
Practically Efficient Secure Single-Commodity
Multi-Market Auctions

Abdelrahaman Aly1,2 and Mathieu Van Vyve1

1 Université catholique de Louvain, CORE
Voie du Roman Pays 34, B-1348 Louvain-la-Neuve (Belgium)

mathieu.vanvyve@uclouvain.be
2 imec-COSIC, KU Leuven, ESAT

Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee (Belgium)
abdelrahaman.aly@esat.kuleuven.be

Abstract. We study the problem of securely building single-commodity
multi-markets auction mechanisms. We introduce a novel greedy algo-
rithm and its corresponding privacy preserving implementation using se-
cure multi-party computation. More specifically, we determine the quan-
tity of supply and demand bids maximizing welfare. Each bid is attached
to a specific market, but exchanges between different markets are allowed
up to some upper limit. The general goal is for the players to bid their
intended valuations without concerns about what the other players can
learn. This problem is inspired by day-ahead electricity markets where
there are substantial transmission capacity between the different mar-
kets, but applies to other commodity markets like gas. Furthermore, we
provide computational results with a specific C++ implementation of our
algorithm and the necessary MPC primitives. We can solve problems of
1945 bids and 4 markets in 1280 seconds when online/offline phases are
considered. Finally, we report on possible set-ups, workload distributions
and possible trade-offs for real-life applications of our results based on
this experimentation and prototyping.

1 Introduction

Auctions have been proved to be economically efficient under many settings [1].
In recent years, with the advent of larger scale markets e.g. online commerce
and commodities, factors like secrecy, integrity and fairness have become more
important. Parties need adequate incentives to bid truthfully, without the risk
of loosing competitive advantages in future interactions. Our aim is to solve the
problem where a commodity is to be transported between the different markets
up to a given capacity limit. In our setting, buyers, sellers, markets and control
agencies may have to interact in a competitive environment where information
about prices and volume can reveal much more than what any party is will-
ing to disclose. In the day-ahead electricity markets in Europe, this reluctance
delayed by several years the integration of the national markets, until it was
actually imposed by the European authorities (Directives 2005/89 and 2003/54
and Regulation 1228/2003).

2 A. Aly, M. Van Vyve

Traditional solutions include a neutral third party in charge of all computa-
tions and responsible to exert secrecy, integrity an fairness in his own processes.
However, such a third party is in general hard to find, and would concentrate
all attacks making it a single vulnerable failure point.

We report on a mechanism where this third party can be replaced. Indeed,
our virtual third party uses Secure Multi-Party Computation (MPC) and can
be composed of any subset of players. MPC is a secure mechanism that allows
several players to compute a function in a distributed environment. From Yao’s
original result in 1982 [2], to the current state of the art, secure multi-party
computation has evolved from a theoretical object of study, to a field that is
used in real life applications. MPC offers a variety of techniques, primitives and
applications that provide security under diverse models, and in a distributed
environment.

1.1 Our Contribution

We introduce a novel greedy algorithm and its secure formulation, for auctions
with several geographical markets where exchange between them is possible. We
analyze and introduce variations and trade-offs of these building blocks to obtain
efficient running times, addressing the privacy-preserving protocol implementa-
tion and its security and performance constraints. Additionally, we report on
computational experimentation using historical data from electricity markets.
To the best of our knowledge, this is the first time the problem of secure sin-
gle commodities multi-market auctions with transmission constraints has been
addressed in detail. We focus our attention on the following aspects:

Algorithm Design. Although this is a standard problem, we describe a novel
greedy algorithm to compute its solution. This algorithm is better suited
for its adaptation to secure multi-party computation. We give proofs of its
correctness and that its MPC version is secure. Also since in practice the
number of markets is limited (e.g. a few) but the number of bids can be
large (e.g. a few thousands) we have aimed at keeping the complexity of the
algorithm (close to) linear in the number of bids.

Complexity and Efficiency. As similar works in the field, we use communi-
cation rounds (exchange of messages between parties involved in the compu-
tation) as the complexity measurement unit in our secure protocol. This is
in line with our interest in practical use. Moreover, our general aim of min-
imizing the use of comparisons because of the constants associated to their
computation. To facilitate reading, we abstract from our complexity analysis
the cost associated to message exchange. Indeed, as in related works, this
allow us to decouple our algorithm analysis from the sharing mechanism and
the different implications linked to changes in the number of computational
players.

Implementation. We have implemented our algorithm in C++, building from
scratch our own modular MPC framework. Indeed, we could not find an
open and efficient implementation suited to our need. We use NTL (Number

Secure Multi-Market Auctions 3

Theory Library) [3] and GMP (GNU Multiple Precision Library) as external
libraries. This implementation enables us to show that the algorithm we
propose is capable of treating close to 2000 bids from 4 markets in a time
that is practically relevant for our motivating application (20 minutes).

1.2 Related Work

Secure Auctions have been studied from different perspectives, both in terms of
security, computational and economic efficiency. In all cases questions on topics
like performance, fairness and integrity have been raised. In this section we cover
some of the works with similar characteristics and explore their differences with
our contributions.
Auctions with Secure Multi-party Computation. Bogetoft et al. [4] consider the
problem of a real-life auction with secure multi-party computation. In their set-
ting, Danisco, the only sugar beet processor of the danish market, and several
thousand farmers settled clearance market prices in a secret and distributed
fashion using MPC. They provide a secure MPC protocol for this single market
application. In this paper, we explore a different setting, where there are sev-
eral markets and each pair can exchange the commodity up to a given capacity.
This setting is realistic for other types of commodities e.g. power and gas mar-
kets. Additionally, they built their protocols using VIFF [5], which proved to be
reliable for the size of their problem. However, previous results for similar prob-
lems [6] suggest that this does not scale up very well. We describe the behavior
of a dedicated implementation, using the flexibility of C++ and OOP, that uses
a compact set of secure MPC primitives to provide security and efficiency.
Secure Auction Mechanisms with Secret Sharing. Several authors have studied
the properties of secure auctions with secret sharing e.g. [7,8,9,10]. These works
explore several different auction mechanisms in various environments. Recently,
Nojoumian and Stinson [11] introduced algorithms for second-price and combi-
natorial auctions. Their protocols offer security against active and passive adver-
saries, using amongst others, Shamir secret sharing [12] and a verifiable secret
sharing schemes (VSS). They model their auction problems as graph problems,
and devise theoretically efficient algorithms, but no computational experimen-
tation is reported.
Second Price Auctions. Some authors have considered cryptographic alterna-
tives to guarantee security in second price auctions. Catane and Herzerg [13]
propose trusting a supervising entity to perform the computations and using
randomization. Their goal is to keep the bids secret from other players. Our
privacy-preserving protocol provides security and fairness without relying on
any third party. Also, their approach does not take into account the transmis-
sion exchanges that are essential for our model. Similar to [4], this solution would
work for one market but needs to be adapted for a multi-market scenario.

