
Oblivious Neural Network Predictions via MiniONN
transformations

Jian Liu

Aalto University

jian.liu@aalto.fi

Mika Juuti

Aalto University

mika.juuti@aalto.fi

Yao Lu

Aalto University

yao.lu@aalto.fi

N. Asokan

Aalto University

asokan@acm.org

ABSTRACT
Machine learning models hosted in a cloud service are increasingly

popular but risk privacy: clients sending prediction requests to the

service need to disclose potentially sensitive information. In this

paper, we explore the problem of privacy-preserving predictions:

after each prediction, the server learns nothing about clients’ input

and clients learn nothing about the model.

We present MiniONN, the first approach for transforming an
existing neural network to an oblivious neural network supporting

privacy-preserving predictions with reasonable efficiency. Unlike

prior work,MiniONN requires no change to how models are trained.
To this end, we design oblivious protocols for commonly used opera-

tions in neural network prediction models. We show thatMiniONN
outperforms existing work in terms of response latency and mes-
sage sizes. We demonstrate the wide applicability of MiniONN by

transforming several typical neural network models trained from

standard datasets.

CCS CONCEPTS
• Security and privacy→ Privacy-preserving protocols;

KEYWORDS
privacy, machine learning, neural network predictions

1 INTRODUCTION
Machine learning is now used extensively in many application

domains such as pattern recognition [10], medical diagnosis [24]

and credit-risk assessment [3]. Applications of supervised machine

learning methods have a common two-phase paradigm: (1) a train-
ing phase in which a model is trained from some training data, and

(2) a prediction phase in which the trained model is used to predict

categories (classification) or continuous values (regression) given

some input data. Recently, a particular machine learning framework,

neural networks (sometimes referred to as deep learning), has gained
much popularity due to its record-breaking performance in many

tasks such as image classification [36], speech recognition [19] and

complex board games [34].

Machine learning as a service (MLaaS) is a new service paradigm

that uses cloud infrastructures to train models and offer online pre-

diction services to clients. While cloud-based prediction services

have clear benefits, they put clients’ privacy at risk because the

input data that clients submit to the cloud service may contain

sensitive information. A naive solution is to have clients download

the model and run the prediction phase on client-side. However,

this solution has several drawbacks: (1) it becomes more difficult

for service providers to update their models; (2) the trained model

may constitute a competitive advantage and thus requires confiden-

tiality; (3) for security applications (e.g., spam or malware detection

services), an adversary can use the model as an oracle to develop

strategies for evading detection; and (4) if the training data con-

tains sensitive information (such as patient records from a hospital)

revealing the model may compromise privacy of the training data

or even violate regulations like the Health Insurance Portability

and Accountability Act of 1996 (HIPAA).

A natural question to ask is, given a model, whether is it possible
to make it oblivious: it can compute predictions in such a way that

the server learns nothing about clients’ input, and clients learn

nothing about the model except the prediction results. For general

machine learning models, nearly practical solutions have been pro-

posed [6, 13, 14, 56]. However, privacy-preserving deep learning

prediction models, which we call oblivious neural networks (ONN),
have not been studied adequately. Gilad-Bachrach et al. [27] pro-

posed using a specific activation function (“square”) and pooling op-

eration (mean pooling) during training so that the resulting model

can be made oblivious using their CryptoNets framework. Cryp-

toNets transformations result in reasonable accuracy but incur high

performance overhead. Very recently, Mohassel and Zhang [43]

also proposed new activation functions that can be efficiently com-

puted by cryptographic techniques, and use them in the training

phase of their SecureML framework. What is common to both ap-

proaches [27, 43] is that they require changes to the training phase

and thus are not applicable to the problem of making existing neural
models oblivious.

In this paper, we presentMiniONN (pronounced minion), a prac-

tical ONN transformation technique to convert any given neural
network model (trained with commonly used operations) to an ONN.

We design oblivious protocols for operations routinely used by neu-

ral network designers: linear transformations, popular activation
functions and pooling operations. In particular, we use polynomial
splines to approximate nonlinear functions (e.g., sigmoid and tanh)

with negligible loss in prediction accuracy. None of our protocols

require any changes to the training phase of the model being trans-

formed. We only use lightweight cryptographic primitives such as

secret sharing and garbled circuits in online prediction phase. We

also introduce an offline precomputation phase to perform request-

independent operations using additively homomorphic encryption

together with the SIMD batch processing technique.

1

Our contributions are summarized as follows:

• We presentMiniONN, the first technique that can trans-
form any common neural network model into an
oblivious neural network without any modifications to

the training phase (Section 4).

• Wedesign oblivious protocols for commonoperations
in neural network predictions (Section 5). In particular,

wemake nonlinear functions (e.g., sigmoid and tanh)
amenable for our ONN transformation with a negligi-

ble loss in accuracy (Section 5.3.2).

• Webuild a full implementation ofMiniONN and demon-

strate its wide applicability by using it to transform neural

networkmodels trained fromseveral standard datasets
(Section 6). In particular, for the same models trained from

the MNIST dataset [37],MiniONN performs significantly
better than previous work [27, 43] (Section 6.1).

• We analyze howmodel complexity impacts both predic-
tion accuracy and computation/communication over-
head of the transformed ONN. We discuss how a neural

network designer can choose the right tradeoff between

prediction accuracy and overhead. (Section 7).

2 BACKGROUND AND PRELIMINARIES
We now introduce the machine learning and cryptographic prelim-

inaries (notation we use is summarized in Table 1).

𝒮 Server

𝒞 Client

X = {x1, ... } Input matrix for each layer

W = {w1, ... } Weight matrix for each layer

B = {b1, ... } Bias matrix for each layer

Y = {y1, ... } Output matrix for each layer

z = {z1, ... } Final predictions

u 𝒮’s share of the dot-product triple

v 𝒞’s share of the dot-product triple
ZN Plaintext space

compare (x, y) return 1 if x ≥ y , return 0 if x < y
E () / D () Additively homomorphic encryption/decryption

pk / sk Public/Private key

x̂ E (pk, x)
x̃ E (pk, [x1, ...])
⊕ Addition between two ciphertexts

or a plaintext and a ciphertext

⊖ Subtraction between two ciphertexts

or a plaintext and a ciphertext

⊗ Multiplication between

a plaintext and a ciphertext

Table 1: Notation table.

2.1 Neural networks
A neural network consists of a pipeline of layers. Each layer receives

input and processes it to produce an output that serves as input

to the next layer. Conventionally, layers are organized so that the

bottom-most layer receives input data (e.g., an image or a word) and

the top-most layer outputs the final predictions. A typical neural

network
1
processes input data in groups of layers, by first applying

linear transformations, followed by the application of a nonlinear

1
http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.

html

activation function. Sometimes a pooling operation is included to

aggregate groups of inputs.

We will now briefly describe these operations from the perspec-

tive of transforming neural networks to ONNs.

2.1.1 Linear transformations. The commonest linear transfor-

mations in neural networks are matrix multiplications and addi-

tions:

y :=W · x + b, (1)

where x ∈ Rl×1
is the input vector, y ∈ Rn×1

is the output, W
∈ Rn×l is the weight matrix and b ∈ Rn×1

is the bias vector.
Convolution is a type of linear transformation, which computes

the dot product of small “weight tensors” (filters) and the neigh-

borhood of an element in the input. The process is repeated, by

sliding each filter by a certain amount in each step. The size of the

neighborhood is called window size. The step size is called stride. In
practice, for efficiency reasons, convolution is converted into ma-

trix multiplication and addition as well [17], similar to equation 1,

except that input and bias vector are matrices: Y :=W · X + B.
Dropout and dropconnect are types of linear transformations,

where multiplication is done elementwise with zero-one random

masks [29].

Batch normalization is an adaptive normalization method [29]

that shifts outputs y to amenable ranges. During prediction, batch

normalization manifests as a matrix multiplication and addition.

2.1.2 Activation functions. Neural networks use nonlinear trans-
formations of data – activation functions – to model nonlinear rela-

tionships between input data and output predictions. We identify

three common categories:

- Piecewise linear activation functions. This category of functions

can be represented as a set of n linear functions within specific

ranges, each of the type fi (y) = aiy + bi ,y ∈ [yi ,yi+1], where

yi and yi+1 are the lower and upper bounds for the range. This

category includes the activation functions:

Identity function (linear): f (y) = [yi]
Rectified Linear Units (ReLU): f (y) = [max(0,yi)]
Leaky ReLU: f (y) = [max(0,yi) + a min(0,yi)]
Maxout (n pieces): f (y) = [max(y1, . . . ,yn)]

- Smooth activation functions. A smooth function has continuous

derivatives up to some desired order over some domain. Some

commonly used smooth activation functions are:

Sigmoid (logistic): f (y) = [
1

1+e−yi]

Hyperbolic tangent (tanh): f (y) = [
e2yi −1

e2yi +1
]

Softplus: f (y) = [log(eyi + 1)]

The sigmoid and tanh functions are closely related [29]:

tanh(x) = 2 · siдmoid (2x) − 1. (2)

They are collectively referred to as sigmoidal functions.

- Softmax. Softmax is defined as:

f (y) = [
eyi∑
j e

yj]

It is usually applied to the last layer to compute a probability

distribution in categorical classification. However, in prediction

2

http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html

phase, usually it is sufficient to use argmax over the outputs of the

last layer to predict the most likely outcome.

2.1.3 Pooling operations. Neural networks also commonly use

pooling operations that arrange input into several groups and ag-

gregate inputs within each group. Pooling is commonly done by

calculating the average or the maximum value among the inputs

(mean ormax pooling). Convolution and pooling operations are only
used if the input data has spatial structure (e.g., images, sounds).

2.1.4 Commonly used neural network operations. As discussed
in Section 2.1.1, all common linear transformations reduce to matrix

multiplications and additions in the prediction phase. Therefore

it is sufficient for an ONN transformation technique to support

making matrix multiplications and additions oblivious.

