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Abstract. At CRYPTO 2016, Cogliati and Seurin introduced the En-
crypted Davies-Meyer construction, p2(p1(x) ⊕ x) for two n-bit permu-
tations p1, p2, and proved security up to 22n/3. We present an improved
security analysis up to 2n/(67n). Additionally, we introduce the dual of
the Encrypted Davies-Meyer construction, p2(p1(x)) ⊕ p1(x), and prove
even tighter security for this construction: 2n/67. We finally demonstrate
that the analysis neatly generalizes to prove almost optimal security of
the Encrypted Wegman-Carter with Davies-Meyer MAC construction.
Central to our analysis is a modernization of Patarin’s mirror theorem
and an exposition of how it relates to fundamental cryptographic prob-
lems.
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1 Introduction

Many cryptographic primitives rest on the assumption that their building blocks
behave as perfectly random functions. This is the case for, among many others,
encryption modes [4], authenticators [5,9], or random permutations [28]. Yet, for
all their utility, very few pseudorandom functions are actually available to prac-
titioners. Instead, the leading cryptographic building block is the pseudorandom
permutation, also known as the block cipher. It is therefore common practice to
employ block ciphers as stand-ins for pseudorandom functions.

To a first approximation, this solves the problem. The PRP-PRF switch [6,
8, 13, 21, 24] tells us that a PRF can be safely replaced by a PRP up to ap-
proximately 2n/2 queries. With large blocks this is often acceptable, but for
lightweight block ciphers, whose number has grown tremendously in recent years
(e.g., [1,2,11,12,18,20,22,27,46,51]), this 2n/2 birthday bound severely limits the
application range. For example, Bhargavan and Leurent [10] recently presented
practical collision attacks on TLS if a 64-bit cipher is used.

In order to save these ciphers from obsolescence, various PRP-to-PRF con-
structions have been presented that achieve security beyond the 2n/2 security



bound. We can categorize these into truncation-based solutions and xor-based
solutions.4 Here and throughout, we simply talk about permutations to refer to
block ciphers instantiated with a secret key, unless explicitly stated otherwise.

Truncation. Hall et al. [21] suggested simple truncation. Bellare and Impagli-
azzo [3] and Gilboa and Gueron [19] proved that truncating an n-bit permutation

by m < n bits has security up to approximately 2
m+n

2 queries. This result was,
as a matter of fact, already derived around 20 years earlier by Stam [47], be it
in a non-cryptographic context.

Xor of Permutations. The xor (or more generally, sum) of two permutations,

XoPp1,p2(x) = p1(x)⊕ p2(x) , (1)

where p1, p2 are two permutations, was initially mentioned by Bellare et al. [7]
as a “natural” PRP-to-PRF method, and was later analyzed by Lucks [29] and
Bellare and Impagliazzo [3]. Patarin achieved 2n/67 security [39, 40, 42]. The
results are natively inherited by the construction that consists of the xor of
three or more independent permutations [16,30].

The xor of permutations evidently requires independence between p1 and
p2. If only a single permutation is to be used, one can simulate this indepen-
dence through domain separation, as suggested by Lucks [29] and Bellare and
Impagliazzo [3]:

XoP′
p
(x) = p(0‖x)⊕ p(1‖x) . (2)

Patarin [40] proved that this single permutation construction achieves a similar
level of security as XoP.

A New Contender. At CRYPTO 2016, Cogliati and Seurin [17] introduced
the Encrypted Davies-Meyer (EDM) construction (see Figure 1a):

EDMp1,p2(x) = p2(p1(x)⊕ x) , (3)

where p1, p2 are two permutations. Cogliati and Seurin proved that EDMp1,p2

behaves like a random function up to complexity 22n/3, and actually conjectured
that 2n is possible.

EDMp1,p2 shows structural differences with the xor of permutations, and
these differences allowed Cogliati and Seurin to devise the misuse-resistant MAC
function Encrypted Wegman-Carter with Davies-Meyer (EWCDM), defined as
follows:

EWCDMh,p1,p2(ν,m) = p2(p1(ν)⊕ ν ⊕ h(m)) , (4)

4 Another notable approach is data-dependent rekeying by Bellare et al. [7]: given
a block cipher Ek, data-dependent rekeying computes EEk(x)(x). However, this ap-

proach only achieves approximately 2n/2 security, and it inherently requires rekeying
of the block cipher which could be a costly operation in practice.
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Fig. 1: Encrypted Davies-Meyer (a) and its dual (b). The dashed line represents
the necessary addition to yield EWCDM.

where h is an almost xor universal hash function, p1, p2 are two permutations,
and where ν denotes the nonce and m the message, which may be arbitrarily
large. Cogliati and Seurin proved that EWCDMh,p1,p2 achieves security up to
22n/3 in the nonce-respecting setting, and 2n/2 security in the nonce-misusing
setting. They likewise conjectured optimal 2n security in the nonce-respecting
setting.

1.1 Our Contribution

We improve the security of EDMp1,p2 as well as EWCDMh,p1,p2 from 22n/3, as
derived by Cogliati and Seurin [17], to 2n/(67n). Furthermore, we introduce the
dual of EDM, the Encrypted Davies-Meyer Dual (EDMD) construction:

EDMDp1,p2(x) = p2(p1(x))⊕ p1(x) . (5)

The dual is depicted in Figure 1b, and as can be seen from a simple comparison
with EDMp1,p2 of Figure 1a, the constructions are very much related, and equally
expensive. We show that the EDMD construction achieves security up to 2n/67
queries.

Mirror Theory. The backbone of our security analysis is Patarin’s mirror
theory [31,36,40,43], a very powerful but rather unknown technique. We refurbish
and modernize it in Section 3 in order to be able to neatly apply it in our analyses.

At a basic level, the idea of Patarin’s mirror theory is to consider q ≥ 1
equations in r ≥ q unknowns, and to determine a lower bound on the number
of possible solutions to the unknowns. Some conditions naturally apply: the q
equations are of the form Pa ⊕ Pb = λ,5 where Pa and Pb are two unknowns,
and the solution to the unknowns should not contain collisions.

Consider the following example system of equations:

Pa ⊕ Pb = λ1 , Pb ⊕ Pc = λ2 , Pd ⊕ Pe = λ3 . (6)

We have 2n choices for Pa, after which Pb is determined by λ1 and Pc by λ2.
Next, we have 2n − 3 options for Pd (as Pd should not collide with Pa, Pb, and

5 Generalizations to multiple unknowns are possible [40,43], but are irrelevant for our
work.

3



Pc), after which Pe is determined by λ3. This naive counting gives 2n(2n − 3)
solutions to the system of equations, but it disregards two potential problems:
(i) the choice may result in a collision in the unknowns and (ii) the system of
equations may be inconsistent in the first place. Problem (i) may occur in a
straightforward way if, for instance, λ1 = 0, as in this case the first equation
states that Pa = Pb. It could also happen in a more delicate setting, for example
if Pb = Pe (even though Pd does not collide with Pa). To understand problem
(ii), consider the system of equations of (6) appended with equation Pa⊕Pc = λ4.
From the first two equations of (6) and the appended equation we can conclude
that the system is inconsistent if λ1 ⊕ λ2 ⊕ λ4 6= 0.

If problem (i) or (ii) occurs, the system of equations naturally has no solution.
Disregarding these two problems, the fundamental mirror theorem states that if
the number of q equations is “small enough,” then the number of solutions to the

r unknowns is at least (2n)r
2nq , where (2n)r is the falling factorial. What it means for

q to be “small enough” depends on the system of equations under investigation.
We refer to Theorem 2 for the details. We will in fact use a generalization of this
theorem, where the solution to the unknowns may contain some collisions (see
Theorem 3).

The bound itself is merely a combinatorial lower bound whose relevance is not
that clear at first sight. Its strength lies in the fact that it can be nicely employed
within the H-coefficient technique by Patarin [15, 33, 37], and in particular, it
forms a crucial part in proving the (almost) optimal security of EDM, EWCDM,
and EDMD.

