
Security Analysis of Arbiter PUF and Its Lightweight
Compositions Under Predictability Test∗

[Revised Version]

PHUONG HA NGUYEN, DURGA PRASAD SAHOO, RAJAT SUBHRA CHAKRABORTY,
and DEBDEEP MUKHOPADHYAY†, Indian Institute of Technology Kharagpur

Unpredictability is an important security property of Physically Unclonable Function (PUF) in the context

of statistical attacks, where the correlation between challenge-response pairs is explicitly exploited. In existing

literature on PUFs, Hamming Distance test, denoted by HDT(t), was proposed to evaluate the unpredictability

of PUFs, which is a simpli�ed case of the Propagation Criterion test PC(t). The objective of these testing

schemes is to estimate the output transition probability when there are t or less than t bits �ips, and ideally,

this probability value should be 0.5. In this work, we show that aforementioned two testing schemes are not

enough to ensure the unpredictability of a PUF design. We propose a new test which is denoted as HDT(e, t).
This testing scheme is a �ne-tuned version of the previous schemes, as it considers the �ipping bit pattern

vector e along with parameter t . As a contribution, we provide a comprehensive discussion and analytic

interpretation of HDT(t), PC(t) and HDT(e, t) test schemes for Arbiter PUF (APUF), XOR PUF and Lightweight

Secure PUF (LSPUF). Our analysis establishes that HDT(e, t) test is more general in comparison with HDT(t)
and PC(t) tests. In addition, we demonstrate a few scenarios where the adversary can exploit the information

obtained from the analysis of HDT(e, t) properties of APUF, XOR PUF and LSPUF to develop statistical attacks

on them, if the ideal value of HDT(e, t) = 0.5 is not achieved for a given PUF. We validate our theoretical

observations using the simulated and FPGA implemented APUF, XOR PUF and LSPUF designs.

Additional Key Words and Phrases: Arbiter physically unclonable function (APUF), adaptive chosen-challenge

attack, hamming distance test, propagation criteria, statistical attack, unpredictability property.

1 INTRODUCTION
Physically Unclonable Functions (PUFs) are promising hardware security primitives, with nu-

merous proposed applications which either complement or substitute traditional cryptographic

algorithms [1, 4, 8, 25]. Many attacks have been proposed with varying degrees of success against

PUFs, including physical attack [23], machine learning (ML) based model building attacks [3, 7, 19],

and cryptanalysis [15, 20]. Acceptability of a given PUF variant usually involves compromise

between its hardware footprint, statistical behavior, and robustness against attacks. For example,

the Arbiter PUF (APUF) [7], a classic and widely studied PUF circuit based on process variation

induced delay di�erence of signal propagation paths, has low hardware complexity and area, but is

extremely susceptible to model building attacks. Hence, the APUF is rarely used as a standalone

PUF, but is usually used as a component of more secure PUF circuits, e.g. Lightweight Secure

∗
This is a revised version of the article published in ACM TODAES, 2016 [16]. In [16], we reported an incorrect comparison

between our work and result reported in [5, Fig. 14]. The initial idea of output transition probability of APUF and its

relationship with Hamming distance of parity vectors (obtained from challenge) was presented by Delvaux et al. in [5], and

this result has similarity with our reported result on this fact. Thus, our work should be considered as a follow-up work

of [5].

†Author’s addresses: The authors are with the Secured Embedded Architecture Laboratory (SEAL), Department of
Computer Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, INDIA–
721302. E-mail:phuongha.ntu@gmail.com, dpsahoo.cs@gmail.com, rschakraborty@cse.iitkgp.ernet.in,
debdeep@cse.iitkgp.ernet.in

1:2

PUF (LSPUF) [10], Composite PUF [21] and XOR PUF [22]. However, recently, even some of these

“secure PUFs" have been attacked successfully [3, 14, 20].

One of the most important security properties of a PUF is the unpredictability of its challenge-

response behavior. In essence, this means that an adversary should not be successful in �nding a

statistically signi�cant relationship among CRPs of a PUF. However, the current published literature

lacks a concrete methodology to quantitatively evaluate the unpredictability of a PUF. In [11], we

�nd the notion of Predictability Test Suite that includes a list of PUF testing schemes to evaluate

the unpredictablity. One such testing scheme is the Hamming Distance Test (denoted by HDT(t)),
objective of which is to measure average output transition probability due to challenge pairs

(ci , cj) with Hamming distance
1

HD(ci , cj) = t . This test is a simpli�ed case of Propagation Criteria
(PC) [18], since the PC(t) test measures average output transition probability due to challenge pairs

(ci , cj) with HD(ci , cj) ≤ t . Let us denote the mismatch pattern e between challenge pair (ci , cj) as

e = ci ⊕ cj . According to [11], PUFs should ideally satisfy HDT(t) = 0.5. But we observe that an

APUF [7] still leaks information to an adversary even though it satis�es HDT(t) = 0.5 property,

since there are many mismatch patterns e with either very high or low output transition probability

and it results in average output transition probability of approximately 0.5, i.e., HDT(t) ≈ 0.5
(cf. Section 3.4). Based on this observation, we propose a new testing scheme HDT(e, t) to ensure

the unpredictability property of PUF in the context of statistical attacks. Objective of HDT(e, t) test

is to measure output transition probability of PUF for a given mismatch pattern e with Hamming

weight
2 t , i.e., t = HW(e). In this work, we show that HDT(e, t) is superior to HDT(t) and PC(t)

tests. More speci�cally, if a PUF design quali�es HDT(e, t) test, then it also satis�es HDT(t) and

PC(t), but the reverse does not hold.

The HDT(t) test has been studied for APUF, XOR APUF and LSPUF in [11, 13]. In [11, Fig. 11],

the authors reported that HDT(t) of the classic APUF is approximately 0.5 for most of the t values.

They also observed similar HDT(t) values for the XOR APUF, though the authors in [5] claimed

that the result reported in [11] is not correct, and they provided new results (cf. [5, Fig. 14]) along

with analytical formulation. Actually, both the results reported in [11, Fig. 11] and [5] are correct,

and they discussed two di�erent aspects. In [11, Fig. 11], the authors reported the relationship

between output transition probability and Hamming distance of challenge pairs. On the other hand,

in [5], the authors considered the Hamming distance between a pair of parity vectors obtained

from a given pair of challenges. In this paper, we discuss both these facts based on the theoretical

analyses.

We can also �nd consideration of the Strict Avalanche Criteria (SAC)
2
, also known as HDT(1)

and PC(1), property of APUF, XOR APUF, and APUF with its dependence on the input network

of LSPUF in [11]. The reported result regarding SAC property in [11] is actually equivalent to

our proposed HDT(e, t = 1) test, but they did not extend the study for arbitrary values of t . In

this work, we provide a generic and analytical discussion on HDT(e, t) property of classic APUF,

XOR APUF and LSPUF, and this work is motivated by the result reported in [5, Fig. 14]. Compared

to [5, Fig. 14] where the authors provided analytic expressions of output transition probability

for XOR APUF without detailed derivation, in this paper, we provide a generic expression and

its detailed derivation which would be useful to the readers. In addition, we develop an adaptive

1
The Hamming weight of a binary vector a is the number of 1’s in a, denoted by HW(a). The Hamming distance between

two binary vectors a and b of equal length is denoted by HD(a, b) and it is de�ned as: HD(a, b) = HW(a ⊕ b), where ⊕ is

Exclusive-OR operation.

2
A PUF with n-bit challenge and 1-bit response is said to satisfy SAC if its response transition occurs with probability 0.5

whenever any one of the challenge bit is complemented.

1:3

chosen-challenge attack based on the poor HDT(e, t) property of above mentioned three APUF

designs.

The major contributions of this paper are summarized as follows:

(1) We propose a new statistical test HDT(e, t) to observe the existence of a statistically signif-

icant relationship among the CRPs of a PUF instance. The existence of such a relationship

reduces the unpredictability of a PUF. We also show that this test is superior than HDT(t)
and PC(t) tests. As case studies, we provide a comprehensive analytical discussion on

HDT(e, t) properties of the classic APUF, XOR APUF and LSPUF. In addition, we establish

a relationship among HDT(e, t), HDT(t) and PC(t) properties of these PUF designs.

(2) Based on HDT(e, t) test, we develop a (adaptive) chosen-challenge attack scheme for APUF,

XOR APUF and LSPUF. Objective of this attack is to derive many related challenges from a

set of known challenges, with high prediction accuracy for the corresponding responses. We

also show that the LSPUF input network is not enough to withstand this attack, although

the input network was proposed to resist this type of attack in the �rst place. To the best

of our knowledge, this the �rst statistical attack on LSPUF based on its input network.

(3) We validate our theoretical analyses using 64-bit and 128-bit simulated and FPGA imple-

mented APUFs, XOR APUFs and LSPUFs. An important conclusion from our experimental

results is that HDT(e, t) values of FPGA implemented PUFs are poor compared to that of

simulated PUFs. In addition, we observe that HDT(e, t) is poorer for larger PUF instances

compared to its variants with smaller challenge.

Organization of the Paper. The rest of paper is organized as follows. In Section 2, we introduce

a notation system that will be used in rest of the paper, along with basic security notion of PUF,

adversary threat models and propagation criteria. Section 3 discusses HDT(e, t), HDT(t) and PC(t)
properties of APUF. We extend the analysis of HDT(e, t), HDT(t) and PC(t) properties for XOR

APUF and LSPUF in Sections 4 and 5, respectively. Various security threats on APUF and its variants

based on HDT(e, t) are discussed in Section 6. Section 7 provides simulation and experimental

results. Finally, concluding comments are provided in Section 8.

2 PRELIMINARIES
2.1 Notations
We use following notation system in the rest of the paper. A letter in bold font refers to a vector, e.g

a. A vector withm-components is represented as a = (a[0], . . . , a[i], . . . , a[m− 1]), where a[i] is the

ith component of the vector. We use a[i:j] to denote a sub-vector (a[i], . . . , a[j]). The transpose of a

vector a is denoted by aT. A scalar is denoted by a lower-case letter, e.g. n. In a = b%c , % denotes the

modulo operation and a is the remainder of the division b/c . The right rotation of a binary vector a
by k positions is denoted by a ≫ k . A set is represented by calligraphic font, e.g. set D and its

cardinality is denoted as |D|. We denote random variables by upper-case letters, e.g. X . Pr(X = x)
is used to denote the probability of the event X = x , and E[X], σX and Var(X) (or σ 2

X) are used to

denote mean, standard deviation and variance of the random variable X , respectively. Random

variable X following a Gaussian probability distribution function is denoted as X ∼ N(µ,σ 2).

ϕµ,σ 2 () and Φµ,σ 2 () represent the probability density function (PDF) and cumulative distribution

function (CDF) of Gaussian random variable, respectively; ϕ() and Φ() represent the PDF and CDF

of standard normal random variable, respectively. Hamming distance between two binary vectors

a and b is denoted by HD(a, b), and Hamming weight of a is denoted by HW(a).

1:4

2.2 Security Notion of PUF
Although PUF is physically unclonable, it is not enough to prevent di�erent types of protocol level

attacks, like attacks on remote authentication of hardware and remote activation of IP licenses [5].

In these cases, it does not matter whether an adversary is impersonating a PUF in physical or

non-physical ways. Adversary can build a mathematical model based on the eavesdropped CRPs to

approximate the behavior of a PUF very closely in an e�cient way. It has been observed in the PUF

literature that researchers are interested in practical attacks, i.e., prediction success probability of

a model approaches 1. Whereas in traditional cryptography, any attack technique that achieves

a prediction success probability non-negligible
3

greater than 0.5 (random guess) is considered as

signi�cant threat, such is not the traditional viewpoint in research on PUF security. For example,

in [24], authors reported the proposed design to be resistant against modeling attacks even though

an adversary can build a model for the PUF design with prediction success probability 0.90. In

this context, we prefer to introduce two di�erent de�nitions of predictability with respect to the

prediction accuracy to avoid the confusion regarding secure PUF: Strong Predictability and Weak
Predictability.

(1) Strong Predictability: The responses of a PUF are said to be strongly predictable if an

adversary can build a model in polynomial (in challenge size) time and data complexities

with prediction accuracy that approaches the reliability of the PUF. For instance, an APUF

design is considered as strongly predictable [7], as an adversary can build a ML-based

model with prediction accuracy approximately 99% while reliability of APUF is 100%.

(2) Weak Predictability: The responses are weakly predictable if the prediction accuracy of

model is non-negligible better than that of random guess, in polynomial (in challenge size)

time and data complexities. Precisely, the prediction accuracy of a weak model with 1-bit

response is
1

2
+ δ , where δ is non-negligible.

The reader might think why we relate the prediction accuracy with the reliability of a PUF in

case of the strong predictability. We have introduced the notion of strong predictability to imply

that if an adversary can build a strong PUF model, then she can impersonate the physical PUF. A

successful impersonation means the PUF and its model are indistinguishable. Since there are some

error in physical PUF (denoted by ϵP) due to the lack of perfect reliability, and error in the model

(denoted by ϵM) due the failure in convergence of the modeling algorithm, the veri�er can employ

ϵP and ϵM to distinguish the PUF from its model while |ϵP − ϵM | is not negligible. In other words, if

|ϵP − ϵM | is not negligible, then PUF model is weak and it cannot be used to impersonate the PUF.

