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Abstract. In this paper, we initiate the study of leakage-resilient tweakable
encryption schemes in the relative key-leakage model, where the adversary
can obtain (arbitrary) partial information about the secret key. We also focus
on the minimal and generic assumptions needed to construct such a primitive.
Interestingly, we show provably secure constructions of leakage-resilient (LR)
tweakable encryption based on the sole assumption that one-way functions
(OWF) exist via some interesting intermediate generic connections. A cen-
tral tool used in our construction of LR-tweakable encryption is the notion
of Symmetric-key tweakable weak hash proof system, which we introduce.
This can be seen as a generalization of the Symmetric-key weak hash proof
framework of Hazay et. al (Eurocrypt’13). Along the way, we also introduce
a new primitive called tweakable weak pseudo-random functions (t-wPRF)
and show how to generically construct it from weak-PRF. We then construct
LR-version of t-wPRF and use it to construct LR-tweakable encryption.

Keywords: Tweakable-weak PRF, symmetric key tweakable weak hash proof sys-
tem, tweakable encryption, relative-leakage model, after-the-fact leakage, one-way
function

1 Introduction

Tweakable encryption is similar to a normal symmetric-key encryption scheme in the
sense that it takes the usual inputs - message and cryptographic keys along with a
third input, the “tweak”. A tweakable encryption scheme can be constructed from
a tweakable PRP/PRF generically as shown in [30], [18]. A tweakable PRF (t-PRF)
extends the viewpoint of a normal PRF by adding in a second dimension called
“tweak” in addition to the “key” of a PRF. There is a semantic asymmetry between
the key and the tweak: the key is private whereas the tweak may be public, giving
rise to variability. Tweakable encryption finds interesting applications in popular
disk encryption mechanisms and format preserving encryption schemes [30]. In case
of disk encryption, the tweak can be interpreted as the sector number holding the
encrypted message. Since the sector numbers vary, encryption of the same message
under different sectors/tweaks are different giving rise to variability.

Another application of tweakable encryption is in countering side-channel attacks
[15,27]. These are implementation based attacks, where unintended information may



leak through side channels such as timing, power, faults, electromagnetic radiation,
memory, and many more [16, 21, 22]. These attacks enable an adversary to learn
much more information about the internal state of the system than that predicted
by the system designer. Tweakable block cipher constructions to counter side-channel
attacks exist, that are also efficient to implement in hardware and software. However,
a major limitation of these schemes is that they are proven secure only under a
particular class of side-channel attacks, rather than provably resisting against a broad
class of known or even future side-channel attacks. In [15] for instance, the leakage is
assumed to take the form of Hamming weight of intermediate data. The information
theoretic proofs show that the scheme is resilient to first order differential power
attacks [21]. A later publication [27] showed resistance to differential fault attacks as
well. So, these constructions can guarantee security only under certain (restricted)
classes of side-channel attacks, and hence its usefulness against other broader classes
of side-channel attacks are not proven.

In this paper, we provide a more general construction of a leakage-resilient tweakable
encryption scheme that is provably capable of tolerating a wide range of side-channel
attacks. We base our construction on the key-leakage attack model that was first for-
malized by Akavia, Goldwasser and Vaikuntanathan [2]. In this model, it is assumed
that the leakage ` can be any arbitrary efficiently computable length-shrinking func-
tion of the secret key. In other words, the adversary can learn any arbitrary infor-
mation (leakage) about the secret state of the system, the only restriction being an
upper bound on the size of leakage. The leakage bound that the scheme can tolerate
is fixed a priori. Theoretically, this is modeled by giving the adversary access to a
leakage oracle which can be queried by the attacker using any arbitrary polynomial
time computable function fi : {0, 1}∗ → {0, 1}λi , and he can learn the value of the
function fi applied to the internal state of the system. Note that no restriction is
placed on the type of functions the adversary submits to the oracle, instead it bounds
the amount of leakage. From a practical standpoint, this model captures a wide range
of side-channel attacks including power attacks, memory attacks, timing attacks, and
electro-magnetic radiation based attacks. It also captures the “cold boot attack” of
Halderman et. al. [16], where the adversary can learn a noisy version of the secret
key stored in memory. Usually, the leakage bound ` of the system is also related to
the size of the secret key |s|, and we can define the relative leakage rate to be the
fraction of secret key bits leaked, i.e., `

|s| .

We concentrate on the minimal assumptions required to build leakage-resilient tweak-
able encryption schemes. Much research in theoretical cryptography has been cen-
tered around finding the weakest possible assumptions required to construct major
cryptographic primitives. Ever since the introduction to modern cryptography by
Diffie and Hellman [8], one of the central goal in the cryptographic research com-
munity is to base cryptosystems on assumptions that are as weak and generic as
possible, possibly one-way functions and one-way trapdoor functions. In this paper,
we also follow this line of research and attempt to construct leakage-resilient tweak-
able encryption from minimal assumptions, in particular from the sole assumption
that one-way function exists. We concentrate mainly on the setting of key leakage
attacks or memory attacks and its bounded-leakage variant, although later we con-
sider several generalizations of this framework to account for more general leakage
settings.

We first construct a leakage-resilient tweakable weak PRF/PRP (a notion we intro-
duce) and use it to construct leakage-resilient tweakable encryption. Interestingly, we
show that the existence of one-way functions imply the existence of leakage-resilient
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tweakable weak PRF/PRPs via some interesting intermediate generic connections.
Specifically, we generalize the symmetric-key hash proof system (HPS) of Hazay
et. al. [19] and introduce a new HPS, which we call Symmetric-key tweakable weak
HPS and use it to construct leakage-resilient tweakable encryption. The envisioned
attack-model we consider is a chosen plaintext attack: the adversary can learn the
ciphertext C for any plaintext P and tweak T , and in the challenge phase it has to
distinguish between the encryption of two adversarially-chosen message-tweak pairs
with non-negligible probability, doing which we say the adversary wins the game.

Related Works. Although many recent works address the problem of leakage-
resilience in the context public key encryption [2–4, 6, 7, 10, 19, 20, 25], not much
work has been reported in the context of symmetric-key cryptography. Dziembowski
and Pietrzak [13] proposed the first construction of leakage-resilient stream cipher in
the Only Computation Leaks Information (OCLI) axiom of Micali and Reyzin [24].
This construction was later simplified in [28] using a weak PRF. Later Faust et.
al. [14] constructed leakage-resilient block cipher using this PRF. However, their
overall construction was shown to be inefficient by Bernstein in the rump session of
CHES’12 [29]. Hazay et. al. [19] showed the first construction of a generic leakage-
resilient symmetric key encryption from any weak PRF and hence relying only on
the assumption that one-way function exists. Besides their constructions addressed
the more generalized setting of relative leakage model, as ours. Abdalla, Belaid and
Fouque [1] later constructed a more practical and efficient symmetric key encryption
scheme by introducing a new leakage-resilient re-keying technique. They instanti-
ated the re-keying scheme with a secure AES block cipher. However, the encryption
scheme is only secure against non-adaptive leakage functions, where the adversary
has to specify the leakage function at the beginning of the security game.

Paper Organization. The paper is organized as follows. In section 2, we list down
our contributions. In section 2.1, we give high level overview of our techniques. In
section 3, we give the preliminaries required for our paper. In section 4 we give the
detailed construction of our leakage-resilient tweakable encryption. In section 5 we
combine all our results together and state the main theorem. In section 6 we show
extensions of our construction to more generalized leakage settings. Finally section
7 concludes our paper.

2 Our Contributions

As our main contribution, we construct the first leakage-resilient tweakable encryp-
tion scheme in the relative leakage model. Along the way, we develop new notions
and get results of independent interest. Our results are summarized as follows:

1. Revisit the framework of key leakage attack introduced by Akavia et al. [2] in
the setting of symmetric-key encryption, particularly in the context of tweakable
encryption.

2. Introduce a new definition of leakage-resilient tweakable weak pseudo-random
functions (LR-twPRF). In the leakage-free (standard) setting this also introduces
a new primitive namely tweakable weak PRF (t-wPRF) (or 0-leakage t-wPRF),
which is a natural relaxation of the definition of tweakable PRF (similar to the
relaxation in the definition of weak PRF (wPRF) over (standard) PRF).

3. Show two generic constructions of tweakable weak PRF (t-wPRF) from any weak
PRF. The first construction is trivial and is not very efficient. More precisely,
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it requires 2n invocations of the underlying wPRF to encrypt n blocks of the
tweakable PRF. Our second construction is efficient and it can be viewed as
a simplification or relaxed version of the XTS mode of operation [30] (XTS
mode of operation is used to construct (standard) tweakable PRF starting from a
(standard) PRF) which we call simplified XTS mode of operation. This mode only
requires n invocations of the underlying wPRF to encrypt n blocks as opposed
to (n+ 1) invocations in case of XTS.

4. Introduce a new notion of Symmetric-key tweakable weak hash proof system (S-
twHPS), which is the central tool in constructing and analyzing our leakage-
resilient tweakable weak PRF (LR-twPRF) and leakage-resilient tweakable en-
cryption. Note that, in the non-leakage setting, it is indeed possible to construct
a tweakable weak PRF (tw-PRF) from a (standard) weak PRF (wPRF) as we
show in this paper (section 4.2). However, in the presence of leakage it is not
clear whether it is possible to directly construct a LR-twPRF from a LR-wPRF,
without making further assumptions on the leakage model (more on this under
section 2.1). Hence, we have to introduce our new hash proof system (S-twHPS)
and construct a LR-twPRF from a S-twHPS following an indirect route, without
making any additional restrictions/assumptions.

5. Show how to construct our Symmetric-key tweakable hash proof system (S-
twHPS) generically starting from any (standard/ 0-LR) tweakable weak PRF
(t-wPRF). This also implies we can construct S-twHPS starting from any weak-
PRF (wPRF). However the leakage rate our initial construction is rather poor.

6. Finally, we amplify the leakage rate of our construction by parallel repetition. Al-
though there are some counterexamples against this leakage-amplification tech-
nique, we argue that our ideas/technique essentially bypass those arguments and
we can amplify the tolerable leakage bound of our construction to any arbitrary
polynomial in the security parameter.

7. Extend our constructions to more general settings than relative-leakage model
namely Entropy-bounded leakage and After-the-Fact leakage settings. We show
that our constructions meet these new (generalized) security definitions in the
context of tweakable encryption.

So putting these all-together we get the following connections as shown below. This
essentially says that given a one-way function (OWF) we can construct a leakage-
resilient tweakable encryption scheme via some intermediate generic transformations.

OWF w-PRF t-wPRF S-twHPS LR-twPRF LR-tweakable Enc.

