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Abstract. For a composite integer N that we would like to factor, we
consider a condition for the elliptic curve method using N as a scalar
value to succeed and show that if N has a prime factor p such that
p = (DV 2 + 1)/4, V ∈ Z, D ∈ {3, 11, 19, 35, 43, 51, 67, 91, 115,
123, 163, 187, 235, 267, 403, 427}, we can find a non-trivial divisor of
N (multiple of p) in a short time. In the authors’ implementation on
PARI/GP, a 1024-bit N was factored in a few seconds when p was 512
bits.
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1 Introduction

RSA, which is the most popular public key cryptography, is based on the hard-
ness of prime factorization. Prime factorization experiments are hence important
to decide the key length of practical RSA systems.

Representative prime factorization methods [3] include the number field sieve
(NFS), the quadratic sieve (QS), Lenstra elliptic curve method (ECM) [8], the
p − 1 method, and the ρ method. The NFS, QS and ECM are subexponential
time algorithms, while the p− 1 method and the ρ method are exponential time
algorithms. It is said that the NFS is considered to be the best algorithm for
factoring a composite number N when N is a product of two large primes as in
the case of the public key of RSA and that the ECM is suitable for moderately
large composite numbers.

1.1 Easily Factored Composite Numbers

Let p and q be primes of several hundreds of bits or more. Then, factoring
N = pq is hard. The largest such composite number N that has been factored
and that does not fall into any of the special cases listed below is 768 bits long
[1]. However, it is known that such large Ns can be easily factored in a short
time in the following special cases:

1. When p− 1 has only small prime factors, the p− 1 method can easily factor
N ,



2. When |p− q| is a small integer, Fermat’s method can be used to factor N .

This paper will add to this list the following.

3. When p has the form

p = (DV 2 + 1)/4, V ∈ Z (1)

for some non-square number D ∈ Z, an improved version of ECM can be
used to factor N .

This paper will show that the set of such Ds includes {3, 11, 19, 35, 43, 51,
67, 91, 115, 123, 163, 187, 235, 267, 403, 427}.

Remark 1 The authors think that the results in this paper are NOT a threat
against practical RSAs. To see that this is the case, let us consider the probability
that a given integer is a square. For a square m2, the following one is (m + 1)2,
and the difference between them is

(m + 1)2 −m2 = 2m + 1(= 2
√

m2 + 1).

Then, the probability that a large enough integer n is a square is about

1
2
√

n + 1
; 1

2
√

n
. (2)

Next, we consider the probability that a given prime p has the form (1).
Modifying the expression of Eq. (1), we get

V 2 = (4p− 1)/D. (3)

If p has the form (1), the right term of (3) has to be a square, and its probability
is
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2
√

(4p− 1)/D
; 1

2
√

(4p)/D
=
√

D

4
√

p

from (2). In the case of a 1024-bit RSA, the probability that p has the form (1)
is less than 1/2253, because p ; 2512 and D < 210.

1.2 Notation

This paper uses the following notations, where n is a natural number and p is a
prime.

Zn := {0, 1, 2, ..., n− 1}．
Fp := Zp = {0, 1, 2, ..., p− 1}．
ap := a mod p for a ∈ Z, or for a ∈ Zn (p is a prime factor of n)．
Ep : y2 = x3 + Apx + Bp for E : y2 = x3 + Ax + B.
Pp := (xp, yp) ∈ Ep for P = (x, y) ∈ E.



Op := the point at infinity of Ep.
HD(j) : the class polynomial of discriminant D.
HD,n(j) : a polynomial generated by reducing all coefficients of HD(j) mod n.
Qτ

n := Zn[X]/(X2 − τ)．
RD

n := Zn[j]/(HD,n(j))．
SD,τ

n := RD
n [X]/(X2 − τ) = Zn[j,X]/(HD,n(j), X2 − τ)．

2 Preliminary

2.1 Elliptic Curves over a General Field

This section briefly introduces the definitions and properties of elliptic curves
over a general field. Readers can refer to [10, 5] for details.

2.1.1 Addition on Elliptic Curves
Let K be a field and E an elliptic curve over K given by the Weierstrass normal
form,

E/K : y2 = x3 + Ax + B, A, B ∈ K, 4A3 + 27B2 6= 0. (4)
Then, the set E(K) is defined as

E(K) = {(x, y) ∈ K×K : y2 = x3 + Ax + B} ∪ {O},
where O is the point at infinity. P + Q ∈ E(K) can be defined geometrically or
using the addition formula for any point P, Q ∈ E(K). In addition, the negativeof
a point P = (x1, y1) 6= O, −P , is defined as −P = (x1,−y1), and −O = O. Then,
E(K) forms a group under the operation ‘+’ with the identity O.

Scalar multiplication mP is defined by repeatedly performing ‘+ ’, i.e.,

mP = P + P + ... + P (m terms) ∈ E(K)

for P ∈ E(K) and m ∈ N. In the affine coordinate system, mP has coordinates
such as

mP =
(

am

d2
m

,
bm

d3
m

)
, (5)

([10, Exer. III.3.7]) and
mP = O ⇔ dm = 0. (6)

2.1.2 J-invariant and Twist
For an elliptic curve E/K given by Eq. (4),

j = 4 · 1728A3/(4A3 + 27B2) (7)

is called the j-invariant of E.

Lemma 2 Given j0 ∈ K, an elliptic curve having j-invariant j0 is constructed
as shown in Table 1.



Table 1. Elliptic curve having j-invariant j0.

y2 = x3 +
3j0R

2

1728− j0
x +

2j0R
3

1728− j0
(R 6= 0) when j0 6= 0, 1728

y2 = x3 + R (R 6= 0) when j0 = 0
y2 = x3 + Rx (R 6= 0) when j0 = 1728

∵) Refer to [5, Sec. 9.4]. 2

Some of the literature has stated that elliptic curves having j-invariant j0
are constructed as in Table 1 only for R = 1. However, we easily see that such
elliptic curves can also be constructed for other Rs from the definition of the
j-invariant (7).

Let E and E′ be elliptic curves defined over K. If E′ is isomorphic to E
over K that is the algebraic closure of K, E′ is called a twist of E. If E′ is
isomorphic to E over K, E′ is called a trivial twist of E. The set of twists of
E mod K-isomorphism is denoted by Twist(E/K).

It is known that if E and E′ are defined over K and have the same j-invariant,
then E′ is a twist of E.

2.2 Elliptic Curves over a Finite Field

Let E be an elliptic curve over a finite field Fp(p ≥ 5) given by Eq. (4). An integer
t satisfying #E(Fp) = p+1−t is called the trace (of Frobenius), where # denotes
the number of elements. When #E(Fp) = p, which means E has trace 1, E is
called anomalous. If E′ is a twist of E of degree 1, then #E(Fp) = #E′(Fp). If
E′ is a twist of E of degree ≥ 2, then #E(Fp) 6= #E′(Fp) in general.

