
To BLISS-B or not to be - Attacking strongSwan’s
Implementation of Post-Quantum Signatures

Peter Pessl

Graz University of Technology

peter.pessl@iaik.tugraz.at

Leon Groot Bruinderink

Technische Universiteit Eindhoven

l.groot.bruinderink@tue.nl

Yuval Yarom

University of Adelaide and Data61

yval@cs.adelaide.edu.au

ABSTRACT
In the search for post-quantum secure alternatives to RSA and ECC,

lattice-based cryptography appears to be an attractive and efficient

option. A particularly interesting lattice-based signature scheme is

BLISS, offering key and signature sizes in the range of RSA moduli.

A range of works on efficient implementations of BLISS is available,

and the scheme has seen a first real-world adoption in strongSwan,

an IPsec-based VPN suite. In contrast, the implementation-security

aspects of BLISS, and lattice-based cryptography in general, are

still largely unexplored.

At CHES 2016, Groot Bruinderink et al. presented the first side-

channel attack on BLISS, thus proving that this topic cannot be

neglected. Nevertheless, their attack has some limitations. First, the

technique is demonstrated via a proof-of-concept experiment that

was not performed under realistic attack settings. Furthermore, the

attack does not apply to BLISS-B, an improved variant of BLISS and

also the default option in strongSwan. This problem also applies to

later works on implementation security of BLISS.

In this work, we solve both of the above problems. We present a

new side-channel key-recovery algorithm against both the original

BLISS and the BLISS-B variant. Our key-recovery algorithm draws

on a wide array of techniques, including learning-parity with noise,

integer programs, maximimum likelihood tests, and a lattice-basis

reduction. With each application of a technique, we reveal addi-

tional information on the secret key culminating in a complete key

recovery.

Finally, we show that cache attacks on post-quantum cryptogra-

phy are not only possible, but also practical. We mount an asynchro-

nous cache attack on the production-grade BLISS-B implementation

of strongSwan. The attack recovers the secret signing key after ob-

serving roughly 6 000 signature generations.

KEYWORDS
lattice-based cryptography; side-channel analysis; signatures; cache

attacks; learning parity with noise; lattice reduction

1 INTRODUCTION
Quantum computing might eventually break all widespread public-

key cryptosystems. A recent estimate [26] states that quantum

computers able to factor currently-used RSA moduli could be avail-

able as early as 2030. This outlook causes serious concerns and

has lead to increased efforts in the search for post-quantum secure

alternatives. Recently, the NSA issued an advisory stating that a

shift to quantum-resistent cryptography is likely in the near fu-

ture [30] and standardization bodies also started to look into this

matter, as demonstrated by NIST’s current call for proposals [28].

Modern post-quantum cryptography has also already seen (limited)

real-world evaluation, e.g., the experiments with the NewHope [2]

key-exchange by Google in their Chrome browser [11, 22].

Cryptography based on lattices has proven to be a particularly

efficient candidate. For example, the Bimodal Lattice Signature

Scheme (BLISS), which was proposed by Ducas, Durmus, Lepoint,

and Lyubashevsky [14], offers key sizes in the range of current RSA

moduli, with similar security levels. Additionally, it offers favorable

runtime on a large set of platforms, ranging from FPGAs [39] to

microcontrollers [29]. It has also seen adoption in the strongSwan

IPsec-based VPN suite [45].

In contrast to the emerging real-world adoption and the large

body of work targeting efficient implementation of lattice-based

primitives, the implementation-security aspect is still a very open

and under-explored topic. In 2016, Groot Bruinderink et al. [19]

presented the first side-channel attack on BLISS. Their attack tar-

gets a noise vector which is sampled from the discrete Gaussian

distribution and used to hide any information on the secret key in

the signature. Dedicated algorithms, e.g., those proposed by the

authors of BLISS, are used to sample from this distribution. By

means of a cache attack on these samplers, Groot Bruinderink et

al. are able to retrieve estimations of some elements of the noise

vector. Using the signature and recovered noise elements of many

signing operations, they then recover the secret key by means of a

lattice reduction.

However, their attack has some shortcomings. First, in their

proof-of-concept cache attack they target the “research-oriented”

reference implementation of BLISS
1
. They also modified its code

in order to achieve perfect synchronization of the attacker with

the calls to the sampler. While this method demonstrates the exis-

tence and exploitability of the side-channel, it is not a realistic and

practical setting.

Second, and maybe more importantly, their attack does not apply

to BLISS-B, an improved version of BLISS proposed by Ducas [13]

1
The reference implementation is available at http://bliss.di.ens.fr/

http://bliss.di.ens.fr/

that accelerates the signing operation by a factor of up to 2.8, de-

pending on the used parameter set. Due to its better performance,

this new variant is used in strongSwan per default.

The attack target. The main operation in BLISS is to multiply the

secret key swith a binary challenge vector c and add a noise vector y
which is sampled at random from a discrete Gaussian distribution.

The result z = y + (−1)b (s · c), where b is a random bit, together

with the challenge vector c form the signature. Using the recovered

values of y over many signatures, Groot Bruinderink et al. [19]

construct a lattice from the challenge vectors such that s is part
of the solution to the shortest vector problem in that lattice. This

short vector is found using a lattice-basis reduction.