2.1 Overview of our Results
An encryption scheme is said to be secure in the relative leakage model if it is
semantically secure even given these key leakages. We revisit this framework of key-
leakage attacks in the context of symmetric-key tweakable encryption. Informally, a
tweakable encryption scheme is said to be secure in this framework of relative-leakage
if it is semantically secure (with access to the encryption oracle) with respect to
message-tweak pairs, even given partial leakage from the secret key of the tweakable
encryption scheme.

A generic construction. A central tool used in our construction of leakage-resilient
tweakable encryption is the notion of Symmetric-key tweakable weak hash proof sys-
tem (S-twHPS), that we introduce. Our notion of symmetric key tweakable hash proof
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system can be seen as a generalization of the symmetric key weak hash proof system
(S-wHPS) introduced by Hazay et. al. [19]. Informally, a symmetric-key tweakable
wHPS can be thought of as a tweakable weak pseudo-random function EK(T, .)3

with some special properties.

• We define four distributions: two pair of valid and invalid distribution– one pair
defined on the input space of the t-wPRF and another pair defined on the tweak
space of the t-wPRF, in addition to the two normal distributions correspond-
ing to sampling the elements of the input space and tweak space uniformly at
random. We require that samples from like-joint distribution of the input and
the tweak are indistinguishable even when given the secret key K. We say a
joint distribution to be like-joint distribution when both the samples of the joint
distribution are sampled from similar distributions (in our case either both are
sampled from valid or both from invalid or both uniformly at random). We
refer to this property as the “joint-input indistinguishability” property of the
S-twHPS.

• Given multiple input-output tuples namely, {Xi, Ti, EK(Ti, Xi)} for various ran-
dom valid X and valid T , and a random choice of an invalid X∗ and an invalid
T ∗, the output EK(T ∗, X∗) is uniformly random and independent, where the
randomness comes from the choice of the secret key K. In other words, there are
many possible secret keys corresponding to (X∗, T ∗, EK(T ∗, X∗)). We refer to
this property as the smoothness property of the underlying S-twHPS.

In other words, the secret key maintains real entropy even conditioned on seeing
many valid (Xi, Ti, EK(Ti, Xi)) tuples, and this entropy is transfered to the output
y∗ = EK(T ∗, X∗), on a random invalid X∗ and a random invalid T ∗.

Achieving leakage-resilience via S-twHPS. We show how to achieve leakage-
resilient tweakable encryption using symmetric-key twHPS as the basic building
block. It relies on no other computational assumptions other than the existence of
such a S-twHPS. Our construction closely follows the approach of Naor and Segev [25]
and Hazay et. al. [19] while introducing the additional second dimension namely the
“tweak”. The main idea of the construction is to evaulate the tweakable weak PRF
(t-wPRF) on random input-tweak pair (X,T ), and apply the strong average-case
extractor to the output of the t-wPRF. In the proof of security, we let the attacker
see many valid evaluations of the t-wPRF on random (X,T )-pairs. In the challenge
phase, we change the distribution of the input-tweak pair (X∗, T ∗) from valid to
invalid. Note that by the input indistinguishability property, this change is oblivious
to the adversary. Then, we argue by the smoothness property of S-twHPS that the
y∗ = EK(T ∗, X∗) is uniform and independent (information-theoretically). So, even if
the adversary observes some bounded leakage from the secret key, it does not reduce
the entropy of y∗ by much, if y∗ is sufficiently large. Finally we transform the output
to a uniformly random value using a average-case strong extractor whose output is
statistically close to the uniform distribution defined over the appropriate domain.

Necessity of the Symmetric-key tweakable HPS: For our construction of LR-
tweakable encryption, we introduce Symmetric-key tweakable hash proof system
(S-twHPS) as a central tool. The main idea is to give a generic construction of a
leakage-resilient tweakable weak PRF (LR-twPRF) from the above S-twHPS in the

3 Informally, a tweakable weak PRF can be thought of as a weak PRF by adding in a
second dimension called “tweak” in addition to the “key” of a weak PRF. Please refer to
section 4 for the formal definition.
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bounded memory leakage model and then show how to construct a (bounded) LR-
tweakable encryption from such a LR-twPRF. However, one may also try to construct
a LR-tweakable weak PRF (LR-twPRF) directly given a LR-weak PRF. In fact, in
the non-leakage setting there are well-known constructions of tweakable-PRFs from
standard PRFs [18,23]. In this work, we also show black-box constructions of tweak-
able weak-PRF (t-wPRF) from weak-PRF (w-PRF) in the non-leakage setting. We
also know how to construct LR-wPRF by the ideas of Hazay et. al. [19]. So, a nat-
ural question is that : given a LR-wPRF (in the bounded memory leakage model)
can we construct a LR-twPRF in the same leakage model? If one can come up with
such a transformation, then there is no need to introduce the S-twHPS, and it is
indeed possible to get a more direct construction of LR-tweakable encryption than
our construction.

However, given the current constructions of t-wPRF from wPRF, it is not immedi-
ately clear how to port these constructions in the setting of bounded (non-split state)
memory leakage model. In particular, in the XTS mode of operation [30], the secret
key comprises of two sub-keys K1 and K2. Now, in our model of bounded memory
leakage, the adversary obtains leakage from both K1 and K2. Now even if we replace
the normal PRF F with a leakage-resilient version of that, it is not clear whether
the security of the final XTS mode of operation holds under joint leakage from both
the keys. The leakage from the right sub-key K2 and from the left sub-key K1 can
independently be analyzed using leakage-resilient PRFs; however, the effect of global
leakage simultaneously from both K1 and K2 seems difficult to analyze. One solution
would be to rely on the split-state assumption, where the adversary can get access
to leakage from each sub-key separately, but not to a global leakage from the entire
secret state. However, this necessarily weakens the leakage model in contrast to the
model we are considering. Besides, the split-state leakage model also does not capture
various classes of well-known side-channel attacks like the Hamming-weight attacks.
To get around this problem, we propose the new notion of Symmetric-key tweakable
HPS as a central tool to analyze our construction of leakage-resilient tweakable weak
PRF.
Constructing Tweakable weak PRF. As already mentioned, our symmetric-key
tweakable weak HPS can be viewed as a tweakable weak PRF (t-wPRF) with some
special properties. To this end, we first define tweakable weak PRF. Basically this is a
relaxation of the notion of tweakable PRFs (t-PRF), where instead of adversarially-
chosen inputs and tweaks, the input-tweak pairs are randomly chosen by the chal-
lenger and their evaluations are given to the adversary. The indistinguishability re-
quirement remains the same as in normal t-PRFs, namely the adversary should be
able to tell apart whether it is interacting with a truly random function or a pseudo-
random function. We present generic constructions of t-wPRFs using any weak PRF
(w-PRF). In particular, we show that a simplified variant of the XTS mode of op-
eration suffices to construct t-wPRFs. Using this simplified XTS mode, to encrypt
n blocks it requires only n invocations of the underlying wPRF. In the normal XTS
mode of operation (which is used to construct a tweakable PRF from a weak-PRF),
the tweak is encrypted using a symmetric-key encryption scheme in the beginning
and then it involves n invocations of the underlying wPRF; thus requiring a total
of (n + 1)-invocations of the wPRF. If the tweak is used in un-encrypted form in
the construction, then it leads to attacks on the scheme as shown in Section 4.2.
However, we observe that for constructing tweakable weak PRFs, this first step of
encrypting the tweak is not required, thus requiring only n invocations of the weak
PRF. This is possible because of the weaker requirement of t-wPRF as compared to
t-PRF.
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Constructing Symmetric-key t-wHPS. We construct Symmetric-key tweakable
wHPS generically from a tweakable weak PRF (t-wPRF). As a warm-up construction,
we show how to construct a single-bit S-twHPS using a t-wPRF and a CPA-secure
symmetric key encryption (which can also be generically constructed given a w-PRF
very easily as shown in Sec 4.3).

1. Run the KeyGen algorithm of the t-wPRF to generate two secret keys , i.e.,
K0 ← KeyGen(1λ) and K1 ← KeyGen(1λ). The secret key of the scheme is set to
K = (b,Kb), where b← {0, 1}.

2. The valid sampling algorithm defined over the tweak space T of the S-twHPS is
defined as follows: Run the encryption algorithm Enc of the CPA-secure symmet-
ric key encryption and set t̂ = (t̂0, t̂1), where t̂0 = EncK0(t), and t̂1 = EncK1(t),
where t ∈ {0, 1} (i.e., both encrypt the same value t).

3. The invalid sampling algorithm defined over the tweak space T of the S-twHPS
is defined as follows: t̂ = (t̂0, t̂1), where t̂0 = EncK0

(t), and t̂1 = EncK1
(1 − t),

where t ∈ {0, 1} (i.e., both encrypt different values t and (1− t) respectively).

4. The valid sampling algorithm defined over the input space D of the S-twHPS is
defined as follows: Run the encryption algorithm Enc of the CPA-secure tweak-
able encryption and set C = (C0, C1), where C0 = EncK0

(t̂0, r), and C1 =
EncK1

(t̂1, r), where r ∈ {0, 1}, and t̂0, t̂1 are sampled from valid distributions
(i.e., both encrypt the same value t), and hence both C0 and C1 encrypt the
same value.

5. The invalid sampling algorithm defined over the input space D of the S-twHPS is
defined as follows: Run the encryption algorithm Enc of the CPA-secure tweak-
able encryption and set C = (C0, C1), where C0 = EncK0

(t̂0, r), and C1 =
EncK1(t̂1, 1 − r), where r ∈ {0, 1}, and t̂0, t̂1 are sampled from invalid distribu-
tions and hence both C0 and C1 encrypt the different values.

The joint-input indistinguishability of the above construction follows from the CPA-
security of the symmetric-key encryption and also CPA-security of the tweakable
encryption even given the secret key (b,Kb). The smoothness property follows since
the decryption of a random ciphertext C∗ = (C∗0 , C

∗
1 ) is uniformly random and

independent over the choice of the secret key bit b.

Leakage Amplification via parallel repetition. The above construction yields
a S-twHPS with 1-bit output. However, we can easily amplify the output size of the
S-twHPS to any arbitrary polynomial m = m(λ), simply by doing parallel repetition
of the above scheme. In particular, we run concurrently m independent copies of the
scheme in parallel. This amplifies the output size of the S-twHPS by a factor of m.
The secret key of the new construction has 2m many possibilities. Since the amount
of leakage is roughly equal to the size of the output of S-twHPS, we can amplify the
leakage amount to any arbitrary polynomial m = m(λ). At first, this might seem as a
contradiction to the fact that parallel repetition does not always amplify the leakage
as shown in [3–5]. However, we argue that we can bypass these counterexamples as
we are not directly amplifying the leakage amount. Instead, we amplify the output
space of the S-twHPS and since the leakage amount is related to the output size of
the S-twHPS, this also implicitly amplifies the tolerable amount of leakage of the
new construction.