Let E be an elliptic curve over a finite field Fp(p ≥ 5) given by Eq. (4). An
integer t satisfying #E(Fp) = p + 1− t is called the trace (of Frobenius), where
# denotes the number of elements. When #E(Fp) = p, which means E has the
trace 1, E is called anomalous.

If E′ is a trivial twist of E, #E(Fp) = #E′(Fp). If E′ is not a trivial twist
but a twist of E, #E(Fp) 6= #E′(Fp) in general. From [5, Sec. 9.5.8], it is known
that

#Twist(E) =





2 if the j-invariant of E 6= 0, 1728
4 if the j-invariant of E = 1728
6 if the j-invariant of E = 0.

(8)

The following theorem is important.

Theorem 3 (Lagrange’s Theorem for E(Fp)) Let E/Fp be an elliptic curve
over the finite field Fp, and n = #E(Fp). Then, any point P ∈ E(Fp) satisfies

nP = O.

∵) Refer to [2, Sec. 2.1.1]



Table 2. Class polynomials HD(j) of degree 1 for p = (DV 2 + 1)/4 possibly prime

D HD(j)

3 j

11 j + (25)3

19 j + (25 · 3)3

43 j + (26 · 3 · 5)3

67 j + (25 · 3 · 5 · 11)3

163 j + (26 · 3 · 5 · 23 · 29)3

Table 3. Class polynomials HD(j) of degree 2 for p = (DV 2 + 1)/4 possibly prime

D HD(j)

35 j2 + 117964800j − 134217728000

51 j2 + 5541101568j + 6262062317568

91 j2 + 10359073013760j − 3845689020776448

115 j2 + 427864611225600j + 130231327260672000

123 j2 + 1354146840576000j + 148809594175488000000

187 j2 + 4545336381788160000j − 3845689020776448000000

235 j2 + 823177419449425920000j + 11946621170462723407872000

267 j2 + 19683091854079488000000j + 531429662672621376897024000000

403 j2 + 2452811389229331391979520000j
−108844203402491055833088000000

427 j2 + 15611455512523783919812608000j
+155041756222618916546936832000000

2.3 CM Method and Class Polynomial
The following proposition, called the CMmethod, is useful for constructing E/Fp

with a specified the trace t.

Proposition 4 (The CM Method) Let a non-square integer D ∈ Z and a
prime p satisfy 4p− t2 = DV 2 for (0 6=)t, V ∈ Z and let HD(j) be the class poly-
nomial of discriminant D. Then, an elliptic curve E over Fp having j-invariant
j0, which is a root of HD(j), or a twist E′ over Fp of E has trace t.

If E is constructed as in Table 1 using j0, then the probability that E has
trace t is

1/6 if D = 3,
1/4 if D = 1,
1/2 otherwise.



 (9)

∵) Refer to [2]. The probability (9) is obtained from (8), 2

Table 2 gives a set of Ds such that p = (DV 2 + 1)/4 is possibly a prime and
the class polynomial HD(j) is linear, and Table 3 gives a set of Ds such that
p = (DV 2+1)/4 is possibly a prime and the class polynomial HD(j) is quadratic
[9]. For n ∈ N and a class polynomial HD(j), we denote a polynomial over Zn

generated by reducing all coefficients of HD(j) mod n by HD,n(j).



Remark 5 Solving HD(j) = 0 over Q using a mathematical software, Mathe-
matica, for each HD(j) in Table 3, we see that

root of H35(j) ∈ Q(
√

5), root of H51(j) ∈ Q(
√

17),
root of H91(j) ∈ Q(

√
13), root of H115(j) ∈ Q(

√
5),

root of H123(j) ∈ Q(
√

41), root of H187(j) ∈ Q(
√

17),
root of H235(j) ∈ Q(

√
5), root of H267(j) ∈ Q(

√
89),

root of H403(j) ∈ Q(
√

13), root of H427(j) ∈ Q(
√

61).

If p = (DV 2 + 1)/4 is prime, we can prove that HD,p(j) is reducible in Fp. For
example, consider the case of D = 35. We can see that V must be odd for p to
be prime; therefore, replacing V with 2V + 1, we have p = 35V 2 + 35V + 9. The
computation of the Legendre symbol is as follows.

(
5
p

)
=

(p

5

)
=

(
35V 2 + 35V + 9

5

)
=

(
4
5

)
= 1.

Therefore, 5 is a square in Fp, the roots of H35,p(j) are in Fp, and H35,p(j) is
reducible in Fp. As well, we can see that HD,p(j)s are reducible in Fp[j] for other
all Ds.

2.4 Elliptic Curves over ZN and Factoring

Let N be a composite number we would like to factor. This subsection remarks
on elliptic curves over ZN and describes relationships between elliptic curves over
ZN and factoring N , the ECM, and results by Kunihiro et al. [6]. The method
described in Sec. 3 is based on the ECM and uses an elliptic curve over ZN .

Remark 6 Let E be an elliptic curve over ZN . Although ZN is not a field,
we consider the set E(ZN ) of ZN -points on E. For P,Q ∈ E(ZN ), when a
division α/β appearing in a computation of P +Q is computable, in other words,
gcd(N, β) = 1, we can compute P + Q ∈ E(ZN ).

Let p be a prime factor of N and E an elliptic curve over ZN ,

E : y2 = x3 + Ax + B, A,B ∈ ZN .

We denote Ep to be the elliptic curve over Fp,

y2 = x3 + Apx + Bp,

where
Ap := A mod p and Bp := B mod p.

For example, we have
E5/F5 : y2 = x3 + 2x + 4



for
E/Z35 : y2 = x3 + 17x + 19.

When N is factored into N = p0 · p1 · ... · pi, E(ZN ) is represented as

E(ZN ) = E(Fp0)× E(Fp1)× · · · × E(Fpi
).

Each E(Fpi) forms a group, and E(ZN ) also forms a group.
Let N be a composite number, N =

∏k
i=1 pi, pi 6= 2, 3, and E be an elliptic

curve over ZN . An elliptic curve E is called super-anomalous if

#Epi(Fpi) = pi

holds for all is. If E is super-anomalous, we have

#E(ZN ) = N.

If E is not super-anomalous but #E(ZN ) = N , then E is called pseudo super-
anomalous [7].

Remark 7 Let p be a prime factor of N . Let the coordinates of kP be

kP =
(

ak

d2
k

,
bk

d3
k

)

for P ∈ E(ZN ), and let dk,p := dk mod p. If kPp = Op, then dk,p = 0(⇔ dk

is a multiple of p). In other words, if g = gcd(N, dk) and g 6= 0, then g is a
non-trivial divisor of N (multiple of p).