To get an idea of commonly used activation functions, consider

five top performing neural networks
1
in the MNIST [37] and CIFAR-

10 [35] datasets. Collectively they support the following activation

functions: ReLU [38, 49, 55], leaky ReLU [31, 53], maxout [16, 42]

and tanh [18]. In addition, sigmoidal activation functions are com-

monly used in language modeling. Finally, as we saw in Section 2.1.3

common pooling operations are mean and max pooling.

We thus argue that for an ONN transformation technique
to be useful in practice, it should support all of the above
commonly used neural network operations. We describe these

in Sections 3 to 5.

Note that although softmax is a popular operation used in the

last layer, it can be left out of an ONN [27] (e.g., the input to the

softmax layer can be returned to the client) because its application

is order-preserving and thus will not change the prediction result.

2.2 Cryptographic preliminaries
2.2.1 Secure two-party computation. Secure two-party compu-

tation (2PC) is a type of protocols that allow two parties to jointly

compute a function (f1 (x ,y), f2 (x ,y)) ← ℱ (x ,y) without learning
each other’s input. It offers the same security guarantee achieved

by a trusted third party TTP running ℱ : both parties submit their

inputs (i.e., x and y) to TTP, who computes and returns the corre-

sponding output to each party, so that no information has been

leaked except the information that can be inferred from the outputs.

Basically, there are three techniques to achieve 2PC: arithmetic
secret sharing [8], boolean secret sharing [28] and Yao’s garbled
circuits [57, 58]. Each technique has its pros and cons, and they

can be converted among each other. The ABY framework [20] is a

state-of-the-art 2PC library that implements all three techniques.

2.2.2 Homomorphic encryption. Apublic key encryption scheme

is additively homomorphic if given two ciphertexts x̂1 := E (pk ,x1)
and x̂2 := E (pk ,x2), there is a public-key operation ⊕ such that

E (pk ,x1 + x2) ← x̂1 ⊕ x̂2. Examples of such schemes are Paillier’s

encryption [47], and exponential ElGamal encryption [23]. This

kind of encryption schemes is simply referred to as homomorphic
encryption (HE).

As an inverse of addition, subtraction ⊖ is trivially supported

by additively homomorphic encryption. Furthermore, adding or

multiplying a ciphertext by a constant is efficiently supported:

E (pk ,a + x) ← a ⊕ x̂ and E (pk,a · x1) ← a ⊗ x̂1.

To do both addition and multiplication between two ciphertexts,

fully homomorphic encryption (FHE) or leveled homomorphic en-

cryption (LHE) is needed. However, FHE requires expensive boot-

strapping operations and LHE only supports a limited number of

homomorphic operations.

2.2.3 Single instruction multiple data (SIMD). The ciphertext of
a (homomorphic) encryption scheme is usually much larger than

the data being encrypted, and the homomorphic operations on the

ciphertexts take longer time than those on the plaintexts. One way

to alleviate this issue is to encode several messages into a single

plaintext and use the single instruction multiple data (SIMD) [52]

technique to process these encrypted messages in batch without

introducing any extra cost. The LHE library [22] has implemented

SIMD based on the Chinese Reminder Theorem (CRT). In this paper,

we use x̃ to denote the encryption of a vector [x1, ...,xn] in batch

using the SIMD technique.

The SIMD technique can also be applied to secure two-party

computation to reduce the memory footprint of the circuit and

improve the circuit evaluation time [11]. In traditional garbled

circuits, each wire stores a single input, while in the SIMD version,

an input is split across multiple wires so that each wire corresponds

to multiple inputs. The ABY framework [20] supports this.

3 PROBLEM STATEMENT
We consider the generic setting for cloud-based prediction services,

where a server 𝒮 holds a neural network model, and clients 𝒞s
submit their input to learn corresponding predictions. The model

is defined as:

z := (WL · fL−1 (... f1 (W1 · X + B1)...) + bL) (3)

The problemwe tackle is how to design oblivious neural networks: af-
ter each prediction, 𝒮 learns nothing about X, and 𝒞 learns nothing

about (W1,W2, ...,WL) and (B1,B2, ...,bL) except z.

Adversary model.We assume that either 𝒮 or 𝒞 can be compromised

by an adversary 𝒜, but not at the same time. We assume 𝒜 to be

semi-honest, i.e., it directs the corrupted party to follow the protocol

specification in real-world, and submits the inputs it received from

the environment to TTP in ideal-world. A compromised 𝒮 tries to

learn the values in X, and a compromised 𝒞 tries to learn the values

in W and B. We do not aim to protect the sizes of X, W, B, and
which f () is being used. However, 𝒮 can protect such information

by adding dummy layers. Note that 𝒞s can, in principle, use 𝒮’s
prediction service as a blackbox oracle to extract an equivalent

or near-equivalent model (model extraction attacks [54]), or even

infer the training set (model inversion [25] or membership infer-
ence attacks [51]). However, in a client-server setting, 𝒮 can rate

limit prediction requests from a given 𝒞, thereby slowing down or

bounding this information leakage.

4 MINIONN OVERVIEW
In this section, we explain the basic idea of MiniONN by transform-

ing a toy neural network of the form:

z :=W′ · f (W · x + b) + b′ (4)

3

where x =
[
x1

x2

]
,W =

[
w1,1 w1,2

w2,1 w2,2

]
, b =

[
b1

b2

]
,W′ =

[
w ′

1,1 w ′
1,2

w ′
2,1 w ′

2,2

]

and b′ =
[
b ′

1

b ′
2

]
.

The core idea of MiniONN is to have 𝒮 and 𝒞 additively share
each of the input and output values for every layer of a neural

network. That is, at the beginning of every layer, 𝒮 and 𝒞 will each

hold a “share” such that modulo addition of the shares is equal to

the input to that layer in the non-oblivious version of that neural

network. The output values will be used as inputs for the next layer.

To this end, we have 𝒮 and 𝒞 first engage in a precomputation
phase (which is independent 𝒞’s input x), where they jointly gen-

erate a set of dot-product triplets ⟨u,v,w · r⟩ for each row of the

weight matrices (W and W′ in this example). Specifically, for each

row w, 𝒮 and 𝒞 run a protocol that securely implements the ideal

functionality ℱ
triplet

(in Figure 1) to generate dot-product triplets,

such that:

u1 +v1 (mod N) = w1,1r1 +w1,2r2,

u2 +v2 (mod N) = w2,1r1 +w2,2r2,

u ′
1
+v ′

1
(mod N) = w ′

1,1r
′
1
+w ′

1,2r
′
2
,

u ′
2
+v ′

2
(mod N) = w ′

2,1r
′
1
+w ′

2,2r
′
2
.

Input:
• 𝒮 : a vector w ∈ ZnN ;

• 𝒞: a random vector r ∈ ZnN .

Output:
• 𝒮 : a random number u ∈ ZN ;

• 𝒞: v ∈ ZN , s.t., u +v (mod N) = w · r.

Figure 1: Ideal functionality ℱ
triplet

: generate a dot-product triplet.

When 𝒞 wants to ask 𝒮 to compute the predictions for a vec-

tor x = [x1,x2], for each xi , 𝒞 chooses a triplet generated in the

precomputation phases and uses its ri value to blind xi .

x𝒞
1

:= r1, x
𝒮
1

:= x1 − r1 (mod N),

x𝒞
2

:= r2, x
𝒮
2

:= x2 − r2 (mod N).

𝒞 then sends x𝒮 to 𝒮 , who calculates

y𝒮
1

:= w1,1x
𝒮
1
+w1,2x

𝒮
2
+ b1 + u1 (mod N),

y𝒮
2

:= w2,1x
𝒮
1
+w2,2x

𝒮
2
+ b2 + u2 (mod N).

Meanwhile, 𝒞 sets:

y𝒞
1

:= v1 (mod N),

y𝒞
2

:= v2 (mod N).

It is clear that

y𝒞
1
+ y𝒮

1
(mod N) = w1,1x1 +w1,2x2 + b1 and

y𝒞
2
+ y𝒮

2
(mod N) = w2,1x1 +w2,2x2 + b2.

Therefore, at the end of this interaction, 𝒮 and 𝒞 additively share

the output values y resulting from the linear transformation in

layer 1 without 𝒮 learning the input x and neither party learning y.
In Section 5.2 we describe the detailed operations for making linear

transformations oblivious.

For the activation/pooling operation f (), 𝒮 and 𝒞 run a protocol

that securely implements the ideal functionality in Figure 2, which

implicitly reconstructs each yi := y𝒞i + y
𝒮
i (mod N) and returns

x𝒮i := f (yi) − x
𝒞
i to 𝒮 , where x𝒞i is 𝒞’s component of a previously

shared triplet from the precompuation phase, i.e., x𝒞
1

:= r ′
1
and

x𝒞
2

:= r ′
2
. In Sections 5.3 and 5.4, we show how the ideal function-

ality in Figure 2 can be concretely realized for commonly used

activation functions and pooling operations.

Input:
• 𝒮 : y𝒮 ∈ ZN ;

• 𝒞: y𝒞 ∈ ZN .

Output:
• 𝒮 : a random number x𝒮 ∈ ZN ;

• 𝒞: x𝒞 ∈ ZN s.t., x𝒞 + x𝒮 (mod N) = f (y𝒮 +
y𝒞 (mod N)).

Figure 2: Ideal functionality: oblivious activation/pooling f ().

The transformation of the final layer is the same as the first layer.

Namely, 𝒮 calculates:

y𝒮
1

:= w ′
1,1x

𝒮
1
+w ′

1,2x
𝒮
2
+ b ′

1
+ u ′

1
(mod N),

y𝒮
2

:= w ′
2,1x

𝒮
1
+w ′

2,2x
𝒮
2
+ b ′

2
+ u ′

2
(mod N);

and 𝒞 sets:

y𝒞
1

:= v ′
1
(mod N),

y𝒞
2

:= v ′
2
(mod N).