Leakage tolerated by our construction. Our scheme can tolerate an arbitrar-
ily large amount of absolute leakage `. However, the relative leakage rate of our
construction is rather poor. In particular, the leakage rate of our construction is
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O(`(λ)/s(λ)), where s(λ) is the size of the secret key and λ is the security parame-
ter. We leave open the problem of constructing leakage-resilient tweakable encryption
schemes under general assumptions with higher leakage rates.

Extensions to more generalized leakage settings. The leakage model we have
considered so far is length-bounded leakage. So it restricts the output of all the leakage
function to be upper bounded by the length of the secret key. So we consider more
generalized leakage settings than the relative leakage model. In particular we consider
the setting of entropy bounded leakage, where the length of the leakage function may
exceed even the length of the secret key, but the only requirement is that the secret
key should maintain enough min-entropy even given such leakage. Our construction
of leakage-resilient tweakable encryption also satisfies this definition in the presence
of entropy-bounded leakage. Next we extend the framework of tweakable encryption
in the relative-leakage model to After-the-Fact leakage model, where the adversary
can even get access to the leakage oracle after receiving the challenge ciphertext. We
provide a new definition of tweakable encryption under this new leakage model and
show that our construction also satisfies this notion of security. These are illustrated
in Sections 6.1 and 6.2 respectively.

It will be interesting to come up with new constructions of tweakable encryption
schemes in other stronger leakage models like the continuous memory leakage model
[9] or auxiliary input leakage model [11].

Applicability of leakage-resilient tweakable encryption and further direc-
tions. One of the main applications of tweakable encryption is that it can be used
to construct format preserving encryption (FPE) and full disk encryption (FDE)
schemes. It will be worth exploring the connections between leakage-resilient tweak-
able encryption and leakage-resilient versions of FPE and FDE schemes. For this, the
current constructions of FPE and FDE from tweakable encryption may not suffice
and we need to define new leakage-resilient modes of operation for the corresponding
primitives. We leave this as an interesting open problem for further investigation.

3 Preliminaries

In this section we provide some basic notations, definitions and tools used in our
construction.

Notations. Throughout this work, we denote the security parameter by λ. We as-
sume that all the algorithms take as input (implicitly) the security parameter rep-
resented in unary, i.e., 1λ. For an integer n, we use the notation [n] to denote the

set [n]
def
= {1, . . . , n}. For a randomized function f , we write f(x; r) to denote the

unique output of f on input x with random coins r. We write f(x) to denote a ran-
dom variable for the output of f(x; r), over the random coins r. For a set S, we let
US denote the uniform distribution over S. For an integer r ∈ N, let Ur denote the
uniform distribution over {0, 1}r, the bit strings of length r. For a distribution or
random variable X, we denote x← X the action of sampling an element x according
to X. For a set S, we write s ← S to denote sampling s uniformly at random from
the S, i.e. s← US . The statistical distance between two random variables X and Y
over a finite domain Ω is defined as SD(X,Y ) = 1

2Σw∈Ω |Pr[X = w] − Pr[Y = w]|.
We say that two variables are ε-close, and write X ≈ε Y , if their statistical distance
is at most ε. We write X ≡ Y to mean that X and Y are identically distributed
and X ≈c Y to mean that X and Y are computationally indistinguishable. We use
negl(λ) to denote a function that vanishes faster than the inverse of any polynomial,
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i.e., it denotes the set of negligible functions µ(λ) = λ−ω(1). We denote an ensemble
X as a collection of distributions {Xλ}λ∈N. We sometimes drop the subscript λ when
clear from context and write x ← X instead of x ← Xλ to denote sampling an ele-

ment x from Xλ. For brevity, we will write
−→
X |n to denote the vector (X1, X2, . . . , Xn)

of length n. We assume familiarity with the basic notions of information theory, in
particular the notions of min-entropy, average conditional min-entropy, and related
results.

The Leakage Oracle. To model key leakage attacks, we provide the adversary access
to a leakage oracle. The adversary can adaptively query this oracle with arbitrary
leakage functions to learn information about the secret key or functions of the secret
key. However, if we do not put any restriction on the type of leakage functions or the
overall amount of leakage, the adversary can learn the entire secret key by querying
the leakage oracle and then we cannot define any meaningful notion of security in the
presence of such unrestricted leakages. In this work we do not put any restriction on
the class of leakage functions, rather we limit the amount of leakage the adversary can
get. More formally, the adversary submits any length-bounded arbitrary polynomial-
time computable function fi : {0, 1}|SK| → {0, 1}`i to the leakage oracle O`SK(.),
parameterized by a secret key SK and a leakage parameter ` and gets back as
response fi(SK). The oracle keeps track of the output sizes `i of all the leakage
queries so far, and only responds to the qth leakage query if

∑q
i=1 `i ≤ l. In this

way the length of the outputs given by the oracle is bounded by ` bits, where this
leakage bound ` is pre-determined from the beginning. It is sometimes convenient
to interpret the leakage function as a polynomial sized circuit (note that since the
attacker is polynomial time bounded so it can query only polynomial size circuits to
the leakage oracle), which in turn implies the leakage is poly-time computable. Note
that our definition of length-bounded leakage naturally generalizes to the case of noisy
leakage or entropy-bounded leakage, where the leakage is not of bounded length, but
it is guaranteed that the secret key is still unpredictable given the leakage which is
quantified by min-entropy of the secret key given the leakage information.

3.1 Entropy and Randomness Extraction

Definition 1. (Min-Entropy). The min-entropy of a random variable X, denoted as

H∞(X) is defined as H∞(X)
def
= -log(maxx Pr[X = x]).

This is a standard notion of entropy used in cryptography, since it measures the
worst-case predictability of X.

Definition 2. (Average Conditional Min-Entropy). The average-conditional min-
entropy of a random variable X conditioned on a (possibly) correlated variable Z,
denoted as H∞(X|Z) is defined as

H∞(X|Z) = - log
(
Ez←Z [maxx Pr[X = x|Z = z]

)
= - log

(
Ez←Z [2H∞(X|Z=z)]

)
This measures the worst-case predictability of X by an adversary that may observe
a correlated variable Z.

The following bound on average min-entropy was proved in [12].

Lemma 1. [12] For any random variable X, Y and Z, if Y takes on values in {0, 1}`,
then

H̃∞(X|Y,Z) ≥ H̃∞(X|Z)− ` and H̃∞(X|Y ) ≥ H̃∞(X)− `
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A main tool we require in our constructions is a average-case strong randomness
extractor. An extractor [26] can be used to extract uniform random bits out of a
weakly-random source which is only assumed to have sufficient min-entropy. The
following definition naturally generalizes the standard definition of a strong extractor
to the setting of average min-entropy as given in [12]:

Definition 3. (Randomness Extractor). We say that an efficient randomized func-
tion Ext: X ×S → Y is an (υ, ε)-extractor if for all (correlated) random variables X,

Z such that the support of X is X and H̃∞(X|Z) ≥ υ, we get (Z, S,Ext(X;S)) ≈ε
(Z, S, UY), where S is uniform over S, and UY denotes the uniform distribution over
the range of the extractor Y.

Dodis et al. [12] proved that any strong extractor is in fact an average-case strong
extractor, for an appropriate setting of the parameters:

Lemma 2. [12] For any δ > 0, if Ext is a (worst-case) (k − log(1/δ), ε)-strong
extractor, then Ext is also an average-case (k, ε+ δ)-strong extractor.

In particular, they proved that any family of pairwise independent hash functions is
an average-case strong extractor.

Lemma 3. [12, 26] Let H = {hs : X → Y} be a universal family of hash functions
meaning that for all x 6= x′ ∈ X , we have Prs∈S [hs(x) = hs(x

′)] ≤ 1
|Y| . Then Ext(x; s)

def
= hs(x), is a (υ, ε)- extractor for any parameter υ ≥ log|Y|+ 2 log(1/ε)

4 Leakage Resilient Tweakable weak Pseudo-Random
Functions

We begin by defining tweakable weak PRFs (t-wPRF). But first, let’s recall the
standard definition of tweakable PRF. A tweakable PRF (t-PRF) [23, 30] extends
the viewpoint of a normal PRF by adding in a second dimension called “tweak” in
addition to the “key” of a PRF. In particular a t-PRF E : K × T × D → R is
a family of functions indexed by (K,T ) ∈ K × T such that for every K ∈ K and
T ∈ T ⊆ {0, 1}∗, the mapping EK(T, .) defines a value over the set R. The set T is
called the “tweak space” of the t-PRF and the element T ∈ T is called the “tweak”.
Also recall a function family F = {fK}K∈K : D → R where K is the key space,
is said to be a weak PRF family if for any polynomial-sized n = n(λ), randomly
chosen f ∈R F and (x1, x2, . . . xn) ← Dn, the distribution {(xi, f(xi)) | i ∈ [n]} is
computationally indistinguishable from the uniform distribution over (D,R)n, i.e., an
adversary for a weak-PRF aims to distinguish a random member of the family from
a truly random function after observing a polynomially-bounded number of samples.
A wPRF is called (t, Q, ε)-wPRF if for all t-time adversaries A making at most Q
queries to the function, the advantage in distinguishing the above two distributions
is at most ε.

Tweakable-weak PRF: We now introduce the notion of a tweakable weak PRF
(t-wPRF). This essentially tells us that, given arbitrary many uniformly random
inputs (x1, x2, . . . xn) ← Dn and (T1, T2, . . . Tn) ← T n, the output of the t-wPRF
{(xi, Ti, yi = Ek(Ti, xi)) | i ∈ [n]} look pseudorandom, in particular the above out-
puts should be computationally indistinguishable from the uniform distribution over
(D, T ,R)n. This is in contrast to the actual definition of standard t-PRFs where the
pseudorandomess requirement holds over worst case (adversarial) choice of input-
tweak pairs (xi, Ti). Our definition of leakage-resilient t-wPRF (LR-twPRF) requires
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the security of the t-wPRF to hold even if the attacker can get some information
(which is quantified by giving the adversary access to the leakage oracle O`SK(.) as
described earlier) about the secret key of t-wPRF. Our general definition of LR-t-
wPRF also captures the standard security requirement of a t-wPRF in a non-leakage
scenario (when ` = 0).

