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Abstract. In this paper, we propose a series of techniques that can
be used to determine the missing IV terms of a complex multivariable
Boolean polynomial. Using these techniques, we revisit the dynamic cube
attack on Grain-128. Based on choosing one more nullified state bit and
one more dynamic bit, we are able to obtain the IV terms of degree 43,
combined with various of reduction techniques, fast discarding monomial
techniques and IV representation technique for polynomials, so that the
missing IV terms can be determined. As a result, we improve the time
complexity of the best previous attack on Grain-128 by a factor of 216.
Moreover, our attack applies to all keys.

1 Introduction

Most cryptanalytic problems of symmetric ciphers can be reduced to the problem
of solving large non-linear multivariate polynomial systems. This problem is NP-
complete [?,?]. Solving the system using linearization or relinearization methods
directly will result in space and time complexities that are beyond the power of
current computers. As a result, algebraic attacks such as cube attack [?], cube
tester [?,?] and dynamic cube attack [?] were proposed in order to reduce the
complexities.

Stream cipher Grain-128 [?] is a refined version of Grain scheme ciphers,
one of the finalists of eSTREAM Project. The output bit is a high degree Bool-
ean function over initial vector (IV) bits and key bits. Since the proposal of
Grain-128, a number of cryptanalytic results have been presented in the litera-
tures. Fischer et al. applied the statistical analysis to recover the key of reduced
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Grain-128 up to 180 out of 256 iterations with a complexity slightly better than
brute force [?]. They pointed out that Grain-128 may be immune to this attack
due to the very high degree of the output polynomial. Knellwolf et al. proposed
the conditional differential cryptanalysis on NFSR-based stream ciphers inclu-
ding Grain scheme ciphers [?]. Conditional differential cryptanalysis exploited
the message modification technique introduced in [?,?], which controlled the dif-
fusion by controlling the plaintexts. It was applied to recover 3 bit’s key of the
Grain-128 reduced to 213 rounds with a probability up to 0.59 and distinguish
Grain-128 reduced to 215 rounds from random primitives [?]. Another message
controlling method is to nullify some state bits which may be more important
than the others for reducing the degree or enhancing the density. After nullifying
some state bits, the representation of the output bit with IV bits can be simpli-
fied; and the output bit becomes nonrandom. This technique is called dynamic
cube attack which combines the conditional differential and cube tester. With
dynamic cube attack, Dinur and Shamir [?] proposed two key-recovery attacks
on reduced-round Grain-128 for arbitrary keys and an attack on the full Grain-
128 that holds for 2−10 of the key space. Furthermore, Dinur et al. [?] improved
the dynamic cube attack on full Grain-128, and tested the main component with
a dedicated hardware. Their experimental results showed that for about 7.5% of
the keys, the proposed attack beat the exhaustive search by a factor of 238.

In this paper, we further improve the attack in [?] by obtaining the missing
IV terms.
Our Contributions. The contributions of this paper are five fold. Firstly, we
exploit the nullification technique introduced in [?] and improve the nullification
by a better choice of nullified state bits and a carefully selected nullification
of IV bits. Secondly, we give several fast discarding monomial techniques for
Boolean functions in order to reduce the number of terms we need to process.
Thirdly, with the aforementioned techniques, we mathematically compute the
IV terms of degree 43, combined with IV representation technique. The major
difference between our attack and the previous dynamic cube attacks is that
we focus on obtaining the IV terms mathematically instead of choosing the
suitable (sub)cubes with testing technique. Finally, we present an attack with a
complexity 216 faster than the best result before. In this way, our method not
only improves the previous attacks but also can naturally be applied to all keys.
So the successful ratio of our attack is 100%.

Due to the difference, we also simplified the attack procedure of the dynamic
cube attack. Briefly, our attack can be decomposed to the following phases:

1. Determine the dynamic variables, state/IV bits to be nullified, as well as
the key bits to be guessed. Calculate the IV terms of degree 43 afterwards.
The cube can be chosen freely from those disappeared IV terms. This is the
preprocessing phase of the attack. However, most of the dedicated work in
this paper contributes to this phase. In this phase, we use various techniques
to obtain the exact IV terms. We exploit degree evaluation, degree reduction
and low-frequency IV bits, which help discard monomials dramatically. We
also use IV representation to compute the IV terms of degree 43.
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2. Guess the key bits, and get the output bits with IVs chosen according to the
principle in the previous phase. The summation of the output bits over the
cube can be used as a distinguisher since for the correct key the summation
will always be 0, while for wrong keys 0 and 1 are supposed to occur with
the same probability. This is the only on-line phase of our attack. The time
complexity of our attack is about 274 cipher executions, which is applicable
to all keys of Grain128.

The details of our attack will be demonstrated in the rest of the paper. In
Section ??, the outline of Grain-128 and basic concepts of Boolean functions will
be introduced. The related techniques including cube attacks/tester, dynamic
cube attack and nullification will be introduced in Section ??. In Section ??, we
will show the outline of our attack. Then the preprocessing phase of our attack
will be presented in Section ??, followed by the online attack in Section ??. Next,
we show an example of Grain128 reduced to 191 to illustrate our attack process
in Section ??. Finally, Section ?? summarizes the paper.

2 Preliminaries

In this section, we will first briefly introduce Grain-128, followed by the basic
concepts about Boolean functions.

2.1 Notations

ANF the Algebraic Normal Form
IV bit public variables of Grain
IV term product of certain IV bits
state bit internal state bit in the initialization of Grain stream cipher
state term product of certain state bits, IV bits or key bits

2.2 Outline of Grain-128

The state of Grain-128 is represented by a 128-bit linear feedback shift register
(LFSR) and a 128-bit nonlinear feedback shift register (NFSR). The feedback
function of the LFSR and NFSR are defined as

si+128 =si + si+7 + si+38 + si+70 + si+81 + si+96,

bi+128 =si + bi + bi+26 + bi+56 + bi+91 + bi+96 + bi+3bi+67 + bi+11bi+13+

bi+17bi+18 + bi+27bi+59 + bi+40bi+48 + bi+61bi+65 + bi+68bi+84.

The output function is

zi =bi+2 + bi+15 + bi+36 + bi+45 + bi+64 + bi+73 + bi+89 + si+93 + bi+12si+8+

si+13si+20 + bi+95si+42 + si+60si+79 + bi+12bi+95si+95.

During the initialization step, the 128-bit key is loaded into the NFSR and
96 bits of IV are loaded into the LFSR, with the other IV bits setting to 1. The
state runs 256 rounds with the output feeding back, and the first output bit is
z257. For the detail of Grain-128, we refer to [?].
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2.3 Boolean Polynomial

The output bit and internal state bits of symmetric cryptosystem can be descri-
bed as a Boolean function of the public variables and private variables, which can
be applicable to all symmetric ciphers. For stream ciphers, the public variables
are often IV while the private variables are keys. Supposing that there are m
IV bits, i.e., v0, v1, . . . , vm−1 and n key bits, i.e., k0, k1, . . . , kn−1, the Algebraic
Normal Form (ANF) of the internal state bit s could be written as the following
style:

s =
∑
I,J

∏
i∈I

vi
∏
j∈J

kj , (1)

where the sum operation is over filed F2. The
∏

i∈I vi
∏

j∈J kj is denoted as a
state term of s and

∏
i∈I vi is denoted as its corresponding IV term. Let IV

term tI =
∏

i∈I vi be the multiplication of vi whose indices are within I, the
ANF of s can be rewritten as

s =
∑
I

tIgI(k), (2)

where gI(k) is the sum of corresponding coefficient function of terms whose
corresponding IV term is tI , i.e. gI(k) =

∏
l1∈J1

kl1 +
∏

l2∈J2
kl2 +· · ·+

∏
lp∈Jp

klp .

The degree of s is deg(s) = maxI{deg (tI)}.

Property 1. (Repeat Property) In the ANF of s in Equ. (??), suppose two
state terms are equal, i.e.

∏
i∈I vi

∏
j∈J kj =

∏
i∈I′ vi

∏
j∈J′ kj , then the ANF of

state bit s is simplified by removing the two state terms.

Property 2. (Cover Property) In Equ. (??), suppose there are two state terms
T1 = tI1gI1(k) and T2 = tI2gI2(k). If I1 ⊆ I2, we denote that the state term
T1 is covered by T2. We delete the covered state term T1 from s to get a new
s∗. If T1 = T2, according to the repeat property, the two state terms should be
removed from s. However, according to the cover property, T2 is still in s∗. So
deg(s∗) ≥ deg(s). This property could help us estimate deg(s) efficiently.

