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Abstract. Although the transactions on the Bitcoin blockchain have the
main purpose of recording currency transfers, they can also carry a few
bytes of metadata. A sequence of transaction metadata forms a subchain
of the Bitcoin blockchain, and it can be used to store a tamper-proof ex-
ecution trace of a smart contract. Except for the trivial case of contracts
which admit any trace, in general there may exist inconsistent subchains
which represent incorrect contract executions. A crucial issue is how to
make it difficult, for an adversary, to subvert the execution of a contract
by making its subchain inconsistent. Existing approaches either postu-
late that subchains are always consistent, or give weak guarantees about
their security (for instance, they are susceptible to Sybil attacks). We
propose a consensus protocol, based on Proof-of-Stake, that incentivizes
nodes to consistently extend the subchain. We empirically evaluate the
security of our protocol, and we show how to exploit it as the basis for
smart contracts on Bitcoin.

1 Introduction

Recently, cryptocurrencies like Bitcoin [26] have pushed forward the concept of
decentralization, by ensuring reliable interactions among mutually distrusting
nodes in the presence of a large number of colluding adversaries. These cryp-
tocurrencies leverage on a public data structure, called blockchain, where they
permanently store all the transactions exchanged by nodes. Adding new blocks
to the blockchain (called mining) requires to solve a moderately difficult crypto-
graphic puzzle. The first miner who solves the puzzle earns some virtual currency
(some fresh coins for the mined block, and a small fee for each transaction in-
cluded therein). In Bitcoin, miners must invert a hash function whose complexity
is adjusted dynamically in order to make the average time to solve the puzzle ∼10
minutes. Instead, removing or modifying existing blocks is computationally un-
feasible: roughly, this would require an adversary with more hashing power than
the rest of all the other nodes. If modifying or removing blocks were computa-
tionally easy, an attacker could perform a double-spending attack where he pays
some amount of coins to a merchant (by publishing a suitable transaction in the
blockchain) and then, after he has received the item he has paid for, removes the
block containing the transaction. According to the folklore, Bitcoin would resist
to attacks unless the adversaries control the majority of total computing power
of the Bitcoin network. Even though some vulnerabilities have been reported in
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the literature (see Section 4), in practice Bitcoin has worked surprisingly well
so far: indeed, the known successful attacks to Bitcoin are standard hacks or
frauds [19], unrelated to the Bitcoin protocol.

The idea of using the Bitcoin blockchain and its consensus protocol as foun-
dations for smart contracts — namely, decentralized applications beyond dig-
ital currency [29] — has been explored by several recent works. For instance,
[3,5,7,9,22,23,24] propose protocols for secure multiparty computations and fair
lotteries; [13] implements decentralised authorization systems on Bitcoin, [28,30]
allow users to log statements on the blockchain; [10] is a key-value database with
get/set operations; [14] extends Bitcoin with advanced financial operations (like
e.g., creation of virtual assets, payment of dividends, etc.), by embedding its
own messages in Bitcoin transactions.

Although the Bitcoin blockchain is primarily intended to trade currency, its
protocol allows clients to embed a few extra bytes as metadata in transactions.
Many platforms for smart contracts exploit these metadata to store a persistent,
timestamped and tamper-proof historical record of all their messages [1,6]. Usu-
ally, metadata are stored in OP_RETURN transactions [2], making them meaning-
less to the Bitcoin network and unspendable. With this approach, the sequence
of platform-dependent messages forms a subchain, whose content can only be
interpreted by the nodes that execute the platform (we refer to them as meta-
nodes, to distinguish them from Bitcoin nodes). However, since the platform
logic is separated from the Bitcoin logic, a meta-node can append to the sub-
chain transactions with metadata which are meaningless for the platform — or
even inconsistent with the intended execution of the smart contract. As far as
we know, none of the existing platforms use a secure protocol to establish if
their subchain is consistent. This is a serious issue, because it either limits the
expressiveness of the smart contracts supported by these platforms (which must
consider all messages as consistent, so basically losing the notion of state), or
degrades the security of contracts (because adversaries can manage to publish
inconsistent messages, so tampering with the execution of smart contracts).

Contributions. We propose a protocol that allows meta-nodes to maintain a
consistent subchain over the Bitcoin blockchain. Our protocol is based on Proof-
of-Stake [8,21], since extending the subchain must be endorsed with a money
deposit. Intuitively, a meta-node which publishes a consistent message gets back
its deposit once the message is confirmed by the rest of the network. In partic-
ular, our protocol provides an economic incentive to honest meta-nodes, while
disincentivizing the dishonest ones. We empirically validate the security of our
protocol by simulating it in various attack scenarios. Notably, our protocol can
be implemented in Bitcoin by only using the so-called standard transactions1.