Patarin’s mirror theorem (or variants thereof) has been used already to
analyze the security of Feistel constructions and the xor of permutations by
Patarin [34–36, 38–42, 45], Cogliati et al. [16], and Volte et al. [48, 49]. Iwata et
al. [26] recently pointed out that a result from Patarin’s mirror theorem implies
almost optimal security of CENC [25].

Security of EDM. By looking at EDMp1,p2 from a different angle, we can prove
2n/(67n) security for the case of independent permutations p1, p2 (Section 4).
In more detail, we regard EDMp1,p2 as a sum of permutations in the middle,
where an evaluation y = EDMp1,p2(x) corresponds to a xor of permutations as
p1(x)⊕ p−12 (y) = x. After this we only need to overcome a few technicalities in
order to apply the mirror theorem.

Security of EWCDM. Our analysis of EDMp1,p2 , namely the restructuring of
the data flows, generalizes to EWCDMh,p1,p2 almost verbatim. In more detail, we
prove in Section 5 that, in the nonce-respecting setting, EWCDMh,p1,p2 achieves
close to optimal 2n/(67n) PRF security. The analysis straightforwardly general-
izes to MAC security. Security in the nonce-misusing setting cannot exceed the
birthday bound as derived in [17].

Security of EDMD. Similar techniques allow us to prove optimal security of
EDMD based on independent permutations. However, in Section 6 we observe
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that its security reduces quite elegantly to the xor of two independent permu-
tations, XoPp1,p2 of (1). Therefore, EDMD based on independent permutations
achieves 2n/67 security.

Towards a Single Permutation. Our results on EDMp1,p2 and EWCDMh,p1,p2

satisfactorily resolve the conjecture put forward by Cogliati and Seurin [17] up
to a logarithmic factor, and our construction EDMDp1,p2 even achieves better
security than EDMp1,p2 . Cogliati and Seurin furthermore conjectured that op-
timal security is already achieved in the identical permutation case, i.e., where
p1 = p2. We support this conjecture, and think that it also holds for the dual,
but it appears unlikely that the techniques used in this work can be employed to
prove optimal security of EDMp or EDMDp, let alone EWCDMh,p. In Section 7
we give informal justification for this claim, and discuss further possibilities to
investigate EDMp and EDMDp.

A Dual of EWCDM? An earlier version of this article suggested, as a side
result, the dual construction

EWCDMDh,p1,p2(ν,m) = p2(p1(ν)⊕ h(m))⊕ p1(ν)⊕ h(m) , (7)

with a claimed security of 2n/(67n). However, Nandi [32] pointed out that
EWCDMDh,p1,p2 can be seen as a cascade of two non-injective functions, there-
with having twice as many collisions as expected, and can be distinguished
from random in about 2n/2 queries. Closer inspection of the security proof re-
vealed a very subtle issue in the application of the mirror theory, namely that
it cannot readily handle systems of equations with a conditional existence of
(in-)equalities, e.g., where two unknowns must be equal if two other unknowns
satisfy a certain condition.6 Broadly speaking, the problem is similar to (but
more subtle than) issues encountered when analyzing a single permutation vari-
ant EDMp, EDMDp, or EWCDMh,p (cf. Section 7). As such, we consider it to
be a non-trivial exercise to derive a dual of EWCDMh,p that provably achieves
security beyond the birthday bound. We remark that EWCDMDh,p1,p2 may still
achieve MAC security beyond the birthday bound, however, we have not con-
sidered MAC security in this work as it is beyond the scope of the article.

2 Preliminaries

For a natural number n, {0, 1}n denotes the set of all n-bit strings, and we denote
by {0, 1}∗ the set of bit strings of arbitrary length. func(n) denotes the set of
all functions on {0, 1}n, and perm(n) the set of all permutations. We denote by
func(n + ∗, n) the set of all functions with domain {0, 1}n × {0, 1}∗ and range
{0, 1}n. For a natural number m ≥ n, we write (m)n = m(m− 1) · · · (m−n+ 1)

as the falling factorial. For a set X , x
$←− X denotes uniformly random sampling

of x from X .
6 The issue does not appear for EDMp1,p2 or EWCDMh,p1,p2 . It even does not appear

for EDMDp1,p2 as the inputs to the second permutation are always distinct.
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2.1 Universal Hash Functions

For two non-empty sets X ,Y, a family of hash functions H = {h : X → Y} is
said to be ε-AXU (almost xor universal) if for any distinct x, x′ ∈ X and y ∈ Y,
we have

Pr
[
h

$←− H : h(x)⊕ h(x′) = y
]
≤ ε .

2.2 Distinguishers

A distinguisher D is a computationally unbounded adversary that is given adap-
tive access to an oracle O and outputs a bit 0/1. For two oracles O and P with
identical interface, we denote the distinguishing advantage of D by

∆D(O ; P) = Pr
[
DO ⇒ 1

]
−Pr

[
DP ⇒ 1

]
. (8)

Throughout this work, we only consider computationally unbounded distinguish-
ers whose complexities are solely measured by the number of queries to the oracle.
Without loss of generality, it suffices to only focus on deterministic distinguish-
ers, as for any probabilistic distinguisher there exists a deterministic one with
at least the same success probability, and we will assume so henceforth.

2.3 H-Coefficient Technique

Central to our analysis will be the H-coefficient technique by Patarin [33,37], and
as a matter of fact, the mirror theory of Section 3 will be a useful tool within this
technique. We will follow the renewed description of Chen and Steinberger [15].

Consider two oracles O and P, and an information-theoretic deterministic
distinguisher D with query complexity q that tries to distinguish both oracles:
∆D(O ; P) of (8). The communication that D has with its oracle is recorded in
a transcript τ . Denote by XO the probability distribution of transcripts when
D is interacting with O, and similarly by XP the distribution of transcripts for
interaction with P. Say that a transcript is “attainable” if Pr [XP = τ ] > 0 and
denote by T the set of all attainable transcripts.

The H-coefficient technique states the following:

Theorem 1 (H-coefficient technique). Let δ, ε ∈ [0, 1]. Consider a partition
T = Tbad ∪ Tgood of the set of attainable transcripts such that

1. Pr [XP ∈ Tbad] ≤ δ,

2. for all τ ∈ Tgood,
Pr [XO = τ ]

Pr [XP = τ ]
≥ 1− ε.

Then, the distinguishing advantage satisfies ∆D(O ; P) ≤ δ + ε.
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Proof. A proof of the technique is given among others in [14,15], and we repeat
it briefly. As we consider a deterministic distinguisher D, its advantage is equal
to the statistical distance between the distributions of views XO and XP :

∆D(O ; P) =
1

2

∑
τ∈T

∣∣Pr [XO = τ ]−Pr [XP = τ ]
∣∣

=
∑

τ∈T :Pr[XP=τ ]>Pr[XO=τ ]

(
Pr [XP = τ ]−Pr [XO = τ ]

)
=

∑
τ∈T :Pr[XP=τ ]>Pr[XO=τ ]

Pr [XP = τ ]

(
1− Pr [XO = τ ]

Pr [XP = τ ]

)
.

Making a distinction between bad and good views, we find:

∆D(O ; P) ≤
∑

τ∈Tbad

Pr [XP = τ ] +
∑

τ∈Tgood

Pr [XP = τ ] ε ≤ δ + ε ,

which completes the proof. ut

The basic idea of the technique is that a large number of transcripts are almost
equally likely in both worlds, and the odd ones appear only with negligible
probability δ. Note that the partitioning of T into bad and good transcripts is
directly reflected in the terms δ and ε in the bound: if Tgood is too large, ε will
become large, whereas if Tbad is too large, δ will become large.

For a given transcript τ = {(x1, y1), . . . , (xq, yq)} consisting of q input/output
tuples, we say that an oracle O extends τ , denoted O ` τ , if

O(xi) = yi

for i = 1, . . . , q.