Definition 4. Let K,D,R, T denote some ensembles. We require that these ensem-
bles be efficiently samplable, meaning that the operation of sampling an element say
x ← D and testing whether x ∈ D can be performed in poly(λ) time. This should

hold true for any of these ensembles. Let Ẽ = {EK : T ×D → R}K∈K be an efficient
function family. We say E is an `(λ)-leakage resilient tweakable weak PRF (t-wPRF),
if for all probabilistic polynomial time (PPT) adversaries A, the advantage of A in
the following game is negligible:

1. Initialization: The challenger chooses a uniformly random K ← Kλ and pro-
ceeds with the game as follows.

2. Learning Stage: The attacker AO`
K ,EK($,$) gets oracle access to the leakage or-

acle O`K which allows him/her to learn at most ` bits of information about the
secret key K of the t-wPRF4. Besides the adversary can also query the t-wPRF
oracle EK($, $). This oracle does not take any input, and on each invocation sam-
ples a uniformly random X ← D and also T ← T and outputs (X,T,EK(T,X)).

3. Challenge Stage: The challenger chooses a bit b ← {0, 1}, a random input

X∗ ← D and a random tweak T ∗ ← T . If b = 0, it sets Y ∗ = ẼK(T ∗, X∗), and
if b = 1 it chooses Y ∗ ← R. The challenger gives (X∗, T ∗, Y ∗) to A who then
outputs a bit b′.

We define the advantage of the attacker A as AdvLR-twPRF
A (λ) = |Pr[b′ = b]− 1

2 |.

We say that the LR-twPRF is (t, qt-wPRF , qleak, ε)-secure if for all t-resource bounded
adversaries making at most qt-wPRF t-wPRF oracle queries and at most qleak leakage
queries, AdvLR-twPRF

A (λ) ≤ ε.

Remark 1. Note that in the context of no leakage (i.e., when ` = 0), the definition
of LR-twPRF reduces to the definition of a t-wPRF.

Remark 2. Since the challenge points X∗, T ∗ needs to be “fresh”, the size of the
input domains |D| and |T | should be super-polynomial. This in turn also ensures
that the value EK(T ∗, X∗) given out at the challenge phase is not given out in the
learning phase.

Remark 3. Note that our definition can be further generalized to multi-challenge
variant, where the challenge phase may consists of giving polynomially many chal-
lenge tuples of the form (X∗1 , T

∗
1 , Y

∗
1 ) . . . , (X∗q , T

∗
q , Y

∗
q ), where q = q(λ) is some poly-

nomial and Y ∗i = EK(T ∗i , X
∗
i ), if b = 0, otherwise Y ∗i ← R. This requires the output

space |R| also to be super polynomial.

4 Note that w.lo.g., we can assume the attacker makes a single call to the leakage oracle
O`

K(.) (since we can encode the adaptive behavior of the adversary in a function), after
making all the calls to the t-wPRF oracle EK($, $).
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4.1 Leakage Resilient Tweakable Encryption
Let M, K, T , C be efficient ensembles. Let Π = (KeyGen,Enc,Dec) be a tweak-
able encryption scheme. The key generation algorithm KeyGen takes as input the
security parameter 1λ, and samples a uniform random key K ∈ K. The encryption
algorithm takes as input the key K, a tweak T ∈ T , and a message M ∈ M and
produces a ciphertext C ∈ C. The decryption algorithm takes as input a cipher-
text C ∈ C, the key K, and the tweak T and outputs the corresponding plaintext
M or reject outputting ⊥. We need the obvious correctness condition or complete-
ness condition to hold: ∀K ← KeyGen(1λ), M ∈ M, and T ∈ T , we require that
DecK(T,EncK(T,M)) = M with probability 1.

The security definition of `-LR-CPA secure tweakable symmetric-key encryption
consists of an initial learning stage where an attacker can adaptively ask arbitrary
chosen plaintext encryption queries interleaved with leakage-queries to the leakage
oracle O`K(.). Later, after getting the challenge ciphertext, the attacker can ask for
additional chosen-plaintext encryption queries but not leakage queries. We need this
restriction, because if the adversary is allowed access to the leakage oracle OlK(.),
it can encode the decryption function, the two messages M0, M1, and the chal-
lenge ciphertext to leak the bit b that we are trying to hide and trivially win the
security game. We later show how to remove this restriction by giving appropriate
definitions and showing how our (modified) construction meet this definition. We
say Π = (KeyGen,Enc,Dec) be a `(λ)-leakage resilient tweakable encryption scheme
if for all probabilistic polynomial time (PPT) adversaries A, the advantage of A in
the following game is negligible:

1. Initialization: The challenger chooses a uniformly random K ← KeyGen(1λ)
and proceeds with the game as follows.

2. Learning Stage: The attacker AO`
K ,EncK(.,.) gets oracle access to the leakage

oracle O`K which allows him/her to learn at most ` bits of information about
the secret key K of the Π. Besides the adversary can also query the encryption
oracle EncK(., .). The adversary queries the oracle with tuples (Ti,Mi)i∈[q] for
some polynomial q = q(λ), Ti ∈ T and Mi ∈ M, and receives as output Ci ←
EncK(Ti,Mi) where Ci ∈ C.

3. Challenge Stage: In this stage, the adversary submits two message-tweak pairs
(M0, T0) and (M1, T1), where |M0| = |M1|. The challenger chooses a random bit
b ← {0, 1}, compute Cb = EncK(Mb, Tb) and sends Cb to the adversary. The
adversary A then outputs a bit b′.

We define the advantage of the attacker A as AdvLR-t-CPA
A (λ) = |Pr[b′ = b]− 1

2 |.
We say a leakage-resilient tweakable encryption is (t′, q′enc, q

′
leak, ε

′)-secure if for all
t′-resource bounded adversaries making at most q′enc encryption oracle queries and
at most q′leak leakage queries, AdvLR-t-CPA

A (λ) ≤ ε′.

4.2 Constructing Tweakable weak PRF from weak PRF

In this section we show how to construct Tweakable weak PRF (t-wPRF) from stan-
dard weak PRF (wPRF). We give two generic constructions. Our first construction
(Construction 1) is trivial and is not very efficient. Our second construction (Con-
struction 2) is more efficient and it can be viewed as a (simplified) variant of the
XTS mode of operation [30].

Construction 1. Let F = {f : K×D → R} be a (t, q, ε)-weak PRF family as defined
in section 4 where K, D and R denote respectively the keyspace, plaintext space and
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cipherspace of the wPRF. We construct a t-wPRF Ẽ = {E : K × T × D → R} as

follows. In our construction we require T = D for the t-wPRF Ẽ . The construction
is fairly straightforward and is given as:

EK(T,X) = f(f(K,T ), X)

where K ← K, T ← T and X ← D.

Theorem 1. Suppose F = {f : K × D → R} be a (t, q, ε)-weak PRF family; then

Ẽ = {E : K × T × D → R} constructed as above is a (t, q, 2ε)- secure tweakable
weak-PRF family.

Proof. The claim follows simply by replacing the value f(K,T ) with a uniform ran-
dom and independent value K̂ ← K from the key space of the wPRF and arguing
that this change is indistinguishable by the security of the underlying wPRF. Then
this modified function f(K̂,X) behaves like a normal w-PRF with a uniform random
key. Now we simply replace this value by another uniformly random value Y ← R,
from the range space of the wPRF, and similarly argue that this change is indis-
tinguishable from the viewpoint of the adversary by the security of the wPRF. The
replacement of the inner evaluation of the wPRF with a uniform random key gives
the adversary advantage at most ε, and the final replacement gives the adversary
advantage at most another ε, resulting in the 2ε factor mentioned in the statement
of the theorem. If ε is negligible, so is 2ε. We define a sequence of games– Game 1,
2 and 3 and let AdvGamei(At-wPRF) denote the advantage of the tweakable weak-PRF
adversary At-wPRF in Game i.

Game 0. This is the normal w-PRF game in which the challenger uses the bit b =
0. In other words, in the challenge phase, the challenger of the t-wPRF invokes
the challenger of the w-PRF. The challenger of the w-PRF samples an element say
x ← D, and sends back (x, (y = f(K,x)) to the t-wPRF challenger. The t-wPRF
challenger then sets T := x, samples X ← D, and computes Y = E(y,X). It then
returns (X,T, Y ) to the adversary of the t-wPRF.

Game 1. In this game, the challenger of the w-PRF uses the bit b = 1. In other
words, the challenger returns (x, y) to the t-wPRF challenger, where x ← D and
y ← R. The t-wPRF challenger then sets T := x, samples X ← D, and computes
Y = E(y,X). It then returns (X,T, Y ) to the adversary of the t-wPRF. Note that
the difference between Game 0 and Game 1 is the way in which the challenger of the
w-PRF behaves. So, by the (t, q, ε) security of the weak PRF family, we have,∣∣AdvGame1(At-wPRF)− AdvGame0(At-wPRF)

∣∣ ≤ ε.
Game 2. In this game, both the challengers uses the bit b = 1. In other words, the
challenger of the w-PRF returns (x, y) to the t-wPRF challenger, where x← D and
y ← R. The t-wPRF challenger then sets T := x, samples X ← D, and returns
(X,T, Y ) to the adversary, where Y ← R. Note that the difference between Game 1
and Game 2 is the way in which the challenger of the t-wPRF behaves. Again, by
the (t, q, ε) security of the weak PRF family, we have,∣∣AdvGame2(At-wPRF)− AdvGame1(At-wPRF)

∣∣ ≤ ε.
Finally, we have,

AdvGame0(At-wPRF) ≤ ε+ ε = 2ε.

This completes the proof of Theorem 1. ut
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Construction 2. In our previous construction of t-wPRF, it can be seen that if we
want to evaluate/encrypt n blocks with this t-wPRF, this would require 2n evalua-
tions of the underlying w-PRF. This may be expensive in many application where we
need to encrypt huge number of blocks for e.g, in most of the disk encryption systems
we need to encrypt large number of sectors/blocks. So we propose a new construction
that brings down the number of wPRF invocations from 2n to n for encrypting n
blocks. Our construction is basically a simplified variant of the XTS mode of opera-
tion of tweakable-PRF (t-PRF) [30]. In XTS mode of operation, the key K comprises
of two sub-keys (K1,K2), and the tweak space is represented as a binary tuple (T, i),
where T represents the tweak (for disk encryption system T represents the sector
number) and i represents the block number (comprising a sector). It first encrypts

the tweak T using the right sub-key K2, i.e., T̃ := F(K2, T ) where F is secure PRF,

and computes the following: EK=(K1,K2)(T,X) = F(K1, X⊕P (T̃ , i))⊕P (T̃ , i). Here
P is a simple padding function. It can be proved that if F is a secure PRF, then this
yields a secure tweakable PRF (t-PRF). However we note that to ensure security we
need to encrypt the tweak first, else this can lead to an attack as described below.
The adversary can simply query the encryption oracle using X = P (T, i) for some
block number i. The adversary receives as output Ci = C0 ⊕ P (T, i), where C0 is

the encryption of the element “0” (since now T̃ = P (T, i) and X is also P (T, i)).
Similarly the adversary can again query the encryption oracle with X = P (T, j) for
some block number j 6= i. The adversary receives as output Cj = C0 ⊕ P (T, j), and
C0 is the encryption of the element “0” as before. Now the adversary can perform
Ci ⊕ Cj to get P (T, i)⊕ P (T, j). In this way the adversary can distinguish a t-PRF
from a random family of permutation by simply exor-ing the two ciphertexts Ci and
Cj and checking whether the above equality holds.