In BLISS-B, however, the secret s is multiplied with a ternary

polynomial c′ ∈ {−1, 0, 1}n for which c′ ≡ c mod 2. Still, only

the binary version c is part of the signature and c′ is undisclosed.
Thus, the signs of the coefficients of the used challenge vectors

are unknown and constructing the appropriate lattice to find s is
infeasible for secure parameters. Note that this problem (or similar

ones) are also present in other works on implementation attacks

on the original BLISS, both for side-channel attacks [35] as well

as fault attacks [9, 16]. Hence, one might be tempted to think of

BLISS-B as a “free” side-channel countermeasure.

Our contributions. In this work we show that this is not the case.

First, we present a new key-recovery attack that can, given side-

channel information on the Gaussian samples in y, recover the
secret key s. Apart from being applicable to BLISS-B, this new key

recovery approach can also increase the efficiency (in the number

of required side-channel measurements) of earlier attacks on the

original BLISS [19, 35]. And second, we use this new key-recovery

approach to mount an asynchronous cache attack on the BLISS

implementation provided by strongSwan. Hence, we attack a real-

world implementation under realistic settings.

Our key-recovery method consists of four steps:

• In the first step, we use side channels to gather information

on the noise vector. We use these leaked values, together

with known challenge vector elements, to construct a linear

system of equations. However, the signs in this system are

unknown. (Section 4.1)

• In the second step, we solve the above system. We circum-

navigate the problem of unknown signs by using the fact

that −1 ≡ 1 mod 2. That is, we first solve the linear system

over the bits, i.e., in GF(2), instead of over the integers.

Due to errors in the side channel the linear system may

include some errors. Solving such a system is known as

the Learning Parity with Noise (LPN) problem. We use an

LPN solving algorithm to learn the parity of the secret key

elements, i.e. to find s mod 2 (Section 4.2).

• In some parameter sets (cf. Section 2.2), the key s ∈ {0,±1}n

and thus the above already uniquely determines the magni-

tude of the coefficients. In others, however, the secret key

can also have some coefficients with ±2, which have parity

zero. In the third step, we employ one of two heuristics

(depending on the parameter set) to identify those, both

exploit the magnitude of the coefficients of s · c′. The first
heuristic uses an Integer Programming solver. The second

uses a Maximum Likelihood estimate. (Section 4.3)

• At this stage we know the magnitude of each of the coef-

ficients of the secret key s. In the fourth step, we finalize

the attack and extract s. We construct a Shortest Vector

Problem (SVP) based on the public key and the known

information about the secret key. We solve this problem

using the BKZ lattice-reduction algorithm. (Section 4.4)

When using the idealized cache-attack presented by Groot Bruin-

derink et al. [19] and the BLISS-I parameter set, our new method

can reduce the number of required signatures from 450 to 325. Fur-

thermore, we also apply the key-recovery technique to an attack

on the shuffling countermeasure by Pessl [35]. There, our attack

reduces the number of required signatures by a factor of up to 22.

We then perform a cache attack on the BLISS-B implementation

which is deployed as part of the strongSwan VPN software. Unlike

Groot Bruinderink et al. [19], our adversary is asynchronous and

runs in a different process than the victim. The adversary uses

the Flush+Reload attack by Yarom and Falkner [49], combined

with the amplification attack of Allan et al. [3]. Furthermore, we

target a real-world implementation and not a research-oriented

reference implementation. Consequently, our attack scenario is

much more realistic. While strongSwan does not claim any side-

channel security, our results still show that practical attacks on the

BLISS family are feasible.

Outline. In Section 2, we recall BLISS, discrete Gaussians and sam-

pling methods. Then, in Section 3 we discuss previous work on side

channel analysis and countermeasures on BLISS. We then show our

improved key-recovery attack in Section 4. We evaluate our new

method in Section 5 by comparing it to earlier work. In Section 6,

we perform a full attack on the BLISS implementation provided by

strongSwan. Finally, we conclude in Section 7.

2 PRELIMINARIES
In this section, we briefly describe background concepts required

for the rest of the paper. These include lattices, the BLISS signature

scheme [13, 14], the discrete Gaussian distribution and methods to

sample from this distribution, and the Learning Parity with Noise

(LPN) problem.