At the end, 𝒮 returns [y𝒮
1
,y𝒮

2
] back to 𝒞, who outputs the final

predictions:

z1 := y𝒞
1
+ y𝒮

1
,

z2 := y𝒞
2
+ y𝒮

2
.

Note thatMiniONNworks in ZN , while neural networks require

floating-point calculations. A simple solution is to scale the floating-

point numbers up to integers by multiplying the same constant to

all values and drop the fractional parts. A similar technique is used

to reduce memory requirements in neural network predictions,

at negligible loss of accuracy [41]. We must make sure that the

absolute value of any (intermediate) results will not exceed ⌊N /2⌋.

5 MINIONN DESIGN
5.1 Dot-product triplet generation
Recall that we introduce a precomputation phase to generate dot-

product triplets, which are similar to themultiplication triplets used
in secure computations [8]. Multiplication triplets are typically

generated in two ways: using homomorphic encryption (HE-based)

or using oblivious transfer (OT-based). The former is efficient in

terms of communication, whereas the latter is efficient in terms of

computation. Both approaches can be optimized for the dot-product

generation [43]. In the HE-based approach, dot-products can be

calculated directly on ciperhtexts, so that both communication and

decryption time can be reduced.

We further improve the HE-based approach using the SIMD

batch processing technique. The protocol is described in Figure 3.

Using the SIMD technique, 𝒮 encrypts the whole vector w into a

single ciphertext of additively homomorphic encryption. 𝒞 com-

putes ũ← r⊗w̃⊖v, where r and v are random vectors generated by

𝒞. 𝒮 decrypts ũ and outputs the sum of u. Meanwhile, 𝒞 outputs the

4

sum of v. Even though 𝒮 and 𝒞 need to generate new dot-product

triplets for each prediction request, 𝒮 only needs to transfer w̃s
once for all predictions. Furthermore, it can pack multiple ws into

a single ciphertext if needed.

Input:
𝒮 : w ∈ ZnN
𝒞: r ∈ ZnN
Output:
𝒮 : a random number u ∈ ZN ;

𝒞: v ∈ ZN , s.t., u +v (mod N) = w · r.

𝒮 : 𝒞:

w̃← E (pks ,w) v
$

←− ZnNw̃

ũ← r ⊗ w̃ ⊖ v
ũ

u ←
∑
(D (sks , ũ)) v ←

∑
(v)

output u output v

Figure 3: Dot-product triplet generation.

Theorem 1. The protocol in Figure 3 securely implements ℱ
triplet

in the presence of semi-honest adversaries, if E () is semantically secure.

Proof. Our security proof follows the ideal-world/real-world

paradigm: in real-world, parties interact according to the proto-

col specification, whereas in ideal-world, parties have access to a

trusted party TTP that implements ℱ
triplet

. The executions in both

worlds are coordinated by the environment ℰ , who chooses the

inputs to the parties and plays the role of a distinguisher between

the real and ideal executions. We aim to show that the adversary’s

view in real-wold is indistinguishable to that in ideal-world.

Security against a semi-honest server. First, we prove security against
a semi-honest server by constructing an ideal-world simulator Sim
that performs as follows:

(1) receives w from the environment ℰ ; Sim sends w to TTP
and gets the result u;

(2) starts running 𝒮 on input w, and receives w̃;

(3) randomly splits u into a vector u′ s.t., u =
∑
u′;

(4) encrypts u′ using 𝒮’s public key and returns ũ′ to 𝒮 ;
(5) outputs whatever 𝒮 outputs.

Next, we show that the view Sim simulates for𝒮 is indistinguishable

from the view of 𝒮 interacting in the real execution. 𝒮’s view in

the real execution is u = w · r − v while its view in the ideal

execution is u′ = [r ′
1
, ...,r ′n]. So we only need to show that any

elementwiri −vi (mod N) in u is indistinguishable from a random

number r ′i . This is clear true since vi is randomly chosen.

At the end of the simulation, 𝒮 outputs u ←
∑
u, which is the

same as real execution. Thus, we claim that the output distribution

of ℰ in real-world is computationally indistinguishable from that

in ideal-world.

Security against a semi-honest client.Next, we prove security against
a semi-honest client by constructing an ideal-world simulator Sim
that works as follows:

(1) receives r from ℰ , and sends it to TTP;
(2) starts running 𝒞 on input r;
(3) constructs w̃′ ← E (pk ′s ,[0, ...,0]) where pk ′s is randomly

generated by Sim;

(4) gives w̃′ to 𝒞;
(5) outputs whatever 𝒞 outputs.

𝒞’s view in real execution is E (pks ,w), which is computationally in-

distinguishable from its view in ideal execution i.e., E (pk ′s , [0, ...,0])
due to the semantic security of E (). Thus, the output distribution
of ℰ in real-world is computationally indistinguishable from that

in ideal-world. □

5.2 Oblivious linear transformations
Recall that when 𝒞 wants to request 𝒮 to compute predictions for

an input X, it blinds each value of X using a random value r from a

dot-product triplet generated earlier: x𝒮 := x − r (mod N). Then,
𝒞 sets X𝒞 = R, and sends X𝒮

to 𝒮 . The security of the dot-product

generation protocol guarantees that 𝒮 knows nothing about the r
values. Consequently, 𝒮 cannot get any information about X from

X𝒮
if all rs are randomly chosen by 𝒞 from ZN .

Upon receiving X𝒮
, 𝒮 will input it to the first layer which is typ-

ically a linear transformation layer. As we discussed in Section 2.1,

all linear transformations can be turned into matrix multiplica-

tions/additions: Y =W · X + B. Figure 4 shows the oblivious linear
transformation protocol. For each row of W and each column of

X𝒞
, 𝒮 and 𝒞 jointly generate a dot-product triplet:u+v (mod N) =

w ·x𝒞 . SinceX𝒞
is independent ofX, they can generate such triplets

in a precomputation phase. Next, 𝒮 calculates Y𝒮
:=W ·X𝒮 +B+U,

and meanwhile 𝒞 sets Y𝒞
:= V. Consequently, each element of Y𝒮

and Y𝒞
satisfy:

y𝒮 + y𝒞 = w · x𝒮 + b + u +v

= w1 (x1 − x
𝒞
1
)+, ...,+wl (xl − x

𝒞
l) + b + u +v

= (w1x1+, ...,+wlxl + b) − (w1x
𝒞
1
+, ...,+wlx

𝒞
l) + u +v

= y

Due to the fact that ⟨U,V⟩ are securely generated by ℱ
triplet

, the

outputs of this layer (which are the inputs to the next layer) are also

randomly shared between 𝒮 and 𝒞, i.e., Y𝒞 = V and Y𝒮 = Y − V
can be used as inputs for the next layer directly.

It is clear that the view of both 𝒮 and 𝒞 are identical to their

views under the dot-product triplet generation protocol. Therefore,

the oblivious linear transformation protocol is secure if ℱ
triplet

is

securely implemented.

A linear transformation layer can also follow an activation layer

or a pooling layer. So, we need to design the oblivious activa-

tion/pooling operations in a way that their outputs can be the

inputs to linear transformations: X𝒮
and X𝒞

s.t. X𝒮 +X𝒞 = X and

X𝒞
has been used to generate the dot-product triplets for the next

layer. See the following sections.

5

Input:
𝒮 : W ∈ Zm×lN , X𝒮 ∈ Zl×nN , B ∈ Z

m×n
N

𝒞: X𝒞 ∈ Zl×nN
Output:
𝒮 : A random matrix Y𝒮

𝒞: Y𝒞
s.t., Y𝒞 + Y𝒮 =W · (X𝒞 + X𝒮) + B

𝒮 : 𝒞:
precomputation

for i = 1 to m
for j = 1 to n

(ui,j ,vi,j) ← ℱ
triplet

(wi ,x𝒞j)

end
end

Y𝒮
:=W · X𝒮 + B + U Y𝒞

:= V
output Y𝒮 output Y𝒞

Figure 4: Oblivious linear transformation.

5.3 Oblivious activation functions
In this section, we introduce the oblivious activation function which

receives y𝒞 from 𝒞 and y𝒮 from 𝒮 , and outputs x𝒞 to 𝒞 and x𝒮 :=

f (y𝒮 +y𝒞) − x𝒞 to 𝒮 , where x𝒞 is a random number generated by

𝒞. Note that if the next layer is a linear transformation layer, x𝒞

should be the random value that has been used by 𝒞 to generate a

dot-product triplet in the precompuation phase. On the other hand,

if the next layer is a pooling layer, x𝒞 can be generated on demand.

5.3.1 Oblivious piecewise linear activation functions. Piecewise
linear activation functions are widely used in image classifications

due to their outstanding performance in training phase as demon-

strated by Krizhevsky et al. [36]. We take ReLU as an example to

illustrate how to transform piecewise linear functions into their

oblivious forms. Recall that ReLU is f (y) =max (0,y), where y is

additively shared between 𝒮 and 𝒞. An oblivious ReLU protocol

will reconstructy and returnmax (0,y)−x𝒞 to 𝒮 . This is equivalent
to the ideal functionality ℱReLU in Figure 5.

Input:
• 𝒮 : y𝒮 ∈ ZN ;

• 𝒞: y𝒞 ,r ∈ ZN .

Output:
• 𝒮 : x𝒮 := compare (y,0) · y − r (mod N) where y =
y𝒮 + y𝒞 (mod N);

• 𝒞: x𝒞 := r .

Figure 5: The ideal functionality ℱReLU.

ℱReLU can be trivially implemented by a 2PC protocol. Specifi-

cally, we use a garbled circuit to reconstruct y and calculate b :=

compare (y,0) to determine whethery ≥ 0 or not. Ify ≥ 0, it returns

y, otherwise, it returns 0. This is achieved by multiplying y with

b. The only operations we need for oblivious ReLU are +,−, · and

compare , all of which are supported by the 2PC library [20] we used.