2.4 Pseudorandom Function Security

Let F p1,p2 ∈ func(n) be a fixed-input-length function that internally uses two
permutations p1, p2 ∈ perm(n). We denote the PRF security of F as a random
function by

Advprf
Fp1,p2 (D) = ∆D(F p1,p2 ; f) (9)

where the probabilities are taken over the drawing of p1, p2
$←− perm(n) and

f
$←− func(n).
The model generalizes to the security of variable-input-length functions as

follows. Let Fh,p1,p2 ∈ func(n + ∗, n) be a variable-input-length function that
internally uses two permutations p1, p2 ∈ perm(n) and a universal hash function
h from some hash function family H. We denote the PRF security of F as a
random function by

Advprf
Fh,p1,p2

(D) = ∆D(Fh,p1,p2 ; f) (10)
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where the probabilities are taken over the drawing of h
$←− H, p1, p2

$←− perm(n),

and f
$←− func(n+ ∗, n). For variable-input-length functions, we will impose that

D is nonce-respecting, i.e., it never makes two queries to its oracle with the same
first component.

Remark 1. We focus on PRF security in the information-theoretic setting, where
the underlying primitives are secret permutations uniformly randomly drawn
from perm(n). Our results straightforwardly generalize to the complexity-theoretic
setting, where the permutations are instantiated as Ek1 , Ek2 for secret keys
k1, k2. The bounds of this work carry over with an additional loss of 2Advprp

E (q),
where Advprp

E (q) denotes the maximum advantage of distinguishing Ek for se-
cret k from a uniformly random permutation in q queries. Note that in our
analyses, the distinguisher can only induce forward evaluations of the underly-
ing primitive. Therefore, the block cipher only needs to be prp secure, and not
necessarily sprp secure.

3 Mirror Theory

We revisit an important result from Patarin’s mirror theory [36, 40] in our con-
text of pseudorandom function security. For the sake of presentation and in-
teroperability with the results in the remainder of this paper, we use different
parametrization and naming of definitions.

3.1 System of Equations

Let q ≥ 1 and r ≥ 1. Let P = {P1, . . . , Pr} be r unknowns, and consider a
system of q equations

E = {Pa1 ⊕ Pb1 = λ1, · · · , Paq ⊕ Pbq = λq} (11)

where ai, bi for i = 1, . . . , q are mapped to {1, . . . , r} using some surjective index
mapping

ϕ : {a1, b1, . . . , aq, bq} → {1, . . . , r} .

Note that for a given system of equations, the index mapping is unique up to a
reordering of the unknowns. There is a one-to-one correspondence between E on
the one hand and (ϕ, λ1, . . . , λq) on the other hand, and below definitions are
mostly formalized based on the latter description (but it is convenient to think
about them with respect to E). For a subset I ⊆ {1, . . . , q} we define byMI the
multiset

MI =
⋃
i∈I
{ϕ(ai), ϕ(bi)} .

We give three definitions with respect to the system of equations E .
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Definition 1 (circle-freeness). The system of equations E is circle-free if
there is no I ⊆ {1, . . . , q} such that the multiset MI has even multiplicity ele-
ments only.

Definition 2 (block-maximality). Let {1, . . . , r} = R1∪· · ·∪Rs be a partition
of the r indices into s minimal “blocks” such that for all i ∈ {1, . . . , q} there exists
an ` ∈ {1, . . . , s} such that {ϕ(ai), ϕ(bi)} ⊆ R`. The system of equations E is
ξ-block-maximal for ξ ≥ 2 if there is no ` ∈ {1, . . . , s} such that |R`| > ξ.

Definition 3 (non-degeneracy). The system of equations E is non-degenerate
if there is no I ⊆ {1, . . . , q} such that the multiset MI has exactly two odd mul-
tiplicity elements and such that

⊕
i∈I λi = 0.

Informally, circle-freeness means that there is no linear combination of one or
more equations in E that is independent of the unknowns, block-maximality
means that the unknowns can be partitioned into blocks of a certain maximum
size such that there is no linear combination of two or more equations in E that
relates two unknowns Pa, Pb from different blocks Ri,Rj , and non-degeneracy
means that there is no linear combination of one or more equations that implies
Pa = Pb for some Pa, Pb ∈ P.

3.2 Main Result

The main theorem of Patarin’s mirror theory, simply dubbed “mirror theorem”,
is the following. It corresponds to “Theorem Pi⊕Pj for any ξmax” of Patarin [40,
Theorem 6].

Theorem 2 (mirror theorem). Let ξ ≥ 2. Let E be a system of equations
over the unknowns P that is (i) circle-free, (ii) ξ-block-maximal, and (iii) non-
degenerate. Then, as long as (ξ − 1)2 · r ≤ 2n/67, the number of solutions for P
such that Pa 6= Pb for all distinct a, b ∈ {1, . . . , r} is at least

(2n)r
2nq

.

The quantity measured in above theorem (the number of solutions...) is called
hr in [40]. Hr is subsequently defined as 2nqhr. The parameter H has slightly
different meanings in [39, 41, 42], namely the number of oracles whose outputs
could solve the system of equations. In the end, these definitions yielded the
naming of the H-coefficient technique of Theorem 1. For the mirror theorem, we
have opted to stick to the convention of [40] as its definition is pure in the sense
that it is independent of the actual oracles in use.

In Appendix A, we give a proof sketch of Theorem 2, referring to [40] for
the details. In the proof sketch, it becomes apparent that the side condition
(ξ − 1)2 · r ≤ 2n/67 can be improved (even up to 2n/16) quite easily. Patarin
first derived the side condition symbolically and only then derived the specific
constants. Knowing the constants in advance, we reverted the reasoning. How-
ever, to remain consistent with the theorem statement of [40], we deliberately
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opted to leave the 67 in; the improvement is nevertheless only constant. The
term (ξ − 1)2 is present to cover worst-case systems of equations; it can be im-
proved to (ξ − 1) in certain cases [44]. Fortunately, in most cases ξ is a small
number and the loss is relatively insignificant.

3.3 Extension to Relaxed Inequality Conditions

We consider a generalization to the case where the condition that Pa 6= Pb
whenever a 6= b is released to some degree. More detailed, let {1, . . . , r} =
R1 ∪ · · · ∪ Rt be any partition of the r indices. We will require that Pa 6= Pb
whenever a, b ∈ Rj for some j ∈ {1, . . . , t}. Definition 3 generalizes the obvious
way in order to comply with this condition:

Definition 4 (relaxed non-degeneracy). The system of equations E is re-
laxed non-degenerate with respect to partition {1, . . . , r} = R1 ∪ · · · ∪Rt if there
is no I ⊆ {1, . . . , q} such that the multiset MI has exactly two odd multiplicity
elements from a single set Rj (j ∈ {1, . . . , t}) and such that

⊕
i∈I λi = 0.

Note that a relaxed non-degenerate system of equations may induce equations
of the form Pa = Pb where a, b are from distinct index sets; such an equation
does not make the system degenerate. The extension of Theorem 2 to relaxed
inequality conditions is the following, which corresponds to [40, Theorem 7].

Theorem 3 (relaxed mirror theorem). Let ξ ≥ 2. Let {1, . . . , r} = R1 ∪
· · ·∪Rt be any partition of the r indices. Let E be a system of equations over the
unknowns P that is (i) circle-free, (ii) ξ-block-maximal, and (iii) relaxed non-
degenerate with respect to partition {1, . . . , r} = R1 ∪ · · · ∪Rt. Then, as long as
(ξ − 1)2 ·maxj |Rj | ≤ 2n/67, the number of solutions for P such that Pa 6= Pb
for all distinct a, b ∈ {1, . . . , r} is at least

NonEq(R1, . . . ,Rt; E)

2nq
,

where NonEq(R1, . . . ,Rt; E) denotes the number of solutions to P that satisfy
Pa 6= Pb for all a, b ∈ Rj (j = 1, . . . , t) as well as the inequalities imposed by E
(but the equalities themselves released).