1 This is important, because non-standard transactions are discarded by nodes running
the official Bitcoin client.
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2 Bitcoin and the blockchain

Bitcoin is a cryptocurrency and a digital open-source payment infrastructure
that has recently reached a market capitalization of almost $30 billions2. The
Bitcoin network is peer-to-peer, not controlled by any central authority [26].
Each Bitcoin user owns one or more personal wallets, which consist of pairs of
asymmetric cryptographic keys: the public key uniquely identifies the user ad-
dress, while the private key is used to authorize payments. Transactions describe
transfers of bitcoins (B), and the history of all transactions, which recorded on a
public, immutable and decentralised data structure called blockchain, determines
how many bitcoins are contained in each address.

To explain how Bitcoin works, we consider two transactions t0 and t1, which
we graphically represent as follows:3

t0
in: · · ·
in-script: · · ·
out-script(t, σ): verk(t, σ)
value: v0

t1
in: t0
in-script: sigk(•)
out-script(· · · ): · · ·
value: v1

The transaction t0 contains v0B, which can be redeemed by putting on the
blockchain a transaction (e.g., t1), whose in field is the cryptographic hash of
the whole t0 (for simplicity, just displayed as t0 in the figure). To redeem t0,
the in-script of t1 must contain values making the out-script of t0 (a boolean
programmable function) evaluate to true. When this happens, the value of t0 is
transferred to the new transaction t1, and t0 is no longer redeemable. Similarly,
a new transaction can then redeem t1 by satisfying its out-script.

In the example displayed above, the out-script of t0 evaluates to true when
receiving a digital signature σ on the redeeming transaction t, with a given key
pair k. We denote with verk(t, σ) the signature verification, and with sigk(•)
the signature of the enclosing transaction (t1 in our example), including all the
parts of the transaction except its in-script.

Now, assume that the blockchain contains t0, not yet redeemed, when some-
one tries to append t1. To validate this operation, the nodes of the Bitcoin
network check that v1 ≤ v0, and then they evaluate the out-script of t0, by in-
stantiating its formal parameters t and σ, to t1 and to the signature sigk(•),
respectively. The function verk verifies that the signature is correct: therefore,
the out-script succeeds, and t1 redeems t0.

Bitcoin transactions may be more general than the ones illustrated by the
previous example: their general form is displayed in Figure 1. First, there can be
multiple inputs and outputs (denoted with array notation in the figure). Each
output has an associated out-script and value, and can be redeemed indepen-
dently from others. Consequently, in fields must specify which output they are

2 Source: crypto-currency market capitalizations http://coinmarketcap.com
3 in-script and out-script are respectively referred as scriptPubKey and scriptSig in the

Bitcoin documentation.

http://coinmarketcap.com
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t

in[0]: t0[out0]
in-script[0]: W 0

...

out-script[0](t′0,w0): S0
value[0]: v0

...

lockTime: n

Fig. 1: General form of transactions.

redeeming (t0[out0] in the figure). Similarly, a transaction with multiple inputs
associates an in-script to each of them. To be valid, the sum of the values of all
the inputs must be greater or equal to the sum of the values of all outputs. In its
general form, the out-script is a program in a (not Turing-complete) scripting lan-
guage, featuring a limited set of logic, arithmetic, and cryptographic operators.
Finally, the lockTime field specifies the earliest moment in time (block number
or Unix timestamp) when the transaction can appear on the blockchain.

The Bitcoin network is populated by a large set nodes, called miners, which
collect transactions from clients, and are in charge of appending the valid ones to
the blockchain. To this purpose, each miner keeps a local copy of the blockchain,
and a set of unconfirmed transactions received by clients, which it groups into
blocks. The goal of miners is to add these blocks to the blockchain, in order to
get a revenue. Appending a new block Bi to the blockchain requires miners to
solve a cryptographic puzzle, which involves the hash h(Bi−1) of block Bi−1,
a sequence of unconfirmed transactions 〈Ti〉i, and some salt R. More precisely,
miners have to find a value of R such h(h(Bi−1)‖〈Ti〉i‖R) < µ, where the value µ
is adjusted dynamically, depending on the current hashing power of the network,
to ensure that the average mining rate is of 1 block every 10 minutes. The goal
of miners is to win the “lottery” for publishing the next block, i.e. to solve the
cryptopuzzle before the others; when this happens, the miner receives a reward
in newly generated bitcoins, and a small fee for each transaction included in
the mined block. If a miner claims the solution of the current cryptopuzzle,
the others discard their attempts, update their local copies of the blockchain
with the new block Bi, and start mining a new block on top of Bi. In addition,
miners are asked to verify the validity of the transactions in Bi by executing the
associated scripts. Although verifying transactions is not mandatory, miners are
incentivized to do that, because if in any moment a transaction is found invalid,
they lose the fee earned when the transaction was published in the blockchain.

