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Abstract. The multi-key, or multi-user, setting challenges cryptographic
algorithms to maintain high levels of security when used with many dif-
ferent keys, by many different users. Its significance lies in the fact that in
the real world, cryptography is rarely used with a single key in isolation.
A folklore result, proved by Bellare, Boldyreva, and Micali for public-key
encryption in EUROCRYPT 2000, states that the success probability
in attacking any one of many independently keyed algorithms can be
bounded by the success probability of attacking a single instance of the
algorithm, multiplied by the number of keys present. Although sufficient
for settings in which not many keys are used, once cryptographic algo-
rithms are used on an internet-wide scale, as is the case with TLS, the
effect of multiplying by the number of keys can drastically erode security
claims. We establish a sufficient condition on cryptographic schemes and
security games under which multi-key degradation is avoided. As illus-
trative examples, we discuss how AES and GCM behave in the multi-key
setting, and prove that GCM, as a mode, does not have multi-key degra-
dation. Our analysis allows limits on the amount of data that can be
processed per key by GCM to be significantly increased. This leads di-
rectly to improved security for GCM as deployed in TLS on the Internet
today.

Keywords: multi-key, multi-user, multi-oracle, AES, GCM, TLS, weak
keys

1 Introduction

A crucial aspect to analyzing cryptographic algorithms is modeling real-world
settings. These models should not only accurately reflect the limits imposed
by the environments and the security properties desired, but they should also
produce meaningful ways to estimate how security deteriorates with use. In
particular, in practice, algorithms are fixed, and hence so are key sizes, block



sizes, groups, and various other parameters. Therefore it is important to be
able to compute adversarial success probabilities relative to their resources as
precisely as possible.

For example, block ciphers have traditionally been analyzed in a setting where
adversaries are given access to the encryption and decryption oracles keyed with
a value chosen uniformly at random, unknown to the adversary. For many pur-
poses using a block cipher which is secure in this model is sufficient, barring
easy access to side channel information. Estimates for adversarial success are
obtained by analyzing the best known attacks against the block cipher, relative
to both computational complexity, or the cost of running the attack as measured
according to, say, time and memory, and data complexity, or the amount of data
the adversary receives from the oracles, measured in, for example, bits. Taking
a concrete example, AES [22], one can map the cost needed to recover a key, as
is done in Fig. 1a. For the 128-bit key version of full round AES, the best known
attacks have computational complexity improving over brute-force search by a
factor of 2 to 4, and arbitrarily increasing data complexity does not allow one
to reduce computational complexity much.

The analysis of block ciphers contrasts sharply with that of modes of oper-
ation for block ciphers, which are algorithms that repeatedly use block cipher
calls to achieve security properties beyond what a block cipher can provide on its
own. As an important (but by no means the only) example, the Authenticated
Encryption with Associated Data (AEAD) [47] mode of operation GCM [37] uses
a block cipher to achieve data confidentiality and authenticity simultaneously,
formalized in a setting where adversaries are given access to keyed encryption
and decryption oracles. The security of GCM is proved by showing that any
AEAD adversary against the mode can be converted into an adversary against
the pseudo-randomness of the underlying block cipher [32, 42]. Thus, if GCM
were to be used with AES, then AES-GCM is secure in the AEAD sense under
the assumption that AES is secure as a pseudo-random permutation (PRP).

However, the quality of the reduction from AES to AES-GCM deteriorates
with use. Following the concrete security paradigm [7], this degradation has
been quantified to be roughly σ2/2128 [32, 42], where σ is the number of blocks
of ciphertext seen by the adversary, or its data complexity. This is depicted in
Fig. 1b. Therefore, quantifying AES-GCM’s security relies not only on under-
standing AES’s security, but also on how GCM as a mode degrades security.

Note that in the case of AES-GCM, an understanding of how adversarial
computational and data complexity affect security can be built by looking at
AES and GCM separately. AES’s security degrades as computational resources
increase, but increased data complexity does not seem to introduce better at-
tacks. GCM’s security as a mode degrades as data complexity increases, but
computational complexity does not play a role.

1.1 From Single-Key to Multi-Key

The security models described earlier for block ciphers and modes gave the
adversaries access to encryption and decryption oracles operating under a single
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(a) Key recovery attacks against full
AES-128. All attacks have success
probability one. Data on single-key at-
tacks from [17,18,50].
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(b) Upper bound on attack success
probability against the mode GCM,
based on the equation µσ2/2128, where
σ is the data complexity.

Fig. 1: Comparison of how data complexity affects attacks against AES-128 and
GCM in the single (µ = 1) and multi-key (µ = 230) settings. Note that the AES
graph depicts attacks, whereas the GCM graph depicts upper bounds on attack
success probability.

key. However, in practice cryptographic algorithms are used by many different
users, each potentially with many different keys. For example, AES-GCM is now
widely used in TLS to protect web traffic via HTTPS,6 and is currently used by
millions, or perhaps billions, of users daily. Hence it is important to understand
what happens to security in the so-called multi-key setting, where adversaries
are successful if they compromise the security of one out of many users, meaning
their winning condition is a disjunction of single key winning conditions.

For block ciphers the picture changes both quantitatively and qualitatively.
Whereas in the single-key setting, the best attacks against AES do not improve
with increased data complexity, in the multi-key setting they do, as depicted in
Fig. 1a. As observed first by Biham [14], and later refined as a time-memory-data
trade-off by Biryukov, Mukhopadhyay, and Sarkar [15], one can take advantage
of the fact that recovering a key out of a large group of keys is much easier than
targeting one key. The same observation can be applied to any deterministic
symmetric-key algorithm, as is done for MACs by Chatterjee, Menezes, and
Sarkar [21].

More generally, a folklore result guarantees that the attack success proba-
bility increases by at most a factor µ when moving from the single-key to the
multi-key setting with µ keys. In the case of key recovery against AES, the fact
that this increase is necessary can be illustrated with an actual attack. For the
mode GCM, a security bound involving a factor µ is easily established using a

6 The latest figures from the ICSI Certificate Notary (https://notary.icsi.
berkeley.edu/) suggest that more than 70% of all TLS connections use AES-GCM.
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hybrid argument, meaning that the adversarial success probability is bounded
by roughly µ ·σ2/2128. Bellare and Tackmann [11] were the first to formalize au-
thenticated encryption in the multi-key setting and to analyze countermeasures
against multi-key attacks in the context of TLS 1.3. Their work similarly estab-
lishes bounds containing a µ-factor. This leads to a significant security degra-
dation when there are many GCM instances present, as illustrated in Fig. 1b.
Unfortunately, this is exactly the situation faced in large-scale deployments of
AES-GCM such as TLS.

Unlike block ciphers, there are no known attacks which establish the tightness
of the µ · σ2/2128 security bound for the GCM mode. Assuming there were such
an attack, then the bound would say that, using the same amount of resources
σ as a single-key adversary, a multi-key adversary would be able to increase its
success probability by a factor of µ. Therefore a successful multi-key adversary
against the GCM mode would be able to use its resources much more efficiently
than a single-key attacker would.

Quantifying this difference, in order for a single-key adversary to be able
to achieve the same bound µσ2/2128 using σ1 resources, σ2

1/2
128 must equal

µσ2/2128, or in other words, σ1 = µ1/2σ. In particular, σ/µ = µ−3/2σ1, and
so a multi-key adversary’s per-key cost would decrease proportional to µ−3/2

relative to a single-key adversary’s per-key cost, while achieving the same success
probability. So, if there were a multi-key adversary interacting with, say, ten
thousand GCM instances, and matching the generic bound, then in order for a
single-key adversary to match the multi-key adversary’s success probability, it
must spend a factor of one million more than a multi-key adversary has to spend
per key. Note that even in the case of AES, the best known multi-key attack does
not make better use of its data resources: it achieves the same success probability
as the single-key attacks with roughly the same per-key data cost, namely, one
plaintext-ciphertext pair per key.

1.2 Overview and Contributions

We set out to understand why there are seemingly no attacks matching the
multi-key bounds established by the folklore result, and by formal proofs in cer-
tain cases, against modes such as GCM. To do so, we systematically analyze
the transition from games in which adversaries are given access to oracles rep-
resenting a single, keyed algorithm, to games where adversaries are given access
to multiple oracles representing different, independently keyed instances of an
algorithm.