4 A. Aly, M. Van Vyve

1.3 Overview of the paper

The paper is organized as follows: Section 2 introduces the problem and some
necessary concepts. Section 3 provides its network flow formulation and describes
a novel polynomial-time algorithm for it that can be easily adapted to provide
properties like data obliviousness. In Section 4, we describe the security model,
building blocks and technical tools for later use in our secure protocol in the
context of our secure algorithm. Section 5 describes our main protocol to solve
the problem. We analyze complexity, security and correctness. Experimentation
and prototyping are described in Section 6.

2 Problem Overview

2.1 Auction Mechanism

The process we consider here is a reverse auction with several sellers or bidders.
Markets or auctioneers adjudicate orders to supply and demand bids that maxi-
mize social welfare, while respecting the capacities of the transmission network.
A control agency may be part of the process, to supervise and guarantee the
integrity of the result. The security follows from the use of secure multi-party
computation.
Individual interests and involvement level are the following:

Markets and Transmission Network: The set of markets and the capacity
of the transmission network are assumed to be public. The transmission net-
work is represented by a capacitated network flow, i.e. pairs of markets are
binded by bidirectional transmission lines. Each transmission line has an up-
per limit (i.e. capacity). Notice that in this case, markets are geographically
separated.

Sellers/Buyers or Bidders: The set of players interested in acquiring or sell-
ing the commodity submit bids. Each bid is attached to a specific market.
Each bidder can submit more than one bid, and to different markets. Bids
are composed by a certain quantity Q (positive for buying and negative for
selling) and a limit price P . All bids are enclosed and final i.e. no re-bidding
is allowed. The bid placed by the player can be partially or totally adju-
dicated to the bidder depending on what maximizes social welfare. One of
their interests is the secrecy of the information contained on each bid towards
any other player e.g. other bidders and markets, for as long as the auction
takes place. Their concerns are also correctness (the result of the auction is
correct) and fairness (all players receive the same information at the same
time, and are treated equally).

Automated Auctioneer: Is the proxy entity in charge of managing the auc-
tion. Our work proposes that the role of the auctioneer is to be taken by the
computational parties representing markets, bidders and control agencies,
in a distributed and secure fashion. This creates a virtual ideal function-
ality capable of determining the set of accepted supply and demand bids,
guaranteeing correctness, without disclosing sensitive data.

Secure Multi-Market Auctions 5

Control Agency: Is a regulatory entity or any institution trusted by the Mar-
kets operators and Bidders. By the parties choosing, or environmental en-
forcement, it participates to add confidence to the process. Because of the
nature of MPC, our secure protocol allows active participation of the Control
Agency as a computational party, so that their presence would be necessary
for the correct and secure operation of the protocols in conjunction with the
model. The presence of a Control Agency remains optional.

On Computational parties. It is possible to have as many computational par-
ties as considered necessary by the algorithm designer to guaranty security and
bring confidence to the process. Although many of the building blocks require a
minimum of three parties, the algorithm itself can be adapted to be used with
two-party computation. As stated many auctions require the presence of an ex-
ternal supervisor. A basic configuration would include a computational party
representing the bidders, another the markets, and a third one for the super-
visor or control agency. Another logical set-up would is to have one party for
each geographical market. A larger number of computational parties can increase
security and trust, but will negatively influence the performance.

2.2 Problem Definition

Formally, participants in the auction submit bids of the form (pi, qi,mi) where pi
is the limit price, qi is the quantity (positive for demand bid, negative for supply
bid) and mi is the market where the bid is submitted. Bids can be adjudicated
partially, completely or not at all. The network operator also provides a capacity
matrix C, where entry Ci,j is the maximum amount that can be shipped from
market i to market j. Note that this is similar to [14,15]. The goal is to adjudicate
bids so that (i) social welfare is maximized, (ii) the exchanges implied can be
executed on the network, (iii) the information contained in all bids is to be
kept secret from other players until the end of the auction process. The network
(its topology and the capacities) is assumed to be public. Another practical
requirement is that the computations should not take more than, for instance,
30 minutes. Note that we do not associate costs to the transmission network.

Input Data. Data is provided as integer values over a finite field Zq where input
values are much smaller than q such that no overflow occurs. Its size is tied to
the application in hand. Note that when they are secretly shared we can not
differentiate between a demand bid and a supply bid.

2.3 Problem Formulation

Let us denote by N = {1, . . . , n} the set of all bids, and K ∪ D = B the
partition into supply and demand bids respectively, M = {1, . . . ,m} the set of
markets, Kj ∈ K and Dj ∈ D the set of supply and demand bids respectively at
market j. We define the nonnegative decision variable x̄i ∀i ∈ N as the accepted
quantity of bid i and variables fi,j as the flow on the line (i, j) ∈ L = M ×M

6 A. Aly, M. Van Vyve

with capacity Ci,j . The problem can then be formulated as the following linear
optimization problem:

max
∑
i∈D

pix̄i −
∑
i∈K

pix̄i (1)

s.t.
∑
i∈Kj

x̄i +
∑

i:(i,j)∈L

fi,j =
∑
i∈Dm

x̄i +
∑

i:(j,i)∈L

fj,i ∀j ∈M (2)

0 ≤ fi,j ≤ Ci,j ∀(i, j) ∈ L (3)

0 ≤ x̄i ≤ |qi| ∀i ∈ B . (4)

Note that by complementing demand bids (xi = qi − x̄i for i ∈ D) and keeping
supply bids as is (xi = x̄i for i ∈ K), one obtains an equivalent formulation
involving supply bids only (dropping the constant in the objective):

min
∑
i∈N

pixi (5)

s.t.
∑

i∈Kj∪Dj

xi +
∑

i:(i,j)∈L

fi,j −
∑

i:(j,i)∈L

fj,i =
∑
i∈Dj

qi ∀j ∈M (6)

0 ≤ fi,j ≤ Ci,j ∀(i, j) ∈ L (7)

0 ≤ xi ≤ |qi| ∀i ∈ B . (8)

Note that in this version, there is an external demand of Tj =
∑

i∈Dj
qi to be

met at each market j. The goal is to find the cheapest set of supply bids to satisfy
these demands. Having supply bids only makes the description of the algorithm
simpler. The is therefore the form that we will use in the rest of the text.