So both implementation and security argument are straightforward.

Oblivious leaky ReLU can be constructed in the same way as

oblivious ReLU, except that 𝒮 gets:

x𝒮 := compare (y,0) · a · y + (1 − compare (y,0)) · y − r (mod N).

5.3.2 Oblivious smooth activation functions. Unlike piecewise
linear functions, it is non-trivial to make smooth functions oblivi-

ous. For example, in the sigmoid function f (y) = 1

1+e−y , both ey

and division are expensive to be computed by 2PC protocols [48].

Furthermore, it is difficult to keep track of the floating point value

of ey , especially when y is blinded. It is well-known that such

functions can be approximated locally by high-degree polynomials,

but oblivious protocols can only handle low-degree approximation

polynomials efficiently. To this end, we adapt an approximation

method that can be efficiently computed by an oblivious protocol

and incurs negligible accuracy loss.

Approximation of smooth functions. A smooth function f () can be

approximated by a set of piecewise continuous polynomials, i.e.,

splines [21]. The idea is to split f () into several intervals, in each of

which, a polynomial is used to to approximate f (). The polynomials

are chosen such that the overall goodness of fit is maximized. The

approximation method is detailed in the following steps:

(1) Set the approximation range [α1,αn], selectn equally spaced
samples (including α1 and αn). The resulting sample set is

{α1, ...,αn }
(2) For each αi , calculate βi := f (αi).
(3) Findm switchover positions (i.e., knots) for polynomials

expressions:

(a) fit an initial approximation
¯f of order d for the dataset

{αi ,βi } using polynomial regression (without knots);

(b) select a new knot α̇i ∈ {α1, . . . ,αn } and fit two new

polynomial expressions on each side of the knot (the

knot is chosen such that the overall goodness of fit is

maximized);

(c) repeat (b) until the number of knots equalsm.

The set of knots is now {α̇1, ..., α̇m }. Note that α̇1 = α1 and

α̇m = αn .
(4) Fit a smoothing spline ([21], Chapter 5) of the same or-

der using the knots {αi } on the dataset {αi ,βi } and ex-

tract the polynomial expression Pi (α) in the each interval

[α̇i , α̇i+1],i ∈ {1,m − 1}.2

(5) Set boundary polynomials P0 () (for α < α̇1) and Pm () (for
α > α̇m), which are chosen specifically for f () to closely

approximate the behaviour beyond the ranges [α1,αn].

Thus, we split f () into m + 1 intervals, and each has a

separate polynomial expression.
3

2
We use the functions in the library scipy.interpolate.UnivariateSpline and

numpy.polyfit [33]

3
We apply post-processing to the polynomials to ensure they are within upper and

lower bounds of the function f (), and to ensure that the approximate function
¯f is

monotonic (if f () is).

6

(6) The final approximation is:

¯f (α) =

P0 (α) if α < α̇1

P1 (α) if α̇1 ≤ α < α̇2

. . .

Pm−1 (α) if α̇m−1 ≤ α < α̇m

Pm (α) if α ≥ α̇m ,

(5)

Note that any univariate monotonic functions can be fitted by

above procedure.

Oblivious approximated sigmoid. We take sigmoid as an example to

explain how to transform smooth activation functions into their

oblivious forms. We set the polynomial degree d as 1, since linear

functions (as opposed to higher-degree polynomials) are faster and

less memory-consuming to be computed by 2PC. The approximated

sigmoid function is as follows:

¯f (y) =

0 if y < y1

a1y + b1 if y1 ≤ y < y2

. . .

am−1y + bm−1 if ym−1 ≤ y < ym

1 if y ≥ ym ,

(6)

We will show (in Section 6.2) that it approximates sigmoid with

negligible accuracy loss.

The approximated sigmoid function (Equation 6) is in fact a

piecewise linear function. So it can be transformed in the same

way as we explained in Section 5.3.1. The ideal functionality for the

approximated sigmoid ℱ
sigmoid

is shown in Figure 6. Correctness

of this functionality follows the fact that, for yi ≤ y < yi+1:

x = ((aiy + bi) − (ai+1y + bi+1)) + ((aiy + bi) − (ai+1y + bi+1))
+... + ((am−1y + bm−1) − 1) + 1

Input:
• 𝒮 : y𝒮 ∈ ZN ;

• 𝒞: y𝒞 ,r ∈ ZN .

Output:
• 𝒮 : x𝒮 := compare (y1,y) · (0 − (a1y + b1))

+compare (y2,y) · ((a1y + b1) − (a2y + b2))
...

+compare (ym−1,y) · ((am−1y + bm−1) − 1) + 1

−r (mod N), where y = y𝒮 + y𝒞 (mod N);
• 𝒞: x𝒞 := r .

Figure 6: The ideal functionality ℱ
sigmoid

.

Even though it is more complex thanℱReLU, it can still be realized

easily using the basic functionalities provided by 2PC.

5.4 Oblivious pooling operations
The pooling layer arranges the inputs into several groups and take

the max or mean of the elements in each group. For mean pooling,

we just have𝒮 and 𝒞 calculate the sum of their respective shares and

keep track of the divisor. For max pooling, we use garbled circuits to

realize the ideal functionality ℱmax in Figure 7, which reconstructs

each yi and returns the largest one masked by a random number.

The max function can be easily achieved by the compare function.

Inputs:
• 𝒮 : {y𝒮

1
, ...,y𝒮n };

• 𝒞: {y𝒞
1
, ...,y𝒞n }, r .

Outputs:
• 𝒮 : x𝒮 := max (y1, ...,yn) − r (mod N) where y1 =

y𝒮
1
+ y𝒞

1
(mod N) ... yn = y

𝒮
n + y

𝒞
n (mod N);

• 𝒞: x𝒞 := r .

Figure 7: The ideal functionality ℱmax.

Note that the obliviousmaxout activation can be trivially realized
by the ideal functionality ℱmax.

5.5 Remarks
5.5.1 Oblivious square function. The square function (i.e., f (y) =

y2
) is also used as an activation function in [27, 43], because it is

easier to be transformed into an oblivious form. We implement

an oblivious square function by realizing the ideal functionality in

Figure 8 using arithmetic secret sharing.

Input:
• 𝒮 : y𝒮 ∈ ZN ;

• 𝒞: y𝒞 ,r ∈ ZN .

Output:
• 𝒮 : x𝒮 := y2 − r (mod N) where y = y𝒮 +y𝒞 (mod N);
• 𝒞: x𝒞 := r .

Figure 8: The ideal functionality ℱSquare.

5.5.2 Dealing with large numbers. Recall that we must make

sure that the absolute value of any (intermediate) results will not ex-

ceed ⌊N /2⌋. However, the data range grows exponentially with the

number of multiplications, and it grows even faster when the float-

ing point numbers are scaled to integers. Furthermore, the SIMD

technique will shrink the plaintext space so that it cannot encrypt

large numbers. As a result, only a limited number of multiplications

can be supported.

To this end, CryptoNets uses Chinese Remainder Theorem (CRT)

to split large numbers into multiple small parts, work on each part

individually, and combines the results in the end [27]. This method

allows encryptions of exponentially large numbers in linear time

and space, but the overhead grows linearly with the number of

split parts. On the other hand, SecureML has both parties truncate

their individual shares independently [43]. This method may incur

a small error in each intermediate result, which may affect the final

prediction accuracy.

We implement the ideal functionality in Figure 9 using garbled

circuit to securely scale down the data range without affecting

accuracy. It reconstructs y and shift it left by L bits, where L is

a constant known to both 𝒮 and 𝒞. This is equivalent to x𝒮 :=⌊ y
2
L

⌋
− r (mod N). They can run this protocol after each layer, or

whenever needed.

7

Input:
• 𝒮 : y𝒮 ∈ ZN ;

• 𝒞: y𝒞 ,r ∈ ZN .

Output:
• 𝒮 : x𝒮 := leftshift (y,L) − r (mod N) where y = y𝒮 +
y𝒞 (mod N);

• 𝒞: x𝒞 := r .

Figure 9: The ideal functionality ℱtrunc.

6 PERFORMANCE EVALUATION
We implementedMiniONN in C++ using Boost

4
for networking.We

used the ABY [20] library for secure two-party computation with

128-bit security parameter and SIMD circuits. We used YASHE [12]

for additively homomorphic encryption, a SIMD version of which is

supported by the SEAL library [22]. The YASHE encryption scheme

works over the ring ZN [x]/(xn+1). The degree of polynomial mod-

ulus n determines the plaintext modulus N as well as the number

of elements that can be packed in a single ciphertext. We made a

tradeoff and chose n =4 096, so that we can encrypt 4 096 elements

together in a reasonable encryption time and ciphertext size. Then

we chose the largest possible plaintextmodulus:N =101 285 036 033,
which is large enough for the needed precision since we securely

scale down the value when it becomes large as we discussed in

Section 5.5.2.

To evaluate its performance, we ran the server-side program on

a remote computer (Intel Core i5 CPU with 4 3.30 GHz cores and 16

GB memory) and the client-side program on a local desktop (Intel

Core i5 CPU machine with 4 3.20 GHz cores and 8 GB memory).

We used the Clocks module in C++ for time measurement and used

TCPdump for bandwidth measurement. We measured response

latency (including the network delay) and message sizes during

the whole procedure, i.e., from the time 𝒞 begins to generate its

request to the time it obtains the final predictions. Each experiment

was repeated 5 times and we calculated the mean and standard

deviation. The standard deviations in all reported results are less

than 3%.

6.1 Comparisons with previous work
TheMNIST dataset [37] consists of 70 000 black-white hand-written

digit images (of size 1 × 28 × 28: width and height are 28 pixels) in

10 classes. There are 60 000 training images and 10 000 test images.

Since previous work use MNIST to evaluate their techniques, we

use it to provide a direct comparison with prior work..