If two or more miners solve a cryptopuzzle simultaneously, they create a fork
in the blockchain (i.e., two or more parallel valid branches). In the presence of
a fork, miners must choose a branch wherein carrying out the mining process;
roughly, this divergence is resolved once one of the branches becomes longer
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than the others. When this happens, the other branches are discarded, and all
the orphan transactions contained therein are nullified.

Overall, this protocol essentially implements a “Proof-of-Work” system [15].

3 A protocol for consensus on Bitcoin subchains

We define the notions of subchain and consistency in Section 3.1. In Section 3.2
we describe our protocol to embed consistent subchains on the Bitcoin blockchain;
we examine some of its properties in Section 3.3. Finally, in Section 3.4 we show
how to implement our protocol in Bitcoin.

3.1 Subchains and consistency

We assume a set A,B, . . . of participants, who want to append messages a, b, . . .
to the subchain. A label is a pair containing a participant A and a message a,
written A :a. Subchains are finite sequences of labels, written A1 :a1 · · ·An :an,
which are embedded in the Bitcoin blockchain. The intuition is that A1 has
embedded the message a1 in some transaction t1 of the Bitcoin blockchain, then
A2 has appended some transaction t2 embedding a2, and so on. For a subchain
η, we write η A :a for the subchain obtained by appending A :a to η.

In general, labels can also have side effects on the Bitcoin blockchain: we
represent with A :a(v → B) a label which also transfers vB from A to B . When
this message is on the subchain, it also acts as a standard currency transfer on
the Bitcoin blockchain, which makes vB in a transaction of A redeemable by B .
When the value v is zero or immaterial, we simply write a instead of a(v → B).

A crucial insight is that not all possible sequences of labels are valid sub-
chains: to define the consistent ones, we interpret subchains as traces of Labelled
Transition Systems (LTS). Formally, an LTS is a tuple (Q,L, q0,→), where:

– Q is a set of states (ranged over by q, q′, . . .);
– L is a set of labels (in our case, of the form A :a);
– q0 ∈ Q is the initial state;
– → ⊆ Q× L×Q is a transition relation.

As usual, we write q
A :a−−→ q′ when (q,A : a, q′) ∈ →, and, given a subchain

η = A1 :a1 · · ·An :an, we write q
η−→ q′ whenever there exist q1, . . . , qn such that:

q
A1:a1−−−→ q1

A2:a2−−−→ · · · An:an−−−−→ qn = q′

We require that the relation→ is deterministic, i.e. if q
A :a−−→ q′ and q

A :a−−→ q′′,
then it must be q′ = q′′.

The intuition is that the subchain has a state (initially, q0), and each message
updates the state according to the transition relation. More precisely, if the
subchain is in state q, then a message a sent by A makes the state evolve to q′

whenever q
A :a−−→ q′ is a transition in the LTS.
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Note that, for some state q and label A : a, it may happen that no state q′

exists such that q
A :a−−→ q′. In this case, if q is the current state of the subchain, we

want to make hard for a participant (possibly, an adversary trying to tamper with
the subchain) to append such message. Informally, a subchain A1 :a1 · · ·An :an
is consistent if, starting from the initial state q0, it is possible to find states
q1, . . . , qn such that from each qi there is a transition labelled Ai+1 :ai+1 to qi+1.

Definition 1 (Subchain consistency). We say that a subchain η is consistent

whenever there exists q such that q0
η−→ q.

Note that, if a subchain is consistent, then by determinism we have that the
state qn exists and is unique. In other words, a consistent sequence of messages
uniquely identifies the state of the subchain.