3 Network Flow Formulation

The problem (5) - (8) can actually be seen as a minimum cost capacitated
network flow problem (MCF) on the graph G = (V,A) as shown at Figure 3.

s t
M1

M2

M3

M..

Mi(|qi|, pi) (
∑

i∈dm
Qi, 0)

∞
∑

j Tj

Fig. 1. The auction problem as a Minimum Cost Network Flow problem

Formally, the set of vertices is V = M ∪ {s, t} where s and t are artificial
source and sink vertices. For each bid (supply and demand) i ∈ K ∪D, there is

Secure Multi-Market Auctions 7

an arc (s,mi) where mi is the market of the bid i, with capacity |qi| and cost pi.
For simplicity, let S be the set of all arcs originated in s. For each pair of markets
(i, j) ∈ L there is an edge between the respective vertices with capacity Ci,j and
no cost. For each market j, there is an edge (j, t) with capacity Tj =

∑
i∈dj

qi
and zero cost. Finally there is (given) external flow arriving at vertex s and a
given external flow leaving vertex t, both of magnitude

∑
j Tj . The associated

min-cost flow problem is obviously equivalent to the linear program (5) - (8).
Secure protocols to solve the MCF problem have been described by Aly and

Van Vyve [6]. They provide secure polynomial-time algorithms. Although the
protocol is theoretically efficient, in practice, its applicability seems to be limited
by the high degree (|V |10) of the polynomial in the complexity bound. Their
computational experiments, using an implementation over VIFF [5], indicates
that it would take around a year to solve the problem with perfect security in a
10 vertex complete graph. But to recast our problem in their context, we would
need to introduce one vertex for every bid, and with ≈ 2000 bids in the instances
we aim at solving, making that approach grossly impractical.

3.1 Greedy Algorithm

We describe now a more efficient greedy algorithm than just solving the problem
as a general minimum cost flow problem. This greedy algorithm makes use of
the special structure of the MCF we want to solve and can be easily general-
ized into an MPC environment. Intuitively the algorithm proceeds as follows.
It considers each order in turn, starting with the cheapest (i.e. best from the
objective function point of view) one. At each iteration, a max-flow problem is
solved to try to use as much as possible of the quantity offered by the bid. The
incremental value obtained is the quantity adjudicated to that bid. The following
is a formal description of this greedy procedure: First, we sort the set of all bids

1. ν ← 0
2. B ← sort-price:B

3. xi ← 0 ∀i ∈ S
4. for all: i ∈ B :
5. xi ← |qi|
6. ν′ ← maxflow: G(V,A)

7. xi ← ν′ − ν
8. ν = ν′

9. End

Algorithm: 1: Iterative Greedy Algorithm for Multi-Market Auctions

B in function of their price and set the capacities of edges in S to 0. Second,
we restore the capacity of the edge associated to bid i to its original value |qi|

8 A. Aly, M. Van Vyve

and calculate then max-flow on G. We then set the capacity of such edge to the
flow variation with respect to the max-flow calculated in the previous iteration.
We repeat this process for all bids in the order of prices. Once this process is
completed, the volume provided by demand bids is then automatically rejected
and accepted for the supply bids.

3.2 Correctness

We now prove that the greedy algorithm described above is correct. To do this
let us disaggregate each bid as a collection of bids of capacity 1, each with the
same price as the orginal bid. This obviously does not modify the problem. So
from now on in this subsection, we can safely assume that all bids have quantity
1, and that all bids will be completely accepted or rejected. For a given set of
bids I, let r(I) be the maximum amount of demand that can be satisfied using
the bids of I only. This can be seen as a max-flow problem on the graph G.

Proposition 1. The set function r : 2S → R+ is the rank function of a matroid.

Proof We use a characterization of Whitney [16] for a function to be the rank
function of a matroid:

(a) r(∅) = 0.
(b) r(I) ≤ r(I + i) ≤ r(I) + 1 for I ∈ S and i ∈ S \ I,
(c) for all I ⊆ S, i, j ∈ S\I, if r(I+i) = r(I+j) = r(I), then r(I+i+j) = r(I).
The set of arcs associated to the bids themselves is a cut separating the

source from the sink in the associated max-flow problem so r(J) ≤ |J | for any
J , proving (a). Moreover (b) comes from the fact that adding one bid i to I
amounts to increase the capacity of one arc by one unit in the associated max-
flow problem. Therefore the capacity of any cut increases by at most 1, and the
size of the minimum cut will certainly increase, but by one unit at most.

We now prove (c). Let SI denote the set of vertices containing the source
s defining a minimum cut associated with the max-flow problem of computing
r(I). In other words, r(I) = c(δ+(I)).

Note first that since r(I+i) = r(I), there exists SI+i such that the associated
cut does not contain (s, i) the arc associated to the bid i. Similarly there exists
SI+j such that the associated cut does not contain (s, j) the arc associated to
the bid j. This implies also that δ+(SI+i ∪SI+j) does not contain the arcs (s, i)
and (s, j).

By submodularity of cut functions in directed graphs, we obtain that r(I+i)+
r(I+j) = c(δ+(SI+i))+c(δ+(SI+j)) ≥ c(δ+(SI+i∪SI+j))+c(δ+(SI+i∩SI+j)).