The quantity NonEq(R1, . . . ,Rt; E) sounds rather technical, but for most sys-
tems it is fairly obvious to determine. If Pa ⊕ Pb = λ 6= 0 is an equation in E ,
then this equation imposes Pa 6= Pb; if in addition a, b are in distinct index sets,
then this inequality Pa 6= Pb imposes an extra inequality over the ones suggested
by R1, . . . ,Rt. An obvious lower bound is

NonEq(R1, . . . ,Rt; E) ≥ (2n)|R1|(2
n − (ξ − 1))|R2| · · · (2

n − (ξ − 1))|Rt| ,

as every unknown is in exactly one block, and this block imposes at most ξ − 1
additional inequalities on the unknowns. Better lower bounds can be derived for
specific systems of equations. The relaxed theorem is equivalent to the original
Theorem 2 if t = 1 and R1 = {1, . . . , r}.
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3.4 Example

The strength of the mirror theorem becomes visible by considering the sum
of permutations, XoPp1,p2 of (1) and XoP′

p
of (2). As a stepping stone to the

analyses of EDM, EWCDM, and EDMD in the remainder of the paper, we prove
that XoPp1,p2 is a secure PRF as long as q ≤ 2n/67. The proof is almost directly
taken from [40] and is an immediate application of Theorem 3. Its single-key
variant XoP′

p
can be proved similarly from Theorem 2, provided 2q ≤ 2n/67.

Proposition 1. For any distinguisher D with query complexity at most q ≤
2n/67, we have

Advprf
XoPp1,p2 (D) ≤ q/2n . (12)

Proof. Let p1, p2
$←− perm(n) and f

$←− func(n). Consider any fixed determin-
istic distinguisher D that has access to either O = XoPp1,p2 (real world) or
P = f (ideal world). It makes q construction queries recorded in a transcript
τ = {(x1, y1), . . . , (xq, yq)}. Without loss of generality, we assume that xi 6= xj
whenever i 6= j.

In the real world, each tuple (xi, yi) ∈ τ corresponds to an evaluation of
the function XoPp1,p2 and thus to evaluations xi 7→ p1(xi) and xi 7→ p2(xi),
such that p1(xi) ⊕ p2(xi) = yi. Writing P2i−1 := p1(xi) and P2i := p2(xi), the
transcript τ defines q equations on the unknowns:

P1 ⊕ P2 = y1 ,

P3 ⊕ P4 = y2 ,

...

P2q−1 ⊕ P2q = yq .

(13)

As xi 6= xj whenever i 6= j, and additionally we use two independent permu-
tations, all unknowns are formally distinct. In line with Section 3.1, denote the
system of q equations of (13) by E , and let P = {P1, . . . , P2q} be the 2q unknowns.
We can divide the indices {1, . . . , 2q} into two index sets: R1 = {1, 3, . . . , 2q−1}
are the indices corresponding to oracle p1 and R2 = {2, 4, . . . , 2q} the indices
corresponding to oracle p2.

Patarin’s H-coefficient technique of Theorem 1 states that Advprf
XoPp1,p2 (D) ≤

ε, where ε is such that for any transcript τ (we do not consider bad transcripts),

Pr [XXoPp1,p2 = τ ]

Pr [Xf = τ ]
≥ 1− ε . (14)

For the computation of Pr [XXoPp1,p2 = τ ] and Pr [Xf = τ ], it suffices to com-
pute the probability, over the drawing of the oracles, that a good transcript is
obtained. For the real world XoPp1,p2 , the transcript τ defines a system of equa-
tions E which is circle-free, has q blocks of size 2 (so it is 2-block-maximal), and it
is relaxed non-degenerate with respect to partition {1, . . . , r} = R1∪R2. We can

11



subsequently apply Theorem 3 for ξ = 2, and obtain that, provided q ≤ 2n/67,

the number of solutions for the output values P is at least NonEq(R1,R2;E)
2nq . To

lower bound NonEq(R1,R2; E), note that we have (2n)q possible choices for
P1, P3, . . . , P2q−1, at least 2n − 1 choices for P2 (if y1 6= 0 then P2 should be
unequal to P1), at least 2n − 2 choices for P4 (it should be unequal to P2, and
if y2 6= 0, it should moreover be unequal to P3), etc., and we obtain

NonEq(R1,R2; E) ≥ (2n)q(2
n − 1)q .

We have (2n − q)! possible choices for the remaining output values of p1, and
similarly of p2. Thus,

Pr [XXoPp1,p2 = τ ] =
|{p1, p2 ∈ perm(n) | XoPp1,p2 ` τ}|

|perm(n)|2

≥
(2n)q(2

n−1)q
2nq · ((2n − q)!)2

(2n!)2
=

1

2nq

(
1− q

2n

)
. (15)

For the ideal world f , we similarly obtain

Pr [Xf = τ ] =
|{f ∈ func(n) | f ` τ}|

|func(n)|
=

1

2nq
. (16)

We thus obtain for the ratio of (14):

Pr [XXoPp1,p2 = τ ]

Pr [Xf = τ ]
≥ 1− q

2n
.

We have obtained ε = q
2n , provided q ≤ 2n/67. ut

4 Security of EDMp1,p2

Consider EDM of (3) for the case of independent permutations p1, p2. We will
prove that this construction achieves close to optimal security.

Theorem 4. Let ξ ≥ 1 be any threshold. For any distinguisher D with query
complexity at most q ≤ 2n/(67ξ2), we have

Advprf
EDMp1,p2 (D) ≤ q

2n
+

(
q
ξ+1

)
2nξ

. (17)

The proof will be given in the remainder of this section. It relies on the mir-
ror theorem, although this application is not straightforward. Most importantly,

rather than considering EDMp1,p2 , we consider EDMp1,p
−1
2 . As p1, p2 are mu-

tually independent, these two constructions are provably equally secure, but it
is more convenient to reason about the latter one: we can view an evaluation
y = EDMp1,p

−1
2 (x) as the xor of two permutations in the middle of the function,

p1(x)⊕ p2(y) = x. Therefore, q evaluations of EDMp1,p
−1
2 can be translated to a

12



system of q equations on the outputs of p1, p2 of the form (11). Some technical-
ities persist, such as the fact that y may be identical for different evaluations of
the construction, and make it impossible to apply the mirror theorem directly.

The ξ functions as a threshold: as long as the largest block is of size at most
ξ+ 1, this means that the result of Patarin applies provided that q ≤ 2n/(67ξ2).
The probability that there is a block of size > ξ+1 is at most

(
q
ξ+1

)
/2nξ. Taking

ξ = 1 gives condition q ≤ 2n/67 but the bound is capped by q2/2n. The optimal
choice of ξ is when q = 2n/(67ξ2) still yields a reasonable bound, i.e., when
(67ξ2)ξ+1(ξ + 1)! ≥ 2n. For n = 128 this is the case for ξ ≥ 9. For n = 256 this
is the case for ξ ≥ 15.

For general n, we can observe that the above definitely holds if (67ξ2)ξ = 2n

(a better but more complicated bound can be obtained using Stirling’s approx-
imation). Solving this for ξ results in(

67ξ2
)ξ

= 2n(√
67ξ
)ξ

= 2n/2(√
67ξ
)√67ξ

= 2
√
67n/2

√
67ξ = e

W
(
ln
(
2
√

67n/2
))

ln
(

2
√
67n/2

)
ln ln

(
2
√
67n/2

) ≤ √67ξ ≤
ln
(

2
√
67n/2

)
√

ln ln
(

2
√
67n/2

) ,
where the last inequality comes from the approximation lnx− ln lnx ≤W (x) ≤
lnx − 1

2 ln lnx on the Lambert W function [23]. Coupled with Theorem 4, this

guarantees security as long as q ≤ 2n

(67n/
√
ln 67n)

.

As suggested by Patarin [40, Generalization 2], it may be possible to eschew
the condition ξ2 ·q ≤ 2n/67 in favor of ξ2average ·q ≤ 2n/67, where ξaverage denotes
the average block size. For EDMp1,p2 , the probability of a given block being
of size ξ + 1 is significantly lower than of it being of size ξ; thus, the number
of blocks with 2 variables is expected to dominate, and contribute the largest
amount of solutions of the mirror system.

The proof of Theorem 4 consists of five steps: in Section 4.1 we describe how
transcripts are generated, in Section 4.2 we discuss attainable index mappings,
in Section 4.3 we give a definition of bad transcripts, in Section 4.4 we derive an
upper bound on the probability of a bad transcript in the ideal world, and in Sec-
tion 4.5 a lower bound on the ratio for good transcripts. Theorem 4 immediately
follows from the H-coefficient technique of Theorem 1.