3 Related Works

In this section, the techniques related to our work will be introduced, including
cube attack/tester, dynamic cube attack and nullification technique.

3.1 Cube Attack and Cube Tester

Cube attack [?] exploits the IV terms whose coefficient is linear over key bits, and
then retrieves the keys once enough independent linear functions are obtained, by
solving linear equations. A methodology is proposed [?,?] to test if a coefficient
is linear and which key bits are involved.
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Cube attack and cube tester techniques can retrieve partial information about
Boolean functions probabilistically, however maybe fail for some specific struc-
tures with high degrees. For example, if the coefficient function of key bits is
k0 + k1k2k3k4k5k6k7, cube attack may return a linear function k0 for less than
128 tests with random keys. In addition, if the coefficient function over key bits
is k1k2k3k4k5k6k7, the result of cube tester may be always 0 for less than 128
tests with random keys, so that it is determined that the IV term tI does not
occur.

3.2 Dynamic Cube Attack

In [?], Dinur and Shamir proposed the dynamic cube attack to recover the secret
key by exploiting distinguishers obtained from cube testers, with application to
Grain-128.

In dynamic cube attack, some dynamic bits in the IV are determined by key
bits are chosen to nullify some state bits so as to greatly simplify the output
function. Then one expects to acquire certain nonrandom property which can be
exploited by cube tester. The nonrandom property can be used as a distinguisher
for key recovery.

As mentioned in Section 1, the attack in [?] is an improvement of that in [?].
The dynamic cube attacks introduced and exploited in [?,?] are based on the
nullification technique. The major difference between the two works is the diffe-
rent choices of nullified bits7. As a consequence, we will detail the nullification
technique in the next subsection.

3.3 Nullification Technique

For Grain-128, the first output bit z257 can be expresses by state bits as

z257 =b269b352s352 + b352s299 + s317s336 + s270s277 + b269s265 + s350 + b346+

b330 + b321 + b302 + b293 + b272 + b259.

b269b352s352 is the most vital term for us because it comprises more high degree
IV terms than the others. Similarly, the most vital terms of the ANF of b269, b352
and s352 are b153b236s236, b236b319s319 and b236b319s319 respectively. The common
factor is b236, so b269, b352, s352 and z257 can be simplified if nullifying b236. But
b236 is too complex, i.e.,

b236 =b120b203s203 + b203s150 + b176b192 + s168s187 + b169b173 + b148b156 + b135b167+

b125b126 + b119b121 + b111b175 + s121s128 + b120s116 + b204 + s201 + b199

+ b197 + b181 + b172 + b164 + b153 + b144 + b134 + b123 + b110 + b108 + 1.

Nullifying b236 needs too many guessed key bits, so the scheme in [?] retrieved
a subset of 2−10 of all possible keys by fixing 10 key bits to be zero.

7 The authors also experimentally verified the main component of the attack by a
dedicated hardware in [?]
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Another approach is to simplify b236 by nullifying b203, which is adopted
by [?]. b203 is still too complex to be nullified directly, i.e.,

b203 =b87b170s170 + b170s117 + b143b159 + s135s154 + b136b140 + b115b123 + b102b134

+ b92b93 + b86b88 + b78b142 + s88s95 + b87s83 + b171 + s168 + b166 + b164+

b148 + b139 + b131 + b120 + b111 + b101 + b90 + b77 + b75 + s75.

In order to nullify b203, one should first nullify b170, b159, b138, s135, b136, b134,
b133, and b131. All of these bits but b170 can be nullified directly by choosing IV
bits. We know that

b170 =b54b137s137 + b137s84 + b110b126 + s102s121 + b103b107 + b82b90 + b69b101+

b59b60 + b53b55 + b45b109 + s55s62 + b54s50 + b138 + s135 + b133 + b131 + b115

+ b106 + b98 + b87 + b78 + b68 + b57 + b44 + b42 + s42.

In order to nullify b170, b137 can be nullified first by setting s9 to be a dynamic
value.

In fact, b170 can be nullified directly as well since its expression over IV and
key bits can be obtained directly in a PC. However, nullification of b137 can not
only nullify b170 but also simplify b253 which contributes a lot to the degree and
IV terms. The term b143b159 can be nullified by nullifying either b143 or b159.
The authors chose to nullify b159 because it can help reduce b275 whose ANF
significant term is b159b242s242. b145, b153 and b176 are also nullified in order to
simplify s261, b269 and b292. The nullified state bits and dynamic IV bits of [?]
are shown in ??.

Table 1. Nullification Scheme in [?]

nullification b131, b133, b134, s135, b136, b137, b138, b145, b153, b159, b170, b176, b203

dynamic bits s3, s5, s6, s77, s8, s9, s10, s17, s25, s31, s42, s83, s1

4 Basic Ideas

4.1 Outline of Our Attack

In this paper, our basic idea is to find the missing IV terms in the ANF of the
first output bit z257 of Grain128. For example, the output bit is polynomial p
over six secret variables k1, k2, ..., k6 and five public variables v1, v2, v3, v4, v5, as
shown in ??.

p = k1k2v1v2v3v4v5 +k3v2v3v4v5 +k5v1v3v4v5 +k6v1v2v4v5 +k2v1v2v3 + ... (3)
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Obviously, the IV term v1v2v3v4 does not exist in p. So we can construct cube-
sum distinguisher by setting v5 = 0 and selecting cube CT = {v1, v2, v3, v4}.
Then the cube sum of p is always zero. So to determine the missing product
of certain IV bits (missing IV term) is in fact a way to find the missing cube
variables combination from a set of candidate cube variables, i.e. the five public
variables. In our attack on Grain128, there are totally 96 public variables (IV
bits), in order to reduce the ANFs of the internal state bits and then reduce the
output polynomial, we study the nullification technique comprehensively and
give a new nullification scheme , which includes:

i. We use 14 dynamic variables to nullify 14 internal state bits. When com-
paring with Dinur et al.’s nullification scheme, we use one more dynamic
variable s15 to nullify an additional internal state bit b143 . Thus there are
96-14=82 free public variables (IV bits) left.

ii. Then calculate the frequency of occurrence of the 82 IV bits in the internal
state bits and state terms. We nullify the high frequency IV bits to reduce
the internal state bits and state terms as much as possible. We choose 36 IV
bits to be nullified (set to zero). Then there are 82-36=46 free IV bits left.

iii. Thus, we have to find the missing IV terms from a candidate cube set with
size 46. In this paper, we are going to find the 43-degree missing IV terms
in the output polynomial z257.

After determining the nullification scheme, we have to reduce the output
polynomial z257 in order to find the 43-degree missing IV terms. The procedures
are as follows shown in ??:

– Step 1. Initialize LFSR and NFSR with the new nullification scheme. We
compute forward to express the ANF of some internal state bits over IV bits
and key bits. Thus, bi and si (0 ≤ i ≤ 222) are computed and their degrees
are compute directly.

– Step 2. During the iteratively computing the ANF representation of the
output bit z in the backward direction (decryption), we introduce the fast
discarding monomial technique in Section ??, which includes the follo-
wing techniques:

• First, we propose the degree evaluation algorithm to obtain the degree
bounds of internal state bits. As the monomials of z’s ANF is a product
of these internal state bits, the degree of a monomial is bounded by the
sum of the degrees of the multiplied internal state bits, which is regarded
as the degree estimation of the monomial. If the estimated degrees of
monomials are lower than 43, they are discarded directly.

• Second, we find in Grain128 encryption scheme the high degree state
terms are in the form of bisi. We pre-compute the degree reductions
of those products, which is dt = deg(bi) + deg(si)− deg(bisi). Thus, the
degree of a monomial is upper bounded by difference value between the
sum of the multiplied internal state bits and the corresponding degree
reduction dt. If it is smaller than 43, the monomial is discarded.

7



• Third, we find 7 low-frequency IV bits out of the 46 IV bits, which
means that the 7 IV bits have less probability being involved in the
internal state bits. We are going to find the 43-degree missing IV
terms that contain the 7 low frequency IV bits. So if a monomial
does not contain the 7 low-frequency IV bits simultaneously, we discard
it. For detailed description, we refer to Section ??.