2.1 Lattices
A lattice Λ is a discrete subgroup of Rn . When given m linearly

independent vectors b1, . . . , bm ∈ Rn , the lattice Λ(b1, . . . , bm)
contains all of the points that are integer linear combinations of

the basis vectors:

Λ(b1, . . . , bm) =

{ m∑
i=1

bixi |xi ∈ Z

}
We call B = (b1, . . . , bm) the basis matrix of the lattice, with n
the dimension andm the rank of the lattice. Lattice bases are not

unique: for each full-rank basis B ∈ Rn×n of Λ, one can apply a

unimodular matrix U ∈ Zn×n , such that UB is also a basis of Λ.
There exist lattice-basis reduction algorithms that are aimed at

finding a good basis, which consists of short and nearly orthogonal

vectors. The most important of these algorithms are the LLL [23]

as well as BKZ and its improved versions [12]. These algorithms

output a new basis B′ which satisfies certain conditions. Besides

2

outputting B′, LLL and BKZ implementations (such as [43]) can

also output U such that B′ = UB.
For cryptographic purposes one often uses q-ary lattices. Simply

speaking, for a vector v ∈ Λ, all vectors u with u ≡ v mod q are

also in the lattice. In order to save memory and decrease execution

time, the most efficient lattice-based cryptographic constructions

introduce additional structure into the lattices they use. That is, they

work with the polynomial ring Rq = Zq [x]/⟨x
n + 1⟩, with q being

a prime and n a power of 2. An element a ∈ Rq can be described by

its coefficient vector a = (a0, . . . ,an−1). Note that we will use bold-
face to interchangeably denote polynomials and their coefficient

vectors. Addition of two polynomials a, b is simply the component-

wise addition mod q. Multiplication of two polynomials a, b ∈ Rq
will be denoted by a · b, and can be represented as a matrix-vector

product, i.e., a · b = aB = bA, where the columns of A,B ∈ Zn×nq
are negacyclic rotations of a and b, respectively. The computation

of the i-th coefficient of the product a · b can be written as ⟨a, bi ⟩,
with bi the i-th column of matrix B.

2.2 Bimodal Lattice Signature Scheme (BLISS)
The most efficient instantiation of BLISS operates over the ring Rq .

Key generation for the improved version BLISS-B [13] is shown

in Algorithm 1. During key generation, two polynomials f , g with

exactly d1 = δ1n coefficients in {±1}, d2 = δ2n coefficients in {±2},

and all remaining elements being 0, are sampled. n, δ1, δ2, and q
are part of the parameter set.

Algorithm 1 BLISS-B Key Generation Algorithm

Output: Public key A ∈ R2
2q , private key S ∈ R2

2q
1: Choose random polynomials f , g with d1 entries in {±1} and
d2 entries in {±2} until f is invertible

2: S = (s1, s2) = (f , 2g + 1)
3: aq = s2/s1 mod q
4: return (A, S), with A = (2aq ,q − 2) mod 2q

The BLISS-B signing procedure is given in Algorithm 2. In the

first step, two polynomials y
1
, y

2
are sampled from a discrete Gauss-

ian distribution Dσ . The challenge vector c, used in the Fiat-Shamir

transform [17], is computed by invoking a hash function H. This

function returns a binary vector of length n and a Hamming weight

of exactly κ. GreedySC (Algorithm 3) then computes the product

Sc′ for some ternary vector c′ (this means c′ ∈ {−1, 0,+1}n) that
satisfies c′ ≡ c mod 2. Note that for the specific BLISS input

S = (s1, s2) ∈ R2
2q in GreedySC, we have m = 2n and si = S1i

for 0 ≤ i < n and si = S2i for n ≤ i < 2n where S1i and S2i are
the negacyclic rotations of s1 and s2, respectively. The generated c′

contains information on the secret key, hence it is kept secret and

not output as part of the signature. GreedySC is not part of the first

version of BLISS, which we will denote with BLISS-A. Instead, the

product Sc is used directly in BLISS-A, i.e., v1 = s1 · c. Depending
on a secret bit b, the outcome is then either added to or subtracted

from the noise polynomials y
1
, y

2
. A final rejection-sampling step

prevents any leakage of secret information. Parameters ζ , d , and
p, are used for signature compression, but they are not relevant in

the rest of this paper. The one exception is the following: due to

Algorithm 2 BLISS-B Signature Algorithm

Input: Message µ, public key A = (a1,q − 2), private key S =
(s1, s2)

Output: A signature (z1, z
†
2
, c)

1: y
1
← Dn

σ , y2 ← Dn
σ

2: u = ζ · a1 · y1 + y2 mod 2q
3: c = H(⌊u⌉d mod p | |µ)
4: (v1, v2) = GreedySC(S, c)
5: Sample a uniformly random bit b

6: (z1, z2) = (y1, y2) + (−1)
b (v1, v2)

7: Continue with some probability f (v, z), restart otherwise (de-
tails in [13])

8: z†
2
= (⌊u⌉d − ⌊u − z2⌉d) mod p

9: return (z1, z†
2
, c)

Algorithm 3 GreedySC

Input: a matrix S ∈ Zm×n and a binary vector c ∈ Zn

Output: v = Sc′ for some c′ ≡ c mod 2

1: v = 0 ∈ Zn

2: for i ∈ Ic do
3: ζi = sgn(⟨v, si ⟩)
4: v = v − ζi si
5: return v

rounding of the second signature vector z†
2
(Line 8 of Algorithm 2)

and the resulting loss of information on s2 · c, the attack in this

paper, like previous works, only concentrates on y
1
. We will omit

the index 1 of of z1, y1, and s1 in the next sections, and always

imply it if not mentioned otherwise.

For completeness, we also present the verification algorithm in

Algorithm 4. The verification algorithm is the same for both BLISS-

A and BLISS-B. For a more thorough explanation, we refer to the

original publications [13, 14].