4.1 General Setting and Transcripts

Let p1, p2
$←− perm(n) and f

$←− func(n). Consider any fixed deterministic distin-

guisher D that has access to either O = EDMp1,p
−1
2 (real world) or P = f

13



(ideal world). It makes q construction queries recorded in a transcript τ =
{(x1, y1), . . . , (xq, yq)}. Without loss of generality, we assume that xi 6= xj when-
ever i 6= j.

4.2 Attainable Index Mappings

In the real world, each tuple (xi, yi) ∈ τ corresponds to an evaluation of the

function EDMp1,p
−1
2 and thus to a one call to p1 and one to p2: xi 7→ p1(xi) and

yi 7→ p2(yi), such that p1(xi) ⊕ p2(yi) = xi. Indeed, p1 and p2 xor to xi in the

middle of the function EDMp1,p
−1
2 . Writing Pai := p1(xi) and Pbi := p2(yi), the

transcript τ defines q equations on the unknowns:

Pa1 ⊕ Pb1 = x1 ,

Pa2 ⊕ Pb2 = x2 ,

...

Paq ⊕ Pbq = xq .

(18)

In line with Section 3.1, denote the system of q equations of (18) by E , let
P = {P1, . . . , Pr} be the r unknowns, for r ∈ {q, . . . , 2q}, and let

ϕ : {a1, b1, . . . , aq, bq} → {1, . . . , r}

be the unique index mapping corresponding to the system of equations (18).
Denote R1 = {ϕ(a1), . . . , ϕ(aq)} and R2 = {ϕ(b1), . . . , ϕ(bq)}.

There is a relation between the index mapping and the permutations p1, p2,
and different permutations could entail a different index mapping. Nevertheless,
as xi 6= xj whenever i 6= j, and additionally we consider independent per-
mutations, any possible index mapping in the real world satisfies the following
property.

Claim. ϕ(ai) 6= ϕ(aj) if and only if i 6= j, and ϕ(bi) 6= ϕ(bj) if and only if
yi 6= yj . Furthermore, ϕ(ai) 6= ϕ(bj) for any i, j.

Stated differently, ϕ should satisfy the input-output pattern induced by τ , and
for any ϕ that does not satisfy this constraint, Pr [ϕ | τ ] = 0. This particularly
means that, if τ is given, there is a unique index mapping ϕτ (up to a reordering
of the unknowns) that could have yielded the transcript. This index mapping
has a range of size q + q′, where q′ = |{y1, . . . , yq}| ≤ q denotes the number of
distinct range values in τ .

4.3 Bad Transcripts

In the real world, ϕ only exposes collisions of the form ϕ(bi) = ϕ(bj), or equiva-
lently yi = yj , for some i, j. As a matter of fact, multi-collisions in the range val-
ues in τ correspond to blocks in the mirror theory. Therefore, we say that a tran-
script τ is bad if there exist ξ+1 distinct equation indices i1, . . . , iξ+1 ∈ {1, . . . , q}
such that yi1 = · · · = yiξ+1

, where ξ is the threshold given in the theory state-
ment.
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4.4 Probability of Bad Transcripts (δ)

In accordance with Theorem 1, it suffices to analyze the probability of a bad
transcript in the ideal world. We have:

Pr [Xf ∈ Tbad] = Pr
[
∃i1, . . . , iξ+1 ∈ {1, . . . , q} : yi1 = · · · = yiξ+1

]
≤
(
q
ξ+1

)
2nξ

,

where we recall that in the ideal world the randomness in the transcript τ is in

the values y1, . . . , yq
$←− {0, 1}n. We have obtained δ =

( q
ξ+1)
2nξ

.

4.5 Ratio for Good Transcripts (ε)

Recall from Section 4.2 that for a given transcript τ , there is a unique index
mapping ϕτ that could have resulted in the transcript. Pivotal to our proof is
the following lemma.

Lemma 1. Consider good transcript τ , and denote by E the system of q equa-
tions corresponding to (ϕτ , x1, . . . , xq). This system of equations is (i) circle-free,
(ii) (ξ + 1)-block-maximal, and (iii) relaxed non-degenerate with respect to par-
tition {1, . . . , r} = R1 ∪R2.

Proof. The proof relies on the fact that ϕτ (ai) 6= ϕτ (aj) whenever i 6= j, and
additionally that ϕτ (ai) 6= ϕτ (bj) for any i, j. Particularly, for any I ⊆ {1, . . . , q}
the corresponding multiset MI has at least |I| odd multiplicity elements, and
there exists (i) no circle (Definition 1).

(ii) Suppose that E is not (ξ + 1)-block-maximal (Definition 2). Then, there
exists a minimal subset R ⊆ {1, . . . , r} of size ≥ ξ + 2 such that for any i ∈
{1, . . . , q} we either have {ϕτ (ai), ϕ

τ (bi)} ⊆ R or {ϕτ (ai), ϕ
τ (bi)} ∩ R = ∅.

Let I ⊆ {1, . . . , q} be the subset such that {ϕτ (ai), ϕ
τ (bi)} ⊆ R for all i ∈ I.

Due to our definition of ϕτ , there must be an ordering I = {i1, . . . , iξ+1} such
that ϕτ (bi1) = · · · = ϕτ (biξ+1

), or equivalently, yi1 = · · · = yiξ+1
, therewith

contradicting that τ is good and does not contain a (ξ + 1)-fold collision.
(iii) Suppose that the system of equations is relaxed degenerate (Definition 4).

Then, there exists a minimal subset I ⊆ {1, . . . , q} such that the multiset MI

has exactly two odd multiplicity elements corresponding to the same oracle and
such that

⊕
i∈I xi = 0. If |I| = 1, then MI has two elements from different

oracles. If |I| = 2, then
⊕

i∈I xi 6= 0 as the xi are all distinct. Finally, if |I| ≥ 3
then MI has at least 3 odd multiplicity elements. ut

For the computation of Pr
[
X

EDMp1,p
−1
2

= τ
]

and Pr [Xf = τ ], it suffices to

compute the probability, over the drawing of the oracles, that a good transcript

is obtained. Starting with the real world EDMp1,p
−1
2 , for the transcript τ , there is

a unique index mapping ϕτ . It concerns q input-output tuples of p1 and q′ input-
output tuples of p2, where |rng(ϕτ )| = q + q′. Due to Lemma 1, we can apply
Theorem 3 and obtain that, provided ξ2 · q ≤ 2n/67, the number of solutions
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to these q + q′ unknowns is at least NonEq(R1,R2;E)
2nq . We have (2n − q)! possible

choices for the remaining output values of p1, and (2n − q′)! for p2. Thus,

Pr
[
X

EDMp1,p
−1
2

= τ
]

= Pr
[
p1, p2

$←− perm(n) : EDMp1,p
−1
2 ` τ

]
≥

NonEq(R1,R2;E)
2nq · (2n − q)!(2n − q′)!

(2n!)2
=

NonEq(R1,R2; E)

2nq(2n)q(2n)q′
.

To lower bound NonEq(R1,R2; E), note that we have (2n)q′ possible choices
for {Pj | j ∈ R2}, and subsequently at least (2n − 1)q possible choices for
{Pj | j ∈ R1}, as every index in R1 is in a block with exactly one unknown from
R2. Thus,

Pr
[
X

EDMp1,p
−1
2

= τ
]
≥ (2n − 1)q(2

n)q′

2nq(2n)q(2n)q′
=

1

2nq

(
1− q

2n

)
. (19)

For the ideal world, we obtain

Pr [Xf = τ ] = Pr
[
f

$←− func(n) : f ` τ
]

=
1

2nq
. (20)

We obtain for the ratio:

Pr
[
X

EDMp1,p
−1
2

= τ
]

Pr [Xf = τ ]
≥

1
2nq

(
1− q

2n

)
1

2nq

= 1− q

2n
.

We have obtained ε = q
2n , provided ξ2 · q ≤ 2n/67.