Remark 7 is essential for the ECM and the proposed method to work.

2.4.1 Elliptic Curve Method (ECM)
The ECM (more precisely stage 1 of the ECM) factors N as follows [8].

1. Construct an elliptic curve E : y2 = x3 + Ax + B over ZN and pick a point
P ∈ E(ZN ).

2. Set
L := (the least common multiple from 2 to B1) (10)

(for an optimal integer B1, for example, listed as in [4]).
3. Compute LP = (aL/d2

L, bL/d3
L) over ZN .

4. Compute gcd(N, dL). If gcd(N, dL) 6= 0, 1, return it. Otherwise go back to
step 1. (Or go to stage 2 if gcd = 1.)

Assume that E is (fortunately) constructed such that all prime factors of
#Ep(Fp) are equal to or less than B1 in step 1 of the ECM for a prime factor p
of N . Accordingly, LPp = Op from Lagrange’s theorem, and if gcd 6= 0, step 4
of the ECM returns a non-trivial divisor of N (see Remark 7).

By selecting an optimal B1, the ECM is a subexponential time algorithm in
p, where p is the smallest prime factor of N .



Remark 8 Note that even if an optimal B1 is selected the ECM is a subexpo-
nential (not polynomial) time algorithm. According to [4], when N is expected to
have an 80-digit prime factor, the optimal B1 is 25,000,000,000 and the expected
number of iterations of the ECM is 265,557. Note that the digits of L computed
from (10) number 25,234,114,168 for this B1.

2.4.2 Results of Kunihiro et al.
Kunihiro et al. [6] showed two interesting relationships between an elliptic curve
over ZN and factoring N as follows:

1. If #E(ZN ) were known, then N would be easy to factor.
2. If the discrete logarithm problem on E(ZN ) could be solved, then N would

be easy to factor.

3 Proposed Method

The ECM constructs an elliptic curve E over ZN for the N ∈ N we would like
to factor and computes LP for some P ∈ E(ZN ) and L ∈ N to find a divisor of
N , where L = lcm(2, · · · , B1) for an optimal B1 as in [4]. The table also shows
the expected number of iterations of the ECM.

This section describes a theorem that states an integer N satisfying a certain
condition can be factored by computation of NP with relatively few iterations.
We use the theorem to construct algorithms for factoring N in a short time.

3.1 Basic Idea

The following theorem describes a condition for the ECM to succeed with a
computation of NP .

Theorem 9 Let N be an integer and p a prime factor of N having the form
(1),

p = (DV 2 + 1)/4, D, V ∈ Z,

where D is non-square. Let HD(j) be the class polynomial of discriminant D,
and E/ZN an elliptic curve having the j-invariant j0 given by Eq. (4), where j0
is a root of HD(j). Moreover, for any point (O 6=)P ∈ E(ZN ), compute

NP = (aN/d2
N , bN/d3

N )

and g = gcd(N, dN ). Then, if g 6= 0, g is a non-trivial divisor of N (multiple of
p) with the probability,





1/6 if D = 3,
1/4 if D = 1,
1/2 otherwise.



∵) From Proposition 4 for t = 1, Ep is anomalous with probability as in (9), and
from Lagrange’s theorem, we have pPp = Op. Accordingly, NPp = Op because
p is a divisor of N , and from Remark 7, if g = gcd(N, dN ) is not zero, then g is
a non-trivial divisor of N . 2

Remark 10 If E/ZN is super-anomalous or pseudo super-anomalous, we have
NP = O ∈ E(ZN ) from Lagrange’s theorem, in other words, dN = 0 from Eq.
(6). Accordingly, we have gcd(N, dN ) = 0 and cannot apply Theorem 9.

Problem 11 Even if the composite number N has a prime factor of the form
(1), the following problems appears to apply to Theorem 9.

(i) How do we construct HD(j)?
(ii) How do we find a root of HD(j) over ZN? (If we have a root j0 of HD(j),

then, from Lemma 2, it is easy to construct an elliptic curve having the
j-invariant j0.)

(iii) How do we pick a point P ∈ E(ZN )?

We can use the Ds in Tables 2 or 3 to overcome (i). Therefore, we only need
to consider how to overcome (ii) and (iii).

3.2 Case of D = 3

The case of D = 3 is the easiest. In this case, we can see that H3(j) = j from
Table 2 and its root is 0 and that we can overcome (ii) of Problem 11. To apply
Theorem 9, we can construct an elliptic curve having the j-invariant 0. Such an
elliptic curve has the form,

E : y2 = x3 + B

from Table 1. Therefore, we pick x0, y0 ∈ ZN at random and set B = y2
0 − x3

0;
accordingly, we have

(x0, y0) ∈ E(ZN ),

which overcomes (iii). The above enables the following algorithm to be con-
structed.

Algorithm 1
Input: A composite number N having a prime factor

such that p = (3V 2 + 1)/4
Output: Non-trivial divisor of N (multiple of p)
1. Select x0, y0 ∈ ZN at random, set B = y2

0 − x3
0,

and construct E/ZN : y2 = x3 + B.
2. Set P = (x0, y0). (Note P ∈ E(ZN ). )
3. Compute NP = (aN/d2

N , bN/d3
N ).

4. Compute g = gcd(N, dN ).
5. If g 6= 0, then g 6= 1 with probability 1/6 and return it.

If g = 0, 1, then fail or goto step 1.



3.3 Case in which HD is Linear and D 6= 3

The purpose of this subsection is that for

D ∈ {11, 19, 43, 67, 163}

for which HD(j) is linear, we consider how to overcome (ii) and (iii) of Problem
11 and use Theorem 9 to construct an algorithm for factoring N having a prime
factor such that

p = (DV 2 + 1)/4, V ∈ Z.

When HD(j) is linear, it is easy to find a root j0 of HD(j) over ZN , in other
words, to overcome (ii). It is also easy to construct an elliptic curve having the
j-invariant j0. For D ∈ {11, 19, 43, 19, 43, 67, 163} and 0 6= R ∈ ZN , we may
set

AD,R := 3j0 ·R2/(1728− j0) mod N

BD,R := 2j0 ·R3/(1728− j0) mod N

}
(11)

and construct an elliptic curve ED,R/ZN as follows.

ED,R : y2 = x3 + AD,Rx + BD,R

Then, from Lemma 2, the elliptic curve ED,R/ZN has the j-invariant j0.
However, it is not easy to choose a point P ∈ ED,R(ZN ), in other words,

to overcome (iii) of Problem 11. The authors propose that we choose a point
P ∈ ED,R over a residue ring of ZN [X], named Qτ

N . Taking x0 ∈ ZN at random,
we set

τ = x3
0 + AD,Rx0 + BD,R,

and construct the residue ring,

Qτ
N = ZN [X]/(X2 − τ). (12)

Note that a representative of Qτ
N has the form,

a0 + a1X, a0, ai ∈ ZN .