– Step 3. For the left monomials of z’s ANF, we introduce IV representa-
tion technique in Section ?? to continue to discard monomials and finally
find the 43-degree missing product of certain 43 IV bits (missing IV term).
In IV representation technique, the symbolic key bits in the internal state
bits are removed and only IV bits are left. We combine IV representation
technique with the following two techniques:

• Combining with removing covered IV terms, we can simplify monomials
without losing the degree information. It helps us to determine a more
accurate upper bound degree of the monomials of z. And then if the
degree of a monomial is smaller than 43, delete it.

• Combining with repeated IV term removing algorithm, we can simplify
monomials of z’s ANF without losing the missing IV term information. If
we find an IV term is not in the IV representation of z, we can conclude
that it is also not in z.

Forward

Internal 

State bits

IV Representation

discarding 

monomials

Step 1 Step 3

Internal 

State bits

Step 2

257z
1 128 1 96( ,..., , ,..., )k k v v ix

'ix

Initialize by the new 

nullification scheme

Fig. 1. Framework of the Preprocessing Phase

Thus, our attack includes two phases, which are the preprocessing phase and
the online attack phase.

– In the preprocessing phase, we determine the 43-degree missing products of
certain 43 IV bits (missing IV terms) in z257, and select those 43-bit IV sets
as cubes, which are summarised in ??.

– In the online phase, we guess the key bits in the 14 dynamic variables, and
compute the cube sums of the cubes produce in preprocessing phase:

a. For the right key guessing, the coefficient is zero. Thus the cube sums
must be zero.

b. For the wrong key guessing, the output is random, the cube sums are
not always zero.
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5 Preprocessing Phase of the Attack on Full-round
Grain128

5.1 New Nullification Scheme

In Step 1 of ??, we have to introduce a nullification scheme to initialize the
state. We obtain the nullification scheme of state bits and the corresponding 14
dynamic IV bits in ??. More details of the nullification are shown in ??.

Table 2. Our Nullification Scheme

nullification b131, b133, b134, s135, b136, b137, b138, b143, b145, b153, b159, b170, b176, b203

dynamic bits s3, s5, s6, s77, s8, s9, s10, s15, s17, s25, s31, s42, s83, s1

In ??, the first column are the state bits to be nullified and the second column
are the corresponding equations. The third column are the subkey bits guessed
for nullifications. For example, in order to nullify b131, we just need to set s3 to
b15b98+b98s45+b71b87+s63s82+b64b68+b43b51+b30b62+b20b21+b14b16+b6b70+
s16s23 +b15s11 +b99 +b94 +b92 +b76 +b67 +b59 +b48 +b39 +b29 +b18 +b5 +b3 +1,
where b98 and b15 underlined are the key bits guessed. Besides these two bits, one
expression on key bits indicated by ∗, that is b15b98 + b71b87 + b64b68 + b43b51 +
b30b62 + b20b21 + b14b16 + b6b70 + b99 + b94 + b92 + b76 + b67 + b59 + b48 + b39 + b29 +
b18 + b5 + b3 should be guessed. Hence, three bits need to be guessed to nullify
b131. Totally, 40 bits should be guessed for nullifying the state bits in Table ??.

After setting 14 dynamic IV bits, there are 96-14=82 free IV bits left. We
calculate the frequency of occurrence of the 82 IV bits in the internal state bits
and state terms. We nullify the high frequency IV bits to reduce the internal
state bits and state terms as much as possible. We choose 36 IV bits shown in
?? to be nullified (set to zero). There are 82-36=46 free IV bits left.

After the initialization of Step 1 in ??. We are going to determine the 43-
degree missing IV terms. It is divided into two steps as shown in ??: Step 2, Fast
Discarding Monomials; Step 3, IV Representation. The two steps are shown in
??.

5.2 Fast Discarding Monomials

After initializing the states in ??, we are going to iteratively compute and reduce
z257 in Step 2. In each iteration, many state terms of z257 are produced. There
are 46 free IV bits left and we will find missing IV terms of degree 43. We
introduce the following three ways to discard monomials fast shown in ??:

– Removing state terms according to degree evaluation;
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Table 3. Nullification Scheme

Nullified bitsEquations for nullification Subkey bits guessed

b203

s1 = b115b123 + b92b93 + b86b88 + s88s95 + b87s83 + b111b127 + b104b108 + b83b91 + b48 b87, b52, b115, b96,

+b60b61 + b54b56 + b46b110 + s56s63 + b107 + b99 + b88 + b79 + b58 + b45 + b43 + s14s21 b13, ∗

+s43 + b52s48 + b113 + b104 + b85 + b55 + b42 + s78 + s47 + s40 + b106b122 + b99b103 + b5

+b78b86 + b65b97 + b55b56 + b49b51 + b41b105 + b50s46 + b102 + b83 + b64 + b53 + b96s43

+b40 + b104b120 + b97b101 + b76b84 + b63b95 + b53b54 + b47b49 + b39b103 + b120 + s3b13b96

+b101 + b90 + b125 + b109 + b100 + b92 + b81 + b72 + b62 + b51 + b36 + b77 + b75 + s82

+s75 + b32b115 + b115s62 + b88b104 + s80 + b81b85 + b60b68 + b47b79 + b37b38 + s39 + s8

+b31b33 + b23b87 + b111 + b109 + b93 + b84 + b76 + b65 + b56 + b46 + b70b102 + b16 + b3

+b35 + b22 + b20 + b100s47 + s18s25 + b17s13 + b78 + b50 + b41 + b13s9 + s94 + b90 + b65

+b20 + b7 + s86 + s43 + s12 + s5b15b98 + b98s45 + b15s11 + b92 + b67 + b46 + b37 + b18

+b39 + s73 + s10

b176

s83 = s48 + b48 + b74 + b104 + s11 + b11 + b37 + b67 + b14b78 + b22b24 + b28b29 + b38b70 b23, b111, b16b116,

+b51b59 + b72b76 + b79b95 + b13 + b26 + b47 + b56 + b75 + b100 + s19b23 + b23b106 + b16 b25, b99b116, ∗

+b42 + b72 + b19b83 + b27b29 + b33b34 + b43b75 + b56b64 + b77b81 + b84b100 + b18 + b31

+b52 + b61 + b80 + b89 + b105 + b28b111 + s58b111 + b51b115 + b59b61 + b65b66 + b75b107

+b88b96 + b109b113 + s4b116 + b4b116 + b30b116 + b60b116 + b95b116 + b100b116

+b7b71b116 + b15b17b116 + b21b22b116 + b31b63b116 + b44b52b116 + b65b69b116

+b72b88b116 + b6b116 + b19b116 + b40b116 + b49b116 + b68b116 + b77b116 + b93

+b93b116 + s12b16b116 + b16b99b116 + b116 + s46b99b116 + b50 + b63 + b121 + s13

+b15 + b28 + b49 + b58 + b77 + b86 + s21b25 + b25b108 + s73s92 + 1

b170
s42 = b110b126 + b103b107 + b82b90 + b69b101 + b59b60 + b53b55 + b45b109 + s55s62 ∗

+b54s50 + b115 + b106 + b98 + b87 + b78 + b68 + b57 + b44 + b42 + 1

b159

s31 = b43b126 + b126s73 + b99b115 + s91 + b92b96 + b71b79 + b58b90 + b48b49 + b42b44 b43 ,b126, ∗

+b34b98 + s44s51 + b43s39 + b127 + b122 + b120 + b104 + b95 + b87 + b76 + b67 + b57 + b46

+b33 + b31 + 1

b153

s25 = b37b120 + b120s67 + b93b109 + s85 + b86b90 + b65b73 + b52b84 + b42b43 ∗

+b36b38 + b121 + b28b92 + s38s45 + b37s33 + b116 + b114 + b98 + b89 + b81 + b70

+b61 + b51 + b40 + b27 + b25 + 1

b145

s17 = b29b112 + b112s59 + b85b101 + s77 + b78b82 + b57b65 + b44b76 + b34b35 b29, b112, ∗

+b28b30 + b20b84 + s30s37 + b29s25 + b113 + b108 + b106 + b90

+b81 + b73 + b62 + b53 + b43 + b32 + b19 + b17 + 1

b143

s15 = b27b110 + b110s57 + b83b99 + s75s94 + b76b80 + b55b63 + b42b74 + b32b33 b27, b110, ∗

+b26b28 + b18b82 + s28s35 + b27s23 + b111 + b106 + b104 + b88 + b79

+b71 + b60 + b51 + b41 + b30 + b17 + b15 + 1

b138

s10 = b22b105 + b105s52 + b78b94 + s70s89 + b71b75 + b50b58 + b37b69 + b27b28 b22, b105, ∗