The fact that the folklore result is the best generic reduction possible has
already been established by Bellare, Boldyreva, and Micali [4], where they con-
struct a public-key encryption scheme which necessarily has the µ-degradation.
However, we take the informal guidance provided by such special cases a step
further in Sect. 2, and point out that the multi-key setting is the natural one in
which to consider weak keys, by illustrating how they can allow multi-key adver-
saries to make better use of resources in comparison with single-key adversaries.
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In Sect. 3 we continue by distilling a sufficient condition under which ad-
versaries gain no advantage in the multi-key setting over the single-key setting.
Informally, the condition states that it should always be better to attack an
instance of an algorithm for which the adversary is given more information, as
measured by the number of queries made to the instance. Note that this condi-
tion is not satisfied for algorithms with weak keys: if the adversary knows that
an instance uses a strong key, then it might be better for it to take its chances
with an instance for which it has little information, but where it might get to
attack a weak key.

Although intuitively appealing, the condition that we extract can be difficult
to use as a criterion in security analyses. Therefore in Sect. 4 we compare various
methods for proving the absence of multi-key degradation, such as for the PRP-
PRF switch and for Wegman-Carter MACs [52]. Finally, we prove that GCM
has security bounds that are independent of µ using our sufficient condition.

1.3 Interpretation

Our claim that GCM enjoys a multi-key security bound that does not depend
on µ might seem counter-intuitive. After all, GCM uses a block cipher, and, as
illustrated above with an attack, all block ciphers necessarily have security that
degrades with µ. It seems natural that one can apply a similar attack to GCM
thereby establishing µ-degradation.

The result concerning GCM is a statement made once the underlying block
cipher is replaced by a uniformly distributed random permutation, which is
a standard technique used to reduce the block cipher’s insecurity to GCM’s
insecurity when used with that block cipher. Stated as an imprecise formula, for
a single key, we have that

Insecurity(GCM , E) ≤ Insecurity(GCM , π) + Insecurity(E) , (1)

where E is the keyed block cipher, and π is the random permutation. Passing
to the multi-key setting means that one now considers the insecurity of GCM
with multiple independently keyed block ciphers EK1

, EK2
, . . . , EKµ , which are

then replaced with independent uniformly distributed random permutations
π1, π2, . . . , πµ. Saying that GCM as a mode does not degrade with µ is a state-
ment about how the insecurity of GCM with π1, π2, . . . , πµ does not degrade as
the number of independent permutations increases, and as a result, the reduction
from the insecurity of the underlying block ciphers EK1

, . . . , EKµ to the insecu-
rity of (GCM,EK1

, . . . , EKµ) does not deteriorate according to µ. However, any
multi-key attack against E still holds, and is taken into account when consid-
ering the term corresponding to the insecurity of E in the multi-key version of
(1).

In other words, what we are able to show is that security does not degrade
“doubly”, once for GCM and once again for the block cipher, when the number of
keys increases. More importantly, one can conclude that in order to understand
the multi-key security of AES-GCM, one can focus on the multi-key security of
AES.
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1.4 Practical Implications

This insight has an immediate and important practical consequence. Recently the
TLS Working Group of the IETF has been considering data limits for the AEAD
schemes to be used in TLS 1.3, the new version of TLS under development.
Amongst these schemes is AES-GCM. Luykx and Paterson provided an analysis
of the safe data limits for AES-GCM.7 They did this by first analyzing the known
bounds for AES-GCM in the single-key setting and then applying a factor µ in
order to obtain bounds for the multi-key setting. The safe data limits for AES-
GCM turned out to be surprisingly small, especially in the multi-key case: the
current draft of TLS 1.3 states that, in the single-key setting, only 224.5 full-size
records may be encrypted on a given connection while keeping a safety margin
of approximately 2−57. Following the analysis of Luykx and Paterson, one would
infer that the safety margin decreases proportionately with µ in the multi-key
case. This analysis prompted the TLS Working Group to mandate a key updating
mechanism for TLS 1.3. Our multi-key analysis for AES-GCM shows that this
additional feature, which adds complexity to an already complex protocol, may
be unnecessary.

1.5 Other Work Reducing Multi-Key Degradation

The approach outlined above is that of the standard model. Bellare and Tack-
mann [11] use the ideal cipher model in order to understand how different modifi-
cations to GCM improve resistance against key recovery in the multi-key setting.
Their goal is not to establish µ-independence, but to rather extend the effective
key length of GCM over that of the underlying block cipher in order to make
key recovery more difficult. However, for GCM, they end up with a factor of µ
in their security bounds as a consequence of their method of analysis, whereas
our results show that this is not inevitable.

In special cases the dependence on µ disappears. Bellare, Bernstein, and Tes-
saro show that this is the case with AMAC [3]. Hoang and Tessaro (HT) [29]
establish a similar result for key-alternating ciphers, and even show more gen-
erally that if a construction has transcripts satisfying some special properties,
then µ no longer appears when considering bounds on indistinguishability. The
HT-condition is a useful sufficient condition because it only places a require-
ment on how an upper bound on the difference between the probabilities of two
transcripts behaves. However, its applicability is limited, as we will illustrate
in Sect. 4.4, because it does not provide a meaningful bound when considering
integrity. In concurrent work, Hoang and Tessaro [30] generalize their previous
approach, and apply it to double encryption. Their transcript-driven approach
provides different insight into how to prove the lack of multi-key security degra-
dation, and can be applied equally well to GCM to arrive at the same conclusion
as we do.

7 See https://mailarchive.ietf.org/arch/msg/tls/

M-fcRtoeCtMxDNtMsPrUsBV5rgk.
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1.6 Further Related Work

A significant amount of work has gone into understanding what happens when
security properties are analyzed in the multi-key setting in a variety of differ-
ent contexts. These include public key encryption [5], key establishment proto-
cols [9,16], signatures [38], message authentication codes [3,21], tweakable block
ciphers [27, 54], and hybrid encryption [20,53]. Bader et al. recently established
impossibility results showing that a loss of a factor µ is inevitable when moving
to the multi-key setting for a range of public-key primitives [1]. Most recently,
Shrimpton and Terashima [49] introduced a new model in order to bridge gaps
between standard and ideal model bounds to analyze settings where the stan-
dard model bounds provide little assurance of security, like the multi-key setting.
Other research on security of block ciphers in the multi-key setting includes the
works by Mouha and Luykx [39], Tessaro [51], and Fouque et al. [24]. However,
there is no systematic treatment of the problem like that provided in our work.

2 Weak Key Attacks

Bellare, Boldyreva, and Micali (BBM) [4] give an example of a public-key en-
cryption scheme which illustrates that the factor µ is necessary in any generic
bound. The example creates a new public-key encryption scheme from an exist-
ing one by introducing a “bad” event into the construction which occurs with
some fixed probability and allows adversaries to win easily. When interacting
with a single instance, the bad event occurs with low probability. However, by
working with multiple instances, one can increase the chances of triggering the
bad event.

The BBM example illustrates a type of attack one can perform against al-
gorithms in the multi-key setting that is different from the time-memory-data
trade-off applied to AES [15]. The multi-key attack against AES precomputes
the encryption of a plaintext under a large set of keys, and hopes for a collision
between the precomputed values and the oracles in order to immediately recover
keys. This attack can be applied to any block cipher, no matter how secure it is.

An analogue of the BBM example in the block cipher setting is a block cipher
with weak keys, these being keys under which one can attack the block cipher
much more efficiently than expected. For example, the recently introduced block
cipher Midori64 [2] has a class of 232 weak keys [26] out of 2128, which when
identified (which can be done with a single query), can lead to key recovery
within computational complexity 216 and data complexity 2. When analyzed
in the single-key setting, attackers either get a strong key, in which case key
recovery presumably still takes roughly 2128 − 232 time, or a weak key, leading
to a speed-up. When analyzed in the multi-key setting, the chances of finding
a weak key are much higher, and adversaries can allocate their resources more
efficiently.