Algorithm 4 BLISS Verification Algorithm

Input: Message µ, public key A = (a1,q − 2) ∈ R2
2q , signature

(z1, z
†
2
, c)

Output: Accept or reject the signature

1: if z1, z
†
2
violate certain bounds (details in [14]) then reject

2: accept iff c = H (⌊ζ · a1 · z1 + ζ · q · c⌉d + z
†
2
mod p, µ)

Ducas et al. [14] propose several parameter sets for different

security levels. These remain unchanged for BLISS-B. We present

the parameters relevant to this paper in Table 1.

2.3 Discrete Gaussians
The discrete Gaussian distribution with standard deviation σ and

mean zero is denoted by Dσ . We denote a variable y sampled

from this distribution Dσ with y ← Dσ . The probability of sam-

pling a value x is given by Dσ (x) = ρσ (x)/ρσ (Z), with ρσ (x) =
exp(−x2/(2σ 2)) and the normalization constant ρσ (Z). D

n
σ denotes

an n-dimensional vector with elements independently sampled

3

Table 1: BLISS Parameter Sets

Parameter Set n q σ δ1,δ2 κ

BLISS-0 (Toy) 256 7681 100 0.55, 0.15 12

BLISS-I 512 12289 215 0.3, 0 23

BLISS-II 512 12289 107 0.3, 0 23

BLISS-III 512 12289 250 0.42, 0.03 30

BLISS-IV 512 12289 271 0.45, 0.03 39

from Dσ . Compared to lattice-based public-key encryption [25],

the standard deviation required for BLISS is relatively high. This

makes the efficient implementation of samplers an especially taxing

task.

CDT sampler. The inversion method (or CDT sampling) appears

to be particularly efficient. In this method, one first precomputes

and stores the (absolute value) cumulative distribution table (CDT),

i.e., a table T [y] = Pr(|x | < y |x ← Dσ) for y ∈ {0, . . . ,τσ } for
some tail-cut τ . Then, a uniformly random r ∈ [0, 1) is generated
and the y satisfying T [y] ≤ r < T [y + 1] is returned. Typically,

a binary search is used to find the correct index in the table. A

common method to speed up this search is to use so-called guide-
tables, which narrow down the initial search range based on, e.g.,

the first byte of r . A byte-oriented version of this entire method is

given in Algorithm 5, there Tj [i] denotes the j-th byte of the entry

at index i . For more details see, e.g., [39].

Algorithm 5 CDT Sampler using Guide Tables

Input: Guide table I , (absolute value) cumulative distribution table

T
Output: A value y′ sampled according to Dσ
1: Sample a uniformly random byte r0
2: [min,max] = I [r0]
3: i = (min +max)/2, j = 0, k = 0

4: while max-min > 1 do
5: if Tj [i] > r j then
6: min = i , i = (i +max)/2, j = 0

7: else if Tj [i] < r j then
8: max = i , i = (min + i)/2, j = 0

9: else
10: j = j + 1
11: if k < j then
12: Sample uniformly random byte r j , k = j

13: Sample a uniformly random bit s
14: if s = 1 then return −i
15: else return i

Bernoulli sampler (rejection sampling). The basic idea behind
rejection sampling is to sample a uniformly random integer y ∈
[−τσ ,τσ] and accept this sample with probability ρσ (y)/ρσ (Z).
For this, a uniformly random value r ∈ [0, 1) is sampled and y is

accepted if r ≤ ρσ (y).
For the case of the discrete Gaussian distribution with high

standard deviation, Ducas et al. [14] introduce a more efficient

method called Bernoulli sampler. It uses the subroutine described in
Algorithm 6 to sample a bit b from B(exp(−x/f)), i.e., the Bernoulli
distribution B parametrized such that Pr(b = 1) = exp(−x/f). The
constant f depends on the standard deviation σ , while x varies.

Pseudocode for the Bernoulli sampler appears in Algorithm 7.

Algorithm 6 Sampling a bit from B(exp(−x/(2σ 2))) for x ∈ [0, 2ℓ)

Input: x ∈ [0, 2ℓ) an integer in binary form x = xℓ−1 . . . x0. Pre-
computed table E with E[i] = exp(−2i/(2σ 2)) for 0 ≤ i < ℓ

Output: A bit b from B(exp(−x/(2σ 2)))

1: for i = ℓ − 1 downto 0 do
2: if xi = 1 then
3: sample bit Ai from B(E[i])
4: if Ai = 0 then return 0

5: return 1

Algorithm 7 Bernoulli Sampler

Input: Standard deviation σ , integer K = ⌊ σσ2 + 1⌋ with σ
2

2
= 1

2 ln 2

Output: A value y′ sampled according to Dσ
1: Sample x ∈ Z according to D+σ2 (details in [14])

2: Sample z ∈ Z uniformly in {0, . . . ,K − 1}
3: Set y = Kx + z
4: sample b from B(exp(−z(z + 2Kx)/(2σ 2))) using Algorithm 6

5: if b = 0 then restart

6: if y = 0 then restart with probability 1/2

7: Sample uniformly random bit s and return (−1)sy

2.4 Learning Parity with Noise (LPN)
Wenow recall the Learning Parity with Noise (LPN) problem, whose

search version appears in Definition 2.1.