Since δ+(SI+i ∪ SI+j) is an s− t cut that does not contain (s, i) and (s, j),
if c(δ+(SI+i ∪ SI+j)) ≤ r(I), statement (c) holds (the strict inequality case is
ruled out by (b)). If c(δ+(SI+i ∪ SI+j)) > r(I) then c(δ+(SI+i ∩ SI+j)) < r(I).
But this would contradict the minimality of SI since δ+(SI+i ∩SI+j) is an s− t
cut.

By classical properties of matroid structures, the last proposition directly implies
that we can solve the auction problem greedily: it suffices to use the cheapest

Secure Multi-Market Auctions 9

supply bids first, as long as the transmission network allows the use the bid to
satisfy some demand. This is exactly what Algorithm 3.1 does.

4 Cryptographic Preliminaries

4.1 Security Model

Ben-Or et al. [17] showed, amongst other things, how (with Shamir’s secrete
sharing for passive adversaries or Verifiable Secret Sharing (VSS) [18] for ac-
tive adversaries) every functionality can be computed under the information
theoretic model. However, that does not necessarily imply efficiency in terms
of performance. In our secure algorithms, variations can be included, to accel-
erate some functionality, at the price of providing statistical security and/or
some leakage. Moreover, changes in the communication or adversarial models
would yield different security levels as well. Our protocols follow the same line of
thought. Our privacy-preserving protocols can achieve the same level of security,
than the underlying primitives (our algorithms have no leakage). A careful sub-
routine selection can yield statistical security, with a significantly improvement
in terms of performance. We study both aspects of the implementation of our
secure protocols.

4.2 Basic Building Blocks

On Secret Sharing and other Primitives. Our algorithm is compatible with
secret sharing methods and homomorphic encryption mechanisms that sup-
port MPC e.g. (Shamir Secret Sharing, Paillier Encryption). Our secure pro-
totype uses secret-sharing to allow n parties to share information amongst
each other, to later be reconstructed by a subset of the players. This is also
true for more elaborated primitives like multiplications, that in the case
of [17,19] can be executed with a single communication round guaranteeing
perfect security. For an extended review on sharing mechanism we refer the
reader to [20].

Comparisons. Which are an essential part of our algorithms. There have been
several methods for secure comparisons proposed during the last decade
that provide perfect security e.g. ([21,22]). Here we use the constant rounds
method of Catrina and Hoogh [23]. It is built upon a secure modulo opera-
tion. As for the equality test, we use the protocol of Limpaa and Toft [24]
based on the hamming distance, that provides sub-linear complexity for the
on-line phase. Although, these methods achieve constant complexity bounds,
in practice, due to the high constants, they are typically much slower than
multiplications.

4.3 Complex building Blocks

Our privacy-preserving protocol requires to solve a series of more complex prob-
lems, combinatorial in nature. The methods used to solve these problems have

10 A. Aly, M. Van Vyve

to guarantee correctness and security while at the same time minimize their im-
pact over the performance. This includes a practically efficient vector shuffling
protocol, sorting and max-flow mechanisms. We succinctly review them in the
context of the needs of the application at hand.

- Vector Permutation Mechanism. Our protocols require to securely per-
mute a vector. This implies that for any vector of size n, the resulting con-
figuration is uniformly distributed in the space of all permutations n!. Indeed,
the state of the art describes several mechanisms for vector permutation that
are compatible with our algorithms. We could mention, for instance, the work
of Leur et al. [25] or Keller and Scholl [26] who introduced several permu-
tation mechanisms that work with secret sharing e.g. (permutation matrix
multiplication with O(n2) and perfect security). They also offer other alter-
natives, e.g. (sorting methods) to improve complexity with O(n × log(n))
and further. Additionally, Czumaj et al. [27] have shown how to build a per-
mutation network using exchange gates with 1

2 probability. The result is a
permutation with (almost) uniform probability in the space of all possible
permutations. Note that we could also build such networks using AKS or
the randomized shell sort network introduced by [28] among others sorting
networks to achieve better complexity times e.g. O(n× log(n)). This is also
compatible with our protocols. A more realistic approach, uses sorting net-
works and being subject to the distribution it provides for its solutions e.g.
Batcher’s odd-even merge. Note that, in the same spirit, we could uniformly
choose a random permutation amongst a sub-set of all possible permutations
using the network generated by the Merge step of such algorithms. Indeed,
these last 2 are later used for experimentation.

- Sorting Mechanisms. Our scheme needs to sort the bids in ascending order
or price. Since the Sorting protocols are necessary building blocks of various
complex solutions. Efficient secure sorting algorithms have been studied for
several years, yielding interesting results e.g. [28,29,30]. More interestingly
for us, is the approach proposed by Hamada et al. [31]. Their idea is to first
randomly and securely shuffle the vector to be sorted. Once this is done, any
traditional sorting algorithm can be executed, revealing the results of the
comparison, while keeping secret the values to be sorted.

- Max Flow Mechanisms. Max-Flow flow problems with perfect security have
been recently studied by [32,33] amongst others. For the max-flow prob-
lem, Blanton et al. [33] introduced a mechanism to solve the problem using
as building block the Bread First-Search algorithm with a complexity of
O(n5log(n)). The work by Aly et al. [32] provides 2 different data-oblivious
protocols with perfect security as well. The most efficient method is O(n4)
and is based on the push-relabel algorithm. It also suggests the use of stop-
ping conditions (with some leakage) to accelerate performance. This is what
we have implemented here.

Secure Multi-Market Auctions 11

5 Secure Auction Mechanism

We extend the results of section 3 and introduce a secure variant of algorithm 3.1.
We assume the configuration of the transmission network to be public, and all
inputs to be integer.

5.1 Notation

Our protocol uses the traditional square brackets notation employed by several
secure applications in distributed environments e.g. [21,32]. For instance, a secure
assignment and secure addition are denoted by the use of the infix notation and
the corresponding square brackets e.g. [z] ← [x] + [y]. The same treatment is
extended to any other operation. Vectors are denoted by capital letters e.g. E
where |E| denotes the number of elements in E and Ei is the i-th element. To
represent negative numbers we use the typical approach of using the lower half of
the field for positive values and the upper half of the field for negative values. It
has to be noticed that in shared form a negative value is indistinguishable from
a positive one. And that in our approach all information related to the bids is
kept secret including whether or not it is a supply or demand bid.