Neural network in SecureML [43]. We reproduced the model (Fig-

ure 10) presented in SecureML [43]. It uses multi-layer perceptron

(MLP) model with square as the activation function and achieves an

accuracy of 93.1% in the MNIST dataset. We improve the accuracy

of this model to 97.6% by using the Limited-memory BFGS [39] op-
timization algorithm and batch normalization during training. We

transformed this model withMiniONN and compared the results

with those reported in [27].

4
http://www.boost.org

(1) Fully Connected: input image 28 × 28, connects the incoming 784 nodes

to the outgoing 128 nodes: R128×1 ← R128×784 · R784×1
.

(2) Square Activation: squares the value of each input.

(3) Fully Connected: connects the incoming 128 nodes to the outgoing 128

nodes: R128×1 ← R128×128 · R128×1
.

(4) Square Activation: squares the value of each input.

(5) Fully Connected: fully connects the incoming 128 nodes to the outgoing

10 nodes: R10×1 ← R10×128 · R128×1
.

Figure 10: The neural network presented in SecureML [43].

The results (Table 2) show thatMiniONN achieves comparable

online performance and significantly better offline performance.

We take the first layer as an example to explain why the SIMD batch

processing technique improves the performance of offline phase.

The first layer connects 784 incoming nodes to 128 outgoing nodes,

which leads to a matrix multiplication: R128×1 ← R128×784 ·R784×1
.

In SecureML [43], 𝒞 encrypts each of the 784 elements separately

and sends them to 𝒮 , which leads to 784 encryptions and ciphertext

transfers. 𝒮 applies each row of the matrix to the ciphertexts to cal-

culate an encrypted dot-product, which leads to 784×128 = 100 352

homomorphic multiplications. Then 𝒮 returns the resulting 128

ciphetexts to 𝒞, who decrypts them, which leads to another 128

ciphertext transfers and 128 decryptions. On the other hand, we

duplicate the 784 elements into 128 copies, and encrypt them into

25 ciphertexts, since each ciphertext can pack 4096 elements. 𝒮
encodes the matrix into 25 batches and multiplies them to the ci-

phertexts, which only leads to 25 homomorphic multiplications.

Table 3 summarizes this comparison.

Square/MLP/MNIST (Figure 10)

Latency (s) Message Sizes (MB)

offline online offline online

Transformed by SecureML [43] 4.7 0.18

not

reported

not

reported

Transformed by MiniONN 0.9 0.14 3.8 12

Table 2: Comparison: MiniONN vs. SecureML [43].

SecureML [43] MiniONN
homomorphic encryptions 784 25

homomorphic multiplications 100 352 25

ciphertext transfers 912 50

homomorphic decryptions 128 25

Table 3: Comparison: MiniONN vs. SecureML [43], dot-product
triplet generations.

Neural network in CryptoNets [27].We reproduced the model (Fig-

ure 11) presented in CryptoNets [27]. It is a CNNmodel with square

as the activation function as well, and uses mean pooling instead

of max pooling. Due to the convolution operation, it achieves a

higher accuracy of 98.95% in the MNIST dataset. We transformed

this model with MiniONN and compared its performance with the

results reported in CryptoNets [27]. Table 4 shows that MiniONN
achieves 230-fold reduction in latency and 8-fold reduction in mes-

sage sizes, without degradation in accuracy. CryptoNets uses the

SIMD technique to batch different requests to achieve a throughput

of 51 739 predictions per hour, but these requests must be from the

same client. In scenarios where the same client sends a very large

8

number of prediction requests and can tolerate response latency

in the order of minutes, CryptoNets can achieve 6-fold throughput

than MiniONN. In scenarios where each client sends only a small

number of requests but needs quick responses,MiniONN decisively

outperforms CryptoNets.

(1) Convolution: input image 28× 28, window size 5× 5, stride (2, 2), number

of output channels 5. It can be converted to matrix multiplication [17]:

R5×169 ← R5×25 · R25×169
.

(2) Square Activation: squares the value of each input.

(3) Pool: combination of mean pooling and linear transformation: R100×1 ←

R100×845 · R845×1
.

(4) Square Activation: squares the value of each input.

(5) Fully Connected: fully connects the incoming 100 nodes to the outgoing

10 nodes: R10×1 ← R10×100 · R100×1
.

Figure 11: The neural network presented in CryptoNets [27].

Square/CNN/MNIST (Figure 10)

Latency (s) Message Sizes (MB)

offline online offline online

Transformed by CryptoNets [27] 0 297.5 0 372.2

Transformed by MiniONN 0.88 0.4 3.6 44

Table 4: Comparison: MiniONN vs. CryptoNets [27].

6.2 Evaluations with realistic models
As we stated in Section 2, a useful ONN transformation technique

must support commonly used neural network operations. Both

CryptoNets and SecureML [43] fall short on this count. In this

section we discuss performance evaluations of realistic models that

are built with popular neural network operations using several

different standard datasets.

Handwriting recognition: MNIST.We trained and implemented an-

other neural network (Figure 12) using the MNIST dataset, but

using ReLU as the activation function. The use of ReLU with a more

complex neural network increases the accuracy of the model in

MNIST to 99.31%, which is close to the state-of-the-art accuracy in

the MNIST dataset (99.79%)
5
.

(1) Convolution: input image 28× 28, window size 5× 5, stride (1, 1), number

of output channels of 16: R16×576 ← R16×25 · R25×576
.

(2) ReLU Activation: calculates ReLU for each input.

(3) Max Pooling: window size 1 × 2 × 2 and outputs R16×12×12
.

(4) Convolution: window size 5 × 5, stride (1, 1), number of output channels

16: R16×64 ← R16×400 · R400×64
.

(5) ReLU Activation: calculates ReLU for each input.

(6) Max Pooling: window size 1 × 2 × 2 and outputs R16×4×4
.

(7) Fully Connected: fully connects the incoming 256 nodes to the outgoing

100 nodes: R100×1 ← R100×256 · R256×1
.

(8) ReLU Activation: calculates ReLU for each input

(9) Fully Connected: fully connects the incoming 100 nodes to the outgoing

10 nodes: R10×1 ← R10×100 · R100×1
.

Figure 12: The neural network trained from the MNIST dataset.

Image classification: CIFAR-10. CIFAR-10 [35] is a standard dataset

consisting of RGB images (of size 3 × 32 × 32, 3 color channels,

5
http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.

html (last accessed May 9, 2017)

width and height are 32) of everyday objects in 10 classes (e.g.,

automobile, bird etc.). The training set has 50 000 images while

the test set has 10 000 images. The neural network is detailed in

Figure 13. It achieves 81.61% prediction accuracy.

(1) Convolution: input image 3× 32× 32, window size 3× 3, stride (1, 1), pad
(1, 1), number of output channels 64: R64×1024 ← R64×27 · R27×1024

.

(2) ReLU Activation: calculates ReLU for each input.

(3) Convolution: window size 3× 3, stride (1, 1), pad (1, 1), number of output

channels 64: R64×1024 ← R64×576 · R576×1024
.

(4) ReLU Activation: calculates ReLU for each input.

(5) Mean Pooling: window size 1 × 2 × 2, outputs R64×16×16
.

(6) Convolution: window size 3× 3, stride (1, 1), pad (1, 1), number of output

channels 64: R64×256 ← R64×576 · R576×256
.

(7) ReLU Activation: calculates ReLU for each input.

(8) Convolution: window size 3× 3, stride (1, 1), pad (1, 1), number of output

channels 64: R64×256 ← R64×576 · R576×256
.

(9) ReLU Activation: calculates ReLU for each input.

(10) Mean Pooling: window size 1 × 2 × 2, outputs R64×16×16
.

(11) Convolution: window size 3× 3, stride (1, 1), pad (1, 1), number of output

channels 64: R64×64 ← R64×576 · R576×64
.

(12) ReLU Activation: calculates ReLU for each input.

(13) Convolution: window size 1 × 1, stride (1, 1), number of output channels

of 64: R64×64 ← R64×64 · R64×64
.

(14) ReLU Activation: calculates ReLU for each input.

(15) Convolution: window size 1 × 1, stride (1, 1), number of output channels

of 16: R16×64 ← R16×64 · R64×64
.

(16) ReLU Activation: calculates ReLU for each input.

(17) Fully Connected Layer: fully connects the incoming 1024 nodes to the

outgoing 10 nodes: R10×1 ← R10×1024 · R1024×1
.

Figure 13: The neural network trained from the CIFAR-10 dataset.

Languagemodeling: PTB. Penn Treebank (PTB) is a standard dataset [40]
for language modeling, i.e., predicting likely next words given the

previous words ([44], Chapter 27). We used a preprocessed version

of this dataset
6
, which consists of 929 000 training words, 73 000

validation words, and 82 000 test words.

Long Short Term Memory (LSTM) is a neural network architec-

ture that is commonly used for language modeling [32]. Sigmoidal

activation functions are typically used in such networks. We repro-

duced and transformed a recent LSTM model [59] following the

tutorial
7
in Tensorflow [1]. To the extent of our knowledge, this is

the first time language modeling is performed using oblivious mod-

els, which paves the way to oblivious neural machine translation.

The model is described in Figure 14.

We used the real sigmoid activation functions for training, but re-

placed themwith their corresponding approximations (Section 5.3.2)

for predictions. In our sigmoid approximation, we set the ranges as

[α0,αn] = [−30,30] and set the polynomials beyond the ranges as

0 and 1, i.e.,
¯f (y < −30) := 0 and

¯f (y > 30) := 1 as in Equation 6.
8

Unlike aforementioned image datasets, prediction quality here is

measured by a loss function called cross-entropy loss [44]. Figure 15
shows that the cross-entropy loss achieved by our approximation

method (with more than 12 pieces) is close to the original result

(4.76 vs. 4.74). We also test the new activation function that is pro-

posed in SecureML [43] as an alternative to the sigmoid function.