Example 1. To illustrate consistency, consider a smart contract FACTORSn which
rewards with 1B each participant who extends the subchain with a new prime
factor of n. The contract accepts two kinds of messages:

– sendp, where p is a natural number;
– payp(1→ A), meaning that A receives a reward for the factor p;

The states of the contract can be represented as sets of triples (A , p, b), where b
is a boolean value indicating whether A has been rewarded for the factor p. The
initial state is ∅. We define the transition relation of FACTORSn as follows:

– S
A :sendp−−−−−→ S′, iff p is a prime factor of n, (B , p, b) 6∈ S for any B and b, and

S′ = S ∪ {(A , p, 0)};
– S

F:payp(1→A )−−−−−−−−→ S′, iff (A , p, 0) ∈ S and S′ = (S \ {(A , p, 0)}) ∪ {(A , p, 1)}.

Consider now the following subchains for FACTORS330, where F is the participant
who issues the contract, and M is an adversary:

1. η1 = A :send11 B :send2 F :pay11(1→ A) F :pay2(1→ B)
2. η2 = A :send11 F :pay11(1→ A) M :send11
3. η3 = M :send229 F :pay229(1→ M)
4. η4 = A :send11 F :pay11(1→ M)

The subchain η1 is consistent, because both A and B send new factors and get
their rewards. The subchains η2 and η3 are inconsistent, because 11 sent by M is
not fresh, and 229 is not a factor of 330. Finally, the subchain η4 is inconsistent,
because M gets the reward that should have gone to A . ut

Similarly to Bitcoin, we do not aim at guaranteeing that a subchain is always
consistent. Indeed, also in Bitcoin a miner could manage to append a block with
invalid transactions: in this case, as discussed in Section 2, the Bitcoin blockchain
forks, and the other miners must choose which branch to follow. However, honest
miners will neglect the branch with invalid transactions, so eventually (since
honest miners detain the majority of computational power), that branch will be
abandoned by all miners.
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For subchain consistency we adopt a similar notion: we assume that an ad-

versary can append a label A :a such that qn 6
A :a−−→, so making the subchain

inconsistent. However, upon receiving such label, honest nodes will discard it.
To formalise their behaviour, we define below a function Γ that, given a sub-
chain η (possibly inconsistent), filters all the invalid messages. Hence, Γ (η) is a
consistent subchain.

Definition 2 (Branch pruning). We inductively define the endofunction Γ
on subchains as follows, where ε denotes the empty subchain:

Γ (ε) = ε Γ (η A :a) =

{
Γ (η) A :a if ∃q, q′ : q0

Γ (η)−−−→ q
A :a−−→ q′

Γ (η) otherwise

In order to model which labels can be appended to the subchain without
breaking its consistency, we introduce below the auxiliary relation |=. Informally,
given a consistent subchain η, the relation η |= A :a holds whenever the subchain
η A :a is still consistent.

Definition 3 (Consistent update). We say that A :a is a consistent update
of a subchain η, denoted with η |= A :a, iff the subchain Γ (η) A : a is consistent.

Example 2. Recall the subchain η2 = A : send11 F : pay11(1→ A) M : send11
from Example 1. We have that B : send2 is a consistent update of η2, because
Γ (η2) B :send2 = A :send11 F :pay11(1→ A) B :send2 is consistent. ut

3.2 Description of the protocol

Assume a network of mutually distrusted nodes N,N′ , . . . , that we call meta-
nodes to distinguish them from the nodes of the Bitcoin network. Meta-nodes
receive messages from participants (also mutually distrusting) which want to
extend the subchain. Our goal is to allow honest participants (i.e., those who
follow the protocol) to perform consistent updates of the subchain, while disin-
centivizing adversaries who attempt to make the subchain inconsistent.

To this purpose, we propose a protocol based on Proof-of-Stake (PoS). Namely,
we rely on the assumption that the overall stake retained by honest participants
is greater than the stake of dishonest ones4. The stake is needed by meta-nodes,
which have to vote for approving messages sent by participants. These messages
are embedded into Bitcoin transactions, which we call update requests. We de-
note by UR[A :a] the update request issued by A to append the message a to the
subchain. In order to vote an update request, a meta-node must invest κB on
it, where κ is a constant specified by the protocol. An update request needs the
vote of a single meta-node. The protocol requires meta-nodes to vote a request
UR[A : a] only if A : a is a consistent update of the current subchain η, i.e. if

4 Note that a similar hypothesis, but related to computational power rather than stake,
holds in Bitcoin, where honest miners are supposed to control more computational
power than dishonest ones.
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1. Upon receiving an update request UR[A : a], a meta-node checks its consis-
tency, η |= A :a. If so, it votes the request, and adds it to the request pool;

2. when ∆ expires, the arbiter signs all the well-formed UR in the request pool;
3. all requests signed by the arbiter are sent to the Bitcoin miners, to be published

on the blockchain. The first to be mined, indicated with URi, is the i-th label
of the subchain.