A good strategy for a multi-key adversary attacking an algorithm with weak
keys would be to first spend some resources across its µ oracles to detect if one
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of them is using a weak key, and then to allocate as many resources as necessary
to attack the weak key. If P is the probability that a key is weak, CW the cost to
break the algorithm with probability one given that it is using a weak key, and
CD the cost to detect a weak key, then in cost at most CW + µCD, the success
probability of breaking the algorithm can be improved by a factor

1− (1− P )µ

P
= 1 + (1− P ) + (1− P )2 + · · ·+ (1− P )µ−1 , (2)

which is the probability of finding at least one weak key out of µ over the prob-
ability of a single key being weak. If P is small, then this means the success
probability increases by a factor almost linear in µ. Plugging in the numbers for
Midori64, we have that a multi-key adversary interacting with µ = 216 keys, with
computational complexity 217 and data complexity µ + 2 has success probabil-
ity a factor of approximately 216 better than the single-key attack, which has
computational complexity 216 and data complexity 2.

When formally analyzing modes of operation, time-memory-data key recov-
ery attacks are usually taken out of consideration because the block cipher is
replaced with a uniformly random permutation. Instead, attacks that might im-
prove in the multi-key setting are those that take advantage of bad events in
security proofs.

3 When Multiple Oracles Do Not Benefit Adversaries

In this section we introduce and prove the sufficient condition characterizing
when adversaries have no advantage with multiple oracles over a single oracle. We
start by introducing basic notation and definitions used throughout the section,
and then review the generic folklore bound. We end the section by showing how
the condition is sufficient.

3.1 Notation

Given a set X, X≤q denotes the set of non-empty sequences of X of length less than
or equal to q, and X+ denotes the set of non-empty arbitrary length sequences of
elements of X. Given x ∈ X+, |x| denotes its length, and bxcq denotes the first q
elements of x, that is, (x1, . . . , xq), and all of x if q ≥ |x|. If W ⊂ X+, then bWcq
consists of bxcq for x ∈ W. The concatenation of two sequences x,x′ ∈ X+ is
denoted x‖x′.

A prefix of a sequence x is a sequence x′ where x′ = bxci for some i ≤ |x|.
An extension of a sequence x is a sequence x′ such that x is a prefix of x′.

3.2 Games and Adversaries

We use Maurer’s random systems formalization [35, 36] with slightly different
notation.
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A game G from X to Y is a tuple (O,W) consisting of an (X,Y)-system O,
meaning O accepts inputs from X and generates outputs in Y which can depend
probabilistically on the current input and all previous outputs, and a random
variable W ⊂ (X × Y)+ which may depend on O, representing the “winning”
transcripts. Our formalization of a game G can be viewed as an (X,Y × {0, 1})
random system in Maurer’s formalization by concatenating the oracle O with a
random system that outputs 1 if the current transcript is in W. We write O〈t〉
to mean the event that

(O(x1),O(x2), . . . ,O(x`)) = (y1, y2, . . . , y`) , (3)

where t = ((x1, y1), . . . , (x`, y`)). Note that the order of the queries in the tran-
script is important since O could be stateful.

An adversary A interacting with G = (O,W) is a (Y,X)-system, which
produces a sequence of inputs (x1, x2, . . .) ∈ X+, where xi is generated using
y1, y2, . . . , yi−1 with yj = O(xj) for j = 1, . . . , i − 1; note that x1 is generated
without any O-output. We let AO denote the sequence ((x1, y1), (x2, y2), . . .) ∈
(X × Y)+, which is a random variable. We say that a transcript AO wins if
AO ∈ W, and write A〈t〉 for t = ((x1, y1), (x2, y2), . . . , (xq, yq)) ∈ (X × Y)+

to denote the event that A produces xi as the ith oracle input when given
(y1, y2, . . . , yi−1) as oracle outputs, for i = 1, . . . , q.

Let q be a non-negative integer, then the advantage of an adversary A win-
ning game G within q queries is

adv
G,q

A := P
[
AO ∈ bWcq

]
. (4)

Ultimately, the quantity we are interested in is

sup
A

adv
G,q

A . (5)

Without loss of generality, we may focus on deterministic adversaries, since for
all A,

adv
G,q

A = P
[
AO ∈ bWcq

]
(6)

=
∑
A∈D

P
[
AO ∈ bWcq

∣∣∣ A = A
]
· P
[
A = A

]
(7)

≤ sup
A∈D

P
[
AO ∈ bWcq

]
, (8)

where D represents all deterministic adversaries. Furthermore, we generally as-
sume that the input and output spaces of our oracles are finite. This means there
are finitely many optimal choices for adversaries to make, hence the above supre-
mum is attained, and can be described as a maximum. For this reason we can
speak of optimal adversaries, that is, any adversary that attains the maximum
advantage given a particular oracle, game, and query bound.
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Unless specified otherwise, we only consider games that are monotone, that
is, t ∈ W implies that all extensions t′ of t are in W. In monotone games it is
also useful to consider the first query which triggers the winning event: before
this query is made the adversary has not yet won, and this is the first query for
which one can say that the adversary has won.

3.3 Multi-Oracle Games and an Existing Bound

Consider an adversary A interacting with multiple independent games

{Gi = (Oi,Wi)}i∈I , (9)

with as goal to win the disjunction of the Gi. Letting Xi denote the domain of
oracle Oi and X the set of elements (i, x) such that x ∈ Xi, the game G = (O,W)
that A plays can be defined with the single oracle O(i, x) = Oi(x), and by W
where t ∈W if the projection Πit of t onto the Oi-queries is in Wi for some i.

If we know the security bounds for each Gi, then there is a simple way of
bounding A’s advantage without computing it from scratch: for each i ∈ I
construct an adversary Ai which runs A, plays game Gi, and simulates all
the other games independently. The adversary Ai perfectly simulates A’s game
precisely because game Gi is independent of all other games. Moreover, Ai wins
if A does in game Gi. Then, by a simple averaging argument over a random
choice of i, A’s advantage within q queries can be bounded by the sum of the
advantages of the Ai for i ∈ I, or

adv
G,q

A ≤
∑
i∈I

adv
Gi,q

Ai . (10)

The setting we focus on is when the Gi are independent instances of the
same game G1. Given a game G = (O,W) from X to Y, define G = (O,W) to be
the game giving access to the family {Oi}N, which is a family of independently
distributed copies of O indexed by N, and where t ∈ W if Πit ∈ W for some
i ∈ N. In this case the generic multi-key bound simplifies to

adv
G,q

A ≤ µ · adv
G1,q

A1 , (11)

where µ is the size of I, or a bound on the number of different oracles that A
queries. This bound can be applied to any game, and has been in the case of
public-key encryption [5] and PRFs [3, 6].

Definition 1. The oracle O does not exhibit multi-key security degradation with
respect to G = (O,W), if for all q > 0

sup
A

adv
G,q

A ≤ sup
A

adv
G,q

A . (12)
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3.4 Sufficient Condition

Since the goal of multi-oracle adversaries is to win any of the single-oracle games
it is given, finding the optimal strategy is a question of targeting those single-
oracle games for which it has the highest chance of winning, relative to its query
allotment. The information that the adversary can work with is the transcripts
produced from each single-oracle game and how many queries it has left. So, for
example, a good strategy for an adversary might be to query each oracle once,
and to estimate based on all of the transcripts which oracle is the weakest, and
then to focus on the weakest one.

Conversely, if all of the oracles are equally strong, then, intuitively, one might
think that it does not make a difference that the adversary can work with more
than one oracle, since there is little difference between the various oracles, and
the adversary’s best strategy would seem to be to focus its effort on just one of
them. However, to formally establish this we require an additional condition: it
must be the case that when an optimal single-oracle adversary is given additional
knowledge about the oracle, then its chance of winning the game does not de-
crease relative to an optimal single-oracle adversary given less knowledge. Now,
if an adversary is interacting with multiple oracles, and it has more information
about one oracle over the others, then its best strategy is to stick to that oracle
instead of switching to another one.

This condition breaks down, for instance, if a construction has weak keys: if
an adversary has the knowledge that its oracle is using a weak key, then it might
have better advantage in winning the game versus an oracle where there is still
a chance of interacting with a strong key.

Below, we formalize the idea of giving adversaries additional knowledge via
games with advice, which is equivalent to the concept of projected systems and
their advantage by Gaži and Maurer [25]. Gaži and Maurer’s projected systems
explicitly define new conditional probability distributions which explain the be-
havior of the system from a given starting transcript. For our purposes we do
not need to use the definition of a projected system directly, only the associated
advantage definition.