In this model, it causes the cross-entropy loss to diverge to infinity.

6
http://www.fit.vutbr.cz/~imikolov/rnnlm/

7
https://www.tensorflow.org/tutorials/recurrent, accessed April 20, 2017. We used the

‘small’ model configuration.

8
This is exactly as in the Theano deep learning framework [9], where this approxima-

tion for numerical stability.

9

http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html

(1) Fully Connected: input one-hot vector word 10000 × 1, fully connects the

input nodes to the outgoing 200 nodes: R200×1 ← R200×10000 · R10000×1
.

(2) LSTM: pad the incoming 200 nodes with another 200 nodes: R400×1 ←

R200×1 | R200×1
, and then process them as follows:

(a) R800×1 ← R800×400 · R400×1

(b) R200×1 | R200×1 | R200×1 | R200×1 ← R800×1

(c) R200 ← R200◦ sigmoid (R200)+sigmoid (R200)◦ tanh(R200)
(d) R200 ← sigmoid (R200)◦ tanh(R200)

(3) LSTM: pad the incoming 200 nodes with another 200 nodes: R400×1 ←

R200×1 | R200×1
, and then process them as follows:

(a) R800×1 ← R800×400 · R400×1

(b) R200×1 | R200×1 | R200×1 | R200×1 ← R800×1

(c) R200 ← R200◦ sigmoid (R200)+sigmoid (R200)◦ tanh(R200)
(d) R200 ← sigmoid (R200)◦ tanh(R200)

(4) Fully Connected: fully connects the incoming 200 nodes to the outgoing

10000 nodes: R10000×1 ← R10000×200 · R200×1
.

Figure 14: The neural network trained from the PTB dataset.

The optimal number of linear pieces differs on the model structure,

e.g., 14 pieces achieved optimal results on the larger models in [59].

10 11 12 13 14
Number of linear pieces

4.74
5.00

6.00

7.00

8.00

9.00

10.00

11.00

C
ro
ss
-e
n
tr
o
p
y
 l
o
ss

model without approximation

model with approximated
sigmoid and tanh

random prediction

Figure 15: Cross-entropy loss for models with approximated sig-
moid/tanh, evaluate over the full PTB test set.

Summary of results. Table 5 summarizes the results of the last three

neural networks after being transformed by MiniONN. The perfor-
mance of the ONNs in MNIST and PTB is reasonable, whereas the

ONN in CIFAR-10 is too expensive. This is due to the fact that the

model in CIFAR-10 (Figure 13) has 7 activation layers, and each layer

receives 2
10 − 2

16
neurons. In next section, we will discuss more

about the tradeoffs between prediction accuracy and overhead.

Latency (s) Message Sizes (MB)

offline online offline online

ReLU/CNN/MNIST (Figure 12) 3.58 5.74 20.9 636.6

ReLU/CNN/CIFAR-10 (Figure 13) 472 72 3046 6226

Sigmoidal/LSTM/PTB (Figure 14) 13.9 4.39 86.7 474

Table 5: Performance of MiniONN transformations of models with
common activation functions and pooling operations.

20 24 27 28 210 212 216

Number of invocations

100

101

102

103

104

105

106

La
te
n
cy
 [
m
s]

ReLU

Square

Sigmoid appr.
with 12 pieces

Max with 2 inputs

Max with 4 inputs

Max with 16 inputs

20 24 27 28 210 212 216

Number of invocations

10−1

100

101

102

103

104

105

M
e
ss
a
g
e
 s
iz
e
 [
M
B
]

ReLU

Square

Sigmoid appr.
with 12 pieces

Max with 2 inputs

Max with 4 inputs

Max with 16 inputs

Figure 16: Overhead of oblivious activation functions.

7 COMPLEXITY, ACCURACY AND
OVERHEAD

In Section 6, we demonstrated that, unlike prior work,MiniONN can

transform existing neural networks into oblivious variants. How-

ever, by simplifying the neural network model a designer can trade

off a small sacrifice in prediction accuracy with a large reduction

in the overhead associated with the ONN.

The relationship between model complexity and prediction ac-

curacy is well-known ([29], Chapter 6). In neural networks, model

complexity depends on the network structure: the number of neu-

rons (size of output from each layer), types of operations (e.g., choice

of activation functions) and the number of layers in the network.

While prediction accuracy can increase with model complexity, it

eventually saturates with some level of complexity.

Model complexity vs. prediction overhead. The overhead of linear

transformation is the same as non-private neural networks, sincewe

introduce a precomputation phase to generate dot-product triples.

Therefore, to investigate the overhead introduced by MiniONN,
we only need to consider the activation functions and pooling op-

erations in a given neural network model. Figure 16 shows the

performance of oblivious ReLU, oblivious square, oblivious sigmoid,

and oblivious max operations (used in both pooling and maxout

activation functions). Both message size and latency grow sublin-

early as the number of invocations increases. The experiments are

repeated five times for each point. The standard deviation is below

2.5% for all points.

Model complexity vs. prediction accuracy. The largest contribution to

overhead in the online phase are due to activation function usage.

We evaluated the performance of our ReLU/CNN/MNIST network

(Figure 12) by decreasing the number of neurons in linear layers and

10

the number of channels in convolutional layers, to a fraction α of

the original value, according to the changes introduced in Figure 17.

This effectively reduced the number of activation function instances

to the same fraction.

(1) Convolution: input image 28× 28, window size 5× 5, stride (1, 1), number

of output channels of ⌊α · 16⌋: R⌊α ·16⌋×576 ← R⌊α ·16⌋×25 · R25×576
.

(4) Convolution: window size 5 × 5, stride (1, 1), number of output channels

⌊α · 16⌋: R⌊α ·16⌋×(⌊α ·16⌋)2 ← R⌊α ·16⌋×400 · R400×(⌊α ·16⌋)2
.

(7) Fully Connected: fully connects the incoming ⌊α · 16⌋ ·16 nodes to the out-

going ⌊α · 100⌋ nodes: R⌊α ·100⌋×1 ← R⌊α ·100⌋×⌊(α ·16⌋·16) ·R(⌊α ·16⌋·16)×1
.

(9) Fully Connected: fully connects the incoming ⌊α · 100⌋ nodes to the out-

going 10 nodes: R10×1 ← R10×⌊α ·100⌋ · R⌊α ·100⌋×1
.

Figure 17: Alternative ReLU/CNNs trained from the MNIST dataset.

Figure 18 shows how prediction accuracy varies with α . It is
clear that the decline in prediction accuracy is very gradual in the

range 0.25 < α < 1 (corresponding 2
11.3

and 2
13.3

ReLU invo-

cations). From Figure 16, we observe that when α drops by 75%

from 1 (2
13.3

invocations) to 0.25 (2
11.3

invocations), performance

overhead also drops roughly by 75% (for both latency and message

size) but accuracy drops only by less than a percentage point.

210. 3210. 9211. 3 211. 9 212. 3 212. 7 212. 9 213. 1 213. 3

Number of ReLU invocations

95.0

96.0

97.0

98.0

98.5

99.0

99.5

A
cc
u
ra
cy
 (
%
)

0.
12
5

0.
18
8

0.
25
0

0.
37
5

0.
50
0

0.
62
5

0.
75
0

0.
87
5

1.
00
0

α

Figure 18: Model complexity vs. accuracy.

Accuracy vs. overhead. In Table 6, we estimated the overhead for

smaller variants of the ReLU/CNN/MNIST network, w.r.t. to the

base network overhead in Table 5. For example, columns 2 and 3 of

Table 6 show the estimated latencies and message sizes for different

accuracy levels. Thus, if the latency and message size for a partic-

ular ONN is perceived as too high, the designer has the option of

choosing a suitable point in the accuracy vs. overhead tradeoff. The

overhead estimates were approximated, but reasonably accurate.

For instance, an actual ReLU/CNN/MNIST model with only 25%

ReLU invocations results in 1.51s latency and 159.2MB message

sizes, both of which are close to the estimate for α = 0.25 in Table 6.

8 RELATEDWORK
Barni et al. [7] made the first attempt to construct oblivious neural

networks. They simply have 𝒮 do linear operations on 𝒞’s en-

crypted data and send the results back to 𝒞, who decrypts, applies

the non-linear transformations on the plaintexts, and re-encrypts

the results before sending them to 𝒮 for next layer processing.

Orlandi et al. [46] noticed that this process leaks significant in-

formation about 𝒮’s neural network, and proposed a method to

obscure the intermediate results. For example, when 𝒮 needs to

know siдn(x) from E (pkc ,x), they have 𝒮 sends a ⊗ E (pkc ,x) to 𝒞
with a > 0. Obviously, this leaks the sign of x to 𝒞. Our work is

targeted for the same setting as these works but provides stricter

security guarantees and has significantly better performance.

Gilad-Bachrach et al. [27] proposed CryptoNets based on leveled

homomorphic encryption (LHE). They introduced a simple square

activation function [27]: f (y) = y2
, because CryptoNets cannot

support commonly used activation functions due to the limitations

of LHE. They also used mean pooling instead of max pooling for

the same reason, even though the latter is more commonly used.

In contrast, MiniONN supports all operations commonly used by

neural network designers, does not require changes to how neural

networks are trained, and has significantly lower overheads at

prediction time. The privacy guarantees to the client are identical.

However, while CryptoNets can hide all information about model

from clients, MiniONN hides the model values (e.g., weight matrices

and bias vectors) while disclosing the number of layers, sizes of

weight matrices and the types of operations used in each layer. We

argue that this is a justifiable tradeoff for two reasons. First, the

performance gain resulting from the tradeoff are truly significant

(e.g., 740-fold improvement in online latency). Second, details of a

model that are disclosed by MiniONN (like the number of layers

and the types of operations) are exactly those that are described

in academic and white papers. Model values (like weight matrices

and bias vectors in each layer) are usually not disclosed in such

literature.