Remark 12 In Qτ
N , we have

(x0, X)
(
= (x0 + 0X, 0 + X)

) ∈ ED,R(Qτ
N )

because X2 − τ = 0, equivalently X2 = τ , holds and

X2 = τ = x3
0 + AD,Rx0 + BD,R

holds.

The following proposition is a modification of Theorem 9 by using computa-
tion on Qτ

N for D ∈ {11, 19, 43, 67, 163}.



Proposition 13 Let N be a composite number having a prime factor,

p = (DV 2 + 1)/4, D ∈ {11, 19, 43, 67, 163}, V ∈ Z.

Choosing (0 6=)R ∈ ZN , we construct an elliptic curve ED,R over ZN (using Eq.
(11)). Choosing x0 ∈ ZN at random, we compute

τ = x3
0 + AD,Rx0 + BD,R ∈ ZN , (13)

and construct the residue ring Qτ
N (using Eq. (12)). Moreover, for P = (x0, X) ∈

ED,R(Qτ
N ), we compute NP on E(Qτ

N ). Let the coordinates of NP be

NP =
(

aN,0 + aN,1X

(dN,0 + dN,1X)2
,

bN,0 + bN,1X

(dN,0 + dN,1X)3

)
∈ ED,R(Qτ

N ),

(ai, bi, di ∈ ZN ). Then, for g = gcd(N, d2
N,0− d2

N,1τ), if g 6= 0, g is a non-trivial
divisor of N (multiple of p) with probability 1/4.

Refer to Appendix A for the arithmetic on Qτ
N and for the proof of Propo-

sition 13. The following algorithm is obtained using Proposition 13.

Algorithm 2
Input: A composite number N having a prime factor such that

p = (DV 2 + 1)/4, D ∈ {11, 19, 43, 67, 163} and D.
Output: A non-trivial divisor of N (multiple of p)
1. Construct an elliptic curve

ED,R/ZN : y2 = x3 + AD,Rx + BD,R

using D and some (0 6=)R ∈ ZN as (11).
2. Choose x0 ∈ ZN at random.
3. Compute τ = x3

0 + AD,Rx0 + BD,R ∈ ZN .
4. Construct Qτ

N := ZN [X]/(X2 − τ).
5. Set P = (x0, X). (Note P ∈ E(Qτ

N ).)
6. Compute

NP =
(

aN,0 + aN,1X

(dN,0 + dN,1X)2
,

bN,0 + bN,1X

(dN,0 + dN,1X)3

)
∈ E(Qτ

N )

(ai, bi, di ∈ ZN ).
7. Compute g = gcd(N, d2

N,0 − d2
N,1τ).

8-1. If g 6= 0, then g 6= 1 with probability 1/4 and return it.
8-2. If g = 0, 1, fail, or do one of the following.

a) Go to step 1, and change R.
b) Go to step 2, and change x0.

3.4 Case in which HD is Quadratic

We will consider how to overcome (ii) and (iii) of Problem 11 for

D ∈ {35, 51, 91, 115, 123, 187, 235, 267, 403, 427}, (14)



for which HD(j) is quadratic. It is generally hard to find the roots of the
quadratic polynomial over ZN . Instead, we introduce the residue ring of the
polynomial ring ZN [j],

RD
N := ZN [j]/(HD,N (j)),

where HD,N (j) is a polynomial with coefficients in ZN obtained by reducing
all coefficients of HD(j) mod N . In addition, j as an element in RD

N satisfies
HD,N (j) = 0, and hence, j is a root of HD,N (j) in RD

N . The representative in
RD

N has the form,
a0 + a1j, a0, ai ∈ ZN .

For R ∈ ZN , 3R2j, 2R3j, and 1728 − j are elements in RD
N , and if 1728 − j

is regular, we have
3R2j

1728− j
,

2R3j

1728− j
∈ RD

N .

(Note that if 1728 − j ∈ RD
N is non-regular, we can easily find a non-trivial

divisor of N by computing gcd(N, 1728− j), and thereby factor N .) We see that
the j-invariant of the elliptic curve,

ED,R/RD
N : y2 = x3 +

3R2j

1728− j︸ ︷︷ ︸
=:AD,R

x +
2R3j

1728− j︸ ︷︷ ︸
=:BD,R

(15)

is j, which is a root of HD,N (j) in RD
N from Lemma 2.

To pick a point P ∈ ED,R, we choose x0 ∈ ZN (⊂ RD
N ) at random, set

τ = x3
0 + AD,Rx0 + BD,R,

construct the residue ring SD,τ
N of RD

N [X],

SD,τ
N = RD

N [X]/(X2 − τ)
(= ZN [j, X]/(HD,N (j), X2 − τ)),

and consider ED,R over SD,τ
N . The representative of SD,τ

N has the form,

α0 + α1X, αi ∈ RD
N

or
(a0 + a1j) + (a2 + a3j)X, ai ∈ ZN .

Remark 14 We have

(x0, X)
(
= (x0 + 0X, 0 + X)

) ∈ ED,R(SD,τ
N )

because X2 − τ = 0, equivalently X2 = τ , in SD,τ
N . Therefore, we can pick a

point in ED,R(SD,τ
N ).



Let HD,N (j) be represented as HD,N (j) = s+ tj + j2 (s, t ∈ ZN ), and define
a map φN ,

φN : SD,τ
N → ZN

(a0 + a1j) + (a2 + a3j)X 7→ c

}
, (16)

where c is computed as follows,

1. Compute b0, b1 ∈ ZN such as b0 + b1j = (a0 + a1j)2 − (a2 + a3j)2τ ∈ RD
N .

2. Compute c = b2
0 + b2

1s− b0b1t ∈ ZN .

The following proposition is a modification of Theorem 9 on SD,τ
N for

D ∈ {35, 51, 91, 115, 123, 187, 235, 267, 403, 427}.

Proposition 15 Let N be a composite number having a prime factor such that

p = (DV 2 + 1)/4,
D ∈ {35, 51, 91, 115, 123, 187, 235, 267, 403, 427},

V ∈ Z.





Pick an element (0 6=)R ∈ ZN (⊂ RD
N ) and construct an elliptic curve over RD

N

(using Eq. (15)),

ED,R/RD
N : y2 = x3 + AD,Rx + BD,R.

Choose x0 ∈ ZN (⊂ RD
N ) at random and compute

τ = x3
0 + AD,Rx0 + BD,R ∈ RD

N . (17)

For the point P = (x0, X) ∈ ED,R(SD,τ
N ), compute NP on ED,R(SD,τ

N ). Let the
coordinates of NP be

NP =(
(aN,0 + aN,1j) + (aN,2 + aN,3j)X

((dN,0 + dN,1j) + (dN,2 + dN,3j)X)2
,

(bN,0 + bN,1j) + (bN,2 + bN,3j)X
((dN,0 + dN,1j) + (dN,2 + dN,3j)X)3

)

∈ ED,R(SD,τ
N ).