5 Security of EWCDMh,p1,p2

We prove that EWCDM of (4) for the case independent permutations p1, p2
achieves close to optimal PRF security in the nonce-respecting setting. We re-
mark that Cogliati and Seurin proved PRF security of EWCDMh,p1,p2 up to
about 22n/3 queries (cf., [17, Theorem 3] for qv = 0). In a similar vein as the
analysis of Cogliati and Seurin [17] on EWCDMh,p1,p2 , our analysis straightfor-
wardly generalizes to the analysis for unforgeability or for the nonce-misusing
setting.

Theorem 5. Let ξ ≥ 1 be any threshold. For any distinguisher D with query
complexity at most q ≤ 2n/(67ξ2), we have

Advprf
EWCDMh,p1,p2

(D) ≤ q

2n
+

(
q
2

)
ε

2n
+

(
q
ξ+1

)
2nξ

, (21)

where h is an ε-AXU hash function.

16



The proof follows the same strategy as the one of EDMp1,p2 , i.e., replacing p2 by

p−12 for readability and noting that t = EWCDMh,p1,p
−1
2 (ν,m) corresponds to

the xor of two permutations as p1(ν)⊕ p2(t) = ν ⊕ h(m). An additional hurdle
has to be overcome, namely cases where ν ⊕ h(m) = ν′⊕ h(m′): if this happens,
and additionally we have t = t′, the system of equations cannot be solved. (In
retrospect, one can view the proof of EDMp1,p2 as a special case of the new
proof by keeping m constant.) As before, ξ functions as a threshold and the
computations of Section 4 likewise apply.

5.1 General Setting and Transcripts

Let h
$←− H be an ε-AXU hash function, p1, p2

$←− perm(n), and f
$←− func(n+∗, n).

Consider any fixed deterministic distinguisher D that has access to either O =

EWCDMh,p1,p
−1
2 (real world) or P = f (ideal world). It makes q construction

queries recorded in a transcript τcq = {(ν1,m1, t1), . . . , (νq,mq, tq)}, where the
q nonces νi are mutually different.

We will reveal after D’s interaction with its oracle, but before its final deci-
sion, a universal hash function h. In the real world, h is the hash function that is
actually used. In the ideal world, h will be drawn uniformly at random from the
ε-AXU universal hash function family H. The extended transcript is denoted

τ = (τcq, h) .

5.2 Attainable Index Mappings

In the real world, each tuple (νi,mi, ti) ∈ τcq corresponds to an evaluation of the

function EWCDMh,p1,p
−1
2 and thus evaluations νi 7→ p1(νi) and ti 7→ p2(ti), such

that p1(νi)⊕p2(ti) = νi⊕h(mi) (note the fundamental difference with respect to

the analysis of EDMp1,p
−1
2 of Section 4, namely the addition of h(mi)). Writing

Pai := p1(νi) and Pbi := p2(ti), the transcript τcq defines q equations on the
unknowns:

Pa1 ⊕ Pb1 = ν1 ⊕ h(m1) ,

Pa2 ⊕ Pb2 = ν2 ⊕ h(m2) ,

...

Paq ⊕ Pbq = νq ⊕ h(mq) .

(22)

(The system of equations differs from that of (18) as the unknowns should now
sum to νi⊕h(mi).) In line with Section 3.1, denote the system of q equations of
(22) by E , let P = {P1, . . . , Pr} be the r unknowns, for r ∈ {q, . . . , 2q}, and let

ϕ : {a1, b1, . . . , aq, bq} → {1, . . . , r}

be the unique index mapping corresponding to the system of equations (22).
Denote R1 = {ϕ(a1), . . . , ϕ(aq)} and R2 = {ϕ(b1), . . . , ϕ(bq)}.
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From the fact that νi 6= νj whenever i 6= j, and additionally that we consider
two independent permutations, we can derive the exact same property of ϕ as
in Section 4.2, with ν replacing x and t replacing y.

Claim. ϕ(ai) 6= ϕ(aj) if and only if i 6= j, and ϕ(bi) 6= ϕ(bj) if and only if ti 6= tj .
Furthermore, ϕ(ai) 6= ϕ(bj) for any i, j.

As before, for a given transcript τcq, there is a unique index mapping ϕτ that
could have yielded the transcript. It has a range of size q + q′, where q′ =
|{t1, . . . , tq}| ≤ q denotes the number of distinct range values in τcq.

5.3 Bad Transcripts

Unlike for the analysis of EDMp1,p
−1
2 , it is insufficient to just require that there is

no (ξ+1)-fold collision, we must also take degeneracy of the system of equations
into account. Indeed, if for two queries (νi,mi, ti), (νj ,mj , tj), we have that ti =
tj (or, equivalently, ϕ(bi) = ϕ(bj)) and νi ⊕ h(mi) = νj ⊕ h(mj), the system
of equations would imply that we need ϕ(ai) = ϕ(aj), which is impossible by
design.

Formally, we say that a transcript τ = (τcq, h) is bad if

– there exist ξ + 1 distinct equation indices i1, . . . , iξ+1 ∈ {1, . . . , q} such that
ti1 = · · · = tiξ+1

, where ξ is the threshold given in the theory statement, or
– there exist two distinct equation indices i, j ∈ {1, . . . , q} such that ti = tj

and νi ⊕ h(mi) = νj ⊕ h(mj).

5.4 Probability of Bad Transcripts (δ)

As in Section 4.4, it suffices to analyze the probability of a bad transcript in the
ideal world, and we have:

Pr [Xf ∈ Tbad] ≤ Pr
[
∃i1, . . . , iξ+1 ∈ {1, . . . , q} : ti1 = · · · = tiξ+1

]
+ Pr [∃i, j ∈ {1, . . . , q} : ti = tj ∧ νi ⊕ h(mi) = νj ⊕ h(mj)] ,

(23)

where we recall that in the ideal world the randomness in the transcript τ is in

the values t1, . . . , tq
$←− {0, 1}n and in the uniform drawing h

$←− H. The first
probability of (23) is identical to the one analyzed in Section 4.4 and upper
bounded by

(
q
ξ+1

)
/2nξ. For the second probability of (23), there are

(
q
2

)
possible

indices, the first equation is satisfied with probability 1/2n (due to the drawing of
the ti), and the second equation is satisfied with probability ε (as h is an ε-AXU
hash function). Thus, the second probability is upper bounded by

(
q
2

)
ε/2n.

We thus obtain from (23):

Pr [Xf ∈ Tbad] ≤
(
q
2

)
ε

2n
+

(
q
ξ+1

)
2nξ

=: δ .
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5.5 Ratio for Good Transcripts (ε)

Recall from Section 5.2 that for a given transcript τcq, there is a unique in-
dex mapping ϕτ that could have resulted in the transcript. We can derive the
following result.

Lemma 2. Consider good transcript τ = (τcq, h) and denote by E the system
of q equations corresponding to (ϕτ , ν1 ⊕ h(m1), . . . , νq ⊕ h(mq)). This system
of equations is (i) circle-free, (ii) (ξ + 1)-block-maximal, and (iii) relaxed non-
degenerate with respect to partition {1, . . . , r} = R1 ∪R2.

Proof. The proof is a generalization of the one of Lemma 1. Nothing changes for
circle-freeness and (ξ + 1)-block-maximality.

Suppose that the system of equations is relaxed degenerate (Definition 4).
Then, there exists a minimal subset I ⊆ {1, . . . , q} such that the multiset MI

has exactly two odd multiplicity elements corresponding to the same oracle and
such that

⊕
i∈I νi ⊕ h(mi) = 0. As in Lemma 1, this implies that |I| = 2, say

I = {i, j}, for which ϕτ (bi) = ϕτ (bj) and νi ⊕ h(mi) = νj ⊕ h(mj), therewith
contradicting that τ is good. ut

The remaining analysis is almost identical to the one for EDMp1,p
−1
2 in Sec-

tion 4.5, the sole exception being that both probabilities have an additional
factor 1/|H|, and henceforth omitted.

6 Security of EDMDp1,p2

Consider EDMDp1,p2 of (5) for the case of independent permutations p1, p2.
We will prove that this construction achieves optimal PRF security without a
logarithmic loss.

Theorem 6. For any distinguisher D with query complexity at most q ≤ 2n/67,
we have

Advprf
EDMDp1,p2 (D) ≤ q/2n . (24)

The proof can be performed along the same lines of that of EDMp1,p2 , with
the difference that for EDMDp1,p2 no collisions among the evaluations of the
permutations occur. However, the exact same security bound can be derived
fairly elegantly from Proposition 1.