Definition 2.1 (Learning Parity with Noise). Let k ∈ GF(2n) and
ϵ ∈ (0, 0.5) be a constant noise rate. Then, given ν vectors ai ∈
GF(2

n
) and noisy observations bi = ⟨ai , k⟩ + ei , the ai sampled

uniformly, and the ei sampled from the Bernoulli distribution with

parameter ϵ , find k.

The most efficient algorithms aimed at solving this problem are

based on the work of Blum, Kalai, and Wasserman [10]. Later work

then modified and improved the BKW algorithm [20, 24]. While

these algorithms run in sub-exponential time, they tend to require a

large number of LPN samples as well as a lot of memory. A different

approach is to view LPN as decoding a random linear code over the

binary field GF(2). While this second approach runs in exponential

time, it typically offers a negligible memory consumption and lower

sample requirements.

LPN is a well-researched problem and is used as a basis for cryp-

tographic constructions [37]. Furthermore, LPN solving algorithms

have also been used in side-channel attacks on binary-field multi-

plication [4, 5, 36]. The extension of this problem from the binary

field GF(2) to a prime field GF(q) is known as Learning with Errors

(LWE) [41] and is a major cornerstone in lattice-based cryptogra-

phy.

4

3 SIDE-CHANNEL ATTACKS ON BLISS
In this section, we briefly describe previous work on side-channel

attacks on BLISS. We start with an introduction to cache-based

side channel attacks. We then discuss the attack of Groot Bruin-

derink et al. [19] on the BLISS algorithm, followed by the technique

Pessl [35] uses to overcome the shuffling protection of Saarinen [42].

3.1 Cache Attacks
To bridge the speed gap between the faster processor and the slower

memory, modern processor architectures employ multiple caches
which store data that the processor predicts a program might use in

the future. While the cache does not change the logical behavior of

programs, it does affect their execution time. For the past 15 years,

it has been known that timing variations due to the cache state can

leak secret information about the execution of the program [7, 32,

46]. Over the years, many attacks that exploit the cache state have

been designed. For a survey of cache and other microarchitectural

attacks, see Ge et al. [18].

The Flush+Reload Attack. In this work we use the Flush+Reload

attack by Yarom and Falkner [49]. Flush+Reload exploits read-only

memory sharing, which is commonly used for sharing library code

in modern operating systems. The attack consists of two phases.

In the flush phase, the attacker evicts the contents of a monitored

address from the cache. On Intel processors this is typically achieved

using the clflush instruction. The attacker then waits a bit before

performing the reload phase of the attack. In the reload phase, the

attacker reads the contents of the monitored memory address, while

measuring the time it takes to perform the read. If the victim has

accessed the monitored memory between the flush and the reload

phases, the contents of the address will be cached and the attacker’s

read will be fast. Otherwise, the memory address will not be in the

cache and the read will be slow.

By repeatedly interleaving the flush and the reload phases of

multiple locations, the attacker can create a trace of the victim uses

of the monitored locations over time. When the victim access pat-

terns depend on secret data, the attacker can use the trace to recover

the data. Flush+Reload has been used to attack RSA [49], AES [21],

ECDSA [6, 38, 48], as well as non-cryptographic software [31, 50].

Side-Channel Amplification. Because Flush+Reload only moni-

tors victim accesses between the flush and the reload phases, ac-

cesses that occur during these phases may be missed, resulting in

false negatives. The timing of victim accesses is mostly independent

of the attacker’s activity. Consequently, increasing the wait between

these phases reduces the probability of false negatives, albeit at the

cost of reduced temporal resolution. To mitigate the effects of the

reduced temporal resolution, Allan et al. [3] suggest slowing down

the victim. They demonstrate that by repeatedly evicting frequently-

used code from the cache, they are able to slow programs down

by a factor of up to 150. The combination of Flush+Reload and the

Allen et al. attack has been used for attacks on ECDSA [3, 33] and

DSA [34]

3.2 A Cache Attack on BLISS
At CHES 2016, Groot Bruinderink et al. [19] presented the first

side-channel attack on BLISS. Their cache attack targets the Gauss-

ian sampling component, they describe attacks on both the CDT

sampler (using Guide Tables) and the Bernoulli sampler described

in the previous section. Remember that we are omitting the index of

the vectors, as the attack only uses knowledge on z1 and y1. Recall
also that the i’th coefficient of a signature vector can be written

as zi = yi + (−1)
b ⟨s, ci ⟩. The vectors y and bit b are unknown to

the attacker, as is the secret vector s. Note that in this section we

consider previous work on the original BLISS scheme (BLISS-A), so

c ∈ {0, 1}n .
The core idea of the cache-attack of Groot Bruinderink et al. is

to exploit knowledge learned through cache-timing to gather infor-

mation on the table lookups performed during Gaussian sampling.