Finally, compute g = gcd(N,φN ((dN,0 + dN,1j) + (dN,2 + dN,3j)X)). Then, if
g 6= 0, g is a non-trivial divisor of N (multiple of p) with probability 1/4.

Refer to Appendix B for the arithmetic on RD
N and SD,τ

N and the proof of
Proposition 15. The following algorithm is constructed using Proposition 15.



Algorithm 3
Input: A composite number N having a prime factor having the form

Eq. (1) with D as in Eq. (14), the class polynomial HD(j)
Output: A non-trivial divisor of N (multiple of p)
1. Construct RD

N := ZN/(HD(j)).
2. Construct

ED,R/RD
N : y2 = x3 + AD,Rx + BD,R

as (11) for some (0 6=)R ∈ ZN .
3. Take x0 ∈ ZN (⊂ RD

N ) at random.
4. Compute τ = x3

0 + AD,Rx0 + BD,R ∈ RD
N .

5. Construct SD,τ
N := RD

N [X]/(X2 − τ).
6. Set P = (x0, X). (Note P ∈ E(SD,τ

N ). )
7. Compute

NP =(
(aN,0 + aN,1j) + (aN,2 + aN,3j)X

((dN,0 + dN,1j) + (dN,2 + dN,3j)X)2
,

(bN,0 + bN,1j) + (bN,2 + bN,3j)X
((dN,0 + dN,1j) + (dN,2 + dN,3j)X)3

)

∈ ED,R(SD,τ
N ).

8. Compute g = gcd(N,φN ((dN,0 + dN,1j) + (dN,2 + dN,3j)X)).
9-1. If g 6= 0, then g 6= 1 with the probability 1/4 and return it.
9-2. If g = 0, 1, then fail or do one of the following.

a) Go to step 2, and change R.
b) Go to step 3. and change x0.

3.5 Implementation

The implementation of ZN is essentially the same as that of the finite field Fp.
However, the inversion a−1 in ZN is computable only in the case of gcd(N, a) = 1.

To implement Algorithm 2, we need to implement the residue ring Qτ
N =

ZN [X]/(X2 − τ), which is done in the same way as the implementation of the
quadratic extension Fp2 = Fp[X]/(X2 − τ). Refer to Lemma 16 for the com-
putability of the inversion in Qτ

N .
To implement Algorithm 3, we need to implement the residue ring SD,τ

N ,
which is done in the same way as the implementation of the fourth extension
Fp4 = Fp[j, X]/(HD,N (j), X2 − τ). The computability of the inversion in SD,τ

N

is given by (18) and (19).
The authors implemented Algorithms 1, 2, and 3 using PARI/GP. These

implementations were not intended to be fast but confirming that they worksed
correctly. Thus, they didn’t use the projective coordinate system that is usually
used to make elliptic curve cryptosystems fast.

Although the authors didn’t exactly measure the run time of the implemen-
tations, they returned a non-trivial divisor of N in several seconds in almost all
cases for N = pq of 1024 bits and p of 512 bits. (Of course, N has to have a
prime factor such that p = (DV 2 + 1)/4 for V ∈ Z, D ∈ {3, 11, 19, 35, 43, 51,
67, 91, 115, 123, 163, 187, 235, 267, 403, 427}.)



4 Conclusion

This paper has shown that a composite number N having a prime factor p =
(DV 2 + 1)/4 for D ∈ {3, 11, 19, 35, 43, 51, 67, 91, 115, 123, 163, 187, 235, 267,
403, 427}, V ∈ Z, for which the class polynomial is linear or quadratic, can be
factored by using the proposed algorithms. Algorithm 1 is for D = 3, Algorithm
2 is for D ∈ {11, 19, 43, 19, 43, 67, 163}, and Algorithm 3 is for D ∈ {35, 51,
91, 115, 123, 187, 235, 267, 403, 427}.

These algorithms are based on the ECM, and the computation of NP can
find a non-trivial divisor of N for an elliptic curve E/ZN and P ∈ E in a short
time. In the case of D 6= 3, we have to consider E on Qτ

N or SD,τ
N to construct E

and/or to choose a point P ∈ E. The properties of Qτ
N and SD,τ

N are described
in the appendix.

Each algorithm contains the statement, “if gcd 6= 0, · · · .” Although the prob-
ability of gcd = 0 is experimentally found to be small, the derivation of this
probability is left as a future subject. Another subject is to deal with D such
that HD(j) is third or higher degree. The authors think that an elliptic curve
over ZN [j]/(HD(j)) can be used for such Ds, as was done in this paper; however,
the implementation of ZN [j]/(HD(j)) may become more complicated.
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A On Proposition 13

This section gives a proof of Proposition 13. Proposition 13 relates to an elliptic
curve over Qτ

N . We also need to know the properties of Qτ
p to prove Proposition

13, where p is a prime factor of N .
Section A.1 explains the arithmetic on Qτ

n for a general integer n. Section
A.2 explains the properties of Qτ

p . Finally, Sec. A.3 gives the proof of Proposition
13.

A.1 Arithmetic on Qτ
n

Let Zn[X] be a set of polynomials with coefficients in Zn for (2 ≤)n ∈ N. Then,
Zn[X] forms a ring. Consider the residue ring of Zn[X],

Qτ
n := Zn[X]/(X2 − τ)

for τ ∈ Zn. We may take a representative of Qτ
n as

a0 + a1X, Ai ∈ Zn.

For a0+a1X, b0+b1X ∈ Qτ
n, addition, subtraction, and multiplication are defined

as follows.

(a0 + a1X)± (b0 + b1X) = (a0 + b0)± (a1 + b1)X

(a0 + a1X) · (b0 + b1X) = a0b0 + (a0b1 + a1b0)X + a1b1 X2︸︷︷︸
=τ

= (a0b0 + a1b1τ) + (a0b1 + a1b0)X

The following lemma describes multiplicative inversion in Qτ
n.

Lemma 16 For a0 + a1X ∈ Qτ
n, we have

a0 + a1X is regular in Qτ
n ⇔ gcd(n, a2

0 − a2
1τ) = 1.

Let b0 + b1X be the multiplicative inversion of a regular a0 + a1X. Then, b0 and
b1 are given by

b0 =
a0

a2
0 − a2

1τ
and b1 =

−a1

a2
0 − a2

1τ
.