Each bid is represented by a tuple ([bi], [mi], [pi], [qi]) where bi is the bid
identifier, mi is the market where the bid is made, pi its limit price and qi its
quantity. The transmission network is represented by the capacity matrix N . We
will make repeated use of the following two subroutines.

- conditional assignment : This functionality serves as a replacement of a
flow control instruction for branching. Although branching on encrypted
data is not possible, the functionality can be emulated for assignments. Fol-
lowing [6] we represent the operator by : [z] ←[c] [x] : [y]. Where much
like in previous works e.g. [6,32,34] [z] would take the value [x] if [c] is
1 and [y] otherwise. This can be achieved simply by doing the following
[z]← ([x]− [y])× [c] + [y].

- market identification : Part of the data that composes a bid is the iden-
tification of the market it belongs to. Users are required to input a single
identification tag. During our algorithm, we transform this to a unary ex-
pansion defined as Zi,m = 1 if m = mi and 0 otherwise. This enables us
to reduce the number of equality tests when performing the market identi-
fication for a bid. This transformation can be achieved following protocol:

12 A. Aly, M. Van Vyve

Protocol 1: Unary expansion for market identification

Input: vector of all markets M , bid [i] ∈ B.
Output: zero-one matrix [Z] of size n×m

1 for i← 1 to m do
2 [Z]i,j ← j == [m]i;
3 end
4 return [Z];

5.2 Secure Auction with Transmission Constraints

The protocol is defined as follows:

Prerequisites. The number of bids or at least an upper bound on the size of
the vector is assumed to be public. We assume the topology and capacities
of the transmission network to be public.

1. Bids are sorted in ascending order of price.
2. The structure of the graph G = (V,A) is public. The capacity of each edge is

initialized with the following value. The capacities between market vertices
are set to the capacity matrix C. The capacity of each edge (s, j) is set to
0. The capacity of each edge (j, t) is set to the sum of the quantities of all
demand bids submitted to market j. This is simply done by exploring all the
bids and using the market identification protocol 1.

3. Evaluate the viability of each of the bids from the recently sorted vector [B]
in ascending order. For a given bid, we do this by increasing the capacity of
edge (s, j) where j is the market of the bid by its quantity |qbi |. We then
compute the maximum (s, t)-flow in the graph G to determine whether the
bid can improve the solution. The increment of the max-flow compared to
the previous iteration is the amount adjudicated to the bid. Finally, the
capacity of edge (s, j) is increased by the same increment. Protocol 2 shows
a detailed description of this procedure.

4. Finally the bids then are permuted randomly, to hide their order. This is
necessary to avoid leaking the result of the initial sorting from step 1.

On the prerequisites, several parties constantly submit bids in shared form, we
believe it is safe to assume this will not occur simultaneously. Pre-computed
permutation matrices can be generated. A simple vector multiplication of the
corresponding row of the matrix would suffice in this case to place the incoming
data in their corresponding permuted position in the vector. Once all data is
received, the existing vectors can be easily combined, the result is a single per-
muted vector. In case this approach is not feasible, the algorithm designer could
make use of one of the suggested permutation mechanisms instead. Permuted
bids would allow us to make use of Hamada et al. [35] technique of shuffling

before sorting. This improves considerably the performance of sorting proto-
cols and allows them to achieve O(n× log n) complexity.
Furthermore, we introduce step 3. to serve as an evaluation and allocation mech-
anism. It can be seen as some heuristic tool that allows us to identify the impact

Secure Multi-Market Auctions 13

of the bid on the result. Protocol 2 let us explore the inner works of Step 3.
in detail. Line 2 allows us to explore all previously sorted bids in order. Lines
3 to 5 augment the corresponding edge capacity from the source to the corre-
sponding market with the volume of the bid. On Line 6, ν stores the maximum
amount of flow that can be allocated with the new volume. On the final section
of the protocol (Lines 7 to 13) the difference between previous and present flow
gap is calculated. Moreover, the flow added to the graph at the beginning of the
iteration is replaced by the gap variation. This value has to be stored as well as
the amount of capacity assigned to the bid and the value of the maximum flow
for future iterations.
Moreover, at the last and 4. step, data can be edited at will by the algorithm
designer. What information is taken to later be presented depends solely on
the application’s nature. The permutation, although capable to hide the sorting
should be ignored in case the final answer also contemplates to open the prices of
the bids as well. This is because any party could later sort the bids accordingly.
Please note that our protocol complexity grows linearly with respect of the num-
ber of bids n and polynomially by the number of markets m.

Protocol 2: Implementation of secure auction.

Input: Capacity matrix [C]ij . Vector of n bid tuples ([b], [m], [p], [q]). Matrix of
market identification [Z]ij ∀i ∈ N and ∀j ∈M

Output: Flow Matrix F , the list of bids and their accepted quantities [x]
1 [ν]← [0]
2 for i← 1 to n do
3 for j ← 1 to m do
4 [C]sj ←[Z]ij [C]sj + |[qbi]| : [C]sj ;

5 end
6 [ν′]← maxflow([G]);
7 [φ]← ([ν′]− [ν]);
8 [xbi]← [φ];
9 for j ← 1 to m do

10 [C]sj ←[Z]ij [C]sj − |[qbi]|+ [φ] : [C]sj ;

11 end
12 [ν]← [ν′];

13 end

Finally, note that at the end of the protocol, the adjudicated quantities xi
together with the bid identifier will be disclosed.

Complexity. Oblivious shuffling can be achieved (theoretically) in O(n log n),
and sorting the bids is then O(n log n). At step 3., a max flow problem on m+ 2
vertices has to be executed n times. Using the O(m4) max-flow algorithm by
Aly et al. [32], this gives an overall bound of O(nm4) for Step 3. So in total this
yields an overall complexity (communication rounds) of O(n(m4 + log n)).

14 A. Aly, M. Van Vyve

Since the number of markets is usually small (e.g. 1 to 5) for the application at
hand, the quadratic exponent is not too much of an issue in practice. The fact
that the complexity is close to linear in the number of bids is on the other hand
vital.