+b21b23 + b13b77 + s23s30 + b22s18 + b106 + b101 + b99 + b83 + b74

+b66 + b55 + b46 + b36 + b25 + b12 + b10 + 1

b137

s9 = b21b104 + b104s51 + b77b93 + s69s88 + b70b74 + b49b57 + b36b68 + b26b27 b21, ∗

+b20b22 + b12b76 + s22s29 + b21s17 + b105 + b100 + b98 + b82 + b73

+b65 + b54 + b45 + b35 + b24 + b11 + b9 + 1

b136

s8 = b20b103 + b103s50 + b76b92 + s68s87 + b69b73 + b48b56 + b35b67 + b25b26 ∗

+b19b21 + b11b75 + s21s28 + b20s16 + b104 + b99 + b97 + b81 + b72 + b64

+b53 + b44 + b34 + b23 + b10 + b8 + 1

s135
s77 = b19b102 + b102s49 + s67s86 + s20s27 + b19s15 + b96 + s88 b19, b102, ∗

+b80 + s7 + b71 + b52 + s45 + b43 + b22 + s14 + b9

b134

s6 = b18b101 + b101s48 + b74b90 + s66s85 + b67b71 + b46b54 + b33b65 + b23b24 b101, ∗

+b17b19 + b9b73 + s19s26 + b18s14 + b102 + b97 + b95 + b79 + b70 + b62

+b51 + b42 + b32 + b21 + b8 + b6 + 1

b133

s5 = b17b100 + b100s47 + b73b89 + s65s84 + b66b70 + b45b53 + b32b64 + b22b23 b17, b100, ∗

+b16b18 + b8b72 + s18s25 + b17s13 + b101 + b96 + b94 + b78 + b69 + b61

+b50 + b41 + b31 + b20 + b7 + b5 + 1

b131

s3 = b15b98 + b98s45 + b71b87 + s63s82 + b64b68 + b43b51 + b30b62 + b20b21 b15, b98, ∗

+b14b16 + b6b70 + s16s23 + b15s11 + b99 + b94 + b92 + b76 + b67

+b59 + b48 + b39 + b29 + b18 + b5 + b3 + 1

1 Each ∗ in this table indicates a different expression of partial key bits.
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Table 4. Nullified IV Bits

nullified bits
s14, s16, s20, s22, s23, s24, s28, s30, s32, s33, s35, s36, s38, s41, s44, s50
s51, s53, s55, s56, s61, s64, s67, s68, s69, s70, s71, s75, s76, s79, s81, s82
s84, s85, s86, s94

…

…

State 
Terms

…

…

Degree Evaluation
Degree Reduction
Using Low-frequency IV Bits

Fast Discarding 
Monomials

… …

Cover PropertyIV Representation

Repeat (Algorithm 3)IV Representation

FFFFFFFFFF EFFFFFFFFF DFFFFFFFFF …
43-degree IV 
Term Table

0 1 0 …

Left State Terms

Deleted State Terms

Step 2

Step 3

Fig. 2. Framework of Our Work

– Removing state terms according to degree reduction;

– Removing the state terms that do not contain all the 7 low-frequency IV
bits.

Degree Evaluation Since we are determining the 43-degree missing IV terms,
the state terms of z257 with degree less than 43 are removed without considera-
tion, because they do not contain those 43-degree IV terms certainly. The exact
degrees of state bits bi and si for i ∈ [0, 222] can be obtained in a PC and are
shown in Table ??. The degrees of bi for 0 ≤ i < 128 and sj for 96 ≤ j < 128 is
0 as they are constant.

In order to obtain the degree of state bit br or sr for r > 222, we decompose
the state bits until the state bits are the product of state bits bi and sj for
i < end and j < end. Obviously, we will get a more accurate estimation, if
we choose a smaller value for end8. However, the smaller the end is, the more
computing resource we will need. In the cryptanalysis of Grain128, we choose

8 Suppose we are going to estimate the degree of bi = bi−3 + bi−1bi−2.

deg(bi) = deg(bi−3 + bi−1bi−2)
= max{deg(bi−3), deg(bi−1bi−2)}
≤ max{deg(bi−3), deg(bi−1) + deg(bi−2)}

(4)

11



Table 5. Degree of partial state bits

i 0 1 2 3 4 5 6 7 8 9 10 11

deg(si) 1 2 1 1 1 1 2 1 0 1 1 1

i 12 13 14 15 16 17 18 19 20 21 22 23

deg(si) 1 1 0 1 0 1 1 1 0 1 0 0

i 24 25 26 27 28 29 30 31 32 33 34 35

deg(si) 0 0 1 1 0 1 0 1 0 0 1 0

i 36 37 38 39 40 41 42 43 44 45 46 47

deg(si) 0 1 0 1 1 0 0 1 0 1 1 1

i 48 49 50 51 52 53 54 55 56 57 58 59

deg(si) 1 1 0 0 1 0 1 0 0 1 1 1

i 60 61 62 63 64 65 66 67 68 69 70 71

deg(si) 1 0 1 1 0 1 1 0 0 0 0 0

i 72 73 74 75 76 77 78 79 80 81 82 83

deg(si) 1 1 1 0 0 1 1 0 1 0 0 2

i 84 85 86 87 88 89 90 91 92 93 94 95

deg(si) 0 0 0 1 1 1 1 1 1 1 0 1

i 128 129 130 131 132 133 134 135 136 137 138 139

deg(bi) 1 2 1 0 1 0 0 1 0 0 0 1

deg(si) 1 2 2 1 1 1 1 0 1 1 1 1

i 140 141 142 143 144 145 146 147 148 149 150 151

deg(bi) 2 2 2 0 1 0 1 1 1 1 0 2

deg(si) 2 1 2 0 1 1 1 1 1 1 1 2

i 152 153 154 155 156 157 158 159 160 161 162 163

deg(bi) 1 0 2 2 1 1 1 0 2 2 3 3

deg(si) 1 1 2 2 1 1 1 0 2 2 3 3

i 164 165 166 167 168 169 170 171 172 173 174 175

deg(bi) 2 2 2 2 2 1 0 1 2 3 3 3

deg(si) 2 2 1 2 2 1 1 1 2 3 3 3

i 176 177 178 179 180 181 182 183 184 185 186 187

deg(bi) 0 2 2 2 2 2 2 2 3 2 2 2

deg(si) 2 2 2 2 2 2 2 2 3 2 2 2

i 188 189 190 191 192 193 194 195 196 197 198 199

deg(bi) 3 2 2 2 2 3 3 5 4 3 3 3

deg(si) 3 2 2 2 2 3 3 5 4 3 3 3

i 200 201 202 203 204 205 206 207 208 209 210 211

deg(bi) 3 3 3 0 3 3 5 4 4 3 4 4

deg(si) 3 3 3 2 3 3 5 4 4 3 4 4

i 212 213 214 215 216 217 218 219 220 221 222

deg(bi) 4 3 3 4 3 5 4 4 4 5 5

deg(si) 4 3 3 4 3 5 4 4 4 5 4
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end = r − 66 for tradeoff. We estimate the degree upper bound for b223 as an
example, where end = 223− 66 = 157:

– a) First, we express b223 = b95 + b121 + b151 + b186 + b191 + s95 + b98b162 +
b106b108 + b112b113 + b122b154 + b135b143 + b156b160 + b163b179 + b97 + b110 +
b131+b140+b159+b168+b184+s188+b107++b190s137+s155s174+b107b190s190
according to the iterative function of Grain128.

– b) According to Table ?? highlighted in red, initialize d = max{deg(b151),deg(b186),
deg(b191),deg(s95),deg(b162),deg(b154),deg(b156)+deg(b160),deg(b163)+deg(b179),
deg(deg(b140),deg(b168),deg(b184),deg(s188),deg(b190)+deg(s137),deg(s155)+
deg(s174),
deg(b190)+deg(s190)} = max{2, 2, 2, 1, 3, 2, 1+2, 3+2, 2, 2, 3, 3, 2+1, 2+3, 2+
2} = 5. The other state terms are discarded directly because their degrees
are zeros.

– c) Discarding the state terms of degree lower than d = 5, we get b∗223 =
b163b179 +s155s174. Iteratively compute b∗223 and discard state terms with de-
gree lower than 5, we get b∗∗223 = b47b130b142s130+b47b130b140s130+b47b130b146s93s130+
b47b63b130b146s130s146 + b141s88s155 + b58b141s141s155.