Fig. 2: Summary of a protocol stage i.

η |= A :a5. To incentivize meta-nodes to vote their update requests, participants
pay them a fee (smaller than κ), which can be redeemed by meta-nodes when
the update request is appended to the subchain.

We define our protocol in Figure 2. It is organised in stages. The protocol
ensures that exactly one label A :a is appended to the subchain for each stage i.
This is implemented by appending a corresponding transaction URi[A :a] to the
Bitcoin blockchain. To guarantee its uniqueness, the protocol exploits an arbiter
T, namely a distinguished node of the network which is assumed honest (we
discuss this hypothesis in Section 3.3). We now describe the main steps of the
protocol.

At step 1 of the stage i of the protocol, a meta-node (say, N) votes an update
request (as detailed in Section 3.4). In order to do this, N must confirm a previous
update URj in the subchain, by paying κ B (plus the participant’s fee) to the
meta-node N′ who appended URj to the subchain. To avoid the self-compensation
attack discussed later on in Section 3.3, the protocol only allows to confirm
one of the past C updates, where C ≥ 2 is a constant fixed by the protocol
(called checkpoint offset). Summing up, the value j is such that: (i) j < i; (ii)
|i − j| < C; (iii) URj [A : a] is consistent. In this way the protocol incentivizes
meta-nodes to vote consistent updates only, since inconsistent ones are not likely
to be confirmed. If all the last C updates in the subchain are inconsistent, then
N chooses the last one. Then, N adds UR[A :a ] to the request pool, i.e. the set of
all voted requests of the current stage (emptied at the beginning of each stage).
This voting step has a fixed duration ∆, specified by the protocol (the choice of
∆ is discussed in Section 5).

At step 2, which starts when ∆ expires, the arbiter T signs all well-formed
request transactions, i.e., those respecting the format defined in Section 3.4.

At step 3, meta-nodes send the requests signed by T to the Bitcoin network.
The mechanism described in Section 3.4 ensures that, at each stage i, exactly
one transaction, denoted URi[A :a], is put on the Bitcoin blockchain. When this
happens, the label A :a is appended to the subchain.

5 We assume that all meta-nodes agree on the Bitcoin blockchain; since η is a projec-
tion of the blockchain, they also agree on η.
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3.3 Basic properties of the protocol

We now establish some basic properties of our protocol. Hereafter, we assume
that honest nodes control the majority of the total stake of the network6, here-
after denoted by S. Further, we assume that the overall stake required to vote
pending update requests is greater than the overall stake of honest meta-nodes.

Adversary power. An honest meta-node votes as many requests as is allowed by
its stake. Hence, if its stake is h, it votes h/κ requests per stage. Consequently,
the rest of the network — which may include dishonest meta-nodes not following
the protocol — can vote at most (S − h)/κ requests. Then:

Proposition 1. The probability that an honest meta-node with stake h updates
the subchain is at least h/S at each stage.

Since we assume that honest meta-nodes control the majority of the stake,
Proposition 1 also limits the capabilities of the adversary:

Proposition 2. If the global stake of honest meta-nodes is SH , then dishonest
ones update the subchain with probability at most (S − SH)/S at each stage.

Although inconsistent updates are ignored by honest meta-nodes, their side
effects as standard Bitcoin transactions (i.e. trasfers of vB from A to B in labels
A :a(v → B)) cannot be revoked once they are included in the Bitcoin blockchain.
We now show how the incentive system in our protocol reduces the feasibility of
such inconsistent updates.

Assume that an adversary M manages to append 2 updates to the subchain:
an inconsistent update at index j, and a consistent one at index i > j. Since
M does not follow the protocol, she can exploit URi to redeem the κB she put
on URj . Later on, the adversary will be able to redeem the κB she put on URi:
indeed, honest meta-nodes will vote URi, as it is consistent. We call the above
behaviour of M self-compensation attack.