For a PUF design, existence of either the weak or strong prediction models implies that PUF is

not secure by design, but still it might be used in a secure way in some security protocols. The

following de�nition formalizes the notion of a truly secure PUF [17, 20]:

De�nition 1 (Truly Secure PUFDesign). A PUF instance withn-bit challenge c andm-bit response
r is considered to be secure if and only if there is no adversary who can predict the responses with
probability non-negligible greater than 1/2m (random guess probability) with following computing
constraints: (1) time complexity of attack is less than 2

n queries of PUF, and (2) data complexity, i.e.,
the number of challenge-response pairs (CRPs) required to predict the response of a given challenge, is
less than 2

n .

2.3 Adversary Threat Models
In the context of PUFs, we consider the following two adversary models:

3
A function д is negligible [6] if for all positive constant b , there is an Nb and for all x > Nb it satis�es that д(x) < 1

xb
.

1:5

• Chosen-challenge Adversary (CCA): In Learning phase, a chosen-challenge adversary

can query the PUF oracle P for response to an arbitrary challenge c ∈ Q that she chooses,

and |Q| is polynomially bounded. After this phase, the adversary cannot query the PUF

oracle. In Attack phase, the adversary predicts the response to a challenge cqueried < Q based

on the responses of challenges in Q.

• Adaptive Chosen-challenge Adversary (ACCA): In the learning phase of this model,

the adversary, depending on the challenge cqueried for which she is required to predict

the response, intelligently (or adaptively) chooses a set of challenges Q provided that

cqueried < Q. The adversary is allowed to access the oracle P to get responses to the

challenges in Q. In attack phase, the adversary uses the responses of this adaptive challenge

set Q to predict the response for challenge cqueried. This type of attack model is developed

based on the following fact: for a secure PUF, the information of any CRP should not leak

the information about other CRPs, i.e., there should not exist any related CRPs.

For PUF modeling attacks, we usually consider a CCA threat model. The CCA model is more

practical in the context of PUFs, e.g. in a scenario where an adversary eavesdrops the CRPs being

used for authentication, and subsequently uses them to build a PUF model, without getting actual

physical access to the PUF. The adversary model ACCA is stronger than CCA. However, we consider

the ACCA model so that the designer can evaluate the security of the PUF, and ensure that the

PUF is secure under the ACCA attack scenario.

In this paper later we use the ACCA model to de�ne the related challenges of a PUF instance,

and information leakage about responses of unseen challenges.

2.4 Propagation Criteria
De�nition 2 (Propagation Criteria). An n-bit input, 1-bit output Boolean function f : {0, 1}n →
{0, 1} is said to satisfy propagation criteria of degree t (PC(t), 1 ≤ t ≤ n), if the value of the
function f complements with probability of one-half, whenever t or less number of bits of the input
are complemented [18]. This can be stated more formally as follows:

Pr[(f (c) ⊕ f (c ⊕ e)) = 1] =
1

2

, (1)

where c, e ∈ {0, 1}n , and HW(e) ≤ t . Typically, each e de�nes an input-bit �ipping pattern. Note that
the strict avalanche criterion (SAC) is equivalent to PC(1).

In [11], the authors proposed the concept of predictability test of PUF design to measure the

average output transition probability due to challenge pairs with a given Hamming distance between

them. This test is called as Hamming Distance Test, and denoted by HDT(t). Formally, it is said that

a PUF satis�es the HDT(t) test when:

HDT(t) = Pr

c,e
[(f (c) ⊕ f (c ⊕ e)) = 1] =

1

2

, (2)

c, e ∈ {0, 1}n , and HW(e) = t . HDT(t) test can be considered as a simpli�ed version of PC(t) test.

The PC(t) test is not discussed in [11], and we show that PC(t) value of a PUF design can be 0.5

even if the PUF design does not satisfy HDT(t) = 0.5, as:

PC(t) =
1

t

t∑
i=1

HDT(i). (3)

We introduce a new Hamming Distance Test, where we consider both the mismatch pattern

vector e and its Hamming weight t = HW(e). We denote this test by HDT(e, t), and it is formally

1:6

de�ned as follows. A PUF is said to satisfy the HDT(e, t) if for all pairs of (e, t):

HDT(e, t) = Pr

c
[(f (c) ⊕ f (c ⊕ e)) = 1] =

1

2

, (4)

where c, e ∈ {0, 1}n , and t = HW(e). Let Et be a set of all the pattern vectors e with t = HW(e),
then the relationship between HDT(t) and HDT(e, t) is:

HDT(t) =
1

|Et |

∑
e∈Et

HDT(e, t), (5)

where |Et | is the cardinality of set Et . This implies that value of HDT(t) can be 0.5 even though

there exist a few patterns for which HDT(e, t) is either approximately 0 or 1. Thus, to ensure the

security of a PUF design under ACCA adversary, we need to show that HDT(e, t) ≈ 0.5 for all

values of e and t .
In this paper, we discuss the HDT(e, t) property to evaluate the unpredictability of APUF, XOR

APUF and LSPUF designs. The HDT(e, t) test is a generalization of the HDT(t) and PC(t) tests – if

a PUF satis�es the HDT(e, t) test, then it also satis�es the HDT(t) and PC(t) tests.

3 ARBITER PUF AND ITS HDT(e, t),HDT(t) AND PC(t) PROPERTIES
3.1 Arbiter PUF Design and Its Linear Additive Delay Model
The Arbiter PUF (APUF) introduced in [7] is depicted in Fig. 1. It is a delay-based silicon PUF

that exploits random process variation e�ects in silicon, in terms of the delay di�erence of two

symmetrically laid out parallel paths. Typically, the response (r) of an APUF is de�ned by Eq. (6).

r =

{
1, if the delay of the signal at the upper input of the arbiter is smaller

0, otherwise.
(6)

However, as mentioned previously, the APUF is known to be vulnerable to machine learning

based modeling attack (MLMA) [7, 19]. In [7], a linear additive delay model of the APUF was derived.

Let ∆ be the delay di�erence between delays of the top and bottom paths of an n-bit APUF, for a

given challenge, and it is modeled as [7]:

∆ = w[0]Φ[0] + · · · +w[j]Φ[j] + · · · +w[n]Φ[n] = wTΦ. (7)

The vector w is de�ned based on the delays of APUF’s delay components, and complete de�nition

of the vector w can be found in [7]. The vector Φ is derived from the input challenge c, and is

de�ned as follows:

Φ[j] =

{∏n−1

k=j (1 − 2c[k]), j = 0, . . . ,n − 1

1, j = n.
(8)

c[0] c[1] c[n-2] c[n-1]

A
rb

it
e
r

r

Trigger Switch ChainSwitch

Fig. 1. Arbiter PUF.

1:7

0 i n

Ai Bi

NF

(a) Flipping zone F and non-flipping zone N
in the index range of Φ due to flip in i-th bit
of challenge c.

−a 0 +a
∆Ai

3σ2

7σ2

(b) Normal distributions with µ = 0, and vari-
ances 3σ 2 and 7σ 2. Probability Pr(|∆Ai | > a)

is larger for N(0, 7σ 2) than that of N(0, 3σ 2).

Fig. 2. A few aspects of HDT(e, 1) computation.

3.2 Computation of HDT(e, 1) of APUF
First, we discuss HDT(e, 1) property of APUF, which is reported in [10, 12] as SAC property. Let us

use the notation c[i] ∈ Φ[j] to state the fact that c[i] is present in the expression of Φ[j] (cf. Eq. (8)),

and otherwise, we write c[i] < Φ[j]. Without loss of generality and for the sake of analysis, we

assume that all components of w are independent and identically distributed random variables,

and each component w[i] follows a Gaussian distribution [7] with mean µ = 0, and variance σ 2
,

i.e., w[i] ∼ N(0,σ 2), i = 0, . . . ,n. Let us de�ne following two sets representing the partitions of

indices [0,n] of Φ with respect to c[i], i = 0, . . . ,n − 1,

Ai = {j : c[i] ∈ Φ[j]} and Bi = {j : c[i] < Φ[j]}

From Eq. (8) and Fig. 2a, we have:Ai = {0, 1, . . . , i} andBi = {i+1, . . . ,n}. In addition, we de�ne

two delay values corresponding toAi andBi as: ∆Ai =
∑

j ∈Ai
w[j]Φ[j] and ∆Bi =

∑
j ∈Bi w[j]Φ[j].

Then ∆ = ∆Ai + ∆Bi .
It can be observed that signs of all Φ[j], j ∈ Ai would be changed if c[i] �ips, while signs of all

Φ[j] for j ∈ Bi would not be changed even if c[i] �ips. In Fig. 2a, the Ai and Bi of challenge bit

c[i] are depicted; these two sets partition indices of Φ into two regions: i) �ipping zone F where

signs of all Φ[j] �ip, and ii) non-�ipping zone N where signs of all Φ[j] remain unchanged.

Since ∆Bi does not depend on the value of c[i], the sign of ∆ is changed when c[i] �ips and

|∆Ai | > |∆Bi |. In other words, the response bit r �ips when c[i] �ips and |∆Ai | > |∆Bi |. Let Xi be

a random variable which is de�ned as follows:

Xi =

{
1, |∆Ai | > |∆Bi |

0, otherwise.

Let us denote ei to be a binary vector where only the component e[i] = 1. Let r be the response of

APUF to challenge c, then HDT(ei , 1) = Pr(Xi = 1) = Pr (r̄ | c̄[i]) ,where r̄ = r ⊕1 and c̄[i] = c[i]⊕1.

Thus, Xi = 1 denotes the event that the output bit �ips when the ith challenge bit �ips.

It is well-known that the sum of mutually independent Gaussian random variables also follows

a Gaussian distribution, and thus if Wi ∼ N(µi ,σ
2

i), then W =
∑

iWi and W ∼ N(
∑

i µi ,
∑

i σ
2

i).

Hence,

∆Ai ∼ N(0, (i + 1)σ 2) and ∆Bi ∼ N(0, (n − i)σ
2). (9)

From Eq. (9), it is evident that if (i+1) � (n−i) (or (i+1) � (n−i)), then the event |∆Ai | > |∆Bi |
(output r �ips) can occur with a high probability (or a low probability), and then Pr(Xi = 1) � 0.5
(or Pr(Xi = 1) � 0.5).

1:8

To visualize this property, we depict the PDFs of normal distributions for the following cases:

|Ai | = 3 and |Ai | = 7 in Fig. 2b. It can be observed from Fig. 2b that increasing value of |Ai | results

in increment of Pr(|∆Ai | > a), where a > 0. Moreover, if we increase i , then (i + 1) increases and

(n − i) decreases. Thus, as we increase i from 0 to n, then Pr(Xi = 1) = Pr(|∆Ai | > |∆Bi |) increases

from 0 to 1. As observed in [10, 12], for a given i such that (i + 1) ≈ (n − i), the output r �ips with a

probability approximately 0.5, i.e., Pr(Xi = 1) ≈ 0.5.

3.3 Computation of HDT(e, t) of APUF
In this section, we generalize the above concept by focusing on HDT(e, t) property with 1 < t ≤ n.

We assume that t bits c[i1], . . . , c[it] are �ipped, 0 ≤ i1 < · · · < it ≤ n − 1, 1 ≤ t ≤ n. We have the

following important observation:

Observation 1. Given Φ[j] =
∏n−1

k=j (1 − 2c[k]), j = 0, . . . ,n − 1, it is observed that if the number of
�ipping bits which are present in the expression of Φ[j] is even, then the sign of Φ[j] does not change.
Otherwise, the sign of Φ[j] �ips. Note that Φ[n] = 1, and thus, there will be no �ip in its sign.

We de�ne following two sets based on the indices of Φ[0,n]:

Ai1i2 ...it = {j : the sign of Φ[j] �ips when all c[i1], . . . , c[it] �ip}

Bi1i2 ...it = {j : the sign of Φ[j] does not �ip when all c[i1], . . . , c[it] �ip}.

In addition, we de�ne two delay values corresponding to Ai1i2 ...it and Bi1i2 ...it as:

∆Ai
1
i
2
. . .it
=

∑
j ∈Ai

1
i
2
. . .it

w[j]Φ[j] and ∆Bi
1
i
2
. . .it
=

∑
j ∈Bi

1
i
2
. . .it

w[j]Φ[j].

Then ∆ = ∆Ai
1
i
2
. . .it
+ ∆Bi

1
i
2
. . .it

.

Let Xi1i2 ...it be a random variable which is de�ned as follows:

Xi1i2 ...it =

{
1, |∆Ai

1
i
2
. . .it
| > |∆Bi

1
i
2
. . .it
|

0, otherwise.