Proof. Let p1, p2, p3
$←− perm(n) and f

$←− func(n). Write EDMDp1,p2 = p2 ◦ p1 ⊕
p1. By a simple hybrid argument we obtain:

∆(p2 ◦ p1 ⊕ p1 ; f) ≤ ∆(p2 ◦ p1 ⊕ p1 ; p3 ⊕ p1) +∆(p3 ⊕ p1 ; f) .

The former distance equals 0 (reveal p1 to the distinguisher prior to the exper-
iment, and it effectively has to distinguish p2 from p3). The latter distance is
bounded by q/2n provided that q ≤ 2n/67, cf., Proposition 1. ut
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7 Towards a Single Permutation

Given our results on EDMp1,p2 of Theorem 4 and EDMDp1,p2 of Theorem 6, one
may expect that similar techniques apply to the case where p1 = p2. However, it
seems unlikely, if not impossible, to apply the mirror theory to these construc-
tions. The reason is that the mirror theory works particularly well if only the
input values of the functions are determined, and not the output values.

For example, for EDMp1,p2 , an evaluation y = EDMp1,p2(x) corresponds to
evaluations p1(x) and p2(p1(x)⊕ x), where y = p2(p1(x)⊕ x). Thus, the query-
response tuple (x, y) reveals one input value to p1 and one output value of p2.
By, without loss of generality, replacing p2 by its inverse we nicely obtained a
system where only input values of the permutations are fixed. Now, consider
EDMp: a single evaluation y = EDMp(x) reveals an input value x to p as well
as an output value y of p, and there seems to be no way to properly employ the

mirror theorem in this case. The trick to view EDMp,p−1

does not work as the
construction is not equally secure as EDMp = EDMp,p. (In fact, EDMp,p−1

is
trivially insecure as it maps 0 to 0.)

For the single permutation variant of EDMD, the problem appears at a dif-
ferent surface: the chaining. In more detail, an evaluation y = EDMDp(x) cor-
responds to two evaluations of p: p(x) and p(p(x)), where y = p(x) ⊕ p(p(x)).
Suppose we have a different evaluation y′ = EDMDp(x′) such that, accidentally,
p(p(x)) = p(x′). This implies that the permutation p necessarily satisfies the
following constraints:

p(x) = x′ , p(p(x)) = p(x′) = y ⊕ x′ , p(p(x′)) = y′ ⊕ y ⊕ x′ .

In other words, a collision between two evaluations of p imposes conditions on
the input-output pattern of p, and the mirror theorem does not allow to handle
this case nicely. (Technically, the collision in this example forms a block of size
3 in the terminology of Definition 2, but the amount of freedom we have in
fixing the unknowns in the block is not 2n (as for normal systems of equations
of Section 3), but at most 1.)

We are not aware of any potential attack on EDMp or EDMDp that may
exploit these properties. In fact, we believe that the conjecture posed by Cogliati
and Seurin [17] holds for EDMp, and that also EDMDp achieves optimal security.
It is interesting to note that

EDMp ◦ p = p ◦ EDMDp ,

and any attack on EDMp performed by, for instance, chaining multiple evalua-
tions of EDMp would have its equivalent attack for EDMDp.
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A Proof Sketch of Theorem 2

Proof (sketch). Patarin’s proof of Theorem 2 is very technical, and we only
sketch its idea here. We refer to [36,40,41] for the technical details.

First consider the case of ξ = 2, i.e., r = 2q and every unknown appears in
exactly one equation. Without loss of generality (by reshuffling the unknowns),
the system of equations reads

E = {P1 ⊕ P2 = λ1, · · · , P2q−1 ⊕ P2q = λq} . (25)

For u ∈ {1, . . . , q}, denote by Eu the first u equations of E and by h2u the number

of solutions to Eu. Our target is to prove that h2q ≥ (2n)2q
2nq , and we will prove

this by induction on u. Clearly, for u = 1, h2 = 2n.
Suppose we have h2u solutions for the first u equations. Then, h2u+2 counts

the number of solutions to {P1, . . . , P2u+2} such that

– {P1, . . . , P2u} is a valid solution to the first u equations Eu;
– P2u+1 ⊕ P2u+2 = λu+1;
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– P2u+1 /∈ {P1, . . . , P2u} =: V1;
– P2u+1 /∈ {P1 ⊕ λu+1, . . . , P2u ⊕ λu+1} =: V2.

Thus, for a given set of solutions to Eu, we have 2n − |V1 ∪ V2| solutions for
{P2u+1, P2u+2}. As |V1 ∪ V2| = |V1|+ |V2| − |V1 ∩ V2| = 4u− |V1 ∩ V2|, we obtain

h2u+2 =
∑

{P1,...,P2u} solving Eu

2n − |V1 ∪ V2|

=
∑

{P1,...,P2u} solving Eu

2n − 4u+ |V1 ∩ V2|

= (2n − 4u)h2u +
∑

{P1,...,P2u} solving Eu

|V1 ∩ V2| . (26)

Obviously, |V1 ∩ V2| ≥ 0, but this gives only a poor estimation of h2q, namely

h2q ≥ (2n − 4(q − 1))h2q−2 ≥ · · · ≥

(
q−1∏
u=1

2n − 4u

)
h2 ≥

q−1∏
u=0

2n − 4u ,

for which

h2q2
nq

(2n)2q
≥

q−1∏
u=0

(2n − 4u)2n

(2n − 2u)(2n − 2u− 1)

=

q−1∏
u=0

1− −2n + 4u2 + 2u

(2n − 2u)(2n − 2u− 1)

≥
q−1∏
u=0

1− 4u2

(2n − 2q)2
= 1−O

(
q3

22n

)
.

Instead, we would prefer to have a lower bound on |V1 ∩ V2| that can be used to
undo the 4u2-term. If we could, hypothetically, prove that |V1 ∩ V2| ≥ 4u2/2n,
the derivation would depart from (26) as

h2q2
nq

(2n)2q
≥

q−1∏
u=0

(2n − 4u+ 4u2

2n )2n

(2n − 2u)(2n − 2u− 1)

=

q−1∏
u=0

1− −2n + 2u

(2n − 2u)(2n − 2u− 1)
≥ 1 .

Unfortunately, for some solutions {P1, . . . , P2u} satisfying Eu, the number |V1 ∩
V2| may be well below this bound, while for others it may be much higher.
Patarin proved that, in fact, a slightly worse bounding already does the job.

Rewrite the crucial quantity of (26) as∑
{P1,...,P2u} solving Eu

|V1 ∩ V2| =
∑

1≤i,j≤2u

∣∣∣{solutions to Eu ∪ {Pi ⊕ Pj = λu+1}
}∣∣∣︸ ︷︷ ︸

=:h′2u(i,j)

.

(27)
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Denote by Iu+1 the set of indices whose value λl equals λu+1, and by Ju+1 the
set of pairs of indices whose value λl ⊕ λl′ equals λu+1:

Iu+1 = {l ∈ {1, . . . , u} | λl = λu+1} ,
Ju+1 = {(l, l′) ∈ {1, . . . , u}2 | λl ⊕ λl′ = λu+1} .