However, we show that this construction mentioned above (i.e. the unencrypted
tweaked version of XTS) which we refer to as simplified XTS already suffices to be a t-
wPRF. This is because in the construction of t-wPRF, we do not allow the adversary
to query on input points; instead the challenger chooses the inputs uniformly at
random. The probability that the challenger samples the value of X = P (T, i) for
some i is negligible; so that attack mentioned works only with negligible probability.
More formally our construction is as follows:

EK=(K1,K2)(T̂ = (T, i), X) = F(K1, X ⊕ P (T, i))⊕ P (T, i)

Note that in this construction, we do not need to encrypt the tweak, and so to encrypt
n blocks we need exactly n invocations of the underlying wPRF as compared to (n+1)
invocations in case of normal XTS mode.

Theorem 2. Suppose F = {f : K×Xweak → Yweak} be a secure weak PRF family;

then Ẽ = {E : K2×T ×D → R} constructed as above is a secure tweakable weak-PRF
family.

Proof. The proof is similar to the proof of the XTS mode of operation [30] with the
above modification. We do not give the proof here and leave it to the reader to fill
in the details of the proof.

4.3 Constructing CPA-secure tweakable encryption from t-wPRF

Here we show how to construct tweakable encryption from tweakable weak PRF.
If the underlying t-wPRF is also leakage resilient, then the resulting tweakable en-
cryption scheme is also leakage resilient. The security definitions of leakage resilient
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t-wPRF (LR-twPRF) and leakage resilient tweakable encryption is given in sections 4
and 4.1 respectively. The construction is rather straightforward given a LR-t-wPRF.
Assume Ẽ = {E : K×T ×D → R} is `-LR-twPRF family, where the output domain
Y and the tweak space T forms an additive group (e.g., bit-strings under XOR).

1. KeyGen(1λ): Sample a uniformly random and independent K ← K
2. Enc(M , K, T ): The encryption algorithm on input a key K ∈ K, a message

M ∈ R, and a tweak T ∈ T , samples X ← D, T̂ ← T and compute:

1) T̃ := T ⊕ T̂ , and 2) EncK(T,M) = (X, T̂ , EK(T̃ ,X)⊕M)

3. Dec(K,X, T, T̂ , C): The decryption algorithm takes in the secret key K and the

tuple (X,T, T̂ , C) and computes T̃ := T ⊕ T̂ and M = C ⊕ EK(T̃ ,X)

Remark 4. Note that in this construction, we had to additionally introduce another
random tweak from the tweak space. This is required to argue security since a t-
wPRF requires both uniform random inputs and tweaks. In the CPA-security game
the adversary may not query the t-wPRF oracle with random tweaks, so it is not
immediately clear how to argue security in that case. So we had to introduce an ad-
ditional tweak and transform it into a uniformly random tweak and use the modified
tweak T̃ in the encryption algorithm for the security proof to go through.

Theorem 3. If Ẽ is `-leakage resilient t-wPRF, then the above encryption scheme
is also `-LR-CPA secure

Proof. We proceed via sequence of games. In Game 0, the challenge ciphertext is
computed as EncK(T,Mb) = (X, T̂ , EK(T̃ ,X) ⊕Mb), where b ∈ {0, 1}. In the next

game, Game 1, we replace the value EK(T̃ ,X) with a uniformly random and inde-
pendent value. We argue that this change is indistinguishable by the `-LR-twPRF
security of E. Hence the bit b is now information theoretically hidden from the view
of the adversary and hence the advantage of the adversary is 0 in this game.

Game 0. In this game the `-LR-CPA adversary asks encryption and leakage queries.
Learning Stage: In the learning phase, the adersary can encryption as well as
leakage queries.
Encryption queries: When the `-LR-CPA adversary queries with the pair (T,M),
where T ∈ T , and M ∈ M (recall M denotes the message space of the encryption
scheme and for our purpose M = R), the `-LR-CPA challenger (which is also the
`-LR-twPRF adversary) invokes the `-LR-twPRF challenger with the tweak T . The

`-LR-twPRF challenger samples X ← D, T̂ ← T , and compute (1) T̃ := T ⊕ T̂ and

(2) Y = EK(T̃ ,X) and returns (X, T̂ , Y ) to the `-LR-CPA challenger. The `-LR-

CPA challenger then computes Z = Y ⊕M , and returns (X, T̂ , Z) to the `-LR-CPA
adversary.

Leakage queries: When the adversary asks leakage queries to the to the `-LR-
CPA challenger it forwards the leakage queries to its challenger and returns back the
response to the `-LR-CPA adversary.
Challenge: In the challenge phase when the `-LR-CPA adversary gives two message-
tweak pairs (M0, T0) and (M1, T1), the `-LR-CPA challenger choses b ∈ {0, 1}, and

sends the tweak Tb to its challenger. The challenger samples X∗ ← D, T̂ ∗ ← T , and
compute (1) T̃ ∗ := Tb ⊕ T̂ ∗ and (2) Y ∗ = EK(T̃ ∗, X∗) and returns (X∗, T̂ ∗, Y ∗) to
the `-LR-CPA challenger. The `-LR-CPA challenger then computes Z∗ = Y ∗ ⊕Mb,
and returns (X∗, T̂ ∗, Z∗) to the `-LR-CPA adversary.

15



Game 1. This game is similar to Game 0, except that the challenger of the `-LR-
twPRF choses the bit b = 1 in the challenge phase, and so the value Y ∗ is now
random. More precisely, the challenger samples X∗ ← D, T̂ ∗ ← T , and compute (1)

T̃ ∗ := Tb⊕T̂ ∗ and (2) Y ∗ ← R and returns (X∗, T̂ ∗, Y ∗) to the `-LR-CPA challenger.

The `-LR-CPA challenger then computes Z∗ = Y ∗ ⊕Mb, and returns (X∗, T̂ ∗, Z∗)
to the `-LR-CPA adversary.

Note that, at this point the bit b is now information theoretically hidden from the view
of the `-LR-CPA adversary, and hence the advantage of the adversary in this game is
0. The encryption and leakage queries in the learning phase are handled similarly as
in Game 0. So Game 0 and Game 1 are indistinguishable. This completes the proof
of this theorem. ut

Remark 5. We note that the encryption is also resilient to leakage jointly from the
secret key and also the randomness used to answer the encryption queries in the
initial learning phase (but not in the challenge phase). This follows from the fact

that this is a public-coin encryption scheme, since the randomness X and T̂ used to
generate the ciphertexts is provided as part of the ciphertext in clear.

4.4 Achieving Leakage Resilience via Symmetric Tweakable weak Hash
Proof System

In order to achieve leakage resilient tweakable weak-PRF, we introduce a new prim-
itive called Symmetric-key Tweakable weak hash proof system (S-twHPS). Similar
ideas were used in the construction of leakage-resilient wPRF by Hazay et. al. [19],
who build a LR-wPRF from a symmetric-key weak HPS. We basically retain the high
level properties of the symmetric-key weak HPS of [19], while introducing an addi-
tional dimension namely the tweak space and describing appropriate distributions
over the tweak space. Namely, we introduce three more distributions correspond-
ing to the uniform sampling, valid and invalid samplings of tweak from the tweak
space as described below and modified the input indistinguishability and smoothness
properties appropriately. For our purpose, we will view this hash proof system as a
tweakable weak PRF (t-wPRF) family Ẽ = {EK : T × D → R}K∈K with some spe-
cial properties. We define six distributions according to the sampling possibilities.
We require the inputs X ← D to be sampled uniformly at random which we refer to
as DistD0 . Besides this, we also define two more distributions over the input domain
of the t-wPRF denoted as DistD1 (valid) and DistD2 (invalid). Similarly we also define
DistT0 (corresponding to sampling T ← T uniformly at random), DistT1 (valid) and
DistT2 (invalid). We say a joint distribution to be like-joint distribution when both the
samples of the joint distribution are sampled from similar distributions (in our case
either both are sampled uniformly at random or both sampled from valid or both
from invalid). We require that samples from like-joint distribution of the input and
the tweak are indistinguishable even given the secret key K. We refer to this prop-
erty as the “joint-input indistinguishability” property. The second property we need
the S-twHPS to satisfy is the “smoothness” property, which tells that conditioned on
seeing many pairs {(Xi, Ti, EK(Ti, Xi))} for many different Xi ← DistD1 (valid), Ti ←
DistT1 (valid) and a random choice of X∗ ← DistD2 (invalid), T ∗ ← DistT2 (invalid)
the output of EK(T ∗, X∗) will be truly random and independent, where the random-
ness comes from the choice of a consistent secret key K. Notice that this implies
that there must be many possible secret keys K that are consistent with the values
(Xi, Ti, EK(Ti, Xi)). The additional distributions DistD1 , DistD2 , DistT1 and DistT2 are
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only used in the context of the security definitions and proofs, and never in the ac-
tual schemes. In the actual scheme we will sample X ← D and T ← T uniformly at
random (i.e., from DistD0 and DistT0 respectively). In the definition of S-twHPS we
will also define a sampling key sampK which is needed in order to efficiently sample
from the distributions DistD1 , DistD2 , DistT1 and DistT2 . Formally, a S-twHPS is defined
as follows:

Definition 5. (Symmetric key tweakable weak HPS) Let D, K, T and R, be efficient

ensembles, and let Ẽ = {EK : T × D → R}K∈K be some efficient function family
with the following PPT algorithms:

1. sampK← SampGen(K) takes an inputK ∈ K and outputs a sampling key sampK.

2. X ← DistD0 (sampK), X ← DistD1 (sampK), X ← DistD2 (sampK): Samples X ∈ D
according to the distribution using the sampling key sampK. For sampling X ←
DistD0 , it simply samples a uniformly random and independent X ← D and
ignores the sampling key. For distributions DistD1 and DistD2 we need the sampling
key sampK.

3. T ← DistT0 (sampK), T ← DistT1 (sampK), T ← DistT2 (sampK): Samples T ∈ T
according to the distribution using the sampling key sampK. For sampling T ←
DistT0 , it simply samples a uniformly random and independent T ← T and ignores
the sampling key. For distributions DistT1 and DistT2 we need the sampling key
sampK.