– d) Note that there is no state bit in round that is bigger than end=157, the
expression ends and there are still state terms that survive. Then the current
degree d = 5 is the estimated degree of b223.

– e) Note that, if there is no state item in b∗∗223 surviving, which means the
degree must be less than 5. We reset d = 4 and continue the above steps c)
to d) to get a more accurate degree bound.

We summarise the above 5 steps as Algorithm ?? and the degrees of state bit br
or sr for 223 ≤ r ≤ 320 are shown in ??.

Using degree evaluation to discard state terms in advance. As the
monomials of z257’s ANF is a product of these internal state bits, the degree
of a monomial is bounded by the sum of the degrees of the multiplied internal
state bits, which is regarded as the degree estimation of the monomial. If the
degree estimation of the monomial is smaller than 43, we delete the monomial
directly. For example, if deg(bisi) ≤ DEG(bi) + DEG(si) < 43, delete bisi. If
DEG(bi) +DEG(si) ≥ 43, continue to consider degree reduction in the following
section.

Degree Reduction According to the observation of Grain128 encryption scheme,
the high degree state terms are in the form of bisi. Define the degree reduction

If we continue to decompose bi, we find

bi−1bi−2 = (bi−4 + bi−2bi−3)(bi−5 + bi−3bi−4)
= bi−4bi−5 + bi−3bi−4 + bi−2bi−3bi−5 + bi−2bi−3bi−4,

(5)

If deg(bi−1) = deg(bi−2bi−3) and deg(bi−2) = deg(bi−3bi−4), then in ??, deg(bi−1) +
deg(bi−2) may add deg(bi−3) twice. So in order to obtain a more accurate degree
estimation, we are willing to decompose bi for several rounds backwards.
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Algorithm 1 Degree Evaluation Algorithm (DEG) of State Bit

Input: The value r which indicates the state bit br.
Output: DEG(br)=d.
1: Initialize the degree bound d similar to step b) of the above example, the end point

end and the number of state terms len← 0.
2: while len = 0 do
3: Iteratively express br using state bits in rounds less than end. During each ex-

pression, discard the state terms of degree lower than d. Let len be the number
of remaining state terms.

4: if len = 0 then
5: d← d− 1
6: end if
7: end while
8: Return d

Table 6. Degree Estimation of State Bits

i 223 224 225 226 227 228 229 230 231 232 233 234

DEG(bi) 5 4 4 5 5 8 5 5 5 6 6 6

DEG(si) 5 3 4 5 5 8 5 5 5 6 6 6

i 235 236 237 238 239 240 241 242 243 244 245 246

DEG(bi) 6 4 6 6 8 8 8 6 7 9 9 6

DEG(si) 6 4 6 6 8 8 8 6 7 9 9 6

i 247 248 249 250 251 252 253 254 255 256 257 258

DEG(bi) 5 8 6 7 9 6 6 7 10 12 9 10

DEG(si) 5 8 6 7 9 5 6 7 10 12 9 10

i 259 260 261 262 263 264 265 266 267 268 269 270

DEG(bi) 8 11 11 11 11 11 12 11 13 12 8 13

DEG(si) 8 11 11 11 11 11 12 11 13 12 7 13

i 271 272 273 274 275 276 277 278 279 280 281 282

DEG(bi) 13 15 15 14 9 14 17 17 15 12 16 13

DEG(si) 13 15 15 14 9 14 17 17 15 12 16 13

i 283 284 285 286 287 288 289 290 291 292 293 294

DEG(bi) 15 17 12 11 15 21 23 18 20 14 19 21

DEG(si) 15 17 12 10 15 21 23 18 20 13 19 21

i 295 296 297 298 299 300 301 302 303 304 305 306

DEG(bi) 21 20 21 22 23 25 22 17 24 25 29 26

DEG(si) 21 20 21 22 23 25 22 17 24 25 29 26

i 307 308 309 310 311 312 313 314 315 316 317 318

DEG(bi) 24 20 27 31 33 29 23 31 27 32 32 27

DEG(si) 24 20 27 31 33 29 23 31 27 32 32 27

i 319 320

DEG(bi) 22 30

DEG(si) 22 30
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drt as

drt = deg(br) + deg(sr)− deg(brsr). (6)

The degree reduction can be obtained using Algorithm ??. For Algorithm ??,
we choose end = r − 48 considering the efficiency tradeoff of the computation.

Algorithm 2 Degree Reduction Algorithm of State Term

Input: The value r which indicates the state term degree reduction.
Output: The degree reduction dt = DEG(br) +DEG(sr)− deg(brsr).
1: Initialize the degree bound d = DEG(br) +DEG(sr), degree reduction dt = 0, end

point end and number of survived state terms len.
2: while len = 0 do
3: Express the state term brsr using state bits in rounds less than end, discard the

state terms of degree lower than d−dt. Let len be the number of remaining state
terms.

4: if len = 0 then
5: dt ← dt + 1
6: end if
7: end while
8: Return dt

The degree reduction can help discard state terms of lower degree dramati-
cally, as it can help predict the change of degree before expression operation. We
take the state term b223s223 as an example to illustrate the process to compute
the degree reduction dt. Algorithm ?? is first used to obtain the degree of state
bits as shown in Table ?? and ??.

Let end be 223 − 48 = 175. The degree bound d is initialized as d =
DEG(b223)+DEG(s223) = 10 shown in ?? and dt = 0. Express the b223s223 discard
the state terms of degree lower than d−dt = d, there is 1 state term surviving, i.e.,
b163b179s155s174. Continue to compute iteratively, the remaining 5 state terms
are b142b163s155s174 + b140b163s155s174 + b146b163s93s155s174 + b163s130s155s174 +
b63b146b163s146s155s174. There is no state bits in rounds more than 175 in all the
state terms, hence the expression ends. Degree reduction dt = 0 is returned.

The degree reduction of bisi for i ∈ [0, 222] can be obtained directly in ??
as the degrees of bisi, bi and si can be determined exactly. Degree reductions of
bisi for i ∈ [223, 320] are given by ?? and shown in ??.

Using degree reduction to discard state terms in advance. The degree
of a monomial is upper bounded by difference value between the sum of the
multiplied internal state bits and the corresponding degree reduction dt. For
example, reconsider monomial bisi, if DEG(bi)+DEG(si) > 43, degree evaluation
introduced in ?? could not delete monomial bisi. Thus, according to degree
reduction, deg(bisi) ≤ DEG(bi) + DEG(si) − dit, if it is smaller than 43, delete
bisi. If not, continue to use low-frequency IV bits in the following section to
delete monomials.
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Table 7. Degree Reduction for Partial State bits

i 129 140 142 151 154 155 160 161 162

dit 1 1 1 1 1 1 1 1 1

i 163 164 165 167 168 172 173 174 175

dit 2 1 1 1 1 1 1 2 2

i 180 181 182 183 184 188 193 194 195

dit 1 1 1 1 1 1 2 1 2

i 196 197 198 199 206

dit 3 1 1 1 1

Table 8. Degree Reduction of State Terms

i 223 224 225 226 227 228 229 230 231 232 233 234

dit 0 0 0 0 0 2 0 0 0 1 0 0

i 235 236 237 238 239 240 241 242 243 244 245 246

dit 1 0 2 0 0 1 2 1 2 3 4 0

i 247 248 249 250 251 252 253 254 255 256 257 258

dit 0 2 0 0 3 0 0 0 0 4 2 3

i 259 260 261 262 263 264 265 266 267 268 269 270

dit 0 6 1 0 3 3 6 1 4 4 0 5

i 271 272 273 274 275 276 277 278 279 280 281 282

dit 4 3 6 8 0 4 6 7 6 5 5 3

i 283 284 285 286 287 288 289 290 291 292 293 294

dit 2 5 2 0 4 6 10 7 8 0 10 8

i 295 296 297 298 299 300 301 302 303 304 305 306

dit 6 9 14 10 5 6 7 1 9 5 9 7

i 307 308 309 310 311 312 313 314 315 316 317 318

dit 6 2 8 11 12 11 15 13 7 8 11 9

i 319 320

dit 4 7
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Low-frequency IV Bits In our nullification scheme, 36 IV bits are nullified
(set to zeros). There are remaining 46 IV bits. By testing the frequency of the
occurrence of the 46 IV bits in the internal state bits of b128 to b222 and s128 to
s222, we find out 7 IV Bits, who appear in the internal state bits or terms with
lower frequency than others. We list the 7 IV Bits in ??, along with the state
bits containing those 7 IV Bits.

