by a factor of 3.3 to 4.7 for both flavors. The NewHope-Simple
finalize() shows more improvement with a factor 5.8, due to optimization of the
polynomial subtraction used. The total key-exchange takes 212, 983 cycles for
A and 243, 199 cycles for B for NewHope as well as 207, 076 and 238, 478 for
NewHope-Simple, respectively. This also includes a final hashing of the key
using SHA3-256. Table 3 further compares our results with elliptic-curve based
ephemeral key exchange implementations found in [10]. Our implementations
also outperform state of the art elliptic curve key exchange protocols by more
than a factor of 2, also when considering the scaling due to the more powerful
architecture used in this work.

6 Conclusion

We presented constant-time and vector-optimized implementations of NewHope
and NewHope-Simple protocols for ARMv8-A 64-bit processors, which exploit
NEON extensions together with alternative and more suitable reduction methods
for this architecture. Being the first optimized Ring-LWE implementations on
this platform, our results show drastic improvements over the C reference imple-
mentations and outperform previous results on similar platforms. These results



further show the practicability of lattice based post-quantum key exchange along
with elliptic-curve cryptography to protect current ARMv8-A based platforms,
like mobile phones and tablets.

Availability of Software The software is put in the public domain and avail-
able at the web address https://gitlab.lrz.de/tueisec/NewHope-ARMv8-A.
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