We say the Ẽ is symmetric-key tweakable wHPS (S-twHPS) if the following properties
are satisfied:

• Joint-Input Indistinguishability. For any polynomial q = q(λ) and any choice
of (b1, . . . , bq), (b′1, . . . , b

′
q) ∈ {0, 1, 2}q the following distributions are computa-

tionally indistinguishable:

(K, (T1, X1), (T2, X2), . . . , (Tq, Xq) ≈c (K, (T ′1, X
′
1), (T ′2, X

′
2) . . . , T ′q, X

′
q)

where K ← K, sampK← SampGen(K), {Xi ← DistDbi(sampK), Ti ← DistTbi(sampK)},
and {X ′i ← DistDb′i(sampK), Ti ← DistTb′i(sampK)}.

• Smoothness. For any polynomial q = q(λ), the following distributions are sta-
tistically indistinguishable:

(((T1, X1), Y1) . . . , ((Tq, Xq), Yq), ((X
∗, T ∗), Y ∗))

≡ (((T1, X1), Y1), . . . , ((Tq, Xq), Yq), ((X
∗, T ∗), UY))

where K ← K, sampK← SampGen(K), {Xi ← DistD1 (sampK),
Ti ← DistT1 (sampK), Yi = EK(Ti, Xi)}i∈[q], {X∗ ← DistD2 (sampK),

T ∗ ← DistT2 (sampK), Y ∗ = EK(T ∗, X∗)} and UY ← Y. In other words, Y ∗ is
uniformly random and independent of the other elements, where the randomness
comes from the choice of a consistent key K.

4.5 Constructing LR-twPRF from Symmetric-Key t-wHPS

In this section, we construct a leakage-resilient tweakable weak PRF from a symmetric-
key tweakable weak HPS. Our construction and proof strategy follows closely along
the lines of Naor and Segev [25] and Hazay et. al. [19].
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Let D, R, T , and Z be efficient ensembles such that Ẽ = {EK : T × D → R}K∈K
is a symmetric-key tweakable weak HPS (S-twHPS), and let Ext: R × S → Z be a
((log(|R|)− `(λ)), ε(λ))- extractor (see Def. 3), for some negligible function ε(λ). Let

us define the function family Ẽ ′ = {E′K : T × D × S → Z}K∈K as follows: Compute
y = EK(T,X) and define E′K(X,T, S) := Ext(y;S), where X ← D, T ← T and
S ← S.

Theorem 4. If Ẽ = {EK : T × D → R}K∈K is a symmetric-key tweakable weak
HPS ( S-twPRF), and Ext: R× S → Z is a ((log(|R|)− `(λ)), ε(λ))- extractor, then

Ẽ ′ is a `(λ)-LR-twPRF.

Proof. We prove the theorem via a hybrid argument over several games defined
below.

Game 0. This game corresponds to the t-wPRF security game (Definition 4.1)
where the challenger uses the bit b = 0, meaning that the challenge tuple is pseudo-
random. More precisely, all the output of the learning phase are answered as follows:
Choose (Xi, Ti, Si) ← D × T × S at random and compute Zi = E′K(Xi, Ti, Si) :=
Ext(EK(Ti, Xi);Si). Finally, the tuple (Xi, Ti, Si, Zi) is returned as response to the
adversary. Similarly, the challenge tuple is also constructed in a similar fashion by
choosing (X∗, T ∗, S∗)← D×T ×S at random and computing Z∗ = E′K(X∗, T ∗, S∗) :=
Ext(EK(T ∗, X∗);S∗). The tuple (X∗, T ∗, S∗, Z∗) is returned as the challenge tuple.

Game 1. In this game, we rely on the symmetric-key t-wHPS property of Ẽ to
change the distribution of all the {Xi, Ti}i∈[q] values during the learning stage to

come from DistD1 and DistT1 respectively, and the value used in generating the chal-
lenge namely X∗ and T ∗ to come from DistD2 and DistT2 respectively. More pre-
cisely, in the learning the challenger answers to all the queries by choosing {Xi ←
DistD1 (sampK)}i∈[q], {Ti ← DistT1 (sampK)}i∈[q] {Si ← S}i∈[q], and computing {Zi =
E′K(Yi, Si)}i∈[q] where {Yi = EK(Ti, Xi)}i∈[q]. In the challenge phase, the chal-

lenger chooses X∗ ← DistD2 (sampK), T ∗ ← DistT2 (sampK), S∗ ← S, and computes
Z∗ = E′K(Y ∗, S∗), where again Y ∗ = EK(T ∗, X∗).

We argue that Game 0 and 1 are computationally indistinguishable by the joint-
input indistinguishability property of the underlying symmetric-key tweakable wHPS
(S-twHPS). Let q be the total number of t-wPRF queries that the adversary A
makes during the learning stage. The reduction algorithm takes a tuple of the form
(K, (T1, X1), (T2, X2), . . . , (Tq, Xq), (T

∗, X∗)) as input. This is used to simulate all
the leakage queries and the t-wPRF queries made by A and also to form the chal-
lenge ciphertext. If {Xi, Ti}i∈[q], and the X∗ are chosen uniformly at random (i.e.,

from DistD0 and DistT0 ) then this perfectly simulates Game 0 and if they are chosen
via {Xi ← DistD1 (sampK)}i∈[q], {Ti ← DistT1 (sampK)}i∈[q] and X∗ ← DistD2 (sampK),

T ∗ ← DistT2 (sampK) then this perfectly simulates Game 1. Note that the input indis-
tinguishable property holds even if the entire secret key is available to the adversary,
and hence certainly holds good when given bounded leakage on the secret key.

Game 2. In this game, the challenger further modifies the challenge tuple gener-
ation. In particular, the challenge is generated by sampling X∗ ← DistD2 (sampK),
T ∗ ← DistT2 (sampK) as before, but the value of Z∗ is sampled uniformly at random
and independently, i.e., Z∗ ← Z. We argue that this change is indistinguishable
from the view point of an adversary relying the smoothness property and property
of the strong average case extractor. Note that in the learning phase, the values
of Xi and Ti are sampled from valid distributions, namely, DistD1 and DistT1 re-
spectively. The challenge is generated by choosing X∗ and T ∗ from invalid distri-
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butions, namely, DistD2 and DistT2 respectively. By the smoothness property of the
underlying S-twHPS, the value Y ∗ = EK(T ∗, X∗) is uniformly random even given
X∗, T ∗ and all of the wPRF query responses that the attacker sees in the learning
stage. Let us denote the information learned by the adversary in the learning phase
by aux = ({Xi, Ti, Si, Zi = E′K(Xi, Ti, Si)}i∈[q]). So, by the smoothness property,

H̃∞(Y ∗|X∗, T ∗, aux) = log(|R|). Let L = {0, 1}l(λ) denote the response to the leak-
age query made by the adversary A during the learning phase to the leakage oracle
O`K . 5 Therefore, by the chain-rule of average min-entropy we have:

H̃∞(Y ∗|X∗, T ∗, aux, L) ≥ H̃∞(Y ∗|X∗, T ∗, aux)− `(λ) = log(|R| − `(λ))

Finally, we apply the (log(|R|) − `(λ), ε(λ))- extractor to then output of S-twHPS,
which transforms it into a uniformly random value. So by the security property of
the extractor we get:

(X∗, T ∗, S∗, aux, L, Z∗ = E′K(X∗, T ∗, S∗)) ≈s (X∗, T ∗, S∗, aux, L, Z∗ ← Z)

We note that the seed of the extractor is choosen uniformly at random and inde-
pendent of the auxiliary values aux learnt by A in the learning phase and also the
leakage L. Therefore, even conditioned on everything the attacker sees in the learning
stage, and on the challenge input (X∗, T ∗, S∗) the value Z∗ = E′K((X∗, T ∗, S∗)) =
Ext(Y ∗;S∗) is statistically indistinguishable from uniform. So the change from Game
1 to Game 2 is indistinguishable to an adversary except with negligible probability.

Game 3. In this game the challenger chooses the bit b = 1 (recall that the bit
b = 1 corresponds to receiving the output from a truly random function) in the
challenge phase. In addition, the challenger switches back the distributions to same
as Game 0. In particular, now in the learning phase, the challenger samples {Xi ←
DistD0 (sampK)}i∈[q], {Ti ← DistT0 (sampK)}i∈[q] X∗ ← DistD0 (sampK), T ∗ ← DistT0 (sampK).
This corresponds to randomly sampling these values according to respective distri-
butions. The responses to the learning phase is computed as usual, namely {Zi =
E′K(Xi, Ti, Si)}i∈[q], and the challenge is still chosen uniformly at random, i.e., Z∗ ←
Z as in Game 2. We argue that Game 2 and Game 3 are indistinguishable by the
input indistinguishability property of the underlying S-twHPS similar to the way we
argued indistinguishability between Games 0 and 1. This completes the proof of the
theorem. ut

4.6 Constructing Symmetric-key Tweakable weak HPS

We have seen how to construct a leakage resilient tweakable weak PRF (LR-twPRF)
from Symmetric-key twHPS. In this section, we show how to actually construct
the Symmetric-Key Tweakable weak HPS (S-twHPS), with the desired properties
we needed for our construction of LR-twPRF. For constructing the S-twHPS, we
need a tweakable weak PRF (t-wPRF) and a standard CPA-secure symmetric-key
encryption scheme.

Construction: Let n = n(λ) be some polynomial, and let E = {EK : T × D →
Zn}K∈K be a standard t-wPRF family. Further, let Fweak = {FK : D → Zn}K∈K be a
weak-PRF family and Π = (KeyGen,Enc,Dec) be a CPA-secure standard symmetric-
key encryption scheme, where the encryption and decryption functions are specified
as follows:
5 Recall that adaptive access to the leakage oracle by A is equivalent to a single call to the

leakage oracle O`
K at the end of learning phase.
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1. EncK(M) : Choose a random x ← D, and compute C = (x, Fk(x) + M), where
the addition is performed in Zn.

2. DecK(C = (x, y)) : Output M = y − FK(x)

The security of this encryption is straightforward to prove. In the security proof,
we replace the value y = FK(x) with a uniformly random and independent value
and argue that the change is indistinguishable to an adversary. Note that for this
encryption scheme the message spaceM = Zn and the ciphertext space C = D×Zn.
Another useful property of this encryption scheme is that we can obliviously sample
c← C without knowing the secret key K, and this induces the same distribution as
encrypting a random m← Zn. Now, given the t-wPRF family E , and a CPA-secure
encryption scheme Π = (KeyGen,Enc,Dec), we construct the S-twHPS as follows:

ẼS−twHPS = {EK : Cn × T n → Zn}K∈([n],K) where

EK=(s,k)(X = (C1, T1), . . . , (Cn, Tn)) = Deck(Ts, Cs)

Notice that we can efficiently sample uniformly random inputs from the domain
Cn and T n of EK (without knowing K), which corresponds to sampling from the
distributions DistD0 and DistT0 respectively. In this construction the tweak space T is
also Zn. We define the additional algorithms needed for the definition of S -twHPS
as follows:

• sampK ← SampGen(K) : Parse K = (s, k). Choose (n − 1) other values {ki ←
K}i∈[n]\t, set ks = k. Set SampK := (k1, . . . , kn).