Here, we illustrate how to exploit the 7 low-frequency bits to help discard
monomials. We are finding 43-degree missing IV terms in the output polynomial
z257. In order to discard monomials, we add the conditions that, the 43-degree
missing IV terms must contain all the 7 low-frequency bits. That means, the
corresponding 43-dimension cube contains the 7 IV bits as cube variables. Thus,
we do not need to consider the monomials that do not contain all the 7 low-
frequency bits. Those monomials could be deleted in advance.

For example, express z257 using internal state bits bi and si i ∈ [128, 222].
Suppose b135b218s218 is a monomial of z257, however s80 is not in b135, b218, or
s218, thus the monomial b135b218s218 must not contain s80. So we delete this
monomial.

5.3 IV Representation

In ??, after Step 2, we introduce IV representation to study each left monomials.

In the cryptanalysis of stream ciphers, the output is a Boolean function
over key and IV bits. But obtaining the exact expression is hard, then the IV
representation technique is proposed to reduce the computing complexity.

Definition 1. (IV representation) Given a state bit s =
∑

I,J

∏
i∈I vi

∏
j∈J kj,

the IV representation of s is sIV =
∑

I

∏
i∈I vi.

For example, if a Boolean polynomial is s = v0k1 +v0k0k2 +v1k1k2 +v0v1k2,
then its IV representation is sIV = v0 + v0 + v1 + v0v1.

IV representation with repeated IV terms Removing Algorithm Due
to the neglection of key bits, there are lots of repeated IV terms. According to
Property ??, repeated state terms should be removed to simplify the polynomial.
However, it is different when the polynomial is in IV representation. In the
above example, after removing repeated IV terms of sIV , the result should be
v0 + v1 + v0v1, instead of v1 + v0v1 given by Property ??. Here we give the
Algorithm ?? to remove the repeated IV terms of sIV . This algorithm is based
on a Hash function. First, an empty hash set is initialized. For each IV term Ti,
compute the hash value as H(Ti) (Line 3), then determine if Ti is already in H.
If not, then insert Ti into H (Lines 4-5).

Property 3. If we find an IV term is not in sIV , we can conclude that it is also
not in s.

17



Table 9. Low frequency bits

low-frequency corresponding state bits
bits

s0

b128, s128, b160, s160, b161, s161, b163, s163, b165, s165, b167, s167, b172, s172,
s175, b177, s177, b183, s183, s186, b188, s188, b189, s189, b191, s191, b193, s193,
b194, s194, b195, s195, b196, s196, b197, s197, b198, s198, b200, s200, b202, s202,
b204, s204, b205, s205, b206, s206, b207, s207, b208, s208, b209, s209, b210, s210,
b211, s211, b212, s212, b214, s214, b216, s216, s218, b219, s219, b220, s220, b221,
s221, b222, s222

s2

b130, s130, b162, s162, b163, s163, b165, s165, b167, s167, b169, s169, b174, s174,
s177, b179, s179, b185, s185, s188, b190, s190, b191, s191, b193, s193, b195, s195,
b196, s196, b198, s198, b199, s199, b200, s200, b202, s202, b204, s204, b206, s206,
b207, s207, b208, s208, b209, s209, b210, s210, b211, s211, b212, s212, b213, s213,
b214, s214, b216, s216, b218, s218, s220, b221, s221, b222, s222

s37

b157, s157, s158, b165, s165, b189, s189, b190, s190, b191, s191, b192, s192, b193,
s193, b194, s194, b196, s196, b197, s197, b198, s198, b200, s200, b201, s201, b202,
s202, b204, s204, s205, s206, b209, s209, b212, s212, b214, s214, s215, s216, b217,
s217, b218, s218, b220, s220, b222, s222

s43

s133, b163, s163, s164, s165, b168, s168, b171, s171, s180, b182, s182, s191, b195,
s195, b196, s196, b197, s197, b198, s198, b199, s199, b200, s200, b201, s201, b202,
s202, b204, s204, b205, s205, b206, s206, b207, s207, b208, s208, b210, s210, b211,
s211, b212, s212, b213, s213, b214, s214, b215, s215, b217, s217, b218, s218, b219,
s219, b221, s221

s60

b146, s146, s150, b178, s178, b179, s179, b180, s180, b181, s181, s182, b183, s183,
b185, s185, b188, s188, b190, s190, s193, s197, b199, s199, b201, s201, s204, b206,
s206, b207, s207, s208, b209, s209, b211, s211, b212, s212, b213, s213, b214, s214,
b215, s215, b216, s216, b217, s217, b218, s218, b219, s219, b220, s220, b221, s221,
b222, s222

s80

b129, s129, s138, b148, s148, b161, s161, b162, s162, b164, s164, b166, s166, b168,
s168, b173, s173, s176, b178, s178, b180, s180, b181, s181, b183, s183, b184, s184,
b185, s185, s187, b188, s188, b190, s190, b192, s192, b194, s194, b195, s195, s196,
b197, s197, b198, s198, b199, s199, b200, s200, b201, s201, s203, b205, s205, b206,
s206, s207, b222, s222

s90

s137, s148, b158, s158, s169, b172, s172, b181, s181, b183, s183, s184, b186, s186,
b190, s190, b191, s191, b193, s193, b195, s195, b197, s197, b198, s198, s201, b202,
s202, b205, s205, s206, b209, s209, b210, s210, b211, s211, b213, s213, b214, s214,
b215, s215, b216, s216, b217, s217, b218, s218, b219, s219, b220, s220, b221, s221,
b222, s222
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After applying Algorithm ?? to sIV , it is easy to know that if an IV term
exists in s, it must also exist in sIV . But the opposite is not right. For example,
x1 = v0(k1k2 + k0k2) + v1 + v0v1k2, x2 = v2k0k1 + v1v2k1 and s = x1x2. We
use the IV representations of x1 and x2 to approximate the IV representation
of s. Thus, x1IV = v0 + v1 + v0v1, x2IV = v2 + v1v2, and sIV = x1IV x2IV =
v0v2 + v1v2 + v0v1v2. However, s = x1x2 = v1v2(k0k1 + k1). We use Property
?? to determine the missing IV terms in the output ANF of Grain128, i.e., we
compute the IV representation sIV of the output s, find the missing IV terms of
sIV and those IV terms are missing IV terms of s.

Algorithm 3 Repeated-IV term Removing Algorithm

Input: The vector T with n IV terms, i.e., T1, T2, . . ., Tn.
Output: Updated T with m IV terms, where m ≤ n.
1: Initialize an empty Hash set H.
2: for i← 1 : n do
3: Compute the Hash value of Ti, i.e., H(Ti).
4: if H.contains(Ti) is false then
5: H.insert(Ti).
6: end if
7: end for

After using IV representation combined with Algorithm ??, all the existent IV
terms are left by ignoring their repetition. With collision-resistent hash function
H, the time complexity of Algorithm ?? is O(n) for processing n IV terms. It
needs several minutes to apply Algorithm ?? on 1 billion IV terms on a single
core.

IV representation with Covered IV Term Removing Method We also
use IV representation by removing covered IV terms. As shown in Property
??, if we are estimating the degree of a polynomial s, instead of detecting the
missing IV terms, the covered IV terms have no effect. For example, s = v0k1 +
v0k0k2 + v1k1k2 + v0v1k2, then sIV = v0 + v0 + v1 + v0v1, after use Property
?? to remove covered IV terms from sIV , we get s∗IV = v0v1. It is obviously
that deg(s) = deg(sIV ) = deg(s∗IV ). This method can help discard (state, IV)
terms dramatically, since we could get a more accurate degree evaluation of s
than degree evaluation technique and degree reduction technique.

Determining the 43-degree Missing IV Terms As shown in ??, after Step
2, the degrees of left state terms are possibly bigger or equal to 43. For the left
state terms, we are going to use IV representation to determine the missing
43-degree IV terms.

– First, we use IV representation technique combined with covered IV term
removing method for each left state terms. It could maintain the degree
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information by ignoring the low degree IV terms and get a more accurate
degree. Thus, if the degree of a monomial is smaller than 43, the monomial
is deleted.