Chabanne et al. [15] also noticed the limited accuracy guarantees

of the square function in CryptoNets. They approximated ReLU

using a low degree polynomial, and added a normalization layer to

make a stable and normal distributed inputs to the activation layer.

However, they require a multiplicative depth of 6 in LHE, and they

did not provide benchmark results in their paper.

Most of the related works focus on the privacy of training phase

(see [4, 5, 30]). For example, Graepel et al. [30] proposed to use train-

ing algorithms that can be expressed as low degree polynomials, so

that the training phase can be done over encrypted data. Aslett et

al. [4, 5] presented ways to train both simple models (e.g., Naive

Bayes) as well as more advanced models (e.g., random forests) over

encrypted data. The work on differential privacy can also guarantee

the privacy in training phase (see [2, 26, 50]). By leveraging Intel

α Overhead

Accuracy (%)

Latency (s) Message size (MB)

1.000 5.72
∗

636.6
∗

99.31

0.875 5.01 557.0 99.27

0.750 4.29 447.5 99.26

0.625 3.58 397.9 99.19

0.500 2.87 317.6 98.96

0.375 2.15 238.7 98.79

0.250 1.44 (1.51
∗
) 158.4 (159.2

∗
) 98.42

0.188 1.07 119 97.35

0.125 0.72 79.0 95.72

Table 6: Accuracy vs. overhead. ∗ denotes actual values.

11

SGX combined with several data-oblivious algorithms, Ohrimenko

et al. [45] proposed a way to enable multiple parties to jointly

run a training algorithm while guaranteeing the privacy of their

individual datasets.

Recently, in SecureML Mohassel and Zhang proposed a two-

server model for privacy-preserving training [43]. Specifically, the

data owners distribute their data among two non-colluding servers

to train various models including neural networks using secure

two-party computation (2PC). While their focus is on training, they

also support privacy-preserving predictions. As such their work

is closest to ours. Independently of us, they too use a precompu-

tation stage to reduce the overhead during the online prediction

phase, support some popular activation functions like ReLU and

use approximations where necessary. MiniONN is different from

their work in several ways. First, by using the SIMD batch pro-

cessing technique, MiniONN achieves a significant reduction in

the overhead during precomputation without affecting the online

phase (Section 6.1). Second, their approximations require changes

to how models are trained while the distinguishing characteristic

of MiniONN is that it imposes no such requirement.

9 CONCLUSION AND FUTUREWORK
In this paper, we presentedMiniONN, which is the first approach

that can transform any common neural network into an oblivi-

ous form. Our benchmarks show thatMiniONN achieves signifi-

cantly lower response latency and message sizes compared to prior

work [27, 43].

We intend to design easy-to-use interfaces that allow developers

without any cryptographic background to useMiniONN directly.

We also intend to investigate whether our approach is applicable

to other machine learning models. As a next step, we plan to apply

MiniONN to the neural networks that are being used in production.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jef-

frey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Is-

ard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G.

Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin

Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-

Scale Machine Learning. In 12th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 16). USENIX Association, GA, 265–283. https:

//www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi

[2] Martín Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep Learning with Differential Privacy. In

Proceedings of the 2016 ACM SIGSACConference on Computer and Communications
Security (CCS ’16). ACM, New York, NY, USA, 308–318. https://doi.org/10.1145/

2976749.2978318

[3] Eliana Angelini, Giacomo di Tollo, and Andrea Roli. 2008. A neural network

approach for credit risk evaluation. The quarterly review of economics and finance
48, 4 (2008), 733–755.

[4] Louis JM Aslett, Pedro M Esperança, and Chris C Holmes. 2015. Encrypted

statistical machine learning: new privacy preserving methods. arXiv preprint
arXiv:1508.06845 (2015).

[5] Louis JM Aslett, Pedro M Esperança, and Chris C Holmes. 2015. A review of

homomorphic encryption and software tools for encrypted statistical machine

learning. arXiv preprint arXiv:1508.06574 (2015).
[6] Mauro Barni, Pierluigi Failla, Vladimir Kolesnikov, Riccardo Lazzeretti, Ahmad-

Reza Sadeghi, and Thomas Schneider. 2009. Secure Evaluation of Private Linear

Branching Programs with Medical Applications. In Computer Security - ESORICS
2009, 14th European Symposium on Research in Computer Security, Saint-Malo,
France, September 21-23, 2009. Proceedings. 424–439. http://dx.doi.org/10.1007/
978-3-642-04444-1_26

[7] M. Barni, C. Orlandi, and A. Piva. 2006. A Privacy-preserving Protocol for Neural-

network-based Computation. In Proceedings of the 8th Workshop on Multimedia

and Security (MM&Sec ’06). ACM, New York, NY, USA, 146–151. https://doi.org/

10.1145/1161366.1161393

[8] Donald Beaver. 1991. Efficient Multiparty Protocols Using Circuit Random-

ization. In Advances in Cryptology - CRYPTO ’91, 11th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 11-15, 1991,
Proceedings (Lecture Notes in Computer Science), Vol. 576. Springer, 420–432.
https://doi.org/10.1007/3-540-46766-1_34

[9] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pas-

canu, Guillaume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua

Bengio. 2010. Theano: A CPU and GPU math compiler in Python. In Proc. 9th
Python in Science Conf. 1–7.

[10] Christopher M. Bishop. 2006. Pattern Recognition and Machine Learning (Infor-
mation Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ,

USA.

[11] Dan Bogdanov, Roman Jagomägis, and Sven Laur. 2012. A Universal Toolkit

for Cryptographically Secure Privacy-preserving Data Mining. In Proceedings
of the 2012 Pacific Asia Conference on Intelligence and Security Informatics
(PAISI’12). Springer-Verlag, Berlin, Heidelberg, 112–126. https://doi.org/10.1007/
978-3-642-30428-6_9

[12] Joppe W. Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. 2013. Im-
proved Security for a Ring-Based Fully Homomorphic Encryption Scheme.
Springer Berlin Heidelberg, Berlin, Heidelberg, 45–64. https://doi.org/10.1007/

978-3-642-45239-0_4

[13] Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser. 2015.

Machine Learning Classification over Encrypted Data. In 22nd Annual Net-
work and Distributed System Security Symposium, NDSS 2015, San Diego,
California, USA, February 8-11, 2015. http://www.internetsociety.org/doc/

machine-learning-classification-over-encrypted-data

[14] Justin Brickell, Donald E. Porter, Vitaly Shmatikov, and Emmett Witchel. 2007.

Privacy-preserving remote diagnostics. In Proceedings of the 2007 ACMConference
on Computer and Communications Security, CCS 2007, Alexandria, Virginia, USA,
October 28-31, 2007. 498–507. http://doi.acm.org/10.1145/1315245.1315307

[15] Hervé Chabanne, Amaury de Wargny, Jonathan Milgram, Constance Morel,

and Emmanuel Prouff. 2017. Privacy-Preserving Classification on Deep Neural

Network. Cryptology ePrint Archive, Report 2017/035. (2017). http://eprint.iacr.

org/2017/035.

[16] Jia-Ren Chang and Yong-Sheng Chen. 2015. Batch-normalized maxout network

in network. arXiv preprint arXiv:1511.02583 (2015).
[17] Kumar Chellapilla, Sidd Puri, and Patrice Simard. 2006. High performance

convolutional neural networks for document processing. In Tenth International
Workshop on Frontiers in Handwriting Recognition. Suvisoft.

[18] Dan Ciregan, Ueli Meier, and Jürgen Schmidhuber. 2012. Multi-column deep neu-

ral networks for image classification. In Computer Vision and Pattern Recognition
(CVPR), 2012 IEEE Conference on. IEEE, 3642–3649.

[19] G. E. Dahl, D. Yu, L. Deng, and A. Acero. 2012. Context-Dependent Pre-

Trained Deep Neural Networks for Large-Vocabulary Speech Recognition. IEEE
Transactions on Audio, Speech, and Language Processing 20, 1 (Jan 2012), 30–42.

https://doi.org/10.1109/TASL.2011.2134090

[20] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY-A Frame-

work for Efficient Mixed-Protocol Secure Two-Party Computation.. In 22nd
Annual Network and Distributed System Security Symposium, NDSS 2015, San
Diego, California, USA, February 8-11, 2015.

[21] Paul Dierckx. 1995. Curve and surface fitting with splines. Oxford University

Press.

[22] Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter, Michael Naehrig,

and John Wernsing. 2015. Manual for using homomorphic encryption for bioin-

formatics. Microsoft Research (2015).

[23] Taher ElGamal. 1985. A Public Key Cryptosystem and a Signature Scheme

Based on Discrete Logarithms. In CRYPTO (LNCS), Vol. 196. Springer, 10–18.
https://doi.org/10.1007/3-540-39568-7_2

[24] Rasool Fakoor, Faisal Ladhak, Azade Nazi, and Manfred Huber. 2013. Using deep

learning to enhance cancer diagnosis and classification. In Proceedings of the
International Conference on Machine Learning.

[25] Matthew Fredrikson, Eric Lantz, Somesh Jha, Simon Lin, David Page, and Thomas

Ristenpart. 2014. Privacy in Pharmacogenetics: An End-to-End Case Study of

Personalized Warfarin Dosing. In 23rd USENIX Security Symposium (USENIX
Security 14). USENIX Association, 17–32. https://www.usenix.org/conference/

usenixsecurity14/technical-sessions/presentation/fredrikson_matthew

[26] Arik Friedman and Assaf Schuster. 2010. Data Mining with Differential Privacy.

In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD ’10). ACM, New York, NY, USA, 493–502.

https://doi.org/10.1145/1835804.1835868

[27] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig,

and John Wernsing. 2016. CryptoNets: Applying neural networks to encrypted

data with high throughput and accuracy. In Proceedings of The 33rd International
Conference on Machine Learning. 201–210.