• T ← DistT1 (sampK)(V alid) : Choose t ← Zn, compute {t̂i = Encki(t)}i∈[n].
Output T = (t̂1, . . . , t̂n).

• T ← DistT2 (sampK)(Invalid) : Choose t← Zn, compute {t̂i = Encki(t+ i)}i∈[n].
Output T = (t̂1, . . . , t̂n).

• X ← DistD1 (sampK)(V alid) : Choose r ← Zn, compute {Ci = Encki(t̂i, r)}i∈[n],
where the t̂i values used as (encrypted) tweak are sampled accordingly to DistT1
(valid). Output X = ((C1, t̂1), . . . , (Cn, t̂n)).

• X ← DistD2 (sampK)(Invalid) : Choose r ← Zn, compute {Ci = Encki(t̂i, r +
i)}i∈[n], where the t̂i values used as (encrypted) tweak are sampled accordingly

to DistT2 (invalid). Output X = ((C1, t̂1), . . . , (Cn, t̂n)).

Note that for a valid T , all the encrypted tweaks t̂i decrypt to the same value t, and
for an invalid T , the values t̂i decrypt to different values (t+i). For a valid X, all the
values decrypt to the same value r under the valid tweak t̂i (all of which hides the
same tweak t), whereas for an invalid X, all the values decrypt to different values
(r + i) under invalid tweaks t̂i (all of which hide different tweaks (t + i)). Firstly,
it is easy to see that the distributions DistT1 and DistT2 are indistinguishable even
given the secret key (s, k). This follows from the fact that the value t̂i is uniform
on its own, and we cannot distinguish t̂i for i /∈ s from uniform by the security
of the wPRF. Now we have to argue that ((t, k), (t̂1, C1), (t̂2, C2), . . . , (t̂n, Cn)) ≈c
((t, k), (t̂′1, C

′
1), (t̂′2, C

′
2) . . . , (t̂′n, C

′
n)), i.e., these two distributions are indistinguish-

able, even given the secret key (s, k), where {Ci ← DistDbi(sampK), t̂i ← DistTbi(sampK)},
and {C ′i ← DistDb′i(sampK), t̂′i ← DistTb′i(sampK)} and (bi, b

′
i) ∈ {0, 1, 2}n. This follows

from the fact that the value (Cs, t̂s) is uniform on its own, and for all indices i /∈ s,
the values (Ci, t̂i) are indistinguishable from uniform by the security of the under-
lying t-wPRF and wPRF respectively. In particular, the indistinguishability of the
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values t̂i for i /∈ s relies on the CPA-security of the symmetric-key encryption and the
indistinguishability of the values Ci for i /∈ s relies on the CPA-security of the tweak-
able symmetric-key encryption. This proves the first property, namely, the joint-input
indistinguishability property of the S-twHPS.

Now, we need to argue that the second property, namely, the smoothness property
of the S-twHPS. Recall that, the smoothness requirement tells that given arbitrarily
many Valid = {Xi ← DistD1 (sampK), Ti ← DistT1 (sampK), Yi = EK(Ti, Xi)} values,
and a challenge tuple Invalid = {X∗ ← DistD2 (sampK), T ∗ ← DistT1 (sampK)}, the
value Y ∗ = EK(T ∗, X∗) is (perfectly) uniformly random and independent of Valid.
First we observe that given many values {Xi, Ti, EK(Ti, Ci)} where Xi and Ti are
valid, we learn nothing (information theoretically) about the secret index s contained
in K = (s, k). For a random invalid T ∗ ← DistT2 (sampK), EK(T ∗) = Decks(T̂s) =
(t+s) is truly random and independent. Now a random invalid X∗ ← DistD2 (sampK),
T ∗ ← DistT2 (sampK), we have EK(T ∗, X∗) = Decks(T̂s, Cs) = r + s is also truly
random and independent of Valid. This proves the smoothness property. ut

4.7 Output Amplification via Parallel Repetition

In the previous construction, we showed how to construct symmetric-key t-wHPS for
small output domain namely polynomial size output domain, which implies that the
output will have at most O(logn) entropy associated with it. This cannot be used to
extract even a single bit. So here, we amplify the output domain of the S-twHPS via
parallel repetition using independent copies of the scheme concatenated together.

Theorem 5. If Ẽ = {Ek : T × D → R}k∈K is a symmetric-key tweakable wHPS

and let m = m(λ) be some arbitrary polynomial. Define Ẽm = {EK : T m × Dm →
Rm}K∈Km via

E(k1,...,km)((T1, X1), . . . , (Tm, Xm))
def
= (Ek1(T1, X1), . . . , Ekm(T1, Xm)).

Then Ẽm is also a symmetric-key tweakable wHPS, whose output is amplified by a
factor of m.

Proof. Before proceeding with the proof, let us redefine all the algorithms of the
modified S-twHPS.

• sampK ← SampGenm(K) : Parse K = (k1, . . . , km), and sample {SampKi ←
SampGen(ki)}i∈[m]. Set SampK := (SampK1, . . . ,SampKm).

• T ← DistT ,mb∈{1,2}(sampK) : Sample {Ti ← DistTb (sampKi)}i∈[m]. Output T =

(T1, . . . , Tm)

• X ← DistD,mb∈{1,2}(sampK) : Sample {Xi ← DistDb (sampKi)}i∈[m]. Output X =

(X1, . . . , Xm)

Now we want to show that the joint-input indistinguishability and smoothness prop-
erties holds for Ẽm with the above algorithms.

1. Joint-Input Indistinguishability. Before proving this, let us introduce some nota-
tions for clarity. ∀i = 1 to q, let Ti = {Ti,1, . . . , Ti,m} and Xi = {Xi,1, . . . , Xi,m}.
Let us define the relation Si ⊆ Ti ×Xi such that:
Si = {(Ti,j , Xi,j)|Ti,j ∈ Ti, Xi,j ∈ Xi, j = 1, 2, . . . ,m}. For the modified S-

twHPS Ẽm, for any polynomial q = q(λ), input indistinguishability requires the
following computational indistinguishability property to hold:

(K = (k1, . . . , km), (S1, S2, . . . , Sq)) ≈c (K = (k′1, . . . , k
′
m), (S′1, S

′
2, . . . , S

′
q))
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where K ← Km, sampK ← SampGenm(K), {Xi ← DistDbi(sampK)}i∈[q], {Ti ←
DistTbi(sampK)}i∈[q], {X ′i ← DistDb′i(sampK)}i∈[q], {T ′i ← DistTb′i(sampK)}i∈[q], and

(b1, . . . , bq), (b
′
1, . . . , b

′
q) ∈ {0, 1, 2}q. This follows via a sequence of m hybrid steps,

where at each step, instead of sampling {Ti,j , Xi,j ← DistDb1 ×DistTb1}(j∈[m],i∈[q]),

we sample {T ′i,j , X ′i,j ← DistDb′1 × DistTb′1}(j∈[m],i∈[q]) and rely on the joint-input

indistinguishability property of the “small” scheme in position j ∈ [m] to argue
joint-input indistinguishability.

2. Smoothness. For the modified S-twHPS Ẽm, smoothness requires, for any poly-
nomial q = q(λ), we need the following statistical equivalence property to hold:

(((T1, X1), Y1) . . . , ((Tq, Xq), Yq),
−→
X ∗|m,

−→
T ∗|m,

−→
Y ∗|m)

≡ (((T1, X1), Y1) . . . , ((Tq, Xq), Yq),
−→
X ∗|m,

−→
T ∗|m,

−→
UR
∗|m)

where K ← Km, sampK ← SampGenm(K), {Xi ← DistD1 (sampK)}i∈[m], {Ti ←
DistT1 (sampK)}i∈[m], {X∗ ← DistD2 (sampK)}, {T ∗ ← DistT2 (sampK)}, {Yi =

EK(Ti, Xi)}i∈[q], Y ∗ = FK(X∗) and
−→
U ← Rm. This also follows by a sequence

of m hybrid steps, where at each step, for each j ∈ [m], instead of computing
Y ∗j = Ekj (T ∗j , X

∗
j ),we switch to Uj ← R, and rely on the smoothness property

of the “small” scheme to argue smoothness of the modified scheme.

5 The Master Theorem.

So we have seen how to construct a symmetric-key tweakable wHPS starting from
tweakable wPRF (t-wPRF) and a (standard) CPA-secure symmetric-key encryption
scheme as shown in section 4.6. We also showed how to construct LR-tweakable weak
PRF from S-twHPS in section 4.5. Putting this altogether as shown in the diagram
at the end of section 2, we get the following:

Theorem 6. Assuming the existence of one-way functions, there exists `(λ)-LR-
twPRF and `(λ)-leakage-resilient CPA-secure tweakable encryption scheme. Further,
assuming the existence the existence of tweakable weak PRFs with key size γ(λ), the
above schemes can achieve any leakage rate α(λ) = O( logλ

γ(λ) )

Proof. Let n = n(λ) be a polynomial parameter in λ, which is a power of 2. (We can
interpret n = |{0, 1}O(logλ)|). Using our construction of Symmetric-key tweakable
wHPS (S-twHPS) with parameter n = n(λ) (representing the small output domain
size), and using parallel repetition with parameter m = m(λ) (representing the repe-
tition factor), the key size of the our modified S-twHPS is m(γ(λ)+logn) (to specify
the index s requires extra logn bits). Note that m(γ(λ) + logn) < 2mγ, since for a
secure encryption scheme γ > logn. Now using the construction of leakage-resilient
tweakable wPRF as shown in Section 4.5 and using universal hash functions (pair-
wise independent hash functions) as the extractor with output size λ-bit, we obtain a
`(λ)-LR-twPRF with leakage bound `(λ) = m logn−2λ. So we get a relative leakage
rate α ≈ O(logn/γ) ≈ O(log(λ)/γ(λ)). So by appropriately choosing the parameters
n and m, we obtain the claim made in the theorem. More precisely, the parameter n
influences the leakage rate, whereas the parameter m influences the overall leakage
bound or amount, and it can be made as large as possible by increasing the rounds
of parallel repetition.
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6 Extensions
In this section we show how our construction of symmetric-key tweakable encryption
can be generalized considering more general settings than the length-bounded leakage.