Let us denote ei1, ...,it as a binary vector with only components e[i1] = · · · = e[it] = 1. Let r be

the response of APUF to challenge c, then

HDT(ei1, ...,it , t) = Pr(Xi1i2 ...it = 1) = Pr (r̄ | c̄[i1], c̄[i2], . . . , c̄[it]) , (10)

where r̄ = r ⊕ 1 and c̄[ik] = c[ik] ⊕ 1, 1 ≤ k ≤ t . Based on the assumption we made for Eq. (9)

regarding the sum of Gaussian random variables, we have:

∆Ai
1
i
2
. . .it
∼ N(0, |Ai1i2 ...it |σ

2) and ∆Bi
1
i
2
. . .it
∼ N(0, |Bi1i2 ...it |σ

2). (11)

In Appendix A, we discuss an analytical expression for HDT(e, t) of an APUF. In practice,

computation of HDT(e, t) by evaluating analytical expression might not be feasible because the

value of σ (standard deviation of delay distribution of delay components) might be unknown.

Instead, we provide an alternative approach to estimate HDT(e, t) by directly using CRPs of a

PUF instance as described in Algorithm 1. Algorithm 1 uses N random challenges, and for each

challenge c (Line 2), it generates another challenge ĉ = c ⊕ ei1, ...,it using pattern vector ei1, ...,it
(Line 5). If responses r and r̂ due to c and ĉ, respectively, are not equal, then the algorithm keeps

track of this event in the variable count (Line 8). Finally, HDT(ei1, ...,it , t) is computed as a ratio of

count to N (Line 11). The accuracy of computed HDT(ei1, ...,it , t) value depends on the parameter

N , and large N value implies better accuracy.

1:9

Algorithm 1 Computation of HDT(ei1, ...,it , t) of an APUF instance w.r.t. t �ipping bits

Input: P is an APUF instance with n-bit challenge; binary pattern vector ei1, ...,it where e[j] = 1

only for j ∈ {i1, . . . , it }, and e[j] = 0 otherwise; N is the number of CRPs

Output: Value of HDT(ei1, ...,it , t)
1: count ← 0

2: for k = 1 to N do
3: c← a randomly generated challenge

4: r ← P(c) {Evaluate APUF with c}

5: ĉ← c ⊕ ei1, ...,it {Modi�ed challenge ĉ}

6: r̂ ← P(ĉ) {Evaluate APUF with ĉ}

7: if r , r̂ then
8: count ← count + 1

9: end if
10: end for
11: HDT(ei1, ...,it , t) ← count/N

3.4 HDT(t) and PC(t) Properties of APUF
In the context of APUF, we can observe a few interesting properties of HDT(t) and PC(t). These

properties are previously reported in [11] with the help of experimental result, but the authors

did not explain their observations from a theoretical viewpoint. We now state and prove these

properties in the following theorem:

Theorem 1. The HDT(t) and PC(t) properties of an APUF depend on the parity of t in the following
way:

(1) HDT(t): (a) For odd t , HDT(t) is equal to 0.5, and (b) for even t , HDT(t) is less than 0.5, and
it approaches 0.5 with increasing value of t .

(2) PC(t): for all t , PC(t) is less than 0.5, and it approaches 0.5 with increasing value of t .

Proof. The proof of this theorem is provided in Appendix B. �

3.5 Discussion on Related Works
In [11], the authors proposed HDT(t) test and according to their reported experimental results, the

value of HDT(t) is approximately 0.5 for most of the t values (cf. [11, Fig. 11]). Our analysis also

results to a similar trend for HDT(t), and in addition, we have provided an analytical expression for

HDT(t) property of APUF. Our analysis of HDT(e, t) also matches with the result in [5, Fig. 14].

4 x-XOR APUF AND ITS HDT(e, t),HDT(t) AND PC(t) PROPERTIES
4.1 Design Overview
As described in [22], an x-XOR APUF (cf. Fig. 3) is constructed based on a set of x n-bit APUF

instances A0, . . . ,Ax−1. For a given challenge c = (c[0], . . . , c[n − 1]), the response r is generated

as follows: r = r0 ⊕ · · · ⊕ ri ⊕ · · · ⊕ rx−1, where ri = Ai (c), i = 0, . . . ,x − 1.

Next, we discuss HDT(e, t), HDT(t) and PC(t) properties of XOR APUF.

1:10

4.2 Computation of HDT(e, t) of x-XOR APUF
Let Yi1i2 ...it be a random variable de�ned as follows:

Yi1i2 ...it =

{
1, r �ips when bits c[i1], . . . , c[it] �ip, where 0 ≤ i1 < · · · < it ≤ n − 1

0, otherwise.

Then, HDT(e, t) = Pr

c
(Yi1i2 ...it = 1) = Pr

c
(r̄ | c̄[i1], c̄[i2], . . . , c̄[it]) , where r̄ = r ⊕ 1 and c̄[ik] =

c[ik] ⊕ 1, 1 ≤ k ≤ t . To simplify the analysis, we assume that all APUFs A0, . . . ,Ax−1 are mutually

independent (this assumption might not be entirely correct in actual implementations). Since the

challenge c is the input to all APUFs A0, . . . ,Ax−1 and all the outputs r0, . . . , rx−1 are mutually

independent, we can consider that Pr (r̄i | c̄[i1], . . . , c̄[it]) of each APUF Ai , i = 0, . . . ,x − 1, is same,

and equal to pi1 ...it (see Section 3), where: pi1 ...it = Pr (r̄i | c̄[i1], . . . , c̄[it]) .
Since the output of x-XOR APUF �ips when k APUF outputs (out of x APUF outputs) �ip and k

is odd, HDT(e, t) of x-XOR APUF can be computed as described in the following theorem:

Theorem 2. Let us de�ne p = pi1 ...it , then

Pr(Yi1i2 ...it = 1) =

x∑
k=1,k%2=1

(
x

k

)
pk (1 − p)x−k =

1 − (1 − 2p)x

2

. (12)

For example, in case of 2-XOR APUF, the Pr(Yi1i2 ...it = 1) = 2p(p − 1) and for 3-XOR APUF, the

Pr(Yi1i2 ...it = 1) = 3p(1 − p)2 + p3
.

4.3 Computations of HDT(t) and PC(t) of XOR APUFs
In this section, we discuss HDT(t) and PC(t) properties of XOR APUF. The main results can be

summarized by the following theorem:

Theorem 3. The HDT(t) and PC(t) properties of an XOR APUF are:

(1) HDT(t) is approximately 0.5 for all t . Particularly, HDT(t) is equal to 0.5 for odd value of t ,
and for even t , HDT(t) approaches to 0.5 with increasing t .

(2) PC(t) is approximately 0.5 for all t .

Proof. Let r = r0 ⊕ r1 ⊕ · · · ⊕ rx−1 be the response of x-XOR APUF to challenge c and ri , i ∈
[1 : x − 1] be the response of APUF Ai . Let us denote r ′ = r1 ⊕ · · · ⊕ rx−1, and then output r of an

x-XOR APUF can be rewritten as r = r0 ⊕ r
′
. Let X , Y and Z be random variables representing the

following events:

(1) X =

{
1, if r0 �ips due to �ipping pattern e with challenge c and HW(e) = t

0, otherwise.

Indeed, Pr(X = 1) is the HDT(t) of APUF A0 (see Theorem 1).

A0

A1

Ax−1

c

r0

r1

rx−1

r

Fig. 3. x-XOR APUF.

1:11

(2) Y =

{
1, if r ′ �ips due to �ipping pattern e with challenge c and HW(e) = t

0, otherwise.

The probability Pr(Y = 1) is the HDT(t) of (x − 1)-XOR APUF constructed using APUFs

A1, . . . ,Ax−1.

(3) Z =

{
1, if r �ips due to �ipping pattern e with challenge c and HW(e) = t

0, otherwise.

The probability Pr(Z = 1) is the HDT(t) of x-XOR APUF.

Note that r �ips while r0 �ips and r ′ does not �ip, or vice versa. Thus HDT(t) of x-XOR APUF

will be:

HDT(t) = Pr(Z = 1) = Pr(X = 1) × Pr(Y = 0) + Pr(X = 0) × Pr(Y = 1). (13)

From Theorem 1, we assume that HDT(t) ≈ 0.5 for APUF A0 for all t (i.e., Pr(X = 1) = Pr(X = 0) =

1/2), though for even value of t , HDT(t) approaches 0.5 with increasing value of t . Based on this

assumption, we can rewrite Eq. (13) as:

Pr(Z = 1) = Pr(X = 1) × Pr(Y = 0) + Pr(X = 0) × Pr(Y = 1) (14)

≈ 1/2 × Pr(Y = 0) + 1/2 × Pr(Y = 1)

= 1/2 × [Pr(Y = 0) + Pr(Y = 1)] = 1/2.

Since PC(t) = 1/n ×
∑n

t=1
HDT(t), the PC(t) of XOR APUF is approximately 0.5 for all t . �

The experimental results, which are reported in [13, Fig. 4], match with our theoretical �nding

for HDT(t) of XOR APUF.

4.4 Discussion on Related Works
In [13, Fig. 4], HDT(t) of XOR APUF was experimentally computed, and shown to be 0.5, for

t = 1, . . . ,n. However, in this paper, we have theoretically proved this with some additional

information: the HDT(t) = 0.5 for odd value of t , and for even t , HDT(t) approaches 0.5 with

increasing t . Our HDT(e, t) test result has similarity with the result in [5, Fig. 14], and the only

di�erence is that the results (conveying the same information) are reported in two di�erent ways.

5 LSPUF AND ITS HDT(e, t),HDT(t) AND PC(t) PROPERTIES
5.1 Design Overview
The poor HDT(e, 1) properties of APUF and XOR APUF were the main motivation behind the design

of LSPUF [10]. The architectural overview of LSPUF is shown in Fig. 4. An (n,m,k,x , s)-LSPUF

A0

Ai

Ak−1

c

g0

gi

gk−1

ci

r0

ri

rk−1

c0

ck−1

Input network G={g0, . . . , gk−1}

O
u
tp
u
t
n
et
w
or
k
H

o[m− 1]

o[i]

o[0]

Fig. 4. Architectural overview of LSPUF.

1:12

instance consists of three layers: (1) input network G = (д0, . . . ,дk−1), (2) PUF layer consisting of k
APUFs instances A0, . . . ,Ak−1, and (3) output network H withm-bit output o = (o[0], . . . , o[m − 1]).

Details of these layers are discussed below.

5.1.1 Input Network G . The input network G = (д0, . . . ,дk−1) produces intermediate challenges

c0, . . . , ck−1 for k APUF instances in the PUF layer from the external input c. For even value of n,

mapping of ci = дi (c) are as follows:

(1) di = c ≫ i , where c ≫ i denotes the right rotation of challenge c by i positions, and

di = (di [0], . . . , di [n − 1]) and c = (c[0], . . . , c[n − 1]).

(2) Let us denote ci = (ci [0], . . . , ci [n − 1]). Transformation of di to ci is de�ned as:

ci
[n

2

]
= di [0]; ci

[u
2

]
= di [u] ⊕ di [u + 1],u = 0, 2, . . . ,n − 2; (15)

ci

[
n + u + 1

2

]
= di [u] ⊕ di [u + 1],u = 1, 3, . . . ,n − 3

The main objective of the input network is to ensure that HDT(e, 1) value of LSPUF is around

0.5. Later, we show that this input network does not satisfy HDT(e, t) property in general, and

the input network needs to be modi�ed to improve the unpredictability property of LSPUF in the

context of statistical attacks.

5.1.2 PUF Layer. This layer consists of a group of APUFs: A0, . . . ,Ak−1. The input ci to Ai
is de�ned by ci = дi (c) for i = 0, . . . ,k − 1, and Ai produces 1-bit response ri . Thus this layer

produces k-bit responses (r0, . . . , rk−1), where ri = Ai (ci).

5.1.3 Output Network H . Finally, m-bit response o = (o[0], . . . , o[m − 1]) is generated by the

output network using thek-bit intermediate responses (r0, . . . , rk−1) as: o[i] =
⊕x−1

j=0
r((i+s+j) mod k),

where i = 0, . . . ,m − 1, and x (< k) and s are security parameters chosen by the designer.

5.2 Computation of HDT(e, t) of LSPUF
Without loss of generality and for the sake of explanation, we focus only on the LSPUF variant

with parameters s = 0,x = k and m = 1. This LSPUF con�guration is similar to x-XOR APUF, with

addition of an input network. In this section, we discuss HDT(e, t) property of this LSPUF variant.

We consider t �ipping bits c[i1], . . . , c[it], where 0 ≤ i1 < · · · < it ≤ n − 1.

Let Zi1i2 ...it be a random variable which is de�ned as follows:

Zi1i2 ...it =

{
1, LSPUF output o �ips when bits c[i1], . . . , c[it] �ip

0, otherwise.

Now we can de�ne HDT(e, t) for LSPUF as: HDT(e, t) = Pr

c
(Zi1i2 ...it = 1) = Pr

c
(ō | c̄[i1], c̄[i2], . . . , c̄[it]),

where ō = o ⊕ 1 and c̄[ik] = c[ik] ⊕ 1, 1 ≤ k ≤ t .
Since the input network G generates di�erent inputs cj for each APUF Aj , we de�ne a vec-

tor pi1 ...it = (pi1 ...it [0], . . . , pi1 ...it [x − 1]) to represent the output transition probabilities of all

constituent APUFs, where pi1 ...it [j] = Pr

(
r̄ j

�� c̄[i1], . . . , c̄[it]
)
, j = 0, . . . ,x − 1.