Definition 2. Let G = (O,W) be a game and t ∈ (X × Y)+ be a transcript.
Then G with advice t, denoted Gt, is defined as (O,Wt), where s ∈ Wt if and
only if t is a prefix of s and s ∈ W. The advantage of adversary A in winning
game Gt = (O,Wt) within q queries is

adv
Gt,q

A := P
[
AO ∈ bWtcq

∣∣∣ O
〈
t
〉
, t 6∈W

]
. (13)

The definition below contains the additional condition we need in order to
show in Thm. 1 that multi-oracle adversaries do not gain any advantage relative
to single-oracle adversaries. Note that it only looks at single-oracle adversaries,
meaning if a game satisfies the condition, then one can conclude something about
multi-oracle adversaries just by looking at single-oracle adversaries.

Informally, the condition states the following. Take a game G, a transcript
t, and any shorter transcript t′ — it does not have to be a prefix of t. Then
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two settings are compared: one in which adversaries are given t as starting
information, and one in which adversaries are given t′ as starting information.
In both settings adversaries are allotted the same number of queries left to
make, computed as q − |t| in the condition. Then the condition states that
optimal adversaries starting with t should have advantage greater than or equal
to optimal adversaries starting with t′, and this should hold for all t which can
result from the interaction between an optimal adversary and the game, and all
t′ shorter than t. Even though the condition might seem strong, the proof of
Thm. 1 is non-trivial. In Lem. 3 we show that GCM’s underlying polynomial
hash satisfies it.

The other details in the condition are there to remove pathological situations,
for example removing transcripts t which could never occur, or to remove situa-
tions that do not need to be taken into account in the condition in order for the
proof to hold, for example removing transcripts t and t′ for which adversaries are
guaranteed to win. For this purpose, define transcript t to be (A, G)-meaningful
if

P
[
bAOc|t| = t, t 6∈W

]
> 0 . (14)

Definition 3 (Progressive Games). Let G = (O,W) be a monotone game
from X to Y and Q be any non-negative integer. Suppose that for all q ≤ Q, all
optimal adversaries A, all (A, G)-meaningful t such that q′ := q − |t| ≥ 0, we
have that, for all transcripts t′ with |t′| < |t| that are meaningful with respect to
some adversary,

sup
C

adv
Gt,q

C ≥ sup
B

adv
Gt′ ,q′+|t′|

B . (15)

Then G is said to be progressive.

Theorem 1. Let O be an oracle and G = (O,W) be a progressive game. Then
O does not exhibit multi-key security degradation.

3.5 Proof of Theorem 1

Notation. Let [0, 1] be the unit interval, and let · denote the dot product of
two equal-length elements of [0, 1]+, i.e.

x · y =
∑
i

xiyi . (16)

Let x ∈ [0, 1]+, then 1 · x denotes the dot product of x with a vector consisting
of |x| ones (or put simply, 1 · x is the sum of the components in x).

Decision Trees. The interaction between a game G and a deterministic ad-
versary A can be viewed as a decision tree as follows. The adversary produces
a first input x1 ∈ X to the oracle O, which represents the root of the tree. The
oracle produces an output y1 ∈ Y, and depending upon the output, A decides its
next oracle input. Each of the possible oracle outputs y1 ∈ Y results in an edge
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extending from the root to a child node, which contains A’s second oracle query,
assuming (x1, y1) has occurred. Then, starting from a child node, we extend the
tree further by adding edges according to the second oracle output, connecting
them to the third oracle inputs. Without loss of generality, we may restrict our-
selves to decision trees where each edge has a non-zero chance of occurring: if
the output y1 is not possible with input x1, then we do not include that edge in
the tree.

Consider for example some adversary AH playing a game H = (R,V) where
the oracle R’s output domain is {α, β}. Then the root of AH ’s decision tree will
contain some value x representing an input to R, and is connected by two edges,
labeled by α and β respectively, to two child nodes. The child node connected to
x via α represents the adversary’s second oracle input assuming the first oracle
output was α, and similarly for the other child node. Fig. 2a illustrates what
the tree looks like for this example with deterministic adversaries making three
queries. Throughout this section we use the notation AH and H = (R,V) to
refer to this running example, and the notation A and G = (O,W) to refer to a
generic adversary and game.

The level of the root node equals one, and a child of a node with level ` has
level `+ 1. Each node in the tree is connected by a unique path to the root. Let

xi be a node with path x1
y1−→ x2

y2−→ · · ·xi−1
yi−1−−−→ xi connecting it to the root.

Then the transcript associated to the node xi is ((x1, y1), (x2, y2), . . . , (xi−1, yi−1)).

x

xα

xβ

xαα

xαβ

xββ

xβα

α

β

α

β

α

β

(a) Decision tree of AH .
Each edge is labeled by
an oracle output, and each
node is labeled by an ora-
cle input.

0.1

0.05

0.1

0.2

0.15

0.1

0.1

0.1

0.1

0.2

0.15
0.22

0.19

0.283

0.4

0.5

0.55

0.4

0.3

0.6

(b) Probability label PT
for tree depicted left.
Written in bold under-
neath each node is its
value ν.

1

1

2

2

1

1

2

α

β

α

β

α

β

(c) Decision tree of a
multi-oracle adversary
AH making queries to
two different oracles.

Fig. 2: An example of how a decision tree is constructed (left) along with a
possible probability labeling (center) from the game H = (R,V) with adversary
AH , as well the decisions made by a possible multi-oracle adversary AH .
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Probability Labeling. Starting from a decision tree T for adversary A and
game G, we construct a labeling PT consisting of probabilities from which one
can compute the adversary’s advantage. The root node in T is labeled with the
probability that the adversary wins on the first query. If y denotes the label of
an edge emanating from the root node in T , then the corresponding label in PT
is the probability that the first query does not win, and the output of the first
query is y. The node at the end of this edge is then labeled by the probability
that the second query wins, given that the first query does not win and the
output of the first query is y. Note that the sum of the label of the root node
and all its edges must equal one, since either the first query wins, or the first
query does not win, and the edges split up the event that the first query does
not win according to the output of the first query.

The labeling PT is then extended to the entire tree T using a similar process.
Given a node xi and its associated transcript t, the node xi is labeled by the
probability that the ith query xi wins given that the preceding transcript t does
not win, i.e. t 6∈ W, and t has occurred, i.e. bAOc|t| = t, or in other words,
letting PT (xi) denote the labeling of node xi,

PT (xi) := P
[
bAOci ∈W

∣∣∣ bAOci−1 = t, t 6∈W
]
. (17)

In the same way, an edge xi
yi−→ xi+1 is labeled in PT by

PT (xi
yi−→ xi+1) := P

[
bAOci = t′, t′ 6∈W

∣∣∣ bAOci−1 = t, t 6∈W
]
, (18)

where t′ = t‖((xi, yi)). The resulting labeling PT maintains the property that
the sum of the labels on any non-leaf node and all edges emanating from it equals
one.

In Fig. 2b we illustrate a probability labeling associated to AH and H. In
this case the probability that AH wins on its first query is 0.1. The probability
that AH does not win on its first query and R(xα) = α, is 0.4, etc.

Given a probability labeling PT for T , we can assign a value ν to each node
in T . If the node v is a leaf node, then its value is the labeling of the node,
PT (v). Otherwise, let c1, c2, . . . , ck denote v’s children, where the label of the
edge connecting v to ci is ei. Letting c := (ν(c1), ν(c2), . . . , ν(ck)) and e =
(e1, e2, . . . , ek), the value of the node v is defined as

ν(v) := PT (v) + e · c . (19)

The value of a tree T for an adversary A is defined as the value of the root node.
It is easy to see by an inductive argument across the levels of T that the value of
T equals the advantage of A. Fig. 2b displays the values of the nodes associated
to the labeling of AH and H.