Now, according to Proposition 2, if M has stake m, and the other meta-nodes
are honest, then M has probability at most m/S of extending the subchain in
a given stage of the protocol. Since stages can be seen as independent events,
and since M has to publish at least 2 updates over the most recent checkpoint
to perform the attack, we obtain the following:

Proposition 3. The probability that an adversary with stake m succeeds in a
self-compensation attack is at most:(

C

2

)
· µ2(1− µ)C−2

where C is the checkpoint offset, and µ = m/S.

6 Under this assumption, meta-nodes can ensure that the arbiter is honest.
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Since the probability to publish inconsistent updates without losing κB grows
with C, it is crucial to keep this value small. For instance, if µ = 0.1 an adversary
could perform the attack with probability bounded by (i) 0.01 if C = 2; (ii)
0.027 if C = 3; (iii) 0.0486 if C = 4.

Observe that if the attack succeeds once, then the attack probability slightly
increases, since the stake m is charged by the client fees of the published updates.
This is not an issue if the fee is small compared to S.

Trustworthiness of the arbiter. Our protocol uses in arbiter T to ensures that
exactly one transaction per stage is appended to the blockchain, as well its choice
is random. In order to simplify the description of the protocol, we have assumed
the arbiter T to behave honestly. However, our arbiter does not play the role of
a trusted authority: indeed, the update requests to be voted are chosen by the
meta-nodes, and once they are added to the request pool, the arbiter is expected
to sign all of them, without taking part on the validation nor in the voting. Since
everyone can inspect the request pool, any misbehaviour of the arbiter can be
detected by the meta-nodes, which can proceed to replace it.

3.4 Implementation in Bitcoin

In this section we show how our protocol can be implemented in Bitcoin. A
label A :a(v → B) at position i of the subchain is implemented as the Bitcoin
transaction URi[A :a(v → B)] in Figure 3a, with the following outputs:

– the output of index 0 embeds the label A :a. This is implemented through
an unspendable OP RETURN script [6]7.

– the output of index 1 links the transaction to the previous element of the
subchain, pointed by in[2]. This link requires the arbiter signature. Note that,
since all the update requests in the same stage redeem the same output,
exactly one of them can be mined.

– the output of index 2 implements the incentive mechanism. The script re-
wards the meta-node N′ which has voted a preceding URj in the subchain.
Meta-node N′ can redeem from this output κB plus the participant’s fee, by
providing his signature.

– the output of index 3 is only relevant for messages a(v → B) where v > 0.
Participant B can redeem vB from this output by providing his signature.

All transactions specify a lockTime n + k, where n is the current Bitcoin
block number, and k is a positive constant. This ensures that a transaction can
be mined only after k blocks. In this way, even if a transaction is signed by the
arbiter and sent to miners before the others, it has the same probability as the
others of being appended to the blockchain.

7 The OP_RETURN instruction allows to save 80 bytes metadata in a transaction; an
out-script containing OP_RETURN always evaluates to false, hence it is unspendable.
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Genesis

in: · · ·
in-script: · · ·
out-script(t, σ): ver T(t, σ)
value: 0.0001

URi[A :a(v → B)]

in[0]: Feei
in-script[0]: sigC(•)
in[1]: Stakei
in-script[0]: sigN(•)
in[2]: Confirmi−1 (at index 1)
in-script[0]: sigT(•)
out-script[0](): OP_RETURN A :a
value[0]: 0
out-script[1](t, σ): ver T(t, σ)
value[1]: 0.0001
out-script[2](t, σ): ver N′(t, σ)
value[2]: κ+ fee
out-script[3](t, σ): ver B(t, σ)
value[3]: v

lockTime: n+ k

(a) (b)

Fig. 3: In (a), format of Bitcoin transactions used to implement our protocol.
In (b), a subchain mantained through our protocol. Since URi+2 contains an
inconsistent update, the meta-node which voted it is not rewarded.

To initialise the subchain, the arbiter puts the Genesis transaction on the Bit-
coin blockchain. This transaction secures a small fraction of bitcoin, which can be
redeemed by UR1 through the arbiter signature. This value is then transferred to
each subsequent update of the subchain (see Figure 3b). At each protocol stage,
participants send incomplete UR transactions to the network. These transac-
tions contain only in[0] and out[0], specifying the fee and the message for the
subchain (including the value to be transferred). To vote, meta-nodes add in[1],
in[2] and out[2] to these transactions, to, respectively, put the required κ (from
some transaction Stakei), declare they want extend the last published update
Confirmi−1, and specify the previous update to be rewarded. All the in[1] fields
in a stage of the protocol must be different, to prevent attackers to vote more
URs with the same funds.