– Second, for the left monomials, we use IV representation technique combi-
ned with Algorithm ??. It could not only maintain the highest degree IV
terms, but also the lower degree IV terms by ignoring the repetitions. Then
we maintain a table 43-bit indexed by all possible 43-degree IV terms who
contain the 7 low-frequency IV bits in ??. As there are 7 fixed bits, the num-
ber of freedom variables is 39, so that the table size is (46−743−7) = 9139. Initial
the table with 0. Then, if a 43-degree IV term exists, the entry turns to 1. At
last, the indexes with entries equal to 0 are the missing 43-degree IV terms.
According to Property ??, if an IV term is not in z257’s IV representation,
it must be also not in z257.

– Choose the missing 43-degree IV terms as cubes shown in ??, whose cube
sums must be zero.

Table 10. 43-dimension Cubes

Cube Index of Cube Variables

1 0,2,4,7,11,12,13,18,19,21,26,27,29,34,37,39,40,43,45,46,47,48,49,52,54,57,58,59,60,62,63, 65,66,72,73,74,78,80,87,88,89,90,91

2 0,2,4,7,11,12,13,18,19,21,26,27,29,34,37,39,40,43,45,46,47,48,49,52,54,57,58,59,60,62,63, 65,66,72,73,74,78,80,87,88,89,90,92

3 0,2,4,7,11,12,13,18,19,21,26,27,29,34,37,39,40,43,45,46,47,48,49,52,54,57,58,59,60,62,63, 65,66,72,73,74,78,80,87,88,89,90,95

4 0,2,4,7,11,12,13,18,19,21,26,27,29,34,37,39,40,43,45,46,47,48,49,52,54,57,58,59,60,62,63, 65,66,72,73,74,78,80,87,88,90,91,92

5 0,2,4,7,11,12,13,18,19,21,26,27,29,34,37,39,40,43,45,46,47,48,49,52,54,57,58,59,60,62,63, 65,66,72,73,74,78,80,87,88,90,91,93

6 0,2,4,7,11,12,13,18,19,21,26,27,29,34,37,39,40,43,45,46,47,48,49,52,54,57,58,59,60,62,63, 65,66,72,73,74,78,80,87,88,90,91,95

7 0,2,4,7,11,12,13,18,19,21,26,27,29,34,37,39,40,43,45,46,47,48,49,52,54,57,58,59,60,62,63, 65,66,72,73,74,78,80,87,88,90,92,93

8 0,2,4,7,11,12,13,18,19,21,26,27,29,34,37,39,40,43,45,46,47,48,49,52,54,57,58,59,60,62,63, 65,66,72,73,74,78,80,87,88,90,92,95

9 0,2,4,7,11,12,13,18,19,21,26,27,29,34,37,39,40,43,45,46,47,48,49,52,54,57,58,59,60,62,63, 65,66,72,73,74,78,80,87,88,90,93,95

10 0,2,4,7,11,12,13,18,19,21,26,27,29,34,37,39,40,43,45,46,47,48,49,52,54,57,58,59,60,62,63, 65,66,72,73,74,78,80,87,89,90,91,92

11 0,2,4,7,11,12,13,18,19,21,26,27,29,34,37,39,40,43,45,46,47,48,49,52,54,57,58,59,60,62,63, 65,66,72,73,74,78,80,87,89,90,91,95

12 0,2,4,7,11,12,13,18,19,21,26,27,29,34,37,39,40,43,45,46,47,48,49,52,54,57,58,59,60,62,63, 65,66,72,73,74,78,80,87,89,90,92,93

13 0,2,4,7,11,12,13,18,19,21,26,27,29,34,37,39,40,43,45,46,47,48,49,52,54,57,58,59,60,62,63, 65,66,72,73,74,78,80,87,89,90,92,95

14 0,2,4,7,11,12,13,18,19,21,26,27,29,34,37,39,40,43,45,46,47,48,49,52,54,57,58,59,60,62,63, 65,66,72,73,74,78,80,87,89,90,93,95

15 0,2,4,7,11,12,13,18,19,21,26,27,29,34,37,39,40,43,45,46,47,48,49,52,54,57,58,59,60,62,63, 65,66,72,73,74,78,80,87,90,91,92,93

16 0,2,4,7,11,12,13,18,19,21,26,27,29,34,37,39,40,43,45,46,47,48,49,52,54,57,58,59,60,62,63, 65,66,72,73,74,78,80,87,90,91,92,95

17 0,2,4,7,11,12,13,18,19,21,26,27,29,34,37,39,40,43,45,46,47,48,49,52,54,57,58,59,60,62,63, 65,66,72,73,74,78,80,87,90,91,93,95

18 0,2,4,7,11,12,13,18,19,21,26,27,29,34,37,39,40,43,45,46,47,48,49,52,54,57,58,59,60,62,63, 65,66,72,73,74,78,80,87,90,92,93,95

19 0,2,4,7,11,12,13,18,19,21,26,27,29,34,37,39,40,43,45,46,47,48,49,52,54,57,58,59,60,62,63, 65,66,72,73,74,78,80,88,89,90,91,92

20 0,2,4,7,11,12,13,18,19,21,26,27,29,34,37,39,40,43,45,46,47,48,49,52,54,57,58,59,60,62,63, 65,66,72,73,74,78,80,88,89,90,91,95

21 0,2,4,7,11,12,13,18,19,21,26,27,29,34,37,39,40,43,45,46,47,48,49,52,54,57,58,59,60,62,63, 65,66,72,73,74,78,80,88,89,90,92,93

22 0,2,4,7,11,12,13,18,19,21,26,27,29,34,37,39,40,43,45,46,47,48,49,52,54,57,58,59,60,62,63, 65,66,72,73,74,78,80,88,89,90,92,95

23 0,2,4,7,11,12,13,18,19,21,26,27,29,34,37,39,40,43,45,46,47,48,49,52,54,57,58,59,60,62,63, 65,66,72,73,74,78,80,88,89,90,93,95

24 0,2,4,7,11,12,13,18,19,21,26,27,29,34,37,39,40,43,45,46,47,48,49,52,54,57,58,59,60,62,63, 65,66,72,73,74,78,80,88,90,91,92,93

25 0,2,4,7,11,12,13,18,19,21,26,27,29,34,37,39,40,43,45,46,47,48,49,52,54,57,58,59,60,62,63, 65,66,72,73,74,78,80,88,90,91,92,95

26 0,2,4,7,11,12,13,18,19,21,26,27,29,34,37,39,40,43,45,46,47,48,49,52,54,57,58,59,60,62,63, 65,66,72,73,74,78,80,88,90,91,93,95

27 0,2,4,7,11,12,13,18,19,21,26,27,29,34,37,39,40,43,45,46,47,48,49,52,54,57,58,59,60,62,63, 65,66,72,73,74,78,80,88,90,92,93,95

28 0,2,4,7,11,12,13,18,19,21,26,27,29,34,37,39,40,43,45,46,47,48,49,52,54,57,58,59,60,62,63, 65,66,72,73,74,78,80,89,90,91,92,95

29 0,2,4,7,11,12,13,18,19,21,26,27,29,34,37,39,40,43,45,46,47,48,49,52,54,57,58,59,60,62,63, 65,66,72,73,74,78,80,89,90,92,93,95

30 0,2,4,7,11,12,13,18,19,21,26,27,29,34,37,39,40,43,45,46,47,48,49,52,54,57,58,59,60,62,63, 65,66,72,73,74,78,80,90,91,92,93,95

31 0,2,4,7,11,12,13,18,19,21,26,27,29,34,37,39,40,43,45,46,47,48,49,52,54,57,58,59,60,62,63, 65,66,72,73,74,80,87,88,89,90,91,92

32 0,2,4,7,11,12,13,18,19,21,26,27,29,34,37,39,40,43,45,46,47,48,49,52,54,57,58,59,60,62,63, 65,66,72,73,74,80,87,88,89,90,91,95

33 0,2,4,7,11,12,13,18,19,21,26,27,29,34,37,39,40,43,45,46,47,48,49,52,54,57,58,59,60,62,63, 65,66,72,73,74,80,87,88,89,90,92,93

34 0,2,4,7,11,12,13,18,19,21,26,27,29,34,37,39,40,43,45,46,47,48,49,52,54,57,58,59,60,62,63, 65,66,72,73,74,80,87,88,89,90,92,95

35 0,2,4,7,11,12,13,18,19,21,26,27,29,34,37,39,40,43,45,46,47,48,49,52,54,57,58,59,60,62,63, 65,66,72,73,74,80,87,88,89,90,93,95

36 0,2,4,7,11,12,13,18,19,21,26,27,29,34,37,39,40,43,45,46,47,48,49,52,54,57,58,59,60,62,63, 65,66,72,73,74,80,87,88,90,91,92,93