From this information, it is possible to derive a precise estimate of

some of the coefficientsyi of y, and consequently recover the secret
key. For both previously mentioned samplers, they performed an

evaluation using ideal adversaries and practical experiments using

the Flush+Reload attack technique. We now describe their attacks

on the two samplers.

Attacking the CDT sampler. The CDT sampler uses two tables

(CDT table T and interval table I). Accessing these tables can leak

the accessed cache-line. This information, in turn, leaks a range

of possible values for yi . Groot Bruinderink et al. describe two ap-

proaches to estimate yi more precisely than naively using these

leaked ranges. The first approach is to intersect the ranges of possi-

ble values learned from each table. The second approach is to track

down the binary search steps done in the sampling procedure by

looking at multiple accesses in table T .
As the search step in table T is a binary search, one of two

adjacent values is returned after the last table-lookup. This means

that a sample yi can only be determined up to an uncertainty of ±1.

However, in general there is a bias in the value that is returned, as

the targeted distribution is a discrete Gaussian and not uniform. If

this bias is large enough, Groot Bruinderink et al. guess the returned

value to be the more likely one.

Another obstacle is that they do not get the sign of yi , but only
know |yi | from the accessed cache-lines. However, they use the

knowledge of the corresponding coefficient zi of the signature

vector z. It is possible to derive the sign from zi , as ⟨s, ci ⟩ is small

and thus the sign of yi will most likely be the sign of zi .
After the above procedure, they have approximate knowledge

on yi . However, bit b of the signature is still unknown. Instead

of guessing or recovering the value of this bit for each signature,

they only uses samples where, with a high probability, zi = yi .
In these samples one has that ⟨s, ci ⟩ = 0 (w.h.p.). After collecting

enough samples, they use the challenge vectors ci that satisfy the

above restrictions to construct a matrix L such that sL ≈ 0 is a

small vector in the lattice spanned by L. They then use the LLL

lattice-reduction algorithm [23] on L to find a small lattice basis.

With a high probability, the secret key s is part of the unimodular

transformation matrix retrieved from LLL. The correctness of the

key can be verified by matching against the known public key.

5

Attacking the Bernoulli sampler. The Bernoulli sampler uses

the table E which stores (high precision) exponential values re-

quired to do rejection steps. As this table is only accessed for every

set bit of input x (Line 2 in Algorithm 6), no table access is done

in the case that input x = 0. This only happens when input z to

the Bernoulli sampler (Line 4 in Algorithm 7) is zero, leading to

a small subset of possible values yi ∈ {0,±K ,±2K , . . .}. As K is

in general large, this can lead to a complete retrieval of yi by also

using knowledge of the corresponding signature coefficient zi . By
again restricting to the cases when yi = zi , Groot Bruinderink et

al. used the challenge vectors ci to construct a matrix L such that

sL = 0. The secret vector s can then be found by calculating the

(integer left) kernel of L.

3.3 The Shuffling Countermeasure and
Analysis

Saarinen [42] proposed to use shuffling to protect implementations

of BLISS against the above attack. Instead of (fully) protecting the

sampler itself, he proposes to sample a vector and to randomly

permute it. This breaks the connection between sampling time and

index in the signature and hence prevents the above attack. Con-

cretely, he proposes to generatem Gaussian vectors with smaller

standard deviation σ ′ = σ/
√
m, to shuffle all vectors independently,

and to add them to get a vector from the desired distribution. Al-

ternatively, one can also combine this idea with the sampler of

Pöppelmann et al. [39], i.e., choose some k , set σ ′ = σ/
√
1 + k2,

and then compute y′, y′′ ← Dn
σ ′ , y = k · Shuffle(y′) + Shuffle(y′′).

Due to the smaller σ ′, this sampling approach also drastically re-

duces the size of lookup tables required for (more efficient) CDT

sampling.

Pessl [35] later analyzed this countermeasure. He found that

due to the vastly different distributions of the added variables in

z = y + (−1)b (s · c) (y distributed according to Dn
σ and large σ > 0,

s · c as the product of two small polynomials) one can say that z ≈ y
and thus it is possible to reassign some Gaussian samples. Namely,

if one is given a Gaussian sample y ∈ y, then it is possible to check

for proximity to all zi . If only one zi is close to y, then it is possible

to reassign y to index i . Note that this approach works mostly for

outliers, i.e., for samples that are in the tail of the discrete Gaussian

distribution.

After having reassigned a sufficient number of samples that

match with high probability, e.g., Pr(zi ∼ y) > 0.99, it is possible

to perform the key-recovery of Groot Bruinderink et al. Under the

assumption that bit b (Line 5 of Algorithm 2) is recoverable with

SCA, Pessl needs to observe 260 000 signatures for key recovery. If

this assumption is not met, then only samples that fulfill zi = yi
can be used, which increases the number of signatures to 1 550 000.

3.4 Limitations of Previous Attacks
Both previous side-channel attacks on BLISS have certain limita-

tions and caveats. As already stated above, due to the unknown bitb,
which is potentially different for each signature, Groot Bruinderink

et al. [19] only use samples where zi = yi and thus ⟨s, ci ⟩ = 0 (with

high probability). This, however, only holds in roughly 15% of all

samples (cf. Figure 4) and thus a lot of information is discarded. As

the attack on shuffling by Pessl [35] uses the same method for key

recovery, this limitation holds there as well. By finding a method

to use all samples for the attack, the number of required signatures

could drop drastically.