The value h′2u(i, j) may attain different values depending on (i, j):

– If i, j ∈ {2l − 1, 2l} for some l ∈ {1, . . . , u}, the two unknowns come from
the same equation in Eu:

• If i = j, then h′2u(i, j) = 0, as the appended equation forms a contradic-
tion on its own;

• If i 6= j and l ∈ Iu+1, then h′2u(i, j) = h2u, as the appended equation is
identical to the l-th equation in Eu, and is redundant;

• If i 6= j and l /∈ Iu+1, then h′2u(i, j) = 0, as the appended equation forms
a contradiction with the l-th equation: λl = Pi ⊕ Pj = λu+1;

– If i ∈ {2l − 1, 2l} and j /∈ {2l − 1, 2l} for some l ∈ Iu+1, then h′2u(i, j) = 0,
as the appended equation forms a contradiction with the l-th equation. For
example, if i = 2l − 1, then the two equations imply that P2l ⊕ Pj = 0;

– If j ∈ {2l−1, 2l} and i /∈ {2l−1, 2l} for some l ∈ Iu+1, we have h′2u(i, j) = 0
by symmetry;

– If i ∈ {2l − 1, 2l} and j ∈ {2l′ − 1, 2l′} for some (l, l′) ∈ Ju+1, then
h′2u(i, j) = 0, as the l-th, l′-th, and appended equation form a contradic-
tion. For example, if i = 2l − 1 and j = 2l′ − 1, then the three equations
imply that P2l = P2l′ ;

– If neither of the above applies, we are in the hard case. Denote by Mu+1 the
set of indices covered by this case:

Mu+1 =
{

(i, j) ∈ {1, . . . , 2u}2
}∖

{
(2l − 1, 2l − 1), (2l − 1, 2l), (2l, 2l − 1), (2l, 2l)

∣∣∣ l ∈ {1, . . . , u}} ∪{
(2l − 1, ∗), (2l, ∗), (∗, 2l − 1), (∗, 2l)

∣∣∣ l ∈ Iu+1

}
∪{

(2l − 1, 2l′ − 1), (2l − 1, 2l′), (2l, 2l′ − 1), (2l, 2l′)
∣∣∣ (l, l′) ∈ Ju+1

}
.

Effectively, we have obtained from (26) and (27) that

h2u+2 = (2n − 4u)h2u +
∑

1≤i,j≤2u

h′2u(i, j)

= (2n − 4u)h2u + 2|Iu+1|h2u +
∑

(i,j)∈Mu+1

h′2u(i, j) . (28)

Patarin proves the following two claims.

Claim (Patarin [40, Theorem 10]). |Mu+1| ≥ 4u2 − 8u− 12|Iu+1|u.
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Claim (Patarin [40, Theorem 18]). For any (i, j) ∈ Mu+1, provided 2u ≤
2n/32,7

h′2u(i, j) ≥ h2u
2n

(
1− 124u

22n
− 104|Iu+2|u

22n

)
.

The former claim relies on the observation that, without loss of generality, the
equations are ordered in such a way that λu+1 is the most-frequent value so far.
The second claim captures the technical heart of the result. From (28) and above
two claims, we derive

h2u+2

h2u
≥ 2n − 4u+ 2|Iu+1|+

4u2 − 8u− 12|Iu+1|u
2n

(
1− 124u

22n
− 104|Iu+2|u

22n

)
≥ 2n − 4u+ 2|Iu+1|+

4u2 − 8u− 12|Iu+1|u
2n

− 4u2

2n

(
124u

22n
+

104|Iu+2|u
22n

)
,

and subsequently,

h2u+2

h2u
· 2n

(2n − 2u)(2n − 2u− 1)

≥
22n − 4u2n + 2|Iu+1|2n + 4u2 − 8u− 12|Iu+1|u− 4u2

(
124u
22n + 104|Iu+2|u

22n

)
(2n − 2u)(2n − 2u− 1)

= 1 +

(
2n − 10u− 496u3

22n

)
+ |Iu+1|

(
2 · 2n − 12u− 416u3

22n

)
(2n − 2u)(2n − 2u− 1)

?
≥ 1 +

2n − 10u− 496u3

22n

(2n − 2u)(2n − 2u− 1)

??
≥ 1 ,

where
?
≥ holds for 2u ≤ 2n/5 and

??
≥ under the condition that 2u ≤ 2n/7.8 Note

that the bounding is done on 2u rather than u: we are currently still looking
at the case of ξ = 2, and every block has 2 unknowns. The condition states an
upper bound on the number of unknowns.

The bound h2u+2/h2u ≥ 1 holds for any u = 2, . . . , q − 1. As, in addition,
h2 = 2n, we derive

h2q ≥
(2n − 2q + 1)(2n − 2q + 2)

2n
h2q−2 ≥ · · · ≥

(2n − 2)2q−2
2n(q−1)

h2 ≥
(2n)2q

2nq
,

as long as 2(q − 1) ≤ 2n/32. This completes the proof.

7 Closer inspection of the proof reveals that 2u ≤ 2n/16 suffices.
8 We remark that Patarin derived upper bound 2n/67: he stated the claim on h′2u(i, j)

for unknown constants, subsequently derived the side condition, and only then de-
rived the constants (and hence the 67). Knowing the constants in retrospect allows us
to obtain a better bounding. In the end, the side condition in the theorem statement
is the most dominant one (the one of the second claim).
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The induction step in the proof is performed over the number of equations, and
every step implicitly goes per two: two new unknowns are fixed and they should
not hit any of the previously fixed unknowns. If we generalize this to systems of
equations with larger values of ξ and where the blocks may be of different sizes,
the induction would go over the number of blocks, and the size of every step
corresponds to the number of unknowns in that block. This also results in more
constraints per induction step.

For example, consider a system of equations E , consisting of q′ blocks. For
u ∈ {1, . . . , q′} denote by Eu all equations that correspond to the first u blocks.
If the first u blocks in total cover v(u) unknowns, the value hv(u) is similarly
defined as the number of solutions to Eu. Suppose we have fixed the first v(u)
unknowns over the first u blocks, and consider a new block of ξ unknowns: the
target is to determine hv(u+1) = hv(u)+ξ from hv(u). Denote v := v(u) for brevity.
As Pv+1, . . . , Pv+ξ are in the same block, all values are fixed through the Eu+1

once Pv+1 is fixed: say that the system fixes Pv+i = Pv+1 ⊕ λ′i for some λ′i, for
i = 2, . . . , ξ. (In the specific case of ξ = 2 treated before, v = 2u and λ′2 = λu+1.)
The value hv+ξ counts the number of solutions {P1, . . . , Pv, Pv+1, . . . , Pv+ξ} such
that

– {P1, . . . , Pv} is a valid solution to the first u blocks Eu;

– {Pv+1, . . . , Pv+ξ} satisfy the (u+ 1)-th block Eu+1\Eu;

– Pv+1 /∈ {P1, . . . , Pv} =: V1;

– Pv+1 /∈ {P1 ⊕ λ′2, . . . , Pv ⊕ λ′2} =: V2;

– . . .;

– Pv+1 /∈ {P1 ⊕ λ′ξ, . . . , Pv ⊕ λ′ξ} =: Vξ.

Note that the values {Pv+1, . . . , Pv+ξ} are distinct by hypothesis on the system
of equations, or stated differently, λ′i 6= λ′j 6= 0 for any i 6= j. Now, in this
generalized case, for a given set of solutions to Eu, we have 2n − |V1 ∪ · · · ∪ Vξ|
solutions for {Pv+1, . . . , Pv+ξ}. By the inclusion-exclusion principle,

|V1 ∪ · · · ∪ Vξ| =
ξ∑
i=1

|Vi| −
ξ∑
j=2

(−1)j
∑

i1<···<ij

|Vi1 ∩ · · · ∩ Vij |

= ξ · v −
ξ∑
j=2

(−1)j
∑

i1<···<ij

|Vi1 ∩ · · · ∩ Vij | ,
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from which

hv+ξ =
∑

{P1,...,Pv} solving Eu

2n − |V1 ∪ · · · ∪ Vξ|

=
∑

{P1,...,Pv} solving Eu

2n − ξ · v +

ξ∑
j=2

(−1)j
∑

i1<···<ij

|Vi1 ∩ · · · ∩ Vij |

= (2n − ξ · v)hv +
∑

{P1,...,Pv} solving Eu

ξ∑
j=2

(−1)j
∑

i1<···<ij

|Vi1 ∩ · · · ∩ Vij | .

(29)

Instead of the quantity of (27), it now requires to lower bound

∑
{P1,...,Pv} solving Eu

ξ∑
j=2

(−1)j
∑

i1<···<ij

|Vi1 ∩ · · · ∩ Vij | ,

which is beyond the scope of the sketch of the proof. What is important to note
is the term ξ · v in (29), which demonstrates an additional loss compared to the
4u in (26) for the case where all blocks are of size ξ = 2 unknowns. This loss,
among others, eventually constitutes a stronger side condition. ut
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