∵) We have {
a0b0 + a1b1τ = 1
a0b1 + a1b0 = 0

because (a0 + a1X) · (b0 + b1X) = 1(= 1 + 0X). Solving this as a simultaneous
equation with b0 and b1 as variables, we see that

b0 =
a0

a2
0 − a2

1τ
and b1 =

−a1

a2
0 − a2

1τ
.

Therefore, we have

a0 + a1X is regular in Qτ
n ⇔ a2

0 − a2
1τ is regular in Zn

⇔ gcd(n, a2
0 − a2

1τ) = 1.

2

A.2 About Qτ
p

Consider the residue ring of the polynomial ring Fp[X] with coefficients in Fp,

Qτ
p := Fp[X]/(X2 − τ)

for τ ∈ Fp.
When τ is a non-square in Fp, the following holds.

Qτ
p ' Fp2 (ring isomorphism)

We have the following lemma for when τ is a square in Fp.

Lemma 17 Let τ be a square element in Fp, τ = σ2 (σ ∈ Fp), and F (X) ∈ Qτ
p.

Then, the map
ψ : Qτ

p → Fp

f(X) 7→ f(σ)

is a surjective homomorphism. Therefore, we have

Qτ
p/ ker ψ ' Fp (ring isomorphism)

from the homomorphism theorem of rings.
∵) To show the map ψ is well-defined, we have to show

1. ψ(f(X)) ∈ Fp for any f(X) ∈ Qτ
p ,

2. the value of ψ(f(X)) is independent of the selection of the representative; in
other words, ψ(X2 − τ) = 0 holds because Qτ

p = Fp[X]/(X2 − τ).



The polynomial f(X) has coefficients in Fp and σ ∈ Fp; then ψ(f(X)) = f(σ) ∈
Fp. In addition, we see that

ψ(X2 − τ) = σ2 − τ = 0

from the definition of ψ.
The map ψ is clearly a ring homomorphism. For any α ∈ Fp, we have α(=

α + 0X) ∈ Fp[X]/(X2 − τ) and

ψ(α) = α.

Thus, ψ is surjective.
From the above, we see that ψ is a surjective homomorphism. 2

Remark 18 From Lemma 17, if τ is a square in Fp, we may consider Qτ
p as

another (redundant) representation of Fp because

Qτ
p/ kerψ ' Fp.

The elements in Qτ
p and Fp correspond to each other as follows.

Qτ
p ↔ Fp

a0 + a1X 7→ ψ(a0 + a1X) = a0 + a1σ
(α− aσ) + aX ←[ α

where a ∈ Fp is a random element.

The following lemma describes a property of a0 + a1X ∈ Qτ
p corresponding

to 0 ∈ Fp.

Lemma 19 Let τ be a square in Fp and σ2 = τ . Then, if a0 + a1X ∈ Qτ
p

corresponds to 0 ∈ Fp in the way of Remark 18, a2
0 − a2

1τ = 0.
∵) If a0+a1X ∈ ZN [X]/(X2−τ) corresponds to 0 ∈ Fp, we have ψ(a0+a1X) = 0
from Remark 18. Accordingly, we have

a2
0 − a2

1τ = a2
0 − a2

1σ
2

= (a0 + a1σ)(a0 − a1σ)
= ψ(a0 + a1X)︸ ︷︷ ︸

=0

(a0 − a1σ)

= 0.

2

Lemma 19 ensures that we can derive 0 given τ and a0 + a1X ∈ Qτ
p corre-

sponding to 0 ∈ Fp, even if we don’t know σ such that τ = σ2.



A.3 Proof of Proposition 13

First, we should make a few preparations. Let E : y2 = x3 + Ax + B be an
elliptic curve over ZN , and let P be a point on E(Qτ

N ) such that

P = (x0 + x1X, y0 + y1X) ∈ E(Qτ
N ), xi, yi ∈ ZN .

Define {
Ap := A mod p, Bp := B mod p

xi,p := xi mod p, yi,p := yi mod p,

and Ep/Fp : y2 = x3 + Apx + Bp. Then, the point

Pp = (x0,p + x1,pX, y0,p + y1,pX)

is on Ep.

Remark 20 Let E be an elliptic curve over ZN (⊂ Qτ
N ), p a prime factor of N ,

and τ ∈ ZN . Moreover, assume that τp := τ mod p is a square in Fp. Let the
coordinates of kP be

kP =
(

ak,0 + ak,1X

(dk,0 + dk,1X)2
,

bk,0 + bk,1X

(dk,0 + dk,1X)3

)

for P ∈ E(Qτ
N ), where ak,i, bk,i, dk,i ∈ ZN , i = 0, 1．Then, if kPp = Op, we have

d2
k,0,p − d2

k,1,pτp = 0 in Fp from Lemma 19, because dk,0,p + dk,1,pX corresponds
to 0 in Fp by Eq. (6). In other words, d2

k,0 − d2
k,1τ is a multiple of p. Therefore,

g = gcd(N, d2
k,0 − d2

k,1τ)

is a non-trivial divisor of N (multiple of p) if g 6= 0.

Proof of Proposition 13
Upon reducing both sides of Eq. (13) mod p, we get

τp = x3
0,p + AD,R

p x0.p + BD,R
p .

Assume that τp is a square in Fp, whose probability is 1/2. Then, we can regard
Pp as a point in ED,R(Fp) from Remark 18. Moreover, assume that ED,R is
anomalous, whose probability is 1/2 from Proposition 4 for t = 1. Then, we have
pPp = Op from Lagrange’s theorem. We see that NPp = Op, because N is a
multiple of p. Let g = gcd(N, d2

N,0 − d2
N,1τ). If g 6= 0, then g is a non-trivial

divisor (multiple of p) from Remark 20. In addition, the probability of finding a
non-trivial divisor of N under the assumption g 6= 0, which is “the probability
that τp is a square in Fp”×“the probability that ED,R is anomalous”, is equal
to 1/4. 2



B On Proposition 15

This section gives a proof of Proposition 15. Proposition 15 relates to an elliptic
curve over SD,τ

N = RD
N/(X2 − τ), where RD

N = ZN [j]/HD,N (j) and HD,N [j] is
a quadratic class polynomial. We also need to know the properties of RD

p and
SD,τ

p to prove Proposition 15, where p is a prime factor of N .
Sections B.1 and B.2 respectively describe arithmetic on RD

n and SD,τ
n for a

general n ∈ N. Sections B.3 and B.4 explain RD
p and SD,τ

p , respectively. Finally,
Sec. B.5 proves Proposition 15.

B.1 Arithmetic on RD
n

Here, we consider the case in which HD,n(j) is quadratic. We may take a0 +
a1j, ai ∈ Zn as a representative in RD

n (:= Zn[j]/(HD,n(j))). Addition and
subtraction in RD

n are defined as

(a0 + a1j)± (b0 + b1j) = (a0 + b0)± (a1 + b1)j

for a0 + a1j, b0 + b1j ∈ RD
n , ai, bi ∈ Zn.