A second and more severe limitation is that the previous at-

tacks do not apply to the improved BLISS-B signature scheme.

Groot Bruinderink et al. recover the key by solving a (possibly erro-

neous) linear system sL ≈ 0, where L consists of the used challenge

vectors ci . However, the GreedySC algorithm, which was added

with BLISS-B, performs a multiplication of s with some unknown

ternary c′ ≡ c mod 2, with c′ ∈ {−1, 0, 1}n . In simple terms, the

signs of the coefficients in c′ (and thus also in the resulting lattice

basis L′) are unknown. Hence, a straight-forward solving of sL′ ≈ 0
is not possible anymore.

On the practicality of previous attacks.A third limitation of the

attack of Groot Bruinderink et al. [19] is the question of practicality.

The attack targets an academic implementation that is not used in

any “real-world” applications. Furthermore, the attack is synchro-

nous. To achieve this, Groot Bruinderink et al. modify the code of

the BLISS implementation in order to interleave the phases of the

Flush+Reload attack with the Gaussian sampler. In practice, it is

not clear if an attacker can achieve such a level of synchronization

without modifying the source, and an adversary that can modify

the source can access the secret key directly without needing to

resort to side channel attacks. Consequently, while Groot Bruin-

derink et al. show a proof-of-concept, their attack falls short of

being practical.

We now present a new key-recovery technique that resolves the

issues discussed in this section. That is, it works even in the case of

BLISS-B and can reduce the number of required signatures by using

all recovered samples. Furthermore, in Section 6 we give results on

our improvements on the practicality of previous attack, i.e. the

asynchronous attack on strongSwans’s implementation of BLISS-B.

4 AN IMPROVED SIDE-CHANNEL
KEY-RECOVERY TECHNIQUE

In this section, we present our new and improved side-channel

attack on BLISS, that also works for BLISS-B. Our method consists

of four major steps, each step reveals additional information on the

secret signing key s.
The first step is equivalent to previous works. That is, the at-

tacker performs a side-channel attack, e.g., a cache attack or power

analysis, on the Gaussian-sampler component to recover some of

the drawn samples yi of y. With this information we can construct

a (possibly erroneous) system of linear equations over the integers,

using knowledge on zi − yi = (−1)
b (s · c′). (Section 4.1)

Due to the previously mentioned sign-uncertainty in BLISS-B

(the recovered terms s · c′ instead of s · c), the solution cannot be

found with simple linear algebra in Z. Instead, in Step 2 we solve

this system over the bits, i.e., in GF(2). For error correction, we

employ an LPN algorithm that is based on a decoding approach

and can incorporate differing error probabilities. (Section 4.2)

This does not give us the full key, but instead s∗ = s mod 2. For

some parameter sets however, there are some coefficients ±2 (i.e.,

BLISS-0, BLISS-III and BLISS-IV have δ2 > 0). In Step 3, we retrieve

their positions. We use the current knowledge on the secret key s∗

to derive ⟨s∗, ci ⟩, and compare this with zi − yi = ⟨s, c′i ⟩ (obtained
6

from the side channel). Based on that, we give two different methods

in Section 4.3 to determine the positions of the ±2 coefficients and

derive |s| ∈ {0, 1, 2}n .
In the fourth step, we finally recover the full signing key. We use

|s| to reduce the size of the public key. We then perform a lattice

reduction and search for s2 as a short vector in the lattice spanned

by this reduced key. Linear algebra then allows recovery of the full

private key (s1, s2). (Section 4.4)

We now give a more detailed description of these steps.

4.1 Step 1: Gathering Samples
Akin to previous attacks (cf. Section 3), we need to observe the

generation of multiple signatures and use a side-channel to infer

some of the elements of the corresponding noise vector y = y
1
. In

previous works, the exploited side channels were based on cache

attacks (in [19]) or on power analysis (in [35]). If shuffling is used,

then these samples first need to be reassigned to their index in the

signature (cf. Section 3.3).

Side-channel analysis has to deal with noise and other uncertain-

ties. Due to these effects a recovered sampleyi might not be correct.

In our scenario, the probability ϵ of such an error is known (or can

be estimated to a certain extent) and can possibly be different for

each sample. We will later use these probabilities to optimize our

attack.

For each recovered (and reassigned) sample yi , we can write an

equation zi = yi + (−1)
b ⟨s, c′i ⟩, which holds with probability 1-ϵ .

As the signs of coefficients of c′i are unknown, we can simply ignore

the multiplication with (−1)b and instead implicitly include this

factor into c′i . Unlike Groot Bruinderink et al., we do not require that
⟨s1, ci ⟩ = 0 and thus can use all recovered samples. We compute the

difference ti = zi − yi and rearrange all gathered c′i into a matrix

L′ to get sL′ = t.
This system is defined over Z. However, due to the unknown

signs in the c′ it cannot be directly solved using straight-forward

linear algebra, even in the case that all recovered samples are correct.