Note that since the input network G and all the �ipping positions i1, . . . , it at c are known to

an adversary, the actual �ipping positions at the input vectors of each Aj can be computed in a

straightforward way, and then pi1 ...it [j] can be computed accurately as explained in Section 3. Let us

de�ne two x-dimensional vectors a and b where a[j] = pi1 ...it [j] and b[j] = 1− a[j], j = 0, . . . ,x − 1.

Since the output o of LSPUF �ips when y APUF outputs (out of x APUF outputs) �ip and y is an

odd number, HDT(e, t) of a LSPUF can be computed as follows:

1:13

Theorem 4. Let us de�ne a set J = {j1, . . . , jy }, 0 ≤ j1 < · · · < jy ≤ x − 1, then

Pr(Zi1i2 ...it = 1) =

x∑
y=1,y%2=1

∑
∀J

∏
j ∈J

a[j]
∏
j<J

b[j]. (16)

5.3 Computations of HDT(t) and PC(t) of LSPUF
Here, we also consider the LSPUF variant with parameters s = 0,x = k andm = 1. Although, input

network was designed to improve mainly HDT(e, 1) property of LSPUF, it does not introduce any

signi�cant change in HDT(t) and PC(t) properties of an LSPUF. Thus, HDT(t) and PC(t) are similar

to XOR APUF, and we mention it brie�y in Theorem 5.

Theorem 5. The HDT(t) and PC(t) properties of an x-XOR LSPUF with x > 2 are: (1) HDT(t) is
approximately 0.5 for all t , and (2) PC(t) is approximately 0.5 for all t .

Proof. The proof of this theorem is similar to the proof of Theorem 3. �

6 SECURITY ANALYSIS OF APUF, XOR APUF AND LSPUF BASED ON HDT(e, t)
PROPERTY

In Section 2.3, we have mentioned about two adversary threat models: Chosen-challenge Adversary

(CCA) and Adaptive Chosen-challenge Adversary (ACCA). Typically, we can develop CCA and

ACCA based on the HDT(e, t) property. In this paper, we focus on the ACCA based attack because

of the following reason: compared to machine learning based CCA, the e�ciency (e.g., time and

data complexities) of HDT(e, t)-based CCA are signi�cantly poor.

Objective of ACCA adversary is to predict the response ru to an unknown challenge cu , provided

that she can choose another challenge cchosen and query the PUF oracle for the corresponding

response r . An adversary can achieve her objective based on HDT(e, t) property of the target PUF

instance, following a two-step scheme as described below:

(1) Firstly, determine a set E = {e1, . . . , ed } of patterns e such that HDT(e, t) is poor. The set E

can be constructed from the analysis of HDT(e, t) of the target PUF. Let ebest be the pattern

with very poor HDT(e, t), and this is the best pattern form the adversary’s perspective.

(2) Then, the adversary computes challenge cchosen = cu ⊕ ebest, and then queries the PUF

oracle for the response r corresponding to challenge cchosen. If the value of HDT(ebest, t) is

close to 1, then ru = r ⊕ 1; otherwise, ru = r .

Once the ACCA adversary has the knowledge of CRP (cchosen, r), she can also derive more

unknown CRPs based on pattern e ∈ E \ ebest, if HDT(e, t) value of e is signi�cantly poor. The

prediction accuracy of ACCA analysis depends on HDT(e, t) of the pattern e that is employed in

analysis.

6.1 APUF and XOR APUF under ACCA Threat
From Section 3.2, it can be observed that e0 = (1, 0, . . . , 0) and en−1 = (0, . . . , 0, 1) are most useful

patterns to the adversary, as they result in signi�cantly very poor HDT(e, 1) values. Based on

HDT(e, t) analysis of APUF in Section 3.3, we can �nd another interesting pattern ei,i+1 with poor

HDT(ei,i+1, 2) value, where the pattern vector contains two consecutive ‘1’ bits and all remaining

bits are ‘0’, e.g. e1,2 = (0, 1, 1, 0, . . . , 0). So, an adversary can also employ these patterns to generate

related challenge-response pairs using the proposed ACCA attack scheme. In addition, it can be

observed that HDT(e, t) values for the above mentioned patterns become gradually poor with

increasing value of challenge size of the APUF. This implies that accuracy of the ACCA attack is

better for larger APUF compared to smaller APUF.

1:14

Since the output of an x-XOR APUF is obtained by XOR-ing the outputs of x APUFs, we can also

observe poor HDT(e, t) property for patterns e for which APUF shows poor HDT(e, t) property.

6.2 LSPUF under ACCA Threat
As the input network in LSPUF can improve HDT(ei , 1) property, we consider HDT(ei,i+1, 2)
property to develop the ACCA attack on LSPUF. We show that the input network of LSPUF cannot

prevent the statistical attack with respect to the pattern ei,i+1. For the sake of explanation, we

consider only the input network дj of the jth constituent APUF Aj . The challenge c of LSPUF is

transformed to cj by дj as described in Section 5.1.1.

As an example, we consider the XOR input network д0 with intermediate input d0 = c of size

10-bit as follows:

c0[0] = d0[0] ⊕ d0[1], c0[1] = d0[2] ⊕ d0[3], c0[2] = d0[4] ⊕ d0[5],

c0[3] = d0[6] ⊕ d0[7], c0[4] = d0[8] ⊕ d0[9], c0[5] = d0[0],

c0[6] = d0[1] ⊕ d0[2], c0[7] = d0[3] ⊕ d0[4], c0[8] = d0[5] ⊕ d0[6],

c0[9] = d0[7] ⊕ d0[8].

Now, we consider pattern ei,i+1 that �ips two consecutive bits (c[i], c[i+1]) as well as (d0[i], d0[i+
1]), as d0 = c for input network д0. It can be observed that two consecutive bits �ips in d0 introduce

either two consecutive bit �ips in c0 or only last bit c0[n − 1] will �ip, where c0 is the input to A0.

This fact is explained with the above example in Table 1.

Table 1. A case of two consecutive bits flips in d0 and corresponding flips in c0 of A0

(d0[0], d0[1]) ⇒ {c0[5], c0[6]}, (d0[1], d0[2]) ⇒ {c0[0], c0[1]}, (d0[2], d0[3]) ⇒ {c0[6], c0[7]},
(d0[3], d0[4]) ⇒ {c0[1], c0[2]}, (d0[4], d0[5]) ⇒ {c0[7], c0[8]}, (d0[5], d0[6]) ⇒ {c0[2], c0[3]},
(d0[6], d0[7]) ⇒ {c0[8], c0[9]}, (d0[7], d0[8]) ⇒ {c0[3], c0[4]}, (d0[8], d0[9]) ⇒ {c0[9]}

In general, it can be observed that if we �ip two consecutive bits (c[i], c[i + 1]) in LSPUF input c
with pattern ei,i+1, then there are also �ips in bits

(dj [(i + j)%n], dj [(i + j + 1)%n]),

as dj = c ≫ j . These bit-�ips in dj eventually propagate to cj , which is the input of APUF Aj . The

positions of the �ipping bits in cj depends on �ipping bit positions in dj . Generic version of this

observation is stated in the following theorem:

Theorem 6. Ifn is an even number and we �ip two consecutive bits (dj [u], dj [u+1]),u = 0, . . . ,n−2

of the dj , then there are two consecutive bits �ip at cj , or the last bit cj [n − 1] in cj will be �ipped.

Proof. We consider two di�erent cases:

(1) u is even: According to the design of input network, dj [u] will �ip two bits cj [u
2
] and

cj [n+u
2
], and dj [u + 1] will �ip two bits cj [u

2
] and cj [n+u+2

2
]. Thus, when two bits dj [u] and

dj [u + 1] �ip, it results in �ip of two consecutive bits cj [n+u
2
] and cj [n+u+2

2
] only.

(2) u is odd: According to the design of input network, dj [u] will �ip two bits cj [u−1

2
] and

cj [n+u+1

2
], while dj [u + 1] will �ip two bits cj [u+1

2
] and cj [n+u+1

2
]. Thus, when two bits

dj [u] and dj [u + 1] �ip, there are only two bits cj [u−1

2
] and cj [u+1

2
] which �ip. Moreover,

these two �ipping bits in cj are consecutive bits.

1:15

Algorithm 2 Prediction of response to c of (n,k,x)-LSPUF instance P in ACCA

Input: LSPUF instance P
Output: Response o to challenge c

1: cr ← (c[0] ⊕ 1, c[1] ⊕ 1, c[2], . . . , c[n − 1]) {Related challenge}

2: or = P(cr) {Evaluate LSPUF with challenge cr }

3: o ← or

A special case occurs when we �ip two consecutive bits (dj [n − 2], dj [n − 1]), and it results in

�ipping in bits cj [n − 1] and cj [n] (see the case of even u). But bit cj [n] does not exist, as n is not a

valid index. Thus, only the last bit cj [n − 1] will �ip. �

Thus, for a given challenge c, the adversary can predict the 1-bit response o of LSPUF using

Algorithm 2, by �ipping two consecutive bits in challenge c, e.g. the �rst two bits c[0] and c[1]. It

can be observed from experimental result in Section 7.4 that the probability Pr(or = o), where or
is the response of related challenge cr , increases with the increasing challenge size n. It implies

that the prediction accuracy of the ACCA attack on x-XOR LSPUF is better for longer challenge

compared to LSPUF with smaller challenge size.

7 EXPERIMENTAL RESULTS
In this section, we experimentally validate HDT(e, t), HDT(t) and PC(t) properties of APUF, XOR

and LSPUF. We also demonstrate the ACCA attack using HDT(ei , 1) and HDT(ei,i+1, 2) properties.

7.1 Experimental Setup
We have performed Matlab simulations and FPGA implementations of above mentioned PUF

designs. In case of FPGA implementation, we have used four Xilinx Artix-7 (XC7A100T) FPGAs.

Since FPGA based PUFs are not 100% reliable, majority voting (over 11 evaluations of each PUF

instance at normal operating condition) is used to generate the golden responses of a PUF instance.

In Matlab simulations, we assume that delay of each delay component follows a Gaussian

distribution N(µ,σ 2) [5] with µ = 10 and σ = 0.05 in N(10,σ 2) to make the all delay values

positive. To estimate the e�ect of noise on simulated APUF behavior (that happens in the real

PUF due to the temperature and supply voltage variations), we have employed an additive noise

following normal distribution N(0,σ 2

noise
) [3]. In the presence of noise, each delay component of

APUF follows N(10,σ 2 + σ 2

noise
). To control the reliability level of APUF, we have exploited the

following relationship between σ and σnoise: σnoise = ασ , where 0 ≤ α ≤ 1, and PUFs are treated to

be 100% reliable when α = 0.

We now describe the computation of HDT(e, t), which is a fundamental step of HDT(t) and PC(t)
computations. For a given pattern ei , i ∈ [0,n− 1], HDT(ei , 1) is the probability of output transition

due to �ip in c[i]. To estimate this probability, we have evaluated a simulated PUF instance with

5000 random challenge pairs for each value of i , where each challenge pair di�ers only in the

ith bit position (cf. Algorithm 1). We repeated the same experiment on 100 randomly generated

simulated PUF instances of a PUF design (e.g. APUF). To make the presentation concise, we provide

the average of HDT(ei , 1) values for all bit positions i . For FPGA based PUFs, we have used 500

challenge pairs for each challenge bit position to reduce the experiment time. In our discussion, we

have used another pattern ei,i+1, and computation of HDT(ei,i+1, 2) is done in a similar fashion.

The computations of HDT(t) and PC(t) require us to consider all possible patterns e = c1 ⊕ c2,

for a given t value, between challenge pair (c1, c2) with HD(c1, c2) = t . So, these computations are

very compute-intensive even for PUF instances with 64-bit challenge, and hence, we consider only

1:16

 0

 0.25

 0.5

 0.75

 1

 1 16 32 48 64

H
D

T
(e

,t)

t

(a) HDT(e, t) of 64-bit APUF

 0.4

 0.45

 0.5

 0.55

 1 16 32 48 64

t

HDT(t) PC(t)

(b) HDT(t) and PC(t) of 64-bit APUF

Fig. 5. HDT(e, t), HDT(t) and PC(t) properties of simulated APUFs.

 0

 0.25

 0.5

 0.75

 1

 0 16 32 48 64

Challenge Bit Index (i)

HDT(ei,1)
HDT(ei,i+1,2)

(a) 64-bit APUF

 0

 0.25

 0.5

 0.75

 1

 0 32 64 96 128

Challenge Bit Index (i)

HDT(ei,1)
HDT(ei,i+1,2)

(b) 128-bit APUF

Fig. 6. HDT(ei , 1) and HDT(ei, i+1, 2) properties of simulated APUFs. These are computed over 100 APUF
instances using 5000 randomly generated CRPs.