Probability Labeling of Multi-Oracle Trees. The nodes in a decision tree
T corresponding to a deterministic multi-oracle adversary A playing game G fix
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the oracles that A queries at each step. This fact can be used to simplify the
labeling PT for multi-oracle adversaries. Given a node xi in T , we know that
PT (xi) equals

P
[
bAOci ∈W

∣∣∣ bAOci−1 = t, t 6∈W
]
, (20)

where t is the transcript of length i− 1 associated to xi. Say that xi is a query
to oracle Oj . Then we can interpret A interacting with O during this query as
being equivalent to a single-query adversary B interacting with only Oj , such
that

P
[
bAOci ∈W

∣∣∣ bAOci−1 = t, t 6∈W
]

= P
[
t‖bBOjc1 ∈W

∣∣∣ O〈t〉, t 6∈W
]
,

(21)

where we have replaced the event bAOci−1 = t by O〈t〉 since A is deterministic.
Simplifying further, note that t‖bBOjc1 ∈W if and only if Πj

(
t‖bBOjc1

)
∈Wj

conditioned on the fact that t 6∈W, which means we can focus on

P
[
Πj

(
t‖bBOjc1

)
∈Wj

∣∣∣ O〈t〉, t 6∈W
]
. (22)

The event on the left hand side above is independent of all games except for Gj ,
and so the above probability equals

P
[
Πj

(
t‖bBOjc1

)
∈Wj

∣∣∣ Oj〈Πjt〉, Πjt 6∈Wj

]
. (23)

This means that the label of a node xi only depends on the particular oracle
that to which xi is queried. We call Πjt the effective transcript associated to xi,
since those are the only queries from the transcript which affect PT (xi).

From Multi-Oracle to Single-Oracle Trees. Consider Fig. 2c, which depicts
the decision tree of an optimal multi-oracle adversary AH playing H, the multi-
oracle version of H. Instead of placing the oracle-input values in each node, we
now write the index of the oracle that the adversary queries, so a node containing
2 is a query to R2. Since all oracles share the same output domain {α, β}, the
edges remain the same as in Fig. 2a. In particular, we will continue to name the
nodes by their labels in Fig. 2a.

Consider query xαα in Fig. 2c. Since AH has decided to make it a query to
R2, but this is the first query to R2 on the path containing xαα, the effective
transcript of that node is empty. In contrast, if xαα would have been an R1-query,
then its effective transcript would have had length two, since xαα’s associated
transcript contains only R1-queries. Assuming H is progressive, then there is an
optimal adversary CH making a single query to R1 with advantage greater than
or equal to the value of node xαα. Therefore, we can construct an adversary
where xαα is replaced by a query to R1 without decreasing ν(xαα).

The same reasoning does not hold for the query xβα, since the effective
transcript of that node has length one regardless of whether R1 or R2 is queried.
However, we do know that if xβ had been an R1-query, then an optimal choice
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for xβα would have been to query R1 again since the effective transcript of
R1 would have been longer than the effective transcript of R2. In particular,
consider the decision tree UH constructed as follows: stick to oracle R1, and
behave as AH does until AH no longer queries R1, then for each node, compute
an optimal choice of oracle input based on the associated transcript up to that
point. Assuming H is progressive, we have that

1. PTH (x) = PUH (x), PTH (xα) = PUH (xα), and PTH (xαβ) = PUH (xαβ), since
UH is the same as TH for those queries, and

2. PTH (xαα) ≤ PUH (xαα) and

PTH (xβ) ≤ PUH (xβ), PTH (xβ) ≤ PUH (xα), PTH (xβα) ≤ PUH (xβα),

PTH (xββ) ≤ PUH (xββ), PTH (xββ) ≤ PUH (xβα), and PTH (xβα) ≤ PUH (xββ) ,
(24)

since the effective transcripts of these nodes in UH are always longer than
their effective transcripts in TH .

In short, for each subtree S of TH starting with an R2-query, the value of each
node in a given level ` of the corresponding subtree V in UH is greater than or
equal to the value of each node in the same level ` of S. Using Lem. 2 below, we
can conclude that the value of xβ in TH is less than or equal to the value of xβ
in UH , and finally that TH ’s value is never greater than UH ’s value.

The above reasoning can be extended to arbitrary decision trees for a pro-
gressive game G. Consider a multi-oracle decision tree T and a single-oracle
decision tree U which is the same as T but departs from T the moment T does
not make an O1-query; from that point on U optimizes its next queries only
based on effective transcripts. Without loss of generality assume that T contains
an O1-query for its root node. Let S be a subtree of T such that its root node is
not an O1-query, and is the only non-O1 query on its path connecting it to the
root of T . Let V be the corresponding subtree in U . Then, by virtue of G being
progressive, given a node s in S and v in V at level `, we know that the effective
transcript of s is longer than that of v, and applying Eq. (15), we know that
PU (s) ≥ PT (v). Therefore the probability label of each node in V in that level is
greater than or equal to all probability labels in S at the same level. Applying
Lem. 2 below, we get our desired result.

To establish Lem. 2, we first need the following result.

Lemma 1. Let a ∈ [0, 1] and a1 ∈ [0, 1]+ be such that a + 1 · a1 = 1; define
b and b1 similarly. Say that a ≥ b. Let a2, b2 ∈ [0, 1]+ with mini a

2
i ≥ maxi b

2
i ,

then

a+ a1 · a2 ≥ b+ b1 · b2 . (25)

Proof. Let a∗ = mini a
2
i and b∗ = maxi b

2
i , then

b1 · b2 ≤ b∗1 · b1 , (26)
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and

a∗1 · a1 ≤ a1 · a2 , (27)

therefore

b+ b1 · b2 ≤ b+ b∗1 · b1 (28)

= b+ b∗(1− b) (29)

= b∗ + (1− b∗)b (30)

≤ b∗ + (1− b∗)a (31)

= a+ b∗1 · a1 (32)

≤ a+ a∗1 · a1 (33)

≤ a+ a1 · a2 . (34)

ut

Lemma 2. Let S and V be decision trees with the same number of levels. Let
v`1, v

`
2, . . . and s`1, s

`
2, . . . denote the nodes of V and S in level `, respectively. Say

that for all levels `, we have that mini PV (v`i ) ≥ maxj PS(s`i). Then ν(V ) ≥ ν(S).

Proof. We induct by level of the tree. Our inductive hypothesis is that mini ν(v`i ) ≥
maxj ν(s`j), and we want to show that it holds for level `− 1. However, applying
Lemma 1, we get the desired result. ut

4 Proving the Absence of Multi-Key Degradation

4.1 Notation and Definitions

We continue to use the notation and definitions from Sect. 3, along with the
following.

We use the prefix “multi” to refer to the multi-key setting of the algorithms
in question. So, for example, the PRP-PRF switch becomes the multi-PRP-PRF
switch, and GCM becomes multi-GCM.

An adversary is non-adaptive if the oracle inputs it generates are independent
of all oracle outputs. We identify such adversaries with sequences x ∈ X+ and
write advG x to mean the advantage of the non-adaptive adversary which queries
x to win game G.

A distinguisher D is an adversary A together with a random variable W ⊂
(X × Y)+, where A interacts with oracles from X to Y. The advantage of D in
distinguishing oracles O1 and O2 is given by

∆
D

(O1 ; O2) :=
∣∣∣P [AO1 ∈W

]
− P

[
AO2 ∈W

]∣∣∣ . (35)

Note that this definition is equivalent to the usual definition, where the dis-
tinguisher’s output bit has been changed to the set W, which is some random
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variable that may depend on A but is independent of the oracle: Ay ∈W if and
only if Ay outputs one, for all possible sequences of oracle outputs y.

A uniformly distributed random function (URF) with domain X and range
Y is a random variable that is uniformly distributed over the set of all functions
from X to Y. A uniformly distributed random permutation (URP) with domain X
is a random variable that is uniformly distributed over the set of all permutations
on X.

4.2 Non-Adaptivity and the Multi-PRP-PRF Switch

The PRP-PRF switching lemma bounds the distinguishing advantage between
a URP π with domain X and a URF φ with domain and range X. The lemma
states that for all distinguishers D making no more than q queries,

∆
D

(π ; φ) ≤ q2

2 |X|
. (36)

Various papers have proofs of this statement, such as [10,19,36]. The correspond-
ing multi-oracle indistinguishability game is

∆
D

(
{πi}i∈I ; {φi}i∈I

)
. (37)

Using the generic bound from Sect. 3.3 we get

∆
D

(
{πi}i∈I ; {φi}i∈I

)
≤ |I| q

2

2 |X|
, (38)

which deteriorates according to the number of oracles present, |I|.
Adaptivity does not help adversaries in distinguishing a URP from a URF,

as shown for example by Maurer [36]. However, this does not help to prove that
there is no degradation in the multi-oracle setting, since non-adaptivity being
optimal in the single-oracle setting does not imply that non-adaptivity is still
optimal in the multi-oracle setting; Demay et al. [23] construct an example to
illustrate this fact, and it can also be seen by considering the weak key example
from Sect. 2, where the best strategy in the single-oracle setting is non-adaptive.