12

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2976749.2978318
http://dx.doi.org/10.1007/978-3-642-04444-1_26
http://dx.doi.org/10.1007/978-3-642-04444-1_26
https://doi.org/10.1145/1161366.1161393
https://doi.org/10.1145/1161366.1161393
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-642-30428-6_9
https://doi.org/10.1007/978-3-642-30428-6_9
https://doi.org/10.1007/978-3-642-45239-0_4
https://doi.org/10.1007/978-3-642-45239-0_4
http://www.internetsociety.org/doc/machine-learning-classification-over-encrypted-data
http://www.internetsociety.org/doc/machine-learning-classification-over-encrypted-data
http://doi.acm.org/10.1145/1315245.1315307
http://eprint.iacr.org/2017/035
http://eprint.iacr.org/2017/035
https://doi.org/10.1109/TASL.2011.2134090
https://doi.org/10.1007/3-540-39568-7_2
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/fredrikson_matthew
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/fredrikson_matthew
https://doi.org/10.1145/1835804.1835868

[28] O. Goldreich, S. Micali, and A. Wigderson. 1987. How to Play ANY Mental Game.

In Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing
(STOC ’87). ACM, New York, NY, USA, 218–229. https://doi.org/10.1145/28395.

28420

[29] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT

Press. http://www.deeplearningbook.org.

[30] Thore Graepel, Kristin E. Lauter, and Michael Naehrig. 2012. ML Confidential:

Machine Learning on Encrypted Data. In Information Security and Cryptology -
ICISC 2012 - 15th International Conference, Seoul, Korea, November 28-30, 2012,
Revised Selected Papers. 1–21. http://dx.doi.org/10.1007/978-3-642-37682-5_1

[31] Benjamin Graham. 2014. Fractional max-pooling. arXiv preprint arXiv:1412.6071
(2014).

[32] SeppHochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[33] Eric Jones, Travis Oliphant, P Peterson, et al. 2001. SciPy: Open source scientific

tools for Python. (2001).

[34] Nicola Jones. 2014. Nature: Computer science: The learning machines. (2014).

http://www.nature.com/news/computer-science-the-learning-machines-1.

14481.

[35] Alex Krizhevsky and Geoffrey Hinton. 2009. Learning multiple layers of features

from tiny images. (2009). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.

1.1.222.9220&rep=rep1&type=pdf.

[36] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet Classifi-

cation with Deep Convolutional Neural Networks. In Advances in Neural Infor-
mation Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Wein-

berger (Eds.). Curran Associates, Inc., 1097–1105. http://papers.nips.cc/paper/

4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

[37] Yann LeCun, Corinna Cortes, and Christopher JC Burges. 1998. The MNIST

database of handwritten digits. (1998). http://yann.lecun.com/exdb/mnist/.

[38] Chen-Yu Lee, Patrick W. Gallagher, and Zhuowen Tu. 2016. Generalizing Pooling

Functions in Convolutional Neural Networks: Mixed, Gated, and Tree. In Pro-
ceedings of the 19th International Conference on Artificial Intelligence and Statistics,
AISTATS 2016, Cadiz, Spain, May 9-11, 2016. 464–472. http://jmlr.org/proceedings/

papers/v51/lee16a.html

[39] Dong C Liu and Jorge Nocedal. 1989. On the limited memory BFGS method for

large scale optimization. Mathematical programming 45, 1 (1989), 503–528.

[40] Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. 1993. Build-

ing a large annotated corpus of English: The Penn Treebank. Computational
linguistics 19, 2 (1993), 313–330.

[41] Tomáš Mikolov, Ilya Sutskever, Anoop Deoras, Hai-Son Le, Stefan Kombrink,

and Jan Cernocky. 2012. Subword language modeling with neural networks.

preprint (http://www. fit. vutbr. cz/imikolov/rnnlm/char. pdf) (2012).
[42] Dmytro Mishkin and Jiri Matas. 2015. All you need is a good init. arXiv preprint

arXiv:1511.06422 (2015).
[43] Payman Mohassel and Yupeng Zhang. 2017. SecureML: A System for Scal-

able Privacy-Preserving Machine Learning. Cryptology ePrint Archive, Report

2017/396. (May 2017). https://eprint.iacr.org/2017/396.

[44] Kevin P Murphy. 2012. Machine learning: a probabilistic perspective. MIT press.

[45] Olga Ohrimenko, Felix Schuster, Cedric Fournet, Aastha Mehta, Sebastian

Nowozin, Kapil Vaswani, andManuel Costa. 2016. ObliviousMulti-PartyMachine

Learning on Trusted Processors. In 25th USENIX Security Symposium (USENIX
Security 16). USENIX Association, Austin, TX, 619–636. https://www.usenix.org/

conference/usenixsecurity16/technical-sessions/presentation/ohrimenko

[46] C. Orlandi, A. Piva, and M. Barni. 2007. Oblivious Neural Network Computing

via Homomorphic Encryption. EURASIP J. Inf. Secur. 2007, Article 18 (Jan. 2007),
10 pages. https://doi.org/10.1155/2007/37343

[47] Pascal Paillier. 1999. Public-Key Cryptosystems Based on Composite Degree

Residuosity Classes. In EUROCRYPT (LNCS), Jacques Stern (Ed.), Vol. 1592.

Springer, 223–238. https://doi.org/10.1007/3-540-48910-X_16

[48] Pille Pullonen and Sander Siim. 2015. Combining Secret Sharing and Garbled

Circuits for Efficient Private IEEE 754 Floating-Point Computations. In Financial
Cryptography and Data Security - FC 2015 International Workshops, BITCOIN,
WAHC, and Wearable, San Juan, Puerto Rico, January 30, 2015, Revised Selected
Papers. 172–183. https://doi.org/10.1007/978-3-662-48051-9_13

[49] Ikuro Sato, Hiroki Nishimura, and Kensuke Yokoi. 2015. Apac: Augmented

pattern classification with neural networks. arXiv preprint arXiv:1505.03229
(2015).

[50] Reza Shokri and Vitaly Shmatikov. 2015. Privacy-Preserving Deep Learn-

ing. In Proceedings of the 22Nd ACM SIGSAC Conference on Computer and
Communications Security (CCS ’15). ACM, New York, NY, USA, 1310–1321.

https://doi.org/10.1145/2810103.2813687

[51] Reza Shokri, Marco Stronati, and Vitaly Shmatikov. 2016. Membership inference

attacks against machine learning models. arXiv preprint arXiv:1610.05820 (2016).
[52] N. P. Smart and F. Vercauteren. 2014. Fully homomorphic SIMD operations.

Designs, Codes and Cryptography 71, 1 (2014), 57–81. https://doi.org/10.1007/

s10623-012-9720-4

[53] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Ried-

miller. 2014. Striving for simplicity: The all convolutional net. arXiv preprint
arXiv:1412.6806 (2014).

[54] Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart.

2016. Stealing Machine Learning Models via Prediction APIs. In 25th USENIX
Security Symposium (USENIX Security 16). USENIX Association, Austin, TX, 601–

618. https://www.usenix.org/conference/usenixsecurity16/technical-sessions/

presentation/tramer

[55] Li Wan, Matthew Zeiler, Sixin Zhang, Yann L. Cun, and Rob Fergus. 2013. Reg-

ularization of Neural Networks using DropConnect. In Proceedings of the 30th
International Conference on Machine Learning (ICML-13), Sanjoy Dasgupta and

DavidMcallester (Eds.). JMLRWorkshop and Conference Proceedings, 1058–1066.

http://jmlr.org/proceedings/papers/v28/wan13.pdf

[56] David J. Wu, Tony Feng, Michael Naehrig, and Kristin E. Lauter. 2016. Privately

Evaluating Decision Trees and Random Forests. Privacy Enhancing Technologies
(PoPETs) 2016, 4 (2016), 335–355. http://dx.doi.org/10.1515/popets-2016-0043

[57] Andrew Chi-Chih Yao. 1982. Protocols for Secure Computations (Extended

Abstract). In Foundations of Computer Science (FOCS’82). IEEE, 160–164.
[58] Andrew C.-C. Yao. 1986. How to Generate and Exchange Secrets. In Foundations

of Computer Science (FOCS’86). IEEE, 162–167.
[59] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. 2014. Recurrent neural

network regularization. arXiv preprint arXiv:1409.2329 (2014).

13

https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
http://www.deeplearningbook.org
http://dx.doi.org/10.1007/978-3-642-37682-5_1
http://www.nature.com/news/computer-science-the-learning-machines-1.14481
http://www.nature.com/news/computer-science-the-learning-machines-1.14481
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.222.9220&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.222.9220&rep=rep1&type=pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://yann.lecun.com/exdb/mnist/
http://jmlr.org/proceedings/papers/v51/lee16a.html
http://jmlr.org/proceedings/papers/v51/lee16a.html
https://eprint.iacr.org/2017/396
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/ohrimenko
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/ohrimenko
https://doi.org/10.1155/2007/37343
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/978-3-662-48051-9_13
https://doi.org/10.1145/2810103.2813687
https://doi.org/10.1007/s10623-012-9720-4
https://doi.org/10.1007/s10623-012-9720-4
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/tramer
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/tramer
http://jmlr.org/proceedings/papers/v28/wan13.pdf
http://dx.doi.org/10.1515/popets-2016-0043

	Abstract
	1 Introduction
	2 Background and Preliminaries
	2.1 Neural networks
	2.2 Cryptographic preliminaries

	3 Problem Statement
	4 MiniONN Overview
	5 MiniONN Design
	5.1 Dot-product triplet generation
	5.2 Oblivious linear transformations
	5.3 Oblivious activation functions
	5.4 Oblivious pooling operations
	5.5 Remarks

	6 Performance Evaluation
	6.1 Comparisons with previous work
	6.2 Evaluations with realistic models

	7 Complexity, Accuracy and Overhead
	8 Related Work
	9 Conclusion and Future Work
	References