5.3 Security and Correctness

In principle, all steps of the algorithm could be implemented with perfect (i.e.
information theoretic) security against passive and active adversaries when im-
plemented with no leakage. This follows from the fact that there exists such pro-
tocols for sorting [29,31,28], max-flow [32,33] and oblivious shuffling [25,26,27]
that provide this level of security under the information theoretic model. This is
also true for multiplications and comparisons. Moreover, the data-obliviousness
nature of the protocols implies that for the protocol simulation, the correspond-
ing simulators of all other protocols and their atomic operations e.g. secure
additions and multiplications, could be invoked in a predefined execution order,
hence, modeling it as an arithmetic circuit.
However, to improve performance, we have decided to weaken the security re-
quirement in the following sense. Firstly, the security of the sorting scheme we use
directly depends on the security of the random shuffling implemented. Secondly,
for the max-flow problems, instead of running the algorithm for the maximum
theoretical number of iterations, we stop the algorithm as soon as optimality is
reached. This leaks the number of iterations. Finally, correctness follows from
the fact the scheme is a secure implementation of algorithm 3.1.

6 Computational Experimentation

We have tested our protocol with our custom-made MPC Toolkit library imple-
mented in C++. It implements all the primitives and building blocks described
above, but also the underlying MPC crypto-primitives. It also provide our own
communication support and use NTL and GMP libraries for the underlying
modulo arithmetic. We report below on the most relevant aspects of the imple-
mentation. A more thorough and detailed description can be found in [36].

6.1 Prototype Capabilities and Technical Characteristics

Table 1 give the implemented protocols for the usual basic operations. The more
complex procedures described in the previous sections are built upon these.

These are considered core functionalities. The architecture from the library is
to provide a basic and decoupled processing unit similar to a small engine. This
small engine implements the functionalities from table 1. Furthermore, it sepa-
rates computational and cryptographic tasks from communication tasks. Each
engine runs these two sets of tasks in different threads that communicate with
each other to coordinate. Basic requirements to obtain the best performance
from the engine include 2 CPU threads and ≈ 500 KB in RAM for the basic use

Secure Multi-Market Auctions 15

Table 1. List of Primitives used by the Secure Auction protocol implementation

Building Block Algorithm

Sharing Shamir Secret Sharing [12]

Multiplication Gennaro et al. [19]

Equality Test (Statistical) Limpaa and Toft [24]

Inequality Test (Statistical) Catrina and Hoogh [34]

Random Bit Gen. Damg̊ard et al. [21]

of the primitives.
Our configuration gives each computational party 2 similar CPU threads with
unlimited access to a memory pool of up 42 GB with each player having a single
engine’s instance.
On Security. The library and prototype were built under the private channel
model. Depending on the functionality used, the library provides statistical and
perfect security against semi-honest adversaries with minority coalition. For in-
stance, the inequality tests used in our tests brings statistical security meanwhile
addition and multiplication perfect security. As mentioned before, statistical se-
curity for such method is given as a function of parameters k and the bit-size of
the input by parameter l. The prototype was pre-configured to use k = 29 and
l = 32. However, because of technical issues, shares themselves can only use up
to 63 bits. This means in practice that under the scenario where only primitives
with perfect security are used, the size of l could grow up to 63 bits.

6.2 Numerical Results

The computational experiments were done using historical data from the belgian
day-ahead market. The data set is composed of a total of 1945 bids (demand
and supply). The origin of the data is one hour of a day trade from the Belpex
market (12 pm). We have created two data sets by randomly partitioning this
set of bids into 2 and 4 markets. Additionally, we would like to note that in our
experimentation we consider a 3 computational parties case.
We ran our instances on an Intel Xeon CPUs X5550 (2.67GHz) and 42GB of
memory, running Mac OS X 10.10. All processes have the same computational
power at their disposal (memory and CPU power). Table 2 shows number of
communication rounds, comparisons and CPU time (10 executions average).
From these tests, ≈ 21× 106 communication rounds were dedicated to random-
ization processes for the comparison mechanisms e.g. random bit generations.
The use of well studied results like PRSS [37] would limit the use of these com-
munication rounds and in general terms would allow us to achieve even better
computational times. Furthermore, Catrina and Hoogh comparison method de-
pends on the computation of l random bits for its calculations. An offline phase
can be considered where this random numbers are pre-computed before the bids
arrive to the server, and then distributed to the computational parties for its
use. In this case the Secure Auction Mechanism would be executed in an online

16 A. Aly, M. Van Vyve

phase that no longer has to care about random number generation improving the
performance for comparisons. Table 2 shows our numerical results and estimated
the impact of the use of online/offline phases.

Table 2. Overall Results

Markets and Perm. Method Com. Rounds Comparisons CPU Time. Online Phase

2 Markets
Batcher ≈ 31.4 · 106 226021 2056 s. 613 s.
Merge ≈ 31.4 · 106 226021 2049 s. 606 s.

4 Markets
Batcher ≈ 71.9 · 106 537627 4702 s. 1276 s.
Merge ≈ 71.9 · 106 537627 4694 s. 1268 s.

When the number of markets increases from 2 to 4, we observe an increase
of more than twice the number of rounds and comparisons. The same follows
on computational time, taking in average (10 execution rounds) around 4700
seconds to complete execution.
On memory, the application did not surpass the 2.5 MB per execution. Dur-
ing its life-cycle, some increment in memory consumption levels was registered
during data generation phases. The phenomenon is especially evident in the
data preprocessing phase. This is of course, because some data is generated and
stored for later use. Less significantly changes are also present. This is explained
by the continuous fragmentation of the memory throughout the repeated max-
flow problems, where objects of different sizes are continuously created and then
destroyed. Nonetheless, the increase of memory usage remains very modest. Fig-
ure 2 shows the typical memory usage of the application during its execution.
Finally, we found that the bottleneck of the application are the communications.

0 500 1,000 1,500 2,000
0

1,000

2,000

3,000

Time in Seconds

M
em

o
ry

in
K

B

Sorting

Graph Initialization

Iterative Max-Flow

Final Permutation

Fig. 2. Secure Auction Protocol Life Cycle

Secure Multi-Market Auctions 17

Data transmission and related tasks are responsible of the 1705 seconds (83%)
of the total computational time. Only a fraction of the time, 351 seconds (17%),
was dedicated to other tasks e.g. creating the shares.