Demay et al. [23] also prove that if the oracles in the indistinguishability game
satisfy some condition (conditional equivalence), which URPs and URFs do,
then optimality of non-adaptivity in the multi-oracle setting can be established.
However, even if non-adaptive adversaries are optimal in the multi-oracle setting,
they can still gain advantage over single-oracle adversaries. Consider for example
some game G where adversaries win with probability 1/2i+100 on the ith query,
regardless of what the queries are, and independently of the other queries. In the
single-oracle setting adaptivity does not help, and the advantage of any adversary
is roughly 2−100(2q−1)/2q. Similarly, in the multi-oracle setting adaptivity does
not help, but an adversary with access to µ oracles can achieve an advantage of
roughly µ2−100(2q/µ − 1)/2q/µ if they make q/µ queries to each oracle, which
approaches µ2−100 if q/µ is relatively large.
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Nevertheless, assuming non-adaptivity in the multi-oracle setting allows us
to identify a simpler requirement on games than being progressive. The following
result establishes exactly when multi-oracle adversaries have no advantage over
single-oracle adversaries when adaptivity does not help.

Proposition 1. Suppose that G = (O,W) is a game with optimal non-adaptive
adversaries in the multi-oracle setting. Suppose also that for all q and q′ ≤ q,

sup
A

adv
G,q′

A + sup
A

adv
G,q−q′

A ≤ sup
A

adv
G,q

A . (39)

Then adversaries gain no advantage in interacting with multiple independent
instances of G.

Proof. Let A be a non-adaptive multi-oracle adversary. Let Ai := Πi(A) and
say that qi = |Ai|. Then we can bound A’s advantage with

adv
G,Q

A ≤
Q∑
i=1

adv
G,qi

Ai . (40)

By assumption we know that there is a single-oracle adversary B1,2 making
q1 + q2 queries such that

adv
G,q1

A1 + adv
G,q2

A2 ≤ adv
G,q1+q2

B1,2 . (41)

The same can be done with B1,2 and A3 to create adversary B1,2,3, and so on,
resulting in a single-oracle adversary which has advantage greater than or equal
to A. ut

Maurer [36] proved conditional equivalence of URPs and URFs. Therefore
adaptivity does not help distinguishers in the single-oracle PRP-PRF switch.
Demay et al. [23] proved that conditional equivalence in the single-oracle setting
translates to conditional equivalence in the multi-oracle setting. Therefore multi-
oracle URPs and URFs are conditionally equivalent, and hence adaptivity does
not help in distinguishing multiple URPs from multiple URFs. In particular,
distinguishing URPs from URFs is equivalent to finding collisions in URFs [36],
which translates indistinguishability into a collision finding game G. Since the
advantage in finding a collision in a URF equals the probability that there is some
collision among q independent, uniformly distributed elements, the condition in
Eq. (39) is satisfied, hence there is no multi-oracle degradation for the PRP-PRF
switch.

4.3 Hoang and Tessaro’s Technique and an Improvement

Instead of using Prop. 1, one can prove a similar result about the multi-PRP-PRF
switch by using the technique of Hoang and Tessaro (HT) [29]. The HT-condition
requires understanding the difference in transcript probabilities between a URP
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and a URF. Let t be a transcript of length q, and say there exists a function
ε(q) such that

P
[
π
〈
t
〉]
≥ P

[
φ
〈
t
〉]
· (1− ε(q)) . (42)

Hoang and Tessaro call this ε-point-wise proximity of π and φ, and we say that
φ is ε-point-wise close to π.. If ε(q′) + ε(q − q′) ≤ ε(q) and ε(q) ≤ 0.5, then their
Lemma 2 establishes that the analogous difference in multi-oracle transcripts
is at most 2 · ε(q). Following either Hoang and Tessaro’s [29] or Chang and
Nandi’s [19] proof for the PRP-PRF switch, the HT-condition establishes that
multi-oracle adversaries have at most a factor of two gain over single-oracle
adversaries.

In fact, with only the requirement that ε(q′) + ε(q− q′) ≤ ε(q), one can prove
that adversaries gain no —not even a factor 2— advantage in the multi-oracle
setting relative to ε.

Proposition 2. Suppose that R and S are ε-point-wise close and that for all
q and q′ ≤ q, ε(q′) + ε(q − q′) ≤ ε(q). Then R and S, which are oracles giving
adversaries access to arbitrarily many independent instances of R and S, are
ε-point-wise close as well.

Proof. It suffices to prove that for all t such that |t| = q and P
[
S
〈
t
〉]
> 0,

P
[
R
〈
t
〉]

P
[
S
〈
t
〉] ≥ 1− ε(q) . (43)

Let I be the set of instances queried in t, and say that qi = |Πit|, then

P
[
R
〈
t
〉]

P
[
S
〈
t
〉] =

∏
i∈I

P
[
Ri

〈
Πit
〉]

P
[
Si
〈
Πit
〉] ≥∏

i∈I
(1− ε(qi)) ≥ 1−

∑
i∈I

ε(qi) ≥ 1− ε(q) . (44)

ut

An important difference between our setting and Hoang and Tessaro’s is that our
oracles are independent of each other, whereas Hoang and Tessaro also consider
oracles which are built using some shared underlying ideal primitive, which is
why Prop. 2 cannot be applied to their setting.

The condition that ε(q′)+ε(q−q′) ≤ ε(q) looks very similar to the condition of
Prop. 1 required in order to achieve no multi-oracle degradation when adaptivity
does not help, since ε is an upper bound on the success probability of single-oracle
adversaries. However, Prop. 2 is a statement about the computed bounds, and it
might be the case that multi-oracle adversaries have some advantage gain over
single-oracle adversaries, but that this difference is not visible with a particular
upper bound ε; after all, setting ε(q) = q is true for all pairs of oracles, but then
Prop. 2 becomes meaningless. In contrast, satisfying the hypotheses of Prop. 1,
and, more generally, a game being progressive, establishes something inherent
about the oracle in question sufficient to prove that multi-oracle adversaries gain
nothing over single-oracle adversaries.
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4.4 Integrity and the Inapplicability of Point-wise Proximity

Finding meaningful ε which establishes point-wise-proximity is impossible in
some cases, as we illustrate for MAC (Message Authentication Code) schemes
and integrity. Our focus is on stateful MAC schemes, although the same obser-
vations can be applied to deterministic MAC schemes.

Definition 4. A nonce-based MAC scheme from N×M to T is a pair of algo-
rithms (F, V ), where F , the tagging algorithm, maps a tuple of a nonce from N
and message from M to tags in T, and V , the verification algorithm, maps inputs
from N×M× T to either > or ⊥, indicating validity or invalidity of an input.

A secure MAC scheme is one in which it is difficult to construct a new input
to V such that V outputs >. We translate Bellare and Namprempre’s strong
unforgeability [8] into our formalization.

Definition 5. Let (F, V ) be a nonce-based MAC scheme. The integrity game G
with respect to (F, V ) is defined as (O,W), with O an oracle giving adversaries
access to F and V , and W defined as the set of transcripts consisting of F -queries
where each nonce-input is unique, and containing at least one V -query (n,m, t)
where V (n,m, t) = >, and F (n,m) = t is not in the preceding transcript.

Recall that adversarial advantage is defined as in Eq. (4).
In order to use pointwise proximity in an integrity game G, it needs to be

written as an indistinguishability game, which is done as follows:

∆ (F, V ; F,⊥) , (45)

with ⊥ an algorithm always outputting ⊥. Establishing ε-point-wise proximity
between (F, V ) and (F,⊥) means finding an ε such that for all transcripts t of
length q,

P
[
(F, V )

〈
t
〉]
≥ (1− ε) · P

[
(F,⊥)

〈
t
〉]
, (46)

where we write (F, V ) and (F,⊥) as shorthands for oracles. Letting O denote
either V or⊥, the transcript consisting ofO(n,m, t) = ⊥ followed by F (n,m) = t
has zero probability with (F, V ) and non-zero probability with (F,⊥), meaning ε
must equal one. Swapping (F, V ) and (F,⊥) in Eq. (46) causes the same problem
with any transcript containing an O(n,m, t) = > query. Therefore, ε-point-wise
proximity can only hold for ε = 1, making the bounds obtained with ε-point-wise
proximity vacuous.