4 Evaluation of the protocol

In this section we evaluate the security of our protocol, providing some exper-
imental results. We also investigate how possible attacks to Bitcoin may affect
subchains built on top of its blockchain.
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Fig. 4: Revenue of honest nodes (a) and of the attacker M (b) for increasing
values of the attacker stake ratio µ. The curves represent different values of r/κ
(the ratio between the attack revenue r, given by inconsistent a(r → M) updates,
and the cost of the vote).

Attack scenario. We assume an adversary who can craft any update (consistent
or not), and controls one meta-node M with stake µS, where µ ∈ [0; 1] and S
is the total stake of the network8. We suppose that each meta-node can vote as
many update requests as possible, spending all its stake, and that the network
is always saturated with pending updates, which globally amount to the entire
stake of honest meta-nodes9. We also assume that M gets an additional extra
revenue r for each inconsistent update, modelling the case where she manages to
induce a victim to publish an inconsistent payment a(r → M) . The goal of M is
to append at least 2 updates to the blockchain (one of which inconsistent) every
C published updates. She can use any possible strategy to achieve this goal.

We simulate the protocol under the attack scenario described above. Each
simulation runs the protocol to generate a subchain with 10, 000 messages, set-
ting the client fee to 0.1κ and the checkpoint offset to 3. To this purpose we use
Desmo-J [18], a discrete event simulator for Java.

Experimental results. Figure 4b measures the attacker revenue as µ increases. In
particular, it shows that if the stake threshold κ is ten times greater than r, M
gains only if she owns at least ∼40% of the global stake (i.e., µ ≥ 0.4). Therefore,
under such assumption about the attacker stake, the security of our protocol is

8 Assuming a single adversary is not less general than having many non-colluding
meta-nodes which carry on individual attacks. Indeed, in this setting meta-nodes do
not join their funds to increase the stake ratio µ.

9 Note that saying the update queue is not always saturated is equivalent to model an
adversary with a stronger µ: this because honest meta-nodes cannot spend all their
stake in a single protocol stage, i.e. reducing their actual power. Thus, studying this
particular case will not give any additional contribution to the analysis.
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comparable with that of the Bitcoin Proof-of-Work protocol [17]. Instead, if
κ = r, the attacker needs only ∼15% of the global stake to profit from the
attack. Figure 4a shows that, in the absence of attackers (µ = 0), the revenue of
honest nodes is essentially the client fee times the number of updates published,
as expected. Further, µ is below the threshold required to perform a profitable
attack, the revenue of honest nodes increases: this happens because inconsistent
updates voted by M reward honest ones, whereas the opposite cannot occur.
Summing up, our protocol is secure only if, for updates on the form a(r → A),
we have that r ≤ κ. Hence, if r is close to 0, the behaving dishonestly is not
economically advantageous.

Security of the underlying Bitcoin blockchain. So far we have only considered di-
rect attacks to our protocol, assuming the underlying Bitcoin blockchain to be se-
cure. However, although Bitcoin has been secure in practice till now, some works
have spotted some potential vulnerabilities of its protocol. These vulnerabilities
could be exploited to execute Sybil attacks [4] and selfish-mining attacks [16],
which might also affect subchains built on top of the Bitcoin blockchain.

In Sybil attacks on Bitcoin, honest nodes are induced to believe that the
network is populated by many distinct participants, which instead are controlled
by a single malicious entity. This attack is usually exploited to quickly propagate
malicious information on the network, and to disguise honest participants in a
consensus/reputation protocol, e.g. by overwhelming the network with votes
of the adversary. In the selfish-mining attack [16], small groups of colluding
miners manage to obtain a revenue larger than the one of honest miners. More
specifically, when a selfish-mining pool finds a new block, it keeps it hidden to
the rest of the network. In this way, selfish miners gain an advantage over honest
ones in mining the next block. This is equivalent to keep a private fork of the
blockchain, which is only known to the selfish-mining pool. Note that honest
miners still mine on the public branch of the blockchain, and their hash rate
is greater than selfish miners’ one. Since, in the presence of a fork, the Bitcoin
protocol requires to keep mining on the longest chain, selfish miners reveal their
private fork to the network just before being overcome by the honest miners.
Eyal and Sirer in [16] show that, under certain assumptions, this strategy gives
better revenues than honest mining: in the worst scenario (for the adversary),
the attack succeeds if the selfish-mining pool controls at least 1/3 of the total
hashing power. Rational miners are thus incentivized to join the selfish-mining
pool. Once the pool manages to control the majority of the hashing power,
the system loses its decentralized nature. Garay, Kiayias and Leonardos in [17]
essentially confirm these results: considering a core Bitcoin protocol, they prove
that if the hashing power γ of honest miners exceeds the hashing power β of the
adversary pool by a factor λ, then the ratio of adversary blocks in the blockchain
is bounded by 1/λ (which is strictly greater than β). Thus, as β (the adversary
pool size) approaches 1/2, they control the blockchain.