1000 randomly chosen patterns e for each t value. In computation of HDT(t) for a given t , we need

to compute HDT(e, t) for each of 1000 randomly chosen e. Finally, PC(t) computation is done based

on the computed HDT(t) values.

7.2 Results for APUF
7.2.1 HDT(e, t), HDT(t) and PC(t) Properties. The HDT(e, t) property of 64-bit APUF is shown

in Fig. 5a based the Matlab simulation. We have used boxplots for each t value, and each boxplot is

de�ned based on 1000 HDT(e, t) values corresponding to 1000 random patterns e with HW(e) = t .
The whisker of the boxplot spans over the 100% of the dataset. From Fig. 5a, it can be observed

that whiskers of the boxplots for t = 1 and t = 2 extend towards the 0 and 1, and this fact implies

that there are a few patterns e with poor HDT(e, t) values. Thus, results of HDT(t) and PC(t)
values in Fig. 5b might give wrong impression about robustness against the statistical attacks, as

HDT(t) ≈ 0.5 and PC(t) ≈ 0.5 for the most t values.

Next, we discuss HDT(e, t) property of two speci�c mismatch patterns ei and ei,i+1, as they

reveal signi�cant amount of information to an adversary (cf. Section 6.1) .

7.2.2 HDT(ei , 1) and HDT(ei,i+1, 2) Properties. Figures 6 and 7 depict HDT(ei , 1) property of

simulated and FPGA implemented APUFs, respectively. It can be observed that HDT(ei , 1) values for

very �rst and last bit positions are signi�cantly poor, as pointed out in Section 3.2. The adversary can

1:17

 0

 0.25

 0.5

 0.75

 1

 0 16 32 48 64

Challenge Bit Index (i)

HDT(ei,1)
HDT(ei,i+1,2)

(a) APUF 64-bit

 0

 0.25

 0.5

 0.75

 1

 0 32 64 96 128

Challenge Bit Index (i)

HDT(ei,1)
HDT(ei,i+1,2)

(b) APUF 128-bit

Fig. 7. HDT(ei , 1) and HDT(ei,i+1, 2) properties of FPGA implemented APUF.

 0

 0.25

 0.5

 0.75

 1

 0 16 32 48 64

H
D

T
(e

i,1
)

Challenge Bit Index (i)

α=1/2
α=1/20
α=1/50

α=1/80
α=0

(a) HDT(ei , 1) with noise

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 16 32 48 64

H
D

T
(e

i,i
+

1,
2)

Challenge Bit Index (i)

α=1/2
α=1/20
α=1/50

α=1/80
α=0

(b) HDT(ei,i+1, 2) with noise

Fig. 8. Delineating the robustness of HDT(ei , 1) and HDT(ei,i+1, 2) for 64-bit APUFs in the presence of
noise following N(0,σ

noise)) and σnoise = ασ where σ is the standard deviation of delays of APUF’s delay
components.

Table 2. Reliability (%) of simulated 64-bit APUF, x-XOR APUF and x-XOR LSPUF with σnoise = ασ

PUF x
Reliability (Avg.)

α = 1/2 α = 1/20 α = 1/50 α = 1/80 α = 0

APUF – 94.80 99.47 99.79 99.86 100

XOR APUF

2 87.87 98.93 99.58 99.73 100

3 80.83 98.38 99.36 99.59 100

LSPUF

2 87.89 98.90 99.58 99.73 100

3 80.80 98.36 99.36 99.61 100

exploit these observations to derive new CRPs from the previously revealed CRPs (cf. Section 6.1).

This will reduce the size of e�ective secure CRP space.

In [11], it was reported that HDT(ei , 1) property of APUF can be improved using their a XOR

based input network. Although this is true, it does not improve HDT(e, t) property of APUF for

arbitrary values of t . Figures 6 and 7 also show the relatively poor HDT(ei,i+1, 2) property for

APUF. This observation is in agreement with the theoretical conclusion reached in Section 3.3.

Later in Fig. 17, we show that the input network in [11] cannot achieve a good HDT(ei,i+1, 2) for

APUF. Another important observation from the experimental results is that both the values of

HDT(ei , 1) and HDT(ei,i+1, 2) of APUFs become poorer with increasing value of challenge size n.

1:18

 0

 0.25

 0.5

 0.75

 1

 1 16 32 48 64

H
D

T
(e

,t)

t

(a) HDT(e, t) of 2-XOR APUF

 0.4

 0.45

 0.5

 0.55

 1 16 32 48 64

t

HDT(t) PC(t)

(b) HDT(t) and PC(t) of 2-XOR APUF

 0

 0.25

 0.5

 0.75

 1

 1 16 32 48 64

H
D

T
(e

,t)

t

(c) HDT(e, t) of 3-XOR APUF

 0.4

 0.45

 0.5

 0.55

 1 16 32 48 64

t

HDT(t) PC(t)

(d) HDT(t) and PC(t) of 3-XOR APUF

Fig. 9. HDT(e, t), HDT(t) and PC(t) properties of simulated 64-bit x-XOR APUF for x = 2, 3. For even values
of x , HDT(e, t) follows the trend as in (a), and for odd values of x , HDT(e, t) follows the trend as in (c).

Since HDT(e, t) computation relies on CRPs of a PUF instance, the reliability of PUF has an

in�uence on HDT(e, t) property. To observe this fact for HDT(ei , 1) and HDT(ei,i+1, 2), we have

considered 64-bit simulated APUF with additive noise (cf. Section 7.1). Reliability values of APUF

for di�erent σnoise values are reported in Table 2. The HDT(ei , 1) and HDT(ei,i+1, 2) values of 64-bit

simulated APUFs are depicted in Fig. 8 for di�erent α values. For α = 1/2, reliability of APUF is

approximately 94%, and as a consequence we can see a small shift in HDT(ei , 1) and HDT(ei,i+1, 2)
values. It is evident that HDT(e, t) value is a�ected by the reliability, but e�ect is not signi�cant for

an APUF unless reliability is very poor.

7.3 Results for XOR APUF
Like the case of APUF, for XOR APUF, we have performed a similar experiment to compute HDT(t)
and PC(t) properties for simulated 64-bit 2-XOR APUF and 3-XOR APUF, and the corresponding

results are reported in Figs. 9b and 9d, respectively. Detailed results for HDT(e, t) based on 1000

random patterns e for each t value are reported in Figs. 9a and 9c using boxplots. From Figs. 9a

and 9c, it is evident that there are a few patterns e with t = 1, 2 that are useful to an adversary. We

have reported HDT(ei , 1) properties of simulated XOR APUFs (64-bit and 128-bit) in Fig. 11, which

is also known as SAC property.

The result of HDT(t) property for XOR APUF had been reported in [11], but authors considered

only the HD of challenge pairs regardless of their points of mismatch (i.e., pattern e). An adver-

sary can try to �nd the particular mismatch pattern of challenge pairs, from which she can get

comparatively more statistical information to reduce the unpredictability property of XOR APUF.

1:19

 0

 0.25

 0.5

 0.75

 1

 0 16 32 48 64

H
D

T
(e

i,1
)

Challenge Bit Index (i)

x=2
x=3

x=5
x=6

x=8
x=9

(a) 64-bit x-XOR APUF

 0

 0.25

 0.5

 0.75

 1

 0 32 64 96 128

H
D

T
(e

i,1
)

Challenge Bit Index (i)

x=2
x=3

x=5
x=6

x=8
x=9

(b) 128-bit x-XOR APUF

Fig. 10. HDT(ei , 1) property of simulated x-XOR APUF.

 0

 0.25

 0.5

 0.75

 1

 0 16 32 48 64

H
D

T
(e

i,1
)

Challenge Bit Index (i)

x=2
x=3

x=5
x=6

x=8
x=9

(a) 64-bit x-XOR APUF

 0

 0.25

 0.5

 0.75

 1

 0 32 64 96 128

H
D

T
(e

i,1
)

Challenge Bit Index (i)

x=2
x=3

x=5
x=6

x=8
x=9

(b) 128-bit x-XOR APUF

Fig. 11. HDT(ei , 1) property of simulated x-XOR APUF.

 0

 0.25

 0.5

 0.75

 1

 0 16 32 48 64

H
D

T
(e

i,1
)

Challenge Bit Index (i)

x=2
x=3

x=5
x=6

x=9
x=10

(a) 64-bit x-XOR APUF

 0

 0.25

 0.5

 0.75

 1

 0 32 64 96 128

H
D

T
(e

i,1
)

Challenge Bit Index (i)

x=2
x=3

x=5
x=6

x=9
x=10

(b) 128-bit x-XOR APUF

Fig. 12. HDT(ei , 1) property of FPGA implemented x-XOR APUF.

The HDT(ei , 1) results for FPGA implemented XOR APUF are reported in Fig. 12. To the best

of our knowledge, there has been no previous published result for FPGA-based XOR APUF in the

context of HDT(ei , 1) property. We observed that HDT(ei , 1) of simulated x-XOR APUF (cf. Fig. 11)

is di�erent from that of the FPGA-implemented x-XOR APUF (cf. Fig. 12) for odd values of x , as

FPGA-based APUF has very poor uniqueness. In particular, APUF instances on a single board have

almost similar challenge-response behavior [9, Table 6]. Hence, when x is odd, the FPGA-based

1:20

 0

 0.25

 0.5

 0 16 32 48 64

H
D

T
(e

i,i
+

1,
2)

Challenge Bit Index (i)

x=2
x=3

x=5
x=6

x=8
x=9

(a) 64-bit x-XOR APUF

 0

 0.25

 0.5

 0 32 64 96 128

H
D

T
(e

i,i
+

1,
2)

Challenge Bit Index (i)

x=2
x=3

x=5
x=6

x=8
x=9

(b) 128-bit x-XOR APUF

Fig. 13. HDT(ei,i+1, 2) property of simulated x-XOR APUF.

 0

 0.2

 0.4

 0 16 32 48 64

H
D

T
(e

i,i
+

1,
2)

Challenge Bit Index (i)

x=2
x=3

x=5
x=6

x=9
x=10

(a) 64-bit x-XOR APUF

 0

 0.2

 0.4

 0 32 64 96 128

H
D

T
(e

i,i
+

1,
2)

Challenge Bit Index (i)

x=2
x=3

x=5
x=6

x=9
x=10

(b) 128-bit x-XOR APUF

Fig. 14. HDT(ei,i+1, 2) property of FPGA implemented x-XOR APUF.

x-XOR APUF behaves similar to a single APUF. This is the reason why the plot of HDT(ei , 1) of

x-XOR APUF with odd x is similar to that for APUF.

We have also performed HDT(ei,i+1, 2) property of both simulated and FPGA implemented XOR

APUF, and the corresponding results are reported in Figs. 13 and 14, respectively. Results shows

that HDT(ei,i+1, 2) property is also poor compared to its ideal value 0.5.

It is worth mentioning that both HDT(ei , 1) and HDT(ei,i+1, 2) properties of x-XOR APUF with

n-bit challenge improve with larger values of x , whereas larger n can be an in�uencing factor to

reducing HDT(ei , 1) and HDT(ei,i+1, 2) properties. An adversary can exploit both HDT(ei , 1) and

HDT(ei,i+1, 2) properties of XOR APUF to perform a statistical attack—the ACCA attack.

Like APUF, HDT(ei , 1) and HDT(ei,i+1, 2) values of XOR APUF are a�ected by the reliability. To

demonstrate this fact, we simulated 64-bit 2-XOR APUF and 3-XOR APUF with (additive) noise

in consideration, and corresponding HDT(ei , 1) and HDT(ei,i+1, 2) values are shown in Fig. 15.

Reliability values of 2-XOR APUF and 3-XOR APUF for di�erent σnoise values are mentioned

in Table 2. The changes in HDT(ei , 1) and HDT(ei,i+1, 2) values are not signi�cant within the

typical acceptable reliability range.

7.4 Results for LSPUF
Like APUF and XOR APUF, we also performed a detailed experiment to investigate HDT(e, t),
HDT(t) and PC(t) properties for simulated 64-bit 2-XOR LSPUF and 3-XOR LSPUF, and the cor-

responding results are reported in Fig. 16. Boxplots in Figs. 16a and 16c have a di�erent trend

1:21

 0

 0.25

 0.5

 0.75

 1

 0 16 32 48 64

H
D

T
(e

i,1
)

Challenge Bit Index (i)

α=1/2
α=1/20
α=1/50

α=1/80
α=0

(a) HDT(ei , 1) of 2-XOR APUF

 0

 0.25

 0.5

 0.75

 1

 0 16 32 48 64

H
D

T
(e

i,1
)

Challenge Bit Index (i)

α=1/2
α=1/20
α=1/50

α=1/80
α=0

(b) HDT(ei , 1) of 3-XOR APUF

 0

 0.25

 0.5

 0 16 32 48 64

H
D

T
(e

i,i
+

1,
2)

Challenge Bit Index (i)

α=1/2
α=1/20
α=1/50

α=1/80
α=0

(c) HDT(ei,i+1, 2) of 2-XOR APUF

 0

 0.25

 0.5

 0 16 32 48 64

H
D

T
(e

i,i
+

1,
2)

Challenge Bit Index (i)

α=1/2
α=1/20
α=1/50

α=1/80
α=0

(d) HDT(ei,i+1, 2) of 3-XOR APUF

Fig. 15. Delineating the robustness of HDT(ei , 1) and HDT(ei,i+1, 2) for simulated 64-bit XOR APUFs in the
presence of noise, and σnoise = ασ .

than that of APUF (cf. Fig. 5a) and XOR APUF (cf. Figs. 9a and 9c) due to the input network of

LSPUF. From Figs. 16a and 16c, it can be observed that HDT(e, t) values are approximately 0.5 for

odd t ∈ [1, 31] and even t ∈ [34, 64]. In other cases of t , HDT(e, t) are gradually improving when

t → n/2. E�ects of poor HDT(e, t) for some t values can be seen in corresponding HDT(t) and

PC(t) results as depicted in Figs. 16b and 16d. Next, we discuss HDT(e, t) for a speci�c mismatch

pattern ei,i+1 that reveal signi�cant information to an adversary.