4.5 Bernstein’s Theorem in the Multi-Oracle Setting

Rather than considering indistinguishability, ε-pointwise proximity can be di-
rectly applied to games themselves, as is done by Bernstein [12, 13], where ε-
pointwise proximity is called interpolation probability. Bernstein shows that the
probability that an adversary outputs 1 when interacting with an oracle which is
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ε-pointwise close to a URF, is at most (1− ε)−1 times the probability the adver-
sary outputs one when interacting with a URF. Bernstein replaces the use of the
PRP-PRF switch with his result when computing integrity bounds for MACs,
thereby significantly improving them. Iwata, Ohashi, and Minematsu apply this
technique to GCM as well [33, Section 7.5 and Appendix C].

Although Bernstein only considers the special case in which one of the oracles
is a URF, it can be easily generalized to any oracle. We state the result in
terms of distinguishers, which is equivalent to considering adversaries with binary
output. Note that this means the result is only applicable to games where W is
independent of the oracle O.

Theorem 2. Let D = (A,W) be any distinguisher and q a positive integer, then
if O1 is ε-pointwise close to O2,

P
[
AO1 ∈ bWcq

]
≤ (1− ε(q))−1 · P

[
AO2 ∈ bWcq

]
. (47)

Proof. Without loss of generality, assume that A makes exactly q queries, as one
can always consider a distinguisher D′ instead which runs A, makes exactly q
queries, and ignores the additional query-outputs.

P
[
AO1 ∈ bWcq

]
=
∑
|t|=q

P
[
A〈t〉, t ∈W

]
· P
[
O1〈t〉

]
(48)

≤ (1− ε(q))−1 ·
∑
|t|=q

P
[
A〈t〉, t ∈W

]
· P
[
O2〈t〉

]
(49)

= (1− ε(q))−1 · P
[
AO2 ∈ bWcq

]
. (50)

ut

Bernstein’s theorem can be applied to the multi-oracle setting using Prop. 2: if
O1 is ε-pointwise close to O2, and ε satisfies the hypothesis of Prop. 2, then the
above result can be applied to O1 and O2. For example, this holds in the case
of URPs and URFs, hence Bernstein’s theorem can be applied to multi-URPs
and multi-URFs as well.

Corollary 1. Let D = (A,W) be any distinguisher and q a positive integer. Let
π denote a URP and φ a URF, with π and φ their multi-oracle counterparts,
then

P
[
Aπ ∈ bWcq

]
≤ (1− ε(q))−1 · P

[
Aφ ∈ bWcq

]
, (51)

where ε is the proximity function of π and φ.

4.6 Multi-Wegman-Carter Security

Wegman-Carter authenticators [52] are nonce-based MAC schemes mapping
messages in M to tags in T. The tagging algorithm takes a nonce n ∈ N and
a message m ∈ M, and maps (n,m) to φ(n) + h(m), where T is a group, φ is
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a URF, and h : M → T is a random function for which it is difficult to find
collisions. The verification algorithm takes a nonce n ∈ N, a message m ∈ M,
and a tag t ∈ T, and checks whether (n,m) maps to t; it outputs > if this is the
case, and ⊥ otherwise.

Usually the security of Wegman-Carter authenticators is proved [34, 46, 52]
relative to

sup
m1 6=m2,t

P
[
h(m1)− h(m2) = t

]
, (52)

however we will need to describe h’s collision resistance differently in order to
characterize when Wegman-Carter authenticators exhibit no multi-oracle degra-
dation.

Definition 6. Let h : M → T be a random function with T a group. Define
the collision game G = (O,W) where O : M2 × T → {>,⊥} outputs > on
input (m1,m2, t) if h(m1)− h(m2) = t, and ⊥ otherwise, and W consists of all
transcripts containing an O-query (m1,m2, t) with m1 6= m2 and O(m1,m2, t) =
>.

Proposition 3. Consider adversaries which make no more than |N| queries.
Then Wegman-Carter authenticators exhibit no multi-oracle degradation with
respect to the integrity game from Def. 5 if the underlying random function h
exhibits no multi-oracle degradation with respect to the collision game in Def. 6.

Proof. Let (F, V ) denote the Wegman-Carter authenticator and let G be its
associated integrity game. Let A be a multi-oracle adversary playing G.

First we establish that adversaries gain no advantage by choosing their nonces
adaptively. Let ni = (ni1, n

i
2, . . .) be an enumeration of N, one for each possible

oracle i ∈ N. Then we construct adversary An from A as follows. An runs A,
and maintains a mapping ι : N×N→ N which keeps track of the order in which
a particular nonce n ∈ N was queried for oracle i ∈ N; for example if (3, X) is
the fifth nonce queried to the third oracle, then ι(3, X) = 5. Each time A makes
an F -query (n,m) to oracle i, An makes the F -query (niι(i,n),m) to oracle i and

returns the response to A. Similarly, each time A makes a V -query (n,m, t) to
oracle i, An makes the V -query (niι(i,n),m, t) to oracle i and returns the response

to A. Since the mapping n 7→ niι(i,n) is bijective for each i, An’s advantage is
at least that of A since the URF φ underlying oracle i is indistinguishable from
the URF n 7→ φ(niι(i,n)). Therefore we restrict our attention to adversaries which
choose their nonces non-adaptively.

Consider an adversary interacting in the multi-oracle integrity game. Since
adaptivity does not help when picking nonces, and the total number of queries is
not greater than |N|, we can force the adversary to pick distinct nonces to query.
This allows us to replace all the URFs from each Wegman-Carter authenticator
by a single URF, since the inputs to the URF will always be distinct. Therefore,
we may restrict our attention to adversaries interacting with multiple Wegman-
Carter authenticators using the same URF.

For each nonce n, we let mn denote the associated message input, and tn F ’s
output under n, so that F (n,mn) = tn. To each nonce n we can associate two
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sets of pairs Rn, Sn ⊂ M× T where (m, t) ∈ Rn if there is a V -query V (n,m, t)
before the F -query using n as nonce is made, and Sn is all pairs (m, t) from
V -queries after the F -query using n as nonce is made; Sn is empty if there is
no such F -query. Without loss of generality we can assume that for all queried
nonces, Rn ∪ Sn 6= ∅, since otherwise F (n,mn) is independent of the adversary
winning.

A nonce wins if one of its associated verification queries results in >, meaning
there exists (m, t) ∈ Rn∪Sn such that V (n,m, t) = >. Note that φ(n) = t−h(m)
for (m, t) ∈ Sn if and only if h(mn)−h(m) = tn−t, and similarly h(mn)−h(m) =
tn − t for (m, t) ∈ Rn if and only if φ(n) = t− h(m). Therefore, a nonce n wins
only if

φ(n) ∈ {t− h(m) | (m, t) ∈ Rn} (53)

or there exists (m, t) ∈ Sn such that

h(mn)− h(m) = tn − t . (54)

We call a verification query V (n,m, t) a guess if it occurs before the corre-
sponding F -query with nonce n, and a collision attempt if it occurs after the
F -query. A guess succeeds only if Eq. (53) is satisfied, and a collision attempt
succeeds only if Eq. (54) is satisfied.

Let A be an adversary interacting with multiple Wegman-Carter authentica-
tors using the same URF (always querying distinct nonces to the authenticators),
and different random functions hi for i ∈ N. The adversary A either wins with
a guess, or a collision attempt.

Say that it is given that A does not win with a guess. This means that for
all n,

φ(n) 6∈ {t− hi(m) | (m, t) ∈ Rn} , (55)

and A wins only if there is a nonce n for which Eq. (54) is satisfied, meaning A
has found a collision for h. We construct an adversary B playing the multi-oracle
collision game with hi. The adversary B runs A, responds to A’s guesses with
⊥, it responds to A’s F -queries by uniformly sampling an element from

T \ {t | (m, t) ∈ Rn} , (56)

and B responds to A’s collision attempts V (n,m, t) by querying (mn,m, tn− t)
to the appropriate oracle (Oi if hi was queried), where F (n,mn) = tn. Then,
given that A does not win with a guess, B perfectly simulates A’s game since
all of A’s guesses fail, F is distributed correctly given that all of A’s guesses fail,
and A’s collision attempts are passed directly to the collision oracles.