Let HD,n(j) be represented as HD,n(j) = s + tj + j2. Then, multiplication
in RD

n is defined as

(a0 + a1j) · (b0 + b1j) = a0b0 + (a0b1 + a1b0)j + a1b1 j2

︸︷︷︸
=−s−tj

= (a0b0 − a1b1s) + (a0b1 + a1b0 − a1b1t)j.

For a0 + a1j ∈ RD
n , we have

gcd(n, a2
0 + a2

1s− a0a1t) = 1 ⇔ a2
0 + a2

1s− a0a1t is regular in Zn

⇔ a0 + a1j is regular in RD
n

(18)

and
(a0 + a1j)−1 =

a0 − a1t

a2
0 + a2

1s− a0a1t
− a1

a2
0 + a2

1s− a0a1t
j.

B.2 Arithmetic on SD,τ
n

This subsection explains arithmetic on SD,τ
n . For a quadratic class polynomial

HD,n(j), SD,τ
n is constructed as

SD,τ
n = RD

n [X]/(X2 − τ)

= Zn[j, X]/(HD,n(j), X2 − τ)).

Then, we may take a representative in SD,τ
n as

α0 + α1X, αi ∈ RD
n



or
(a0 + a1j) + (a2 + a3j)X, ai ∈ Zn.

For α0 + α1X, β0 + β1X ∈ SD,τ
n (αi, βi ∈ RD

n ), addition, subtraction, and
multiplication are defined as follows.

(α0 + α1X)± (β0 + β1X) = (α0 + β0)± (α1 + β1)X

(α0 + α1X) · (β0 + β1X) = α0β0 + (α0β1 + α1β0)X + α1β1 X2︸︷︷︸
=τ

= (α0β0 + α1β1τ) + (α0β1 + α1β0)X

For α0 + α1X ∈ SD,τ
n , we have

α2
0 − α2

1τ is regular in RD
n ⇔ α0 + α1X is regular in SD,τ

n . (19)

Then, we have

(α0 + α1X)−1 =
α0

α2
0 − α2

1τ
+

−α1

α2
0 − α2

1τ
X.

B.3 About RD
p

Let HD(j) be a class polynomial given in Table 3, and HD,p(j) be represented as
HD,p(j) = s + tj + j2 (s, t ∈ Fp). Note that HD,p(j) is reducible over Fp[j] from
Remark 5. Let j0, j1 ∈ Fp be roots of HD,p(j). Then, from Vieta’s formulas, we
have

s = j0j1
t = −j0 − j1

}
. (20)

Lemma 21 Let HD(j) be a class polynomial given in Table 3, and j0 ∈ Fp be a
root of HD,p(j). Define the map ψ1,

ψ1 : RD
p = Fp[j]/(HD,p(j)) → Fp,

f(j) 7→ f(j0).

Then, ψ1 is a surjective homomorphism of a ring. Therefore, we see

RD
p / kerψ1 ' Fp

from the homomorphism theorem of rings.
∵) We can see that ψ1(f(j)) = f(j0) ∈ Fp, because f(j) is a polynomial with
coefficient in Fp and j0 ∈ Fp. We have f(HD,p(j)) = HD,p(j0) = 0; then ψ1

is well-defined. In addition, ψ1 is clearly a homomorphism. We see that ψ1 is
surjective because for any a ∈ Fp we have a(= a + 0j) ∈ RD

p and

ψ1(a) = a.

From the above, ψ1 is a surjective homomorphism. 2



Remark 22 From Lemma 21, we have RD
p / kerψ1 ' Fp. Accordingly, we regard

RD
p is a (redundant) representation of Fp, and RD

p and Fp have the following
correspondence.

RD
p ↔ Fp

a0 + a1j 7→ ψ1(a0 + a1j) = a0 + a1j0
(b− rj0) + rj ←[ b

where r ∈ Fp is a random value. In particular, if we set r = 0, we see that b ∈ Fp

corresponds to b ∈ RD
p .

The following lemma describes the properties of a0 +a1 ∈ RD
p corresponding

to 0 ∈ Fp in the way of Remark 22.

Lemma 23 Let HD,p(j) be s + tj + j2. Then, if a0 + a1j ∈ RD
p corresponds to

0 ∈ Fp in the way of Remark 22, we have

a2
0 + a2

1s− a0a1t = 0.

∵) The roots j0, j1 ∈ Fp of HD,p(j) satisfy Eq. (20). If a0+a1j ∈ RD
p corresponds

to 0 ∈ Fp, ψ1(a0 + a1j) = a0 + a1j0 = 0 from Remark 22. Therefore, we have

a2
0 + a2

1s− a0a1t = a2
0 + a2

1j0j1 + a0a1(j0 + j1)
= (a0 + a1j0)︸ ︷︷ ︸

=0

(a0 + a1j1)

= 0,

from which the lemma is proved. 2

B.4 About SD,τ
p

Consider
SD,τ

p := RD
p [X]/(X2 − τ)

= Fp[j, X]/(HD,n(j), X2 − τ)

for τ ∈ RD
p .

Assume that τ ∈ RD
p corresponds to a non-square in Fp in the way of Re-

mark 22. Then, X2 − τ ∈ Fp[X] is irreducible, and we know that

Fp[X]/(X2 − τ) ' Fp2 .

Therefore, we can see that

SD,τ
p ' Fp2 [j]/(HD,p(j)).

From Remark 5, HD,p(j) is reducible in Fp[j], which implies that HD,p(j) is
reducible in Fp2 [j]. A similar argument to the one of Lemma 21 indicates that
the map,

ψ2 : SD,τ
p ' Fp2 [j]/(HD,p(j)) → Fp2

F (j) 7→ F (j0)



is a surjective homomorphism of rings and

SD,τ
p / kerψ2 ' Fp2 .

Therefore, we regard SD,τ
p as a redundant representation of Fp2 .

When τ ∈ RD
p corresponds to a square in Fp in the way of Remark 22, the

following lemma is satisfied.

Lemma 24 Assume that τ ∈ RD
p corresponds to a square in Fp in the way of

Remark 22. Then, there is an element σ ∈ Fp ⊂ RD
p such that τ = σ2 from

Remark 22. Then, the map ψ3 defined as

ψ3 : SD,τ
p → RD

p

F (X) 7→ F (σ)

is a surjective homomorphism of a ring. Therefore, we have

SD,τ
p / kerψ3 ' RD

p

from the homomorphism theorem of rings.
∵) If the polynomial F (X) has coefficients in RD

p and σ ∈ Fp ⊂ RD
p , we have

ψ3(F (X)) = F (σ) ∈ RD
p

and
ψ3(X2 − τ) = σ2 − τ = 0.