The input network in LSPUF design was introduced to achieve good HDT(ei , 1) property for

LSPUF outputs, by improving HDT(ei , 1) property (also known as SAC) for used APUFs, i.e.,

HDT(ei , 1) of APUF instances in presence of the input network is around 0.5 [11]. From the results

in Figs. 16a and 16c, one can observe the following fact: the input network of LSPUF in [11] can

ensure good HDT(e, t) for 50% of t values (cf. Figs. 16a and 16c), but it cannot improve HDT(e, t)
property in general. This is a weakness of the LSPUF input network. In this work, we have shown

that HDT(ei,i+1, 2) properties of APUF (cf. Sections 3.3 and 7.2) and LSPUF (cf. Section 5) are poor.

Now, we discuss results regarding HDT(ei,i+1, 2) property of the LSPUF. Without loss of gener-

ality, we have computed HDT(ei,i+1, 2) of the �rst APUF (A0) of FPGA implemented LSPUF with

input network d0 = д0(c ≫ 0). This result is reported in Fig. 17. It is evident that the HDT(ei,i+1, 2)
property is comparatively poor (i.e. approximately 0.1 for 64-bit and 0.07 for 128-bit APUFs) than

its ideal value 0.5. In this case, HDT(ei,i+1, 2) property of APUF are similar for every consecutive

bit pair, excluding the most signi�cant bit pair. As discussed in Theorem 6, when there is a �ip

in the last bit pair of challenge c, it �ips the most signi�cant bit of input c0 to A0 (cf. Fig. 4). So,

HDT(ei,i+1, 2) of this last pair is equivalent to HDT(ei , 1) of last bit for APUF without input network.

1:22

 0

 0.25

 0.5

 0.75

 1

 1 16 32 48 64

H
D

T
(e

,t)

t

(a) HDT(e, t) of 2-XOR LSPUF

 0.4

 0.45

 0.5

 0.55

 1 16 32 48 64

t

HDT(t) PC(t)

(b) HDT(t) and PC(t) of 2-XOR LSPUF

 0

 0.25

 0.5

 0.75

 1

 1 16 32 48 64

H
D

T
(e

,t)

t

(c) HDT(e, t) of 3-XOR LSPUF

 0.4

 0.45

 0.5

 0.55

 1 16 32 48 64

t

HDT(t) PC(t)

(d) HDT(t) and PC(t) of 3-XOR LSPUF

Fig. 16. HDT(e, t), HDT(t) and PC(t) properties of simulated 64-bit x-XOR LSPUF for x = 2, 3.

 0

 0.25

 0.5

 0.75

 1

 0 16 32 48 64

H
D

T
(e

i,i
+

1,
2)

Challenge Bit Index (i)

(a) 64-bit APUF

 0

 0.25

 0.5

 0.75

 1

 0 32 64 96 128

H
D

T
(e

i,i
+

1,
2)

Challenge Bit Index (i)

(b) 128-bit APUF

Fig. 17. HDT(ei,i+1, 2) properties of FPGA implemented APUF with LSPUF’s input network.

This implies that the input network of LSPUF needs to be modi�ed to achieve the ideal value of

HDT(e, t) = 0.5. Otherwise, it becomes a threat to LSPUF security (cf. Section 6).

As a consequence of the poor HDT(ei,i+1, 2) property of constituent APUFs, LSPUF also exhibits

poor HDT(ei,i+1, 2) property. Figure 18 depicts HDT(ei,i+1, 2) property of FPGA implemented

LSPUF (64-bit and 128-bit) with 1-bit output (m = 1). The output bit is generated similar to an

x-XOR APUF, for di�erent values x = 2, . . . , 9. We have also performed the same experiment using

Matlab based simulation of LSPUFs to observe the platform independent behavior, and results are

reported in Fig. 19. The following two facts can be observed from the experimental results:

1:23

 0

 0.25

 0.5

 0.75

 1

 0 16 32 48 64

H
D

T
(e

i,i
+

1,
2)

Challenge Bit Index (i)

x=2
x=4

x=6
x=10

(a) 64-bit x-XOR LSPUF

 0

 0.25

 0.5

 0.75

 1

 0 32 64 96 128

H
D

T
(e

i,i
+

1,
2)

Challenge Bit Index (i)

x=2
x=4

x=6
x=10

(b) 128-bit x-XOR LSPUF

Fig. 18. HDT(ei,i+1, 2) property of FPGA implemented LSPUF with one output bit. This case is similar as
XOR APUF with input network.

 0

 0.25

 0.5

 0.75

 1

 0 16 32 48 64

H
D

T
(e

i,i
+

1,
2)

Challenge Bit Index (i)

x=2
x=3

x=8
x=9

(a) 64-bit x-XOR LSPUF

 0

 0.25

 0.5

 0.75

 1

 0 32 64 96 128

H
D

T
(e

i,i
+

1,
2)

Challenge Bit Index (i)

x=2
x=3

x=8
x=9

(b) 128-bit x-XOR LSPUF

Fig. 19. HDT(ei,i+1, 2) property of simulated LSPUF with 1-bit output (m = 1). This case is similar as XOR
APUF with input network.

 0

 0.25

 0.5

 0.75

 1

 0 16 32 48 64

H
D

T
(e

i,i
+

1,
2)

Challenge Bit Index (i)

α=1/2
α=1/20
α=1/50

α=1/80
α=0

(a) HDT(ei,i+1, 2) of 2-XOR LSPUF

 0

 0.25

 0.5

 0.75

 1

 0 16 32 48 64

H
D

T
(e

i,i
+

1,
2)

Challenge Bit Index (i)

α=1/2
α=1/20
α=1/50

α=1/80
α=0

(b) HDT(ei,i+1, 2) of 3-XOR LSPUF

Fig. 20. Delineating the robustness of HDT(ei,i+1, 2) for 64-bit LSPUFs in the presence of noise, and σnoise =

ασ .

(1) The HDT(ei,i+1, 2) properties of APUF and LSPUF become poorer with the increasing value

of challenge length n. This implies that the leakage of information is more for longer PUFs

upon revealing a set of CRPs.

(2) Improvement in HDT(ei,i+1, 2) property of LSPUF can be observed with increasing value

of x . We can see that the HDT(ei,i+1, 2) property of LSPUF for x = 9 (cf. Fig. 19) is 10-20%

1:24

Table 3. A list of useful pa�ern vectors e w.r.t. HDT(e, t) property for APUF

n†
Output Transition Probability [HDT(e, t)]

Simulation FPGA
e0 en−1 e0,1 en−2,n−1 e0 en−1 e0,1 en−2,n−1

64 0.054 0.940 0.070 0.095 0.035 0.939 0.103 0.126

128 0.039 0.958 0.053 0.057 0.026 0.953 0.087 0.093

256 0.026 0.972 0.036 0.042
? ? ? ?

512 0.020 0.981 0.027 0.027
? ? ? ?

†
Challenge size

?
It implies that corresponding data in not available, as we did not imple-

ment 256-bit and 512-bit APUFs on Xilinx FPGA.

apart from its ideal value 50%. However, in practice we cannot use larger x values due to

reliability issues [2, 5].

To observe the e�ect of reliability on HDT(ei,i+1, 2) for LSPUF, we have simulated 64-bit 2-XOR

LSPUF and 3-XOR LSPUF with additive noise, as discussed in Section 7.1, and the reliability of

LSPUF is reported in Table 2. Fig. 20 shows HDT(ei,i+1, 2) of LSPUF with di�erent values for σnoise,

and a shift in HDT(ei,i+1, 2) can be observed when reliability of LSPUF is signi�cantly poor. Thus,

HDT(ei,i+1, 2) values are robust within the acceptable reliability range.

7.5 Demonstration of Proposed ACCA A�ack
As we mentioned earlier in Section 6 that objective of an ACCA adversary is to predict the response

to a challenge using the response obtained by applying another chosen challenge. Table 3 lists a

few useful pattern vectors e with HDT(e, t) value for APUF that can be used by the adversary for

choosing a challenge for the ACCA attack. There might be many such useful pattern vectors e.

Here we demonstrate this fact with experimental results.

Now we describe the ACCA attack. Let c be an unknown challenge and the adversary predicts

the response to this challenge. She can choose a challenge cchosen = c ⊕ e0 and queries the PUF

oracle for its response, denoted by rchosen. Thus, the response to the challenge c is r = rchosen, as

for e0 output transition probability (HDT(e0, t)) approaches 0 (cf. Table 3). If she would choose

pattern en−1 (i.e. cchosen = c ⊕ en−1) instead of e0, then response to c would be r = rchosen ⊕ 1, as

HDT(en−1, t) approaches 1 (cf. Table 3).

The prediction accuracy of the ACCA attack is reported in Table 4 for simulated APUF designs.

In this simulation, we have used 50,000 CRPs and derived another 50,000 CRPs for each pattern

e listed in Table 3 by following the ACCA attack scheme. We have also shown the in�uence of

reliability on the prediction accuracy in Table 4 using simulated additive noise (cf. Section 7.1).

It can be observed from Table 4 that prediction accuracy improves with the increasing challenge

size of PUF, i.e., prediction accuracy of 512-bit APUF is better than that of 64-bit APUF. From the

observed results, it is clear that the attack experimental results corroborate the proposed ACCA

attack methodology.

Since the CCA attack discussed in Section 6 is not more e�cient than ML-based modeling attacks,

we would exclude the experimental validation of CCA attack in this paper, but we discuss how

an adversary can generate related CRPs from a given CRP. Let (c, r) be a known CRP of a n-bit

APUF and then adversary can derive following CRPs using the pattern vectors reported in Table 3:

(c ⊕ e0, r), (c ⊕ en−1, r ⊕ 1), (c ⊕ e0,1, r) and (c ⊕ en−2,n−1, r). Thus, the e�ective CRP space of an

APUF can be reduced signi�cantly after revealing some set of CRPs to the adversary. This is a

threat to APUF based authentication protocols where the adversary can eavesdrop CRPs of an

APUF instance.

1:25

Table 4. Prediction accuracy of the ACCA a�ack on simulated APUFs

n? α†
Prediction Accuracy (Avg.,Std.) [%)] Reliability

(Avg.,Std.) [%]e0 en−1 e0,1 en−2,n−1

64

1/2 (90.31,3.59) (90.91,2.66) (88.79,5.28) (89.74,3.04) (94.97,0.48)

1/20 (93.41,5.11) (94.20,4.30) (91.55,7.19) (92.34,4.64) (99.49,0.06)

1/50 (93.48,5.17) (94.24,4.34) (91.58,7.23) (92.36,4.67) (99.80,0.03)

1/80 (93.48,5.17) (94.24,4.34) (91.58,7.25) (92.35,4.67) (99.87,0.02)

0 (93.48,5.17) (94.24,4.35) (91.59,7.26) (92.35,4.67) (100,0)

128

1/2 (91.87,1.26) (91.95,1.53) (91.61,1.86) (90.44,2.72) (95.05,0.31)

1/20 (95.89,2.84) (96.00,3.05) (95.40,3.36) (93.49,4.40) (99.50,0.04)

1/50 (95.94,2.89) (96.06,3.12) (95.45,3.43) (93.52,4.43) (99.80,0.02)

1/80 (95.93,2.88) (96.07,3.11) (95.45,3.44) (93.51,4.43) (99.87,0.02)

0 (95.94,2.89) (96.08,3.12) (95.46,3.45) (93.51,4.43) (100,0)

256

1/2 (92.33,0.71) (92.16,0.94) (91.93,1.38) (92.04,1.28) (94.92,0.26)

1/20 (96.98,1.90) (96.55,2.30) (96.18,2.74) (96.49,2.66) (99.49,0.05)

1/50 (97.03,1.96) (96.61,2.38) (96.23,2.78) (96.56,2.71) (99.79,0.02)

1/80 (97.04,1.95) (96.63,2.38) (96.23,2.77) (96.56,2.71) (99.87,0.02)

0 (97.04,1.96) (96.63,2.40) (96.24,2.78) (96.57,2.72) (100,0)

512

1/2 (92.63,0.37) (92.68,0.46) (92.46,1.03) (92.47,0.81) (94.98,0.20)

1/20 (97.82,1.20) (98.09,1.37) (97.41,2.26) (97.44,2.07) (99.49,0.04)

1/50 (97.92,1.31) (98.23,1.49) (97.51,2.33) (97.55,2.16) (99.79,0.02)

1/80 (97.92,1.32) (98.26,1.51) (97.52,2.34) (97.57,2.17) (99.87,0.02)

0 (97.93,1.33) (98.27,1.53) (97.52,2.34) (97.58,2.19) (100,0)

?
Challenge size

† σnoise = ασ
Note: This result is obtained based on 50 di�erent simulated instances of a APUF design

with n-bit challenge. For each PUF instance, we considered 50,000 CRPs, and derived

another 50,000 CRPs with prediction accuracy reported above by following the ACCA

modeling.