Although these attacks are mainly related to Bitcoin revenues, they can affect
the consistency of any subchain built on top of its blockchain. In particular,
suitably adapted versions of these attacks allow adversaries to cheat meta-nodes
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about the current subchain state, forcing them to synchronize their local copy of
the Bitcoin blockchain with invalid forks that will be discarded by the network
in the future. To protect against such attacks, meta-nodes should consider only
l-confirmed transactions. Namely, if the last published blockchain block is Bn,
they consider only those transactions appearing in blocks Bj with j ≤ n − l.
This means that an attacker would have to mine at least l blocks to force the
revocation of a l-confirmed transaction. Rosenfeld [27] shows that, if an attacker
controls at most the 10% of the network hashing power, l = 6 is sufficient for
reducing the risk of revoking a transaction to less than 0.1%.

5 Discussion

We have proposed a protocol to reach consensus on subchains, i.e. chains of
platform-dependent messages embedded in the Bitcoin blockchain. Our protocol
incentivizes nodes to validate messages before appending them to the subchain,
making economically disadvantageous for an adversary to append inconsistent
messages. To confirm this intuition we have measured the security of our protocol
over different attack scenarios. Our simulations show that, under conservative
assumptions, its security is comparable to that of Bitcoin.

Performance of the protocol. As seen in Section 3.2, the protocol runs in periods
of duration ∆. Due to the mechanism for choosing the message to append to the
subchain from the request pool, the protocol can publish at most one transaction
per Bitcoin block. This means that a lower bound for ∆ is the Bitcoin block in-
terval (∼10mins). To monitor the arbiter behaviour throughout protocol stages,
all meta-nodes must share a coherent view of the request pool. Then, ∆ needs
to be large enough to let each node synchronize the request pool with the rest of
the network. A possible approach to cope with this issue is to make meta-nodes
broadcast their voted updates, and to keep a list of other ones (considering only
those which satisfy the format of transactions, as in Section 3.4). More efficient
approaches could exploit distributed shared memories [12,20].

Overcoming the metadata size limit. As noted in Section 3.4, we use OP_RETURN

unspendable scripts to embed metadata in Bitcoin transactions. Since Bitcoin
limits the size of such metadata to 80 bytes, this might not be enough to store the
data needed by platforms. To overcome this issue, one can use distributed hash
tables [25] maintained by meta-nodes. In this way, instead of storing full message
data in the blockchain, OP_RETURN scripts would contain only the corresponding
message digests. The unique identifier of the Bitcoin transaction can be used as
the key to retrieve the full message data from the hash table.

Smart contracts over subchains. The model of subchains defined in Section 3.1,
based on LTSs, can be easily extended to model the computations of smart
contracts over the Bitcoin blockchains. A platform for smart contracts could
exploit our model to represent the state of a contract as the state of the subchain,
and model its possible state updates through the transition relation.
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Implementing a platform for smart contracts would require a language for ex-
pressing them. To bridge this language with our abstract model, one can provide
the language with an operational semantics, giving rise to an LTS describing the
computations. Note that our assumption to model computations as a single LTS
does not reduce the generality of the system, since a set of LTSs, each one mod-
elling a contract, can be encoded in one LTS as their parallel composition. If the
language is Turing-complete, an additional problem we would have to face is the
potential non-termination. This issue has been dealt with in different ways by
different platforms. E.g., the approach followed by Ethereum [11] is to impose a
fee for each instruction executed by its virtual machine. If the fee does not cover
the cost of the whole computation, the execution terminates.

A usable platform must also allow to create new contracts at run-time. Since
in our model the LTS representing possible computations is fixed, we would
need a mechanism to “extend” it. To handle the publication of new contracts,
we could modify the protocol so that UR may contain its code, and the unique
identifier of the transaction also identifies the contract. In this extended model,
update requests would also contain the identifier of the contract to be updated,
so that meta-nodes can execute the corresponding code.
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