By hypothesis, we know that for every i > 0 there is an adversary Ci playing
the collision game with one random function h such that advi Ci ≥ advi B, and
in particular advi Ci is greater than or equal to the probability that B wins and
makes i queries.

Using Ci and A, we construct a single-oracle adversary A1 playing the
Wegman-Carter integrity game. First A1 runs A and responds to A’s queries
using its own independently simulated Wegman-Carter authenticators. Once A
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is finished, A1 takes all of A’s guesses and forwards them to its own oracle.
Then, if A1 does not win with a guess, it computes how many queries i it has
remaining, and then runs Ci. The probability that A wins with a guess equals
the probability that A1 wins with a guess, since it is the probability that φ gets
mapped into the sets defined in Eq. (53).

The probability that A makes i non-guess queries and wins, given that A’s
guesses fail, is bounded by the probability that B wins and makes i queries,
which in turn is bounded by advi Ci. Therefore the probability that B wins is
bounded by the sum of pi · advi Ci, where pi is the probability that A1 has i
queries remaining after its guesses. Since the sum of the pi is 1, we know that
the probability that A1 wins given that its guesses fail is greater than or equal
to the probability that B wins. Therefore we have shown that the single-oracle
adversary A1 has no less advantage than the multi-oracle adversary A. ut

4.7 Multi-GCM Security

Given the results in the previous sections, it is straightforward to prove that
GCM does not have bounds which increase as µ increases. We give a brief de-
scription of GCM with 96 bit nonces, which is the one used by TLS; a complete
description of GCM can be found in the original document [37] or the analysis
by Iwata, Ohashi, and Minematsu [32]. We also refer to Iwata et al. for the
definitions of confidentiality and integrity for GCM.

GCM uses a block cipher E : K × X → X, where X = {0, 1}128, however,
using standard arguments, we can focus on GCM using a URP π over X instead.
GCM[π] consists of an encryption enc and a decryption algorithm dec where

enc : N× H×M→ C , (57)

dec : N× H× C→ M ∪ {⊥} , (58)

with N the nonce space, H the associated data, M the plaintexts, C the cipher-
texts, and ⊥ an error symbol.

On input of (n, a,m), enc generates unique inputs to π, n0, n1, . . . , n`. The
values ni for i > 0 are used to run CTR mode [41] in order to encrypt the
plaintext m. The resulting ciphertext c is then used together with the associated
data a, and run through a polynomial hash function h : A×C→ X, also called
GHASH. GHASH’s output is then XORed together with the output of π under
n0 to create a Wegman-Carter-style authenticator. The polynomial hash h uses
L := π(0128) as a key. GCM with 96 bit nonces ensures that every time π is
called by the encryption oracle, π receives a different input.

By applying a PRP-PRF switch to GCM, π is replaced with a URF φ, and
so the confidentiality of GCM can be bounded by the PRP-PRF switch, as
illustrated by Iwata et al. [32]. In the multi-oracle setting a multi-PRP-PRF
switch can be performed, thereby establishing that multi-GCM’s confidentiality
is bounded above by the multi-PRP-PRF switch. As shown previously, the multi-
PRP-PRF switch is independent of the number of keys, hence multi-GCM’s
confidentiality bound is independent of the number of keys.
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Rather than applying a PRP-PRF switch for integrity, we can apply Bern-
stein’s theorem, as Iwata, Ohashi, and Minematsu did [33, Section 7.5 and Ap-
pendix C]. As a result, one can show that GCM’s integrity can be bounded by
the integrity of the Wegman-Carter authenticator using GHASH. This is because
π is replaced by a URF φ, and the inputs to φ used in the underlying CTR mode
are always distinct from the inputs to φ used in the underlying Wegman-Carter
authenticator. Therefore, the underlying Wegman-Carter authenticator becomes
independent of the underlying CTR mode, and GCM with φ is just an Encrypt-
then-MAC [8,40] style authenticated encryption algorithm, meaning its integrity
bound is bounded above by the integrity of the underlying MAC.

In the same way, by applying Cor. 1, the integrity of multi-GCM can bounded
by that of a multi-Wegman-Carter authenticator. Therefore, establishing that
GCM’s integrity bound does not degrade in the multi-oracle setting can be done
by proving that GHASH with respect to the collision game of Def. 6 is progres-
sive. In the lemma below we do exactly this, although we drop out the padding
and input formatting from GHASH since it does not significantly affect the
analysis below.

Lemma 3. Let X be a finite field and let h : X×X≤` → X be the function defined
by

h(k,x) =

q∑
i=1

kix`−i , (59)

where |x| = q ≤ `, then if k is a uniformly distributed random key over X, h(k, ·)
with respect to the collision game G of Def. 6 is progressive.

Proof. Let A be an adversary playing G, and say that it makes queries

(m1,m
′
1, t1), . . . , (mq,m

′
q, tq) , (60)

then A’s advantage is given by the probability that for some i,

h(k,mi)− h(k,m′i) = ti . (61)

The value h(k,mi) − h(k,m′i) is a polynomial in k of degree max {|mi| , |m′i|},
hence Eq. (61) defines a set of keys Ki for which the equation holds. In particular,
Eq. (61) holds if and only if k ∈ Ki, therefore A’s advantage is the probability
that k ∈ K1 ∪ · · · ∪ Kq. A non-winning transcript is a set of inputs for which
Eq. (61) does not hold, therefore conditioning on a non-winning transcript of
length q′ is the same as saying that k 6∈ K ′1 ∪ · · · ∪K ′q′ .

In particular, we can remove some adaptivity from optimal single-oracle
adversaries as follows. For each query (m,m′, t) which does not result in a
collision, the adversary eliminates a set of potential keys, and increases the
set B of non-keys, that is, k 6∈ B. Therefore the optimal adversary selects
(m,m′, t) such that ` keys are eliminated for each query (where ` is the max-
imum degree possible of the polynomial). In order to do so, the adversary can
just pick elements r1, r2, . . . , rq` outside of X \ B, reconstruct the polynomials
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(k − r(i−1)`+1)(k − r(i−1)`+2) · · · (k − ri`) for i = 1, . . . , q, where k is a formal
symbol, and from these polynomials reconstruct the corresponding h-queries. In
particular, any transcript of length i which is meaningful will eliminate exactly
i · ` keys.

Furthermore, the game is progressive because the longer the transcript given
to an optimal adversary, the larger the set of keys which are eliminated, and the
greater the chance that a collision occurs. ut

This allows us to conclude that GCM’s integrity bound does not exhibit multi-
oracle degradation, and as a result, we have the following proposition.

Proposition 4. The confidentiality and integrity bounds for GCM with 96 bit
nonces in the multi-key setting are the same as those in the single-key setting as
established by Iwata et al. in [32, Corollary 3] and [32, Section 7.5 and Appendix
C], respectively.

Note that there are papers attacking polynomial-based Wegman-Carter au-
thenticators [28, 48], where the attacks focus on finding weak keys. However,
as shown by the analysis of Procter and Cid [43,44], almost every subset of the
keyspace can be considered a weak key class. Hence our results do not contradict
prior work.

5 Future Work

Although we have been able to establish that GCM does not exhibit multi-key
degradation, there are still many other widely deployed algorithms for which
there are as yet no results. Our approach has been to extract an abstract condi-
tion which could be applied to any algorithm and which is sufficient for proving
the absence of multi-key security degradation. However the condition seems to
be quite strong, and there might be other conditions which exactly capture when
an algorithm suffers from multi-key degradation and when it does not, possibly
applying to restricted classes of schemes. For example, our condition makes no
restriction on whether the algorithm is stateful or stateless, while a condition for
stateless algorithms might be simpler, or more powerful. How useful such condi-
tions are remains to be seen, but they would at least fundamentally advance our
understanding of the analysis of algorithms, and at best allow us to categorize
algorithms according to their multi-key degradation.
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