Hence, ψ3 is well-defined. In addition, ψ3 is clearly a homomorphism. For any
α ∈ RD

p , we have
α(= α + 0X) ∈ SD,τ

p

and
ψ3(α) = α.

Hence, ψ3 is surjective, and ψ3 is a surjective homomorphism. 2

Remark 25 When τ ∈ RD
p corresponds to a square in Fp in the way of Remark

22, we may regard SD,τ
p as a redundant representation of Fp because

SD,τ
p / kerψ3 ' RD

p

from Lemma 24, and
RD

p / kerψ1 ' Fp

holds from Lemma 21. The correspondence between elements in SD,τ
p and Fp is

as follows.

SD,τ
p ↔ Fp

(a0 + a1j) + (a2 + a3j)X 7→ (a0 + a1j0) + (a2 + a3j0)σ
(b− r1j)− (r2 + r3j)X ←[ b,

where r1, r2, r3 ∈ Fp are random values.



When τ ∈ RD
p corresponds to a square in Fp in the way of Remark 22, in

order to know which element in Fp corresponds to a given element in SD,τ
p , we

have to know j0, j1, σ in general. However, we can determine whether an element
in SD,τ

p corresponds to 0 ∈ Fp or not without σ. To show this, we introduce a
map φp, which is a p version of φN defined as (16).

Let HD,p be represented as HD,p = s+ tj + j2 (s, t ∈ Fp) and τ ∈ RD
p . Then,

the map φp is
φp : SD,τ

p → Fp

(a0 + a1j) + (a2 + a3j)X 7→ c,

}
(21)

where c is computed as follows.

1. Compute b0, b1 ∈ Fp such that b0 + b1j = (a0 + a1j)2 − (a2 + a3j)2τ ∈ RD
p .

2. Compute c = b2
0 + b2

1s− b0b1t ∈ Fp.

Lemma 26 Assume that τ ∈ RD
p corresponds to a square in Fp in the way of

Remark 22. If (a0 + a1j) + (a2 + a3j)X ∈ SD,τ
p corresponds to 0 ∈ Fp, we have

φp((a0 + a1j) + (a2 + a3j)X) = 0.

∵) We will compute c = φp((a0 + a1j) + (a2 + a3j)X) as follows. Remark 22
enables us to write

τ = σ2 (22)

for σ ∈ RD
p , and we have

j2 = −s− tj. (23)

Hence, we have

(a0 + a1j)2 − (a2 + a3j)2τ
= (a0 + a1j)2 − (a2 + a3j)2σ2 from (22)
= (a2

0 − a2
2σ

2) + j(2a0a1 − 2a2a3σ
2) + j2(a2

1 − a2
3σ

2)
= a2

0 − a2
1s− a2

2σ
2 + a2

3sσ
2 + j(2a0a1 − 2a2a3σ

2 − a2
1t + a2

3σ
2t) from (23)

and {
b0 = a2

0 − a2
1s− a2

2σ
2 + a2

3sσ
2

b1 = 2a0a1 − 2a2a3σ
2 − a2

1t + a2
3σ

2t.

Accordingly, we see that

c =(a2
0 − a2

1s− a2
2σ

2 + a2
3sσ

2)2

− (a2
0 − a2

1s− a2
2σ

2 + a2
3sσ

2)t · (2a0a1 − 2a2a3σ
2 − a2

1t + a2
3σ

2t)

+ s(2a0a1 − 2a2a3σ
2 − a2

1t + a2
3σ

2t)2.



In addition, let j0 and j1 be roots of HD,p(j); then Eq. (20) is holds. Using Eq.
(20) to eliminate s and t, we get

c =j0j1(2a0a1 − a2
1(−j0 − j1)

− 2a2a3σ
2 + a2

3(−j0 − j1)σ2)2

− (−j0 − j1)(2a0a1 − a2
1(−j0 − j1)− 2a2a3σ

2 + a2
3(−j0 − j1)σ2)

· (a2
0 − a2

1j0j1 − a2
2σ

2 + a2
3j0j1σ

2)

+ (a2
0 − a2

1j0j1 − a2
2σ

2 + a2
3j0j1σ

2)2.





(24)

If (a0 + a1j) + (a2 + a3j)X ∈ SD,τ
p corresponds to 0 ∈ Fp in the way of

Remark 25, we have (a0 + a1j0) + (a2 + a3j0)σ = 0, in other words,

σ =
−(a0 + a1j0)

a2 + a3j0
.

Substituting this σ into Eq. (24), we find that c = 0 1. 2

B.5 Proof of Proposition 15
Remark 27 Let p be a prime factor of N and τ ∈ ZN . Let the maps φN and φp

be defined as in (16) and (21), respectively. Moreover, assume that τp corresponds
to a square in Fp in the way of Remark 25. Let the coordinates of kP be

kP =
(

(ak,0 + ak,1j) + (ak,2 + ak,3j)X
((dk,0 + dk,1j) + (dk,2 + dk,3j)X)2

,
(bk,0 + bk,1j) + (bk,2 + bk,3j)X

((dk,0 + dk,1j) + (dk,2 + dk,3j)X)3

)
,

where (ak,i, bk,i, dk,i ∈ ZN , i = 0, 1) for P ∈ E(SD,τ
N ), and let dk,i,p := dk,i mod

p. Then, if kPp = Op, an element in Fp, which corresponds to (dk,0,p +dk,1,pj)+
(dk,2,p + dk,3,pj)X, is 0 from (6), and we can see that φp((dk,0,p + dk,1,pj) +
(dk,2,p + dk,3,pj)X) = 0 in Fp from Lemma 26. Therefore, if

g = gcd(N, φN ((dk,0 + dk,1j) + (dk,2 + dk,3j)X))

is not 0, then g is a non-trivial divisor of N (multiple of p).
Proof of Proposition 15
Reducing both sides of Eq. (17) mod p, we get

τp = x3
0,p + AD,R

p x0.p + BD,R
p .

Assume that τp is a square in Fp, whose probability is 1/2. Accordingly, we can
regard the point Pp as a point on ED,R

p (Fp) from Remark 25. Moreover, assume
that ED,R

p is anomalous, whose probability is 1/2 from Proposition 4 for t = 1.
From Lagrange’s theorem, we can see that pPp = Op. Because N is a multiple
of p, NPp = Op. If g = gcd(N, φN (dN,0 + dN,1j) + (dN,2 + dN,3j)X)) is not 0,
then g is a non-trivial divisor of N (multiple of p) from Remark 27. In addition,
the probability of finding a non-trivial divisor of N under the assumption g 6= 0,
which is “the probability that τp is a square in Fp”×“the probability that ED,R

is anomalous”, is equal to 1/4. 2

1 The authors confirmed this using Mathematica.