Like in Table 3, one can list useful patterns with its HDT(e, t) for XOR APUF based on the results

reported in Section 7.3. In case of LSPUF, a useful pattern to an ACCA adversary is the ei,i+1

(cf. Section 7.4), as HDT(ei , 1) is improved by using the input network. However, PUF designer can

prevent this kind of statistical attack using large value for x in case of x-XOR APUF and x-XOR

LSPUF, as HDT(ei , 1) and HDT(ei,i+1, 2) approach 0.5. Whereas in case of large value of n (challenge

length), attack is more e�cient, as HDT(ei , 1) and HDT(ei,i+1, 2) become poor.

8 CONCLUSIONS
In this work, we have proposed a new test, which we term as HDT(e, t) test, for evaluating the

unpredictability property of PUFs. As case studies, we have provided a comprehensive study of

HDT(e, t), HDT(t) and PC(t) properties of APUF, XOR APUF, and LSPUF. We have also shown that

HDT(e, t) test is more general in comparison with HDT(t) and PC(t) test schemes—if a PUF design

quali�es the HDT(e, t) property, then it also satis�es the HDT(t) and PC(t), but the reverse does

not hold. To validate HDT(e, t) properties of APUF, XOR APUF and LSPUF, we have simulated and

implemented the designs on Xilinx FPGA platform. Our simulation and implementation results are

in agreement with our theoretical observations. We have also developed an ACCA attack where

adversary can predict the response to an unknown challenge based on the response to a chosen

challenge, and we have demonstrated the ACCA attack on simulated and FPGA-implemented

APUFs. This attack reduces the unpredictability properties of APUF, XOR APUF and LSPUF designs.

Our future work would be directed at utilizing the concepts developed in this paper to provide a

1:26

testing and evaluation methodology for the unpredictability property of PUF design in the context

of statistical attacks.

APPENDIX
A ANALYTICAL EXPRESSION OF HDT(e, t) FOR APUF
We now proceed to establish analytical expression for HDT(e, t) with respect to t �ipping bits

c[i1], . . . , c[it] �ip. Let us de�ne a partition of n+1 indices (cf. Fig. 21) in Φ into t+1 sets I1, . . . ,It+1,

where I1 = {0, . . . , i1} and |I1 | = i1 + 1; Ik = {ik−1 + 1, . . . , ik } and |Ik | = ik − ik−1,k = 2, . . . , t ;
It+1 = {it + 1, . . . ,n} and |It+1 | = n − it . Now we consider the following cases based on the parity

of t as follows.

Case-I: t is even. Without loss of generality and for the sake of explanation, we focus on the case

t = 2, i.e., the case where only two challenge bits c[i1] and c[i2] �ip. Then, according to Fig. 21,

there are three sets I1,I2 and I3. Since all the Φ[j], j ∈ I1 ∪I3 have an even number of �ipping bits,

the signs of these Φ[j] terms are not changed when c[i1] and c[i2] �ip (cf. Observation 1). It implies

that Bi1i2 = I1 ∪ I3. All the Φ[j], j ∈ I2 have an odd number of �ipping bits, and the signs of these

Φ[j] are changed when c[i1] and c[i2] �ip. Hence, Ai1i2 = I2. Figure 21a describes the non-�ipping

zones (N) and the �ipping zones (F). We generalize this fact in Theorem 7:

Theorem 7. If there are t �ipping bits c[i1], . . . , c[it] and t is even, thenAi1i2 ...it = I2 ∪I4 ∪ · · · ∪

It−2 ∪It and Bi1i2 ...it = I1 ∪I3 ∪ · · · ∪It−1 ∪It+1, and |Ai1i2 ...it | = (i2 − i1)+ (i4 − i3)+ · · ·+ (it−2 −

it−3)+(it −it−1)+it−2−it−1+it and |Bi1i2 ...it | = (i1+1)+(i3−i2)+(i5−i4)+ · · ·+(it−1−it−2)+(n−it).

Case-II: t is odd. Again without loss of generality and for the sake of explanation, we focus on

t = 3, i.e., only three bits c[i1], c[i2] and c[i3] �ip. With the same argument, we haveAi1i2i3 = I1∪I3
and Bi1i2i3 = I2 ∪ I4 as depicted in Theorem 8.

We generalize this fact in Theorem 8:

Theorem 8. If there are t �ipping bits c[i1], . . . , c[it] and t is odd, thenAi1i2 ...it = I1 ∪ I3 ∪ · · · ∪

It−2 ∪It and Bi1i2 ...it = I2 ∪I4 ∪ · · · ∪It−1 ∪It+1, and |Ai1i2 ...it | = (i1 + 1)+ (i3 − i2)+ · · ·+ (it−2 −

it−3) + (it − it−1) and |Bi1i2 ...it | = (i2 − i1) + (i4 − i3) + (i6 − i5) + · · · + (it−1 − it−2) + (n − it).

From Eq. (10), we can write HDT(ei1, ...,it , t) = Pr(Xi1i2 ...it = 1) = Pr(|∆Ai
1
i
2
. . .it
| > |∆Bi

1
i
2
. . .it
|).

Assume that |Ai1i2 ...it | = h, then |Bi1i2 ...it | = n − h + 1. In other words, ∆Ai
1
i
2
. . .it
∼ N(0,hσ 2) and

∆Bi
1
i
2
. . .it
∼ N(0, (n − h + 1)σ 2).

Since Gaussian function is symmetric with respect to mean (µ), and µ = 0 for both ∆Ai
1
i
2
. . .it

and

∆Bi
1
i
2
. . .it

, the probability Pr(Xi1i2 ...it = 1) = 4p, where p = Pr(∆Ai
1
i
2
. . .it
> ∆Bi

1
i
2
. . .it
|∆Ai

1
i
2
. . .it
≥

0,∆Bi
1
i
2
. . .it
≥ 0). According to the probability theory, p =

∫ ∞
0
ϕ

0,(n−h+1)σ 2 (u)Φ
0,hσ 2 (−u) du, and

Pr(Xi1i2 ...it = 1) can be expressed as:

Pr(Xi1i2 ...it = 1) = Pr(|∆Ai
1
i
2
. . .it
| > |∆Bi

1
i
2
. . .it
|) = 4 ×

∫ ∞

0

ϕ
0,(n−h+1)σ 2 (u)Φ

0,hσ 2 (−u) du .

B PROOF OF THEOREM 1
Proof. For the sake of explanation, let us denote the �ipping and non-�ipping zones by Fe(=

Ai1 ...it) and Ne(= Bi1 ...it) for a given pattern e = ei1i2 ...it , respectively. Our proof is based on the

following observations:

(1) For a given pattern e, |Fe | + |Ne | = n + 1 and HDT(e, t) = Pr(Xe = 1) = Pr(|∆Fe | > |∆Ne |).

1:27

0 n

N
i1 i2

F N

(a) Two bit flips as a case of even t

0 n

F
i1 i2

N
i3

F N

(b) Three bit flips as a case of odd t

Fig. 21. Position of flipping bits in challenge c and induced flipping (F) and non-flipping zones (N) in Φ: (a)
flipping zones F and non-flipping zones N created by flipping bits c[i1] and c[i2], and (b) flipping zones F
and non-flipping zones N created by flipping bits c[i1], c[i2] and c[i3].

(2) If a pair of patterns (e, e′) with same t values satis�es |Fe′ | = |Ne |, then HDT(e′, t) +
HDT(e, t) = 1. The reason is that if |Fe′ | = |Ne |, then Pr(Xe = 1) = Pr(|∆Fe | > |∆Ne |) =

Pr(|∆Ne′ | > |∆Fe′ |) = 1 − Pr(Xe′ = 1). Hence, HDT(e′, t) = 1 − HDT(e, t). Note that if

|Fe′ | = |Ne | holds, then |Ne′ | = |Fe |.

(3) For a pair of patterns (e, e′′) with same t values, if |Fe′′ | < |Ne | holds, then HDT(e′′, t) +
HDT(e, t) < 1. This fact can be proved as follows. Let us consider two pair of patterns (e, e′)
and (e, e′′), and |Fe′′ | < |Fe′ | and |Fe′ | = |Ne |. Since |Fe′ | = |Ne |, HDT(e′, t) = 1−HDT(e, t)
holds as discussed above. If |Fe′′ | < |Fe′ | = |Ne | holds, then we have:

Pr(|∆Fe′′ | > |∆Ne′′ |) < Pr(|∆Fe′ | > |∆Ne′ |) (17)

⇒ HDT(e′′, t) < HDT(e′, t) = 1 − HDT(e, t) ⇒ HDT(e′′, t) + HDT(e, t) < 1

We �rst consider the case of HDT(t).

CASE-I:Odd t . Let us recall the de�nition of HDT(t) from Eq. (5), i.e., HDT(t) = 1

|Et |

∑
e∈Et HDT(e, t),

where Et = {e : HW(e) = t}. Now, we prove that HDT(t) = 0.5 for odd t . We start with developing

a mechanism Aodd that �nds a pattern e′ ∈ Et for each e ∈ Et such that HDT(e, t)+HDT(e′, t) = 1.

More formally, Aodd results following set Pt of pair of patterns: Pt =
⋃
{(e, e′) : |Fe′ | = |Ne |}. We

can rewrite the expression HDT(t) based on the set Pt as:

HDT(t) =
1

|Et |

∑
e∈Et

HDT(e, t) =
1

|Et |

∑
(e,e′)∈Pt

(HDT(e, t) + HDT(e′, t))

=
1

|Et |

∑
(e,e′)∈Pt

1 =
1

|Et |
×
|Et |

2

=
1

2

(18)

In case of t = 1, for the pattern e = ei , there are only two intervals I1 = {0, . . . , i} and

I2 = {i + 1, . . . ,n} as in Fig. 2a, and Fe = I1 and Ne = I2. For a given pattern ei , the mechanism

Aodd de�nes a new pattern ei′ , where i ′ = n − i − 1, and results in Fe′ = I
′

1
= {0, . . . ,n − i − 1},

Ne′ = I
′

2
= {n − i, . . . ,n}, |Fe′ | = |Ne | and |Ne′ | = |Fe |. Hence, we have HDT(1) = 0.5 according

to Eq. (18).

Now we consider the general case. When t is an odd number, for a pattern e = ei1, ...,it , there are

t+1 intervalsI1, . . . ,It+1, and Fe = Ai1 ...it = I1∪I3∪. . .∪It andNe = Bi1 ...it = I2∪I4∪. . .∪It+1.

Indeed, from these intervals, we can form pairs (I1,I2), . . . , (Ik−1,Ik), . . . , (It ,It+1), k = 2, . . . , t+1

and k is an even number. It is observed that the intervals Ik−1 and Ik are separated by the index

ik−1, i.e., Ik−1 = {ik−2 + 1, . . . , ik−1} and Ik = {ik−1 + 1, . . . , ik }, and each pair (Ik−1,Ik) forms a

pair of �ipping and non-�ipping zones (F ,N).
To build the desired mechanism Aodd, we exploit the idea as described for the case t = 1, i.e., for a

given set of indices {i1, . . . , it }, the mechanism Aodd constructs the pattern e′ = ei′
1
, ...,i′t as follows:

(1) For all even k , we de�ne i ′k = ik , i.e., i ′
2
= i2, i

′
4
= i4, . . . , i

′
t−1
= it−1.

1:28

(2) For each pair (I ′k−1
,I ′k), the index i ′k−1

is chosen such that |I ′k−1
| = |Ik | and |I ′k | = |Ik−1 |.

It is evident that for a given pattern e = ei1, ...,it with |Fe | = |Ai1 ...it | = h and |Ne | = |Bi1 ...it | =

n + 1 − h, we can �nd a pattern e′ = ei′
1
, ...,i′t with |Fe′ | = |Ai′

1
...i′t | = n + 1 − h = |Ne | and

|Ne′ | = |Bi′
1
...i′t | = h = |Fe | by using the proposed mechanism Aodd. Hence, we proved that for each

ei′
1
, ...,i′t there exist a e′i′

1
, ...,i′t

such that HDT(ei′
1
, ...,i′t , t) + HDT(ei1, ...,it , t) = 1, and HDT(t) = 0.5

for all t odd.