37 0,2,4,7,11,12,13,18,19,21,26,27,29,34,37,39,40,43,45,46,47,48,49,52,54,57,58,59,60,62,63, 65,66,72,73,74,80,87,88,90,91,92,95

38 0,2,4,7,11,12,13,18,19,21,26,27,29,34,37,39,40,43,45,46,47,48,49,52,54,57,58,59,60,62,63, 65,66,72,73,74,80,87,88,90,91,93,95

39 0,2,4,7,11,12,13,18,19,21,26,27,29,34,37,39,40,43,45,46,47,48,49,52,54,57,58,59,60,62,63, 65,66,72,73,74,80,87,88,90,92,93,95

40 0,2,4,7,11,12,13,18,19,21,26,27,29,34,37,39,40,43,45,46,47,48,49,52,54,57,58,59,60,62,63, 65,66,72,73,74,78,80,87,88,89,90,93
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6 Online Attack of the Key-recovery on Full-round
Grain128

In the online attack phase, we first guess the 40 key bits and choose the dynamic
bits to nullify partial state bits. For the cubes in ??:

– When the guessed 40-bit key is right, the cube sums must be zero;
– When the guessed key is wrong, that means the nullification scheme fai-

led and output polynomial z257 become very complex, the cube sums are
assumed to be almost 0-1 balanced9.

Date Collection. Since in the nullification scheme, 36 IV bits are fixed as zero.
We first collect plaintext-cipertext (i.e. IV bits and z257) pairs by traversing the
96-36=60 bits IV bits and store the value IV and z257 in a table T . Hence, the
date complexity is 260.

Algorithm 4 On-line Attack

1: List all possible 40-bit key in a table Tk.
2: for ith (from 1 to 40) cube Cubei in ?? do
3: for Each guessed key in Tk do
4: Initialize cube sum of Cubei as Sum = 0
5: for For each 43-bit IV value in 43-dimension cube Cubei do
6: Initialize the 96-bit IV using the nullification scheme
7: Choose IV and the corresponding z257 from T
8: Update Sum = Sum + z257
9: end for

10: if The Sum is 1 then
11: Delete key from Tk.
12: end if
13: end for
14: end for

Online Attack. The online attack is shown in ??. When i = 1, the size of
Tk is 240. In step 10, about half of key guessing in Tk makes the cube sum be
1, which is because that the cube sums are assumed to be almost 0-1 balanced
under wrong key guessing. After step 12, about 240/2 = 239 candidate key Tk
are left. Then i = 2, similarly, about 239/2 = 238 candidate key are left in Tk
after step 12. So after i = 40, it is expected that only 1 key is left.

Time Complexity. Sum over the first cube needs 240 · 243 = 283 bit opera-
tions. After the first cube, about half wrong key guesses are dropped off, that is
(240−1)/2 wrong key guesses and 1 right key remain. So there are (240−1)/2+1
guesses for the second cube and the time complexity for the second sum is
((240 − 1)/2 + 1) · 243. Generally, there are (240 − 1)/2i−1 + 1 key guesses for

9 We test this property in a reduced Grain128 in ??. For 1000 wrong 40-bit key
guessing, the cube sums are almost 0-1 balanced.
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the Cubei. So the time complexity for the i-th sum is 243((240 − 1)/2i−1 + 1).
Totally, the time complexity is

40∑
i=1

243((240 − 1)/2i−1 + 1) ≈ 284.

According to the estimation in [?], one encryption needs at least 1000 bit
operations, which is equivalent to 210 Grain-128 encryptions. So the attack needs
about 274 cipher executions.

Data Complexity. The data complexity is 260.
After recovering the 40 key bits, there are various methods to recover the

remaining key bits. For example, b236 can be easily nullified with 23 key guesses.
Nonexistent IV terms of lower dimensions can be obtained using the techniques
in previous sections. For example, missing IV terms of dimension 42 can be
chosen as distinguishers. Then the complexity to recover these bits is about
23 · 223 · 242 ≈ 272 bit operations. Then the other key bits can be recovered by
guessing with a complexity of 265. As a result, the complexity of our attack is
dominated by the recovery of the first 40 bits.

7 Example

In order to make the attack more clear, we use an example to illustrate the
process of obtaining the missing IV terms, with the same nullification and IV
choosing schemes in previous sections. In order to exploit the nullification and
IV choosing schemes, we choose to obtain the missing IV terms of z191, where
the result is very easy to verify on a single core.

We express z191 as the following formula after nullifications,

z191 = b193 + b206 + b227 + b236 + b255 + b264 + b280 + s284 + s204s211+

b286s233 + s251s270.

If we consider the missing IV terms of degree more than 11, then the other
state terms except b264+b280+s284+b286s233+s251s270 can be discarded directly
because their degrees are less than 11, under the degree estimation in Table ??.
After that, we decompose again and preserve the state terms of degree more than
11. Then we discard those state terms that can not deduce the low-frequency
bits which are shown in Table ??. The number of state terms drops dramatically.
We decompose again and preserve the state terms that are of degree more than
11 and that can deduce the low-frequency bits. After all the state bits are within
the range of [b0, b159] and [s0, s159], we use IV representation, combined with
Algorithm ??, to obtain the missing IV terms. The highest degree is 15 and
there are only 70 existent IV terms of degree 15. Furthermore, there is a large
number of missing IV terms of degree 11. For example, we choose the 40 missing
IV terms as distinguishers in Table ??. Each hexadecimal number in this table
indicates a multiplication of 43 IV bits. Let H = H0H1H2H3H4H5H6H7H8H9,

22



Table 11. Nonexistent IV terms of degree 11 in z191

2008100800 2000300800 2000500800 2000900800 2000110800 2000120800 2000140800 4000500800

2000180800 2000101800 2000102800 2000104800 2000108800 2000100900 2000100A00 4000900800

2000100C00 2000100810 2000100820 2000100840 2000100880 2000100801 2000100802 4000110800

2000100804 C000100800 4100100800 4200100800 4400100800 4800100800 4010100800 4000120800

4020100800 4040100800 4080100800 4001100800 4002100800 4004100800 4008100800 4000180800

Table 12. Test results for z191

Cube Number of 0s Number of 1s

2008100800 495 505

2000300800 486 514

2000500800 493 507

2000900800 505 495

2000110800 499 501

2000120800 468 532

2000140800 543 457

4000500800 500 500

2000180800 546 454

2000101800 479 521

where Hi is a hexadecimal number with the range of [0, 15]. As there are 39
bits, so H9 is within the range of [0, 7]. Define hij as the j-th lowest bit of
Hi. Let S be the vector whose elements are 4, 7, 11, 12, 13, 18, 19, 21, 26,
27, 29, 34, 39, 40, 45, 46, 47, 48, 49, 52, 54, 57, 58, 59, 62, 63, 65, 66, 72, 73,
74, 78, 87, 88, 89, 91, 92, 93 and 95 sequently, then the cube defined by H is

v0v2v37v43v60v80v90
∏

i∈[0,9] v
hij

Si∗4+j
.

We test the results above in a PC, which are shown in Table ??. The first
column are the chosen cubes. For right key guess, sum over the cubes are zeros.
For each cube, we random select 1000 keys, the second column and third column
are the numbers of 0s and 1s for the corresponding cubes. The source code for
the test is given in main.cpp in the attached file.

8 Conclusion

In this paper, we improve the attack on full-round Grain-128. Our attack is
based on the knowledge that a lot of IV terms will disappear, after nullifying
some state bits and IV bits. In addition, we find out the low-frequency IV bits
and exploit them in the high degree terms. We also propose a series of methods
to discard the monomials of lower degree, and exploit the IV representation to
obtain the IV terms with much lower complexity. Then the missing IV terms
are used as distinguishers so that we improved the attack in [?] by a factor of
216. Our attack is not based on any key information, so we can attack Grain-128
with any arbitrary selected keys. Although the missing IV terms can be tested by
cube tester technique on super computers, our method can also work for higher
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dimensions, in which case the computing complexities for cube tester are beyond
our ability.

In this paper, we have various of strategies in choosing IV bits such as choo-
sing the low-frequency IV bits, so that the IV terms of degree 43 are very sparse.
We believe that attacker can enhance the density with lower degree, which is
much more complex, where more nullified IV bits and low-frequency IV bits
should be exploited. So finding the lowest degree for sparse IV terms is an open
problem for further research.
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