From these results we can conclude the following: (i) Realistic computational
times were indeed achieved for the data in question, with limited computational
power. With the online/offline case, an hour of trade was solved in less than
an hour of computations for both market configurations. Given that many of
the processes of our protocol are sequential in nature, a computer with a better
benchmarked CPU under the same basic configuration would yield better results.
(ii) Memory is not a decisive factor in this case. Memory increases monotonically
but modestly during the execution because of noise. (iii) The process can be
further accelerated by precomputing the random values that are needed by the
protocol. In our case 3

4 of communication rounds that are used for comparisons
are dedicated to randomization processes. Even with the use of PRSS, these
operations would represent an important proportion of the workload. This is why
an offline phase where these values are preprocessed could prove more useful. For
instance, to have dedicated servers calculating in shared form random bits and
numbers and store them, such that they can just be fetched when any online
process needs them. This would imply a reduction in the 2 markets case of
≈ 1450 seconds. This would allow us to solve the problem in ≈ 610 seconds,
a little more than 10 minutes. When 4 markets are consider instead, the times
are reduced to ≈ 1270 which is little more than 20 minutes. (iv) Moreover,
even though we have put in place a light and dedicated communications setting,
the performance of the prototype is largely dependent on the performance of
the communications implemented. It was 4.8 times more expensive (in terms of
running time) to transmit the data than to generate, reorganize and calculate
it.

7 Conclusions

Our computational experiments show that secure auctions in realistic settings
(≈ 2000 bids, 4 markets linked by capacitated transportation links, 30 minutes
time limit) are indeed possible. This required the development of a specific algo-
rithm to solve the problem (more amendable to MPC), a careful management of
the trade-off between security and performance (perfect vs. statistical security,
leakage of the number of iteration when solving the max-flow problems), and a
dedicated low-level implementation of MPC primitives.

Since, in our current implementation, the bulk of the running time is in
communications, we feel that this is where lies the best opportunities to improve
performance. This could be achieved either in improving the communication effi-
ciency, or by reducing the need for communication between the players. Moreover
future practical implementations could make use of dishonest majority or active
security protocols for usability.

18 A. Aly, M. Van Vyve

Acknowledgements

This research was supported by the WIST Walloon Region project CAMUS and
the Belgian IAP Program P7/36 initiated by the Belgian State, Prime Minister’s
Office, Science Policy Programming. Both authors were also supported by the
Marie Curie ITN “MINO” from the European Commission. The authors are
grateful to Olivier Pereira and Ignacio Aravena for their feedback. The scientific
responsibility is assumed by the authors.

References

1. Klemperer, P.: What Really Matters in Auction Design, from Auctions: Theory
and Practice. In: Auctions: Theory and Practice. Introductory Chapters. Princeton
University Press (2004)

2. Yao, A.C.C.: Protocols for secure computations (extended abstract). In: 23rd
Annual Symposium on Foundations of Computer Science, IEEE (1982) 160–164

3. Shoup, V.: NTL: A library for doing number theory. http://www.shoup.net/ntl/

4. Bogetoft, P., Christensen, D.L., Damg̊ard, I., Geisler, M., Jakobsen, T., Krøigaard,
M., Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J., Schwartzbach, M., Toft,
T.: Secure multiparty computation goes live. In Dingledine, R., Golle, P., eds.:
Financial Cryptography and Data Security, Berlin, Heidelberg, Springer-Verlag
(2009) 325–343

5. Geisler, M.: Cryptographic protocols: theory and implementation. PhD thesis,
Aarhus University Denmark, Department of Computer Science (2010)

6. Aly, A., Van Vyve, M.: Securely solving classical network flow problems. In Lee,
J., Kim, J., eds.: Information Security and Cryptology - ICISC 2014. Volume 8949
of Lecture Notes in Computer Science., Springer International Publishing (2015)
205–221

7. Franklin, M.K., Reiter, M.K.: The design and implementation of a secure auction
service. In: IEEE Transactions on Software Engineering. Volume 22. (1996) 302–
312

8. Harkavy, M., Tygar, J.D., Kikuchi, H.: Electronic auctions with private bids. In:
Proceedings of the 3rd Conference on USENIX Workshop on Electronic Commerce
- Volume 3. WOEC’98, Berkeley, CA, USA, USENIX Association (1998) 6–6

9. Kikuchi, H., Hotta, S., Abe, K., Nakanishi, S.: Distributed auction servers resolving
winner and winning bid without revealing privacy of bids. In: Seventh International
Conference on Parallel and Distributed Systems: Workshops. (2000) 307–312

10. Peng, K., Boyd, C., Dawson, E.: Optimization of electronic first-bid sealed-bid
auction based on homomorphic secret sharing. In Dawson, E., Vaudenay, S., eds.:
Progress in Cryptology – Mycrypt 2005. Volume 3715 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg (2005) 84–98

11. Nojoumian, M., Stinson, D.: Efficient sealed-bid auction protocols using verifi-
able secret sharing. In Huang, X., Zhou, J., eds.: Information Security Practice
and Experience. Volume 8434 of Lecture Notes in Computer Science. Springer
International Publishing (2014) 302–317

12. Shamir, A.: How to share a secret. In: Communications of the ACM. Volume 22.,
New York, NY, USA, ACM (1979) 612–613

http://www.shoup.net/ntl/

Secure Multi-Market Auctions 19

13. Catane, B., Herzberg, A.: Secure second price auctions with a rational auctioneer.
In: The 10-th SECRYPT International Conference on Security and Cryptography.
(2013)

14. Madani, M., Van Vyve, M.: A new formulation of the european day-ahead electric-
ity market problem and its algorithmic consequences. CORE Discussion Papers
2013074, Université catholique de Louvain, Center for Operations Research and
Econometrics (CORE) (2013)

15. Madani, M., Van Vyve, M.: Computationally efficient MIP formulation and algo-
rithms for european day-ahead electricity market auctions. In: European Journal
of Operational Research. Volume 242. (2015) 580 – 593

16. Whitney, H.: On the abstract properties of linear dependence. In: American
Journal of Mathematics. Volume 57. (1935) 509–533

17. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: Proceedings of the Twen-
tieth Annual ACM Symposium on Theory of Computing. STOC ’88, New York,
NY, USA, ACM (1988) 1–10

18. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and
achieving simultaneity in the presence of faults. In: Foundations of Computer
Science, 1985., 26th Annual Symposium on. (Oct 1985) 383–395

19. Gennaro, R., Rabin, M.O., Rabin, T.: Simplified VSS and fast-track multiparty
computations with applications to threshold cryptography. In: Proceedings of the
Seventeenth Annual ACM Symposium on Principles of Distributed Computing.
PODC ’98, New York, NY, USA, ACM (1998) 101–111

20. Beimel, A.: Secret-sharing schemes: A survey. In Chee, Y., Guo, Z., Ling, S., Shao,
F., Tang, Y., Wang, H., Xing, C., eds.: Coding and Cryptology. Volume 6639 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg (2011) 11–46

21. Damg̊ard, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure
constant-rounds multi-party computation for equality, comparison, bits and expo-
nentiation. In Halevi, S., Rabin, T., eds.: Theory of Cryptography: Third Theory
of Cryptography Conference, TCC 2006, New York, NY, USA, March 4-7, 2006.
Proceedings, Berlin, Heidelberg, Springer Berlin Heidelberg (2006) 285–304

22. Nishide, T., Ohta, K.: Multiparty computation for interval, equality, and compar-
ison without bit-decomposition protocol. In Okamoto, T., Wang, X., eds.: Public
Key Cryptography – PKC 2007: 10th International Conference on Practice and
Theory in Public-Key Cryptography Beijing, China, April 16-20, 2007. Proceed-
ings, Berlin, Heidelberg, Springer Berlin Heidelberg (2007) 343–360

23. Catrina, O., de Hoogh, S.: Improved primitives for secure multiparty integer com-
putation. In Garay, J.A., De Prisco, R., eds.: Security and Cryptography for Net-
works: 7th International Conference, SCN 2010, Amalfi, Italy, September 13-15,
2010. Proceedings, Berlin, Heidelberg, Springer Berlin Heidelberg (2010) 182–199

24. Lipmaa, H., Toft, T.: Secure equality and greater-than tests with sublinear on-
line complexity. In Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D., eds.:
Automata, Languages, and Programming: 40th International Colloquium, ICALP
2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part II, Berlin, Heidelberg,
Springer Berlin Heidelberg (2013) 645–656

25. Laur, S., Willemson, J., Zhang, B.: Round-efficient oblivious database manipu-
lation. In Lai, X., Zhou, J., Li, H., eds.: Information Security. Volume 7001 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg (2011) 262–277

26. Keller, M., Scholl, P.: Efficient, oblivious data structures for MPC. In Sarkar, P.,
Iwata, T., eds.: Advances in Cryptology – ASIACRYPT 2014: 20th International

20 A. Aly, M. Van Vyve

Conference on the Theory and Application of Cryptology and Information Security,
Kaoshiung, Taiwan, R.O.C., December 7-11, 2014, Proceedings, Part II, Berlin,
Heidelberg, Springer Berlin Heidelberg (2014) 506–525

27. Czumaj, A., Kanarek, P., Kutylowski, M., Lorys, K.: Delayed path coupling and
generating random permutations via distributed stochastic processes. In: Proceed-
ings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms. SODA
’99, Philadelphia, PA, USA, Society for Industrial and Applied Mathematics (1999)
271–280

28. Goodrich, M.T.: Randomized shellsort: A simple data-oblivious sorting algorithm.
In: Journal of the ACM (JACM). Volume 58., New York, NY, USA, ACM (2011)
27:1–27:26

29. Jónsson, K.V., Kreitz, G., Uddin, M.: Secure multi-party sorting and applications.
In: IACR Cryptology ePrint Archive. Volume 2011. (2011) 122

30. Goodrich, M.T.: Zig-zag sort: A simple deterministic data-oblivious sorting al-
gorithm running in o(n log n) time. In: Proceedings of the 46th Annual ACM
Symposium on Theory of Computing. STOC ’14, New York, NY, USA, ACM
(2014) 684–693

31. Hamada, K., Ikarashi, D., Chida, K., Takahashi, K.: Oblivious radix sort: An
efficient sorting algorithm for practical secure multi-party computation. In: IACR
Cryptology ePrint Archive. Volume 2014. (2014) 121

32. Aly, A., Cuvelier, E., Mawet, S., Pereira, O., Van Vyve, M.: Securely solving simple
combinatorial graph problems. In Sadeghi, A.R., ed.: Financial Cryptography and
Data Security: 17th International Conference, FC 2013, Okinawa, Japan, April 1-
5, 2013, Revised Selected Papers, Berlin, Heidelberg, Springer Berlin Heidelberg
(2013) 239–257

33. Blanton, M., Steele, A., Alisagari, M.: Data-oblivious graph algorithms for secure
computation and outsourcing. In: Proceedings of the 8th ACM SIGSAC Sym-
posium on Information, Computer and Communications Security. ASIA CCS ’13,
New York, NY, USA, ACM (2013) 207–218

34. Catrina, O., De Hoogh, S.: Secure multiparty linear programming using fixed-
point arithmetic. In: Proceedings of the 15th European Conference on Research
in Computer Security. ESORICS’10, Berlin, Heidelberg, Springer-Verlag (2010)
134–150

35. Hamada, K., Kikuchi, R., Ikarashi, D., Chida, K., Takahashi, K.: Practically effi-
cient multi-party sorting protocols from comparison sort algorithms. In Kwon, T.,
Lee, M.K., Kwon, D., eds.: Information Security and Cryptology – ICISC 2012:
15th International Conference, Seoul, Korea, November 28-30, 2012, Revised Se-
lected Papers, Berlin, Heidelberg, Springer Berlin Heidelberg (2013) 202–216

36. Aly, A.: Network Flow Problems with Secure Multiparty Computation. PhD thesis,
Universté catholique de Louvain, IMMAQ (2015)

37. Cramer, R., Damg̊ard, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing
and applications to secure computation. In Kilian, J., ed.: Theory of Cryptography.
Volume 3378 of Lecture Notes in Computer Science. Springer Berlin Heidelberg
(2005) 342–362

	Practically Efficient Secure Single-Commodity Multi-Market Auctions