6.1 Entropy-bounded Leakage-Resilient Tweakable Encryption.

The notion of entropy-bounded leakage was first suggested by Naor and Segev [25].
This model does not restrict the output length of the leakage function to some ` bits;
rather the length of the leakage function can even exceed the length of the secret key,
but the secret key should have a reasonable amount of min-entropy left in it even
given this leakage. So the secret key should still be unpredictable given the leakage.
There are various definitions used to quantify this requirement (see [5, 9, 25]). We
consider the definition give in [9]. This was also used as a working definition in [19]
to show generalizations of their construction in the entropy-bounded leakage model.
Dodis et. al. [9] considered entropy loss with respect to an uniform distribution and
showed that the entropy loss over an uniform distribution is an upper bound on the
entropy loss over any arbitrary distribution.
More precisely, they defined a function f : {0, 1}∗ → {0, 1}∗ to be `-leaky, if ∀n ∈ N,

we have H̃∞(Un|f(Un)) ≥ n− `, where, Un is the uniform distribution over {0, 1}n.
Now, a length-bounded leakage function f : {0, 1}∗ → {0, 1}` is also `-leaky. Using
this observation, Dodis et. al showed that if a function is `-leaky, then it decreases
the entropy of every distribution by at most ` bits. We modify the security model by
allowing the adversary to choose at each step a `i-leaky function as leakage function
and the total leakiness is bounded by some leakiness parameter ` ≤

∑
i `i. We note

that this leakiness condition may not be efficiently verifiable for the challenger in the
security game, since the checking the amount of leakiness for a function in general
may not be possible. So instead we require the adversary to satisfy this condition
and define the security game with respect to the class of adversary that respects
the above conditions. More precisely, the security game of `(= `(λ))-leaky tweakable
encryption is defined as follows. Let us denote the class F as the class of `-leaky
functions.

1. Initialization: The challenger chooses a uniformly random K ← KeyGen(1λ)
and proceeds with the game as follows.

2. Learning Stage: The attacker AO`
K ,EncK(.,.) gets oracle access to the leakage

oracle O`K . The adversary can adaptively submit functions fi ∈ F to the leakage
oracle O`K , each of which is `i-leaky, where `i ≤ `, and it should hold that∑
i `i ≤ `. This allows the adversary to reduce the min-entropy of the secret key

K by at most ` bits. Besides the adversary can also query the encryption oracle
EncK(., .) as usual. The adversary queries the oracle with tuples (Ti,Mi)i∈[q]
for some polynomial q = q(λ), Ti ∈ T and Mi ∈ M, and receives as output
{Ci ← EncK(Ti,Mi)}i∈[q] and Ci ∈ C.

3. Challenge Stage: In this stage, the adversary submits two message-tweak pair
(M0, T0) and (M1, T1), where |M0| = |M1|. The challenger chooses a random bit
b ← {0, 1}, compute Cb = EncK(Mb, Tb) and sends Cb to the adversary. The
adversary A then outputs a bit b′.

We define the advantage of the attacker A as AdvELR-t-CPA
A (λ) = |Pr[b′ = b] − 1

2 |,
where ELR stands for entropic leakage-resilient.

It is very easy to see that under this modified definition our construction of leakage
resilient tweakable holds. The only change happens in the proof of security where
instead of length bounded leakage we use this notion of entropy loss of leakage.
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6.2 After-the-Fact Leakage-resilient Tweakable Encryption.

In our definition of leakage-resilient (LR) tweakable encryption, we only allowed ac-
cess to the leakage oracle to the adversary in the learning phase, but not in the
challenge or post-challenge phase. The reason is that the adversary can encode the
decryption function along with the two challenge messages and the challenge cipher-
text as the leakage function to leak the bit b that we are trying to hide. This requires
a meaningful formulation of the security model and definitions if we allow access
to the leakage oracle to the adversary even after the challenge phase referred to
as After-the-Fact leakage. Halevi and Lin [17] formulated a new notion of entropic
leakage-resilient public key encryption which captures the intuition that as long as
the entropy of the encrypted message is higher than the amount of leakage, the mes-
sage still has some (pseudo) entropy left (even if this leakage was obtained after
seeing the ciphertext). We port this intuition and definitions to the case of tweakable
encryption.

Our security definition of After-the-fact leakage-resilient tweakable encryption con-
sists of two games: one “real” game and another “simulated” game. Both games
depend on several parameters: k is the a-priori min-entropy of the message, and `pre;
`post control the amount of leakage in various parts of the games (namely the pre and

post-challenge-ciphertext leakage bounds). Therefore, the leakage oracle O`pre,`postK (.)
is now parametrized by the secret key K and the two leakage parameters `pre and
`post. All of these parameters are of course functions of the security parameter λ. For
simplicity we will assume the message m is a uniform random k-bit string, but in gen-
eral it may also come from arbitrary high min-entropy source M with min-entropy
at least k.

Real Game. Given the parameters (λ, `pre, `post), and the tweakable encryption
scheme Π = (KeyGen, Enc, Dec), the real game is defined as follows:

1. Initialization: The challenger chooses a uniformly random K ← KeyGen(1λ),
and a uniform random message M ← Uk and proceeds with the game as follows.

2. Learning Stage: This learning phase corresponds to the pre-challenge phase.

The attackerAO
`pre,`post
K ,EncK(.,.) gets oracle access to the leakage oracleO`pre,`postK (.)

which allows him/her to learn at most `pre bits of information about the secret
key K. Besides the adversary can also query the encryption oracle EncK(., .).
The adversary queries the oracle with tuples (Ti,Mi)i∈[q] for some polynomial
q = q(λ), Ti ∈ T and Mi ∈M, and receives as output {Ci ← EncK(Ti,Mi)}i∈[q]
and Ci ∈ C.

3. Challenge Stage: In this stage, the challenger chooses a random tweak T ∈ T
and encrypts the message M under the tweak T and sends the ciphertext C =
(T,EncK(T,M)) to the adversary.

4. Learning Stage: This phase corresponds to the post challenge phase. The at-

tacker AO
`pre,`post(.)

K gets oracle access to the leakage oracle O`pre,lpostK (.) which
allows him/her to learn at most `post bits of information about the secret key K.

We let Viewrl
A(Π) = (randomness;T, fpre(K);C; fpost(K)) be the random variable

describing the view of the adversary A in the game above, and by M rl we denote
the message that was chosen at the onset of this game. When we write the tuple
(M rl,Viewrl

A), we mean the joint distribution of message M rl and A’s view in the real
game with M rl.
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Simulated Game. In the simulated game we replace the challenger from above by
a simulator Sim that interacts with A in any way that it sees fit. Sim gets a uniformly
chosen message M sim as input, and it needs to simulate the interaction conditioned
on this M sim. The view of A when interacting with S is denoted Viewsim

A (Π). We say
that Π is entropic leakage-resilient or After-the-Fact leakage-resilient if the views of
the adversary in the two games namely, Viewrl

A(Π) and Viewsim
A (Π) are indistinguish-

able even given the message M , and the message M sim has high min-entropy given
Viewsim

A (Π).

Definition 6. Let λ, `pre, `post be parameters as above. A tweakable encryption
scheme Π = (KeyGen,Enc,Dec) is (`pre, `post)-after-the-fact leakage-resilient with
respect to these parameters if there exists a simulator Sim, such that, for every PPT
adversary A the following two conditions hold:

• (M rl,Viewrl
A(Π)) ≈c (M sim,Viewsim

A (Π))

• The average min-entropy of M sim given Viewsim
A (Π) is

H̃∞(M sim | Viewsim
A (Π)) ≥ k − `post

Construction of After-the-Fact LR-Tweakable encryption. Our construction
of After-the-Fact LR-Tweakable encryption is essentially the same construction of
LR-tweakable encryption from LR-tweakable weak PRFs from Section 4.3. Assume
Ẽ = {E : K × T × D → R} is `-LR-twPRF family, where the output domain Y and
the tweak space T forms an additive group (e.g., bit-strings under XOR).

1. KeyGen(1λ): Sample a uniformly random and independent K ← K
2. Enc(M , K, T ): The encryption algorithm takes as input K ∈ K, message M ∈ R,

and a tweak T ∈ T , samples X ← D, T̂ ← T and computes

1) T̃ := T ⊕ T̂ , and 2) EncK(T,M) = (X, T̂ , EK(T̃ ,X)⊕M)

3. Dec(K,X, T, T̂ , C): The decryption algorithm takes in the secret key K and the

tuple (X,T,C) and computes T̃ := T ⊕ T̂ and M = C ⊕ EK(T̃ ,X)

Let us denote the challenge ciphertext as C = (X∗, T̂ ∗, ψ), where ψ = EK(T̃ ,X)⊕M .
The main idea of the proof is also similar to the proof idea of this construction.
Instead of randomly sampling X∗ ← D and T̃ ∗ ← T (corresponding to DistD0 and
DistT0 respectively) as in the real game, the simulator samples X∗ ← DistD2 (sampK)

(invalid), T̃ ∗ ← DistT2 (sampK) (invalid), while all the (Xi, T̃i) values are sampled from
valid distributions (DistD1 (sampK) and DistT1 (sampK) respectively). Now, by the input
indistinguishability property of the underlying symmetric-key tweakable wHPS, these
two distributions are indistinguishable even given the message m. This shows the
indistinguishability of the real game and the simulated game. In the simulated game,
since X∗ ← DistD2 (sampK) and T̃ ∗ ← DistT2 (sampK), the value Y = EK(T̃ ∗, X∗) in
the challenge ciphertext is ε(λ) close to the uniform distribution over (log(|R|)−`(λ))
bits, where ` denotes the maximum pre-challenge leakage bound the adversary can
learn. This follows from the smoothness property of the underlying symmetric-key
twHPS and from the property of the (log(|R|)−`(λ), ε(λ))- extractor Ext : R×S → Z
used in constructing the leakage-resilient t-wPRF as shown in Section 4.5. Thus, the
min-entropy of m is ε-close to a uniform distribution over Z. Further, since the post-
challenge leakage is bounded by `post bits, the min-entropy of m is reduced by at
most this much. So, it retains roughly (log(|Z|) − `post) bits of entropy. This shows
that our construction of leakage-resilient tweakable encryption is also resilient to
After-the-Fact leakage.

25



7 Conclusion

Our work initiates the study of leakage-resilient (LR) tweakable encryption schemes
from minimal assumptions. The construction that we show has a leakage rate of
O( logλ

γ(λ) ), where γ(λ) is the size of the secret key. During the process of the construc-

tion, several new primitives have been proposed. One such primitive we introduced
was the symmetric-key tweakable weak hash proof system, which may be of indepen-
dent interest. It will be interesting to explore implementation aspects of this scheme
so as to bridge the gap between theory and practice. From the theoretical perspective,
it will be interesting to explore further constructions of LR-tweakable encryptions in
more generalized leakage settings like the continuous memory leakage model [9] or
auxiliary input model [11]. Another possible extension of the current scheme would
be to improve the overall leakage rate. Finally, we also leave open the construc-
tions of leakage-resilient format preserving encryption and full disk encryption from
leakage-resilient tweakable encryption.
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