CASE-II: Even t . Similar to the case for odd value of t , we now construct an algorithm Aeven

which partitions the set Et as: Pt =
⋃
{(e, e′) : |Fe′ | < |Ne |}. Based on the set Pt , we rewrite the

expression HDT(t) as:

HDT(t) =
1

|Et |

∑
e∈Et

HDT(e, t) =
1

|Et |

∑
(e,e′)∈Pt

(HDT(e, t) + HDT(e′, t)) (19)

<
1

|Et |

∑
(e,e′)∈Pt

(HDT(e, t) + (1 − HDT(e, t))) <
1

|Et |

∑
(e,e′)∈Pt

1 =
1

|Et |
×
|Et |

2

<
1

2

.

We exploit the mechanism Aodd (developed for odd t), to develop an mechanism Aeven for even

values of t , such that for each pattern e ∈ Et , we can �nd e′ ∈ Et with |Fe′ | < |Ne |, and |Ne′ | > |Fe |.

In this case, we have odd number of intervals, i.e., I1, . . . ,It−2,It−1,It ,It+1 for a given pattern

e = ei1, ...,it . From these intervals, we form pairs (I1,I2), . . . , (It−1,It) and the single unpaired

interval It+1. In this case with t �ipping bits, Fe = I2 ∪I4 ∪ · · · ∪It−2 ∪It ,Ne = Ne,1 ∪Ne,2, where

Ne,1 = I1 ∪ I3 ∪ · · · ∪ It−1 and Ne,2 = It+1. Here, our objective is to �nd a pattern e′ = ei′
1
, ...,i′t

for a given pattern e = ei1, ...,it which has |Fe′ | = |Ne,1 |, |Ne′,1 | = |Fe |. The indices i ′
1
, . . . , i ′t will

be de�ned based on the i1, . . . , it , and pairs of intervals (I1,I2), . . . , (It−1,It) by employing the

mechanism Aodd. Speci�cally, we set i ′
2
= i2, i

′
4
= i4, . . . , i

′
t = it , and i ′

1
, i ′

3
, . . . , it−1 will be adjusted

such that (|I ′
1
| = |I2 |, |I

′
2
| = |I1 |), . . . , (|I

′
t−1
| = |It |, |I

′
t | = |It−1 |).

By following this approach, we have |Fe′ | = |Ne,1 | and |Ne′,1 | = |Fe |. Since Ne = Ne,1 ∪ Ne,2
and |Fe′ | = |Ne,1 |, we have |Fe′ | < |Ne |. It implies that HDT(e, t) + HDT(e′, t) < 1 (cf. Eq. (17))

and then HDT(t) < 0.5 (cf. Eq. (19)). We also have the following important observation: the gap

between the |Ne,1 | and |Ne | reduces with decreasing value of |Ne,2 |. This implies that the gap

between |Fe′ |(= |Ne,1 |) and |Ne | reduces with decreasing value of |Ne,2 | = |It+1 |. To sum up,

HDT(e, t) + HDT(e′, t) approaches 1 with the decreasing value of |Ne,2 | = |It+1 |.

Now, we prove another fact: HDT(t) approaches 0.5 with increasing t when t is even. Let

us consider two even numbers t and t ′ where t < t ′ ≤ n, and two patterns a = ei1, ...,it and

b = ej1, · · · , jt ′ , where the pattern b is de�ned as follows: the �rst t indices of pattern b are similar

to that of pattern a, i.e., j1 = i1, . . . , jt = it , and the remaining indices are jt < jt+1 < · · · < jt ′ . By

using the mechanism Aeven, we can �nd patterns a′ and b′ corresponding to a and b, respectively,

where A = HDT(a, t) + HDT(a′, t) < 1 and B = HDT(b, t ′) + HDT(b′, t ′) < 1, respectively. Now,

we show that A < B < 1. Since the pattern a has less number of 1’s (representing the indices

of �ipping bits in challenge c) than that of b, it results |Na,2 | > |Nb,2 |, i.e., value of |It+1 | in

case of b is smaller compared to pattern a. In other words, (|Na | − |Fa′ |) > (|Nb | − |Fb′ |) holds.

Since we have seen earlier that A = HDT(a, t) + HDT(a′, t) < 1 when |Na | − |Fa′ | , 0 and

(HDT(a, t)+HDT(a′, t)) → 1 when (|Na | − |Fa′ |) → 0, we have following relation:A = HDT(a, t)+
HDT(a′, t) < B = HDT(b, t ′)+HDT(b′, t ′) < 1. This addresses the fact that HDT(e, t)+HDT(e′, t)
approaches 1 with increasing value of t . Therefore, HDT(t) = 1

|Et |

∑
(e,e′)∈Pt (HDT(e, t)+HDT(e′, t))

approaches 0.5 with increasing value of t .

1:29

Finally, we argue that PC(t) approaches 0.5 with increasing t . This follows from the fact that

PC(t) = 1

t ×
∑t

i=1
HDT(i), HDT(i) → 0.5 for even i ≥ 4 (cf. [11, Fig. 11]), and HDT(t) = 0.5 for odd

t . In general, PC(t) approaches 0.5 with increasing value of t . �

REFERENCES
[1] Frederik Armknecht, Roel Maes, Ahmad-Reza Sadeghi, Berk Sunar, and Pim Tuyls. 2009. Memory Leakage-Resilient

Encryption Based on Physically Unclonable Functions. In Proc. of ASIACRYPT. 685–702.

[2] Georg T. Becker. 2015. On the Pitfalls of Using Arbiter-PUFs as Building Blocks. IEEE TCAD 34, 8 (2015), 1295–1307.

[3] Georg T. Becker. 2015. The Gap Between Promise and Reality: On the Insecurity of XOR Arbiter PUFs. In Proc. of
CHES. 535–555.

[4] Christina Brzuska, Marc Fischlin, Heike SchrÃűder, and Stefan Katzenbeisser. 2011. Physically Uncloneable Functions

in the Universal Composition Framework. In Proc. of CRYPTO. Vol. 6841. 51–70.

[5] Jeroen Delvaux, Dawu Gu, Dries Schellekens, and Ingrid Verbauwhede. 2014. Secure Lightweight Entity Authentication

with Strong PUFs: Mission Impossible?. In Proc. of CHES. 451–475.

[6] Jonathan Katz and Yehuda Lindell. 2007. Introduction to Modern Cryptography (Chapman & Hall/Crc Cryptography and
Network Security Series). Chapman & Hall/CRC.

[7] Daihyun Lim. 2004. Extracting Secret Keys from Integrated Circuits. Master’s thesis. MIT, USA.

[8] Roel Maes and Ingrid Verbauwhede. 2010. Physically Unclonable Functions: A Study on the State of the Art and

Future Research Directions. In Towards Hardware-Intrinsic Security, Ahmad-Reza Sadeghi and David Naccache (Eds.).

Springer, Berlin Heidelberg, 3–37.

[9] Abhranil Maiti, Vikash Gunreddy, and Patrick Schaumont. 2011. A Systematic Method to Evaluate and Compare the

Performance of Physical Unclonable Functions. IACR Cryptology ePrint Archive 2011 (2011), 657.

[10] Mehrdad Majzoobi, Farinaz Koushanfar, and Miodrag Potkonjak. 2008. Lightweight secure PUFs. In Proc. of IEEE/ACM
ICCAD. IEEE Press, Piscataway, NJ, USA, 670–673.

[11] M. Majzoobi, F. Koushanfar, and M. Potkonjak. 2008. Testing Techniques for Hardware Security. In Proc. of IEEE
International Test Conference(ITC). 1–10.

[12] Mehrdad Majzoobi, Farinaz Koushanfar, and Miodrag Potkonjak. 2009. Techniques for Design and Implementation of

Secure Recon�gurable PUFs. ACM Trans. Recon�gurable Technol. Syst. 2, 1 (2009), 1–33.

[13] Mehrdad Majzoobi, Masoud Rostami, Farinaz Koushanfar, Dan S. Wallach, and Srinivas Devadas. 2012. Slender PUF

Protocol: A Lightweight, Robust, and Secure Authentication by Substring Matching. In Proc. of IEEE Symposium on
Security and Privacy Workshops. 33–44.

[14] Phuong Ha Nguyen and Durga Prasad Sahoo. 2016. An E�cient and Scalable Modeling Attack on Lightweight Secure

Physically Unclonable Function. IACR Cryptology ePrint Archive 2016 (2016), 428.

[15] Phuong Ha Nguyen, Durga Prasad Sahoo, Rajat Subhra Chakraborty, and Debdeep Mukhopadhyay. 2015. E�cient

Attacks on Robust Ring Oscillator PUF with Enhanced Challenge-Response Set. In Proc. of DATE. 641–646.

[16] Phuong Ha Nguyen, Durga Prasad Sahoo, Rajat Subhra Chakraborty, and Debdeep Mukhopadhyay. 2016. Security

Analysis of Arbiter PUF and Its Lightweight Compositions Under Predictability Test. ACM Trans. Des. Autom. Electron.
Syst. 22, 2, Article 20 (Dec. 2016), 28 pages. DOI:https://doi.org/10.1145/2940326

[17] Ravikanth S. Pappu. 2001. Physical one-way functions. Ph.D. Dissertation. Massachusetts Institute of Technology.

[18] Bart Preneel, Werner Van Leekwijck, Luc Van Linden, René Govaerts, and Joos Vandewalle. 1990. Propagation

Characteristics of Boolean Functions. In Proc. of EUROCRYPT . 161–173.

[19] Ulrich Rührmair, Jan Sölter, Frank Sehnke, Xiaolin Xu, Ahmed Mahmoud, Vera Stoyanova, Gideon Dror, Jürgen

Schmidhuber, Wayne Burleson, and Srinivas Devadas. 2013. PUF Modeling Attacks on Simulated and Silicon Data.

IEEE TIFS 8, 11 (2013), 1876–1891.

[20] Durga Prasad Sahoo, Phuong Ha Nguyen, Debdeep Mukhopadhyay, and Rajat Subhra Chakraborty. 2015. A Case of

Lightweight PUF Constructions: Cryptanalysis and Machine Learning Attacks. IEEE TCAD 34, 8 (2015), 1334–1343.

[21] Durga Prasad Sahoo, Sayandeep Saha, Debdeep Mukhopadhyay, Rajat Subhra Chakraborty, and Hitesh Kapoor. 2014.

Composite PUF: A New Design Paradigm for Physically Unclonable Functions on FPGA. In IEEE HOST. Arlington, VA,

USA.

[22] G. Edward Suh and Srinivas Devadas. 2007. Physical unclonable functions for device authentication and secret key

generation. In Design Automation Conference. ACM Press, New York, NY, USA, 9–14.

[23] Shahin Tajik, Enrico Dietz, Sven Frohmann, Jean-Pierre Seifert, Dmitry Nedospasov, Clemens Helfmeier, Christian

Boit, and Helmar Dittrich. 2014. Physical Characterization of Arbiter PUFs. In Proc. of CHES. 493–509.

[24] Arunkumar Vijayakumar and Sandip Kundu. 2015. A novel modeling attack resistant PUF design based on non-linear

voltage transfer characteristics. In Proc. of DATE. 653–658.

https://doi.org/10.1145/2940326

1:30

[25] Meng-Day (Mandel) Yu, David M’Raïhi, Richard Sowell, and Srinivas Devadas. 2011. Lightweight and Secure PUF Key

Storage Using Limits of Machine Learning. In Proc. of CHES , Vol. 6917. Springer Berlin / Heidelberg, 358–373.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Security Notion of PUF
	2.3 Adversary Threat Models
	2.4 Propagation Criteria

	3 Arbiter PUF and its HDT(e,t), HDT(t) and PC(t) Properties
	3.1 Arbiter PUF Design and Its Linear Additive Delay Model
	3.2 Computation of HDT(e,1) of APUF
	3.3 Computation of HDT(e,t) of APUF
	3.4 HDT(t) and PC(t) Properties of APUF
	3.5 Discussion on Related Works

	4 x-XOR APUF and its HDT(e,t), HDT(t) and PC(t) Properties
	4.1 Design Overview
	4.2 Computation of HDT(e,t) of x-XOR APUF
	4.3 Computations of HDT(t) and PC(t) of XOR APUFs
	4.4 Discussion on Related Works

	5 LSPUF and its HDT(e,t), HDT(t) and PC(t) Properties
	5.1 Design Overview
	5.2 Computation of HDT(e,t) of LSPUF
	5.3 Computations of HDT(t) and PC(t) of LSPUF

	6 Security Analysis of APUF, XOR APUF and LSPUF based on HDT(e,t) Property
	6.1 APUF and XOR APUF under ACCA Threat
	6.2 LSPUF under ACCA Threat

	7 Experimental Results
	7.1 Experimental Setup
	7.2 Results for APUF
	7.3 Results for XOR APUF
	7.4 Results for LSPUF
	7.5 Demonstration of Proposed ACCA Attack

	8 Conclusions
	A Analytical Expression of HDT(e,t) for APUF
	B Proof of Theorem 1
	References