Instead, a different technique is required.

4.2 Step 2: Finding s1 mod 2
In the second attack step, we solve the above system by using the

following observation. Line 6 of Algorithm 2, i.e., z1 = y
1
+ s1 · c′,

is defined over Z. That is, there is no reduction mod q involved
2
.

Such an equivalence relation in Z obviously also holds mod 2, i.e.,

in GF(2), whereas the reverse is not true.

In GF(2), we have that −1 ≡ 1 mod 2. This resolves the uncer-

tainty in L′ and we can, at least when assuming no errors in the

recovered samples, solve the system s∗L′ = t∗ in GF(2). Here s∗ and
t∗ denote s mod 2 and t mod 2, respectively. In the BLISS-I param-

eter set (Table 1), we have that δ2 = 0. Thus, s∗ reveals the position
of all ⌈δ1n⌉ = 154 nonzero, i.e., (±1), coefficients. However, a simple

enumeration of all 2
154

possibilities for s is still not feasible. Before
we discuss a method to recover the signs of s and thus the full key,

we show how errors in t∗ can be corrected.

2
In fact, due to the parameter choices and the tailcut required by a real Gaussian

sampler, |y
1
+ s1 · c′ | can never exceed q .

Error Correction mod 2. As stated in Section 4.1, a recovered

Gaussian sample yi might not be correct. Hence, the right-hand-

side of the system s∗L′ = t∗ is possibly erroneous. For instance, in

the cache attack on CDT sampling algorithm of Groot Bruinderink

et al., errors cannot be avoided. For the attack on the shuffling coun-

termeasure, the error probability can be made arbitrarily low by

only keeping samples that have a matching probability ≈ 1. How-

ever, the need for such an aggressive filtering increases the number

of required signatures. Hence, the capability of error correction is

crucial.

We can rewrite the above equations in GF(2) as s∗L′ = t∗ + e.
Here, t∗ is errorless and the error is instead modeled as vector

e. Solving this system is exactly the LPN problem described in

Section 2.4, thus we employ an LPN solving algorithm to recover

s∗. The most time-efficient algorithms to solve LPN are based on

the work of Blum, Kalai, and Wasserman [10]. A caveat of this and

improved versions [20, 24] are the large memory and LPN-sample

requirement. For instance, withn = 512 and an error probability ϵ of
just 0.01, the often quoted LF1 algorithm by Levieil and Fouque [24]

requires 2
52

bytes of memory. Thus, for BLISS and the already

somewhat high dimension of n = 512 this class of algorithms is not

ideal for the problem at hand.

Also, note that in the definition of the LPN problem (Defini-

tion 2.1) the error probability ϵ is constant for all samples. This,

however, does not reflect the reality of our side-channel attack.

There, each recovered Gaussian sample can be assigned a poten-

tially different error probability ϵi . By making use of this additional

knowledge, the solving process can potentially be sped up.

An LPN-solving algorithm that can utilize such differing proba-

bilities and that does not require an extensive amount of memory

was presented by Pessl and Mangard [36]. First, they perform a

filtering, i.e., only keep the samples with the lowest error probabil-

ities. All other samples are discarded. Then, they use a decoding

approach, i.e., solving LPN by decoding a random linear code, on the

remaining samples. They tweaked Stern’s decoding algorithm [44]

such that it can utilize differing error probabilities. They use their

method in context of a side-channel attack on polynomial multipli-

cation in GF(2).

We use their algorithm for our attack. It is easy to see that due

to the initial filtering of highly reliable equations, there exists a

possible trade-off between gathered samples and computational

runtime. That is, with more equations one can expect a lower error

probability of the few best samples, which decreases the runtime

of decoding. We will explore this trade-off in Section 5.

Determining error probabilities. Thus far, we did not discuss

how the error probabilities of the samples are computed. They

mainly depend on the used side-channel attack. Groot Bruinderink

et al. [19] attack two different samplers using a cache attack. In

their (idealized) attack on a Bernoulli sampler, they can recover

samples perfectly. Hence, no error correction is required. The attack

on a CDT sampler, however, cannot exclude errors. There, the error

probability depends on the used cache weakness
3
.

In the case of the attack on the shuffling countermeasure by

Pessl [35], we reuse the assumption that all recovered samples are

correct. Hence, errors are introduced by incorrect reassignments of

3
The error probabilities are specified in Appendix B of the full version of [19].

7

samples to their respective index in the signature. The probability

of a correct match Pr(zi ∼ y) is computed during the attack and

was used to filter for highly probable matches. While it is possible

to simply use these probabilities, there is optimization potential

that can decrease the number of required samples.

In our attack, we solve the system s∗L′ = t∗ over GF(2). Thus,
the we only require knowledge of Pr(zi − y ≡ 0 mod 2). Assume

for now that the adversary is in possession of the full, but shuffled,

y. This y contains two large elements of values, for example values

1498 and 1502, and there is one signature coefficient that is large,

for example one element z = 1500. Only one of the two elements

of y belong to this z, and both elements have a probability of 50 %.

However, the probability that the difference of z − y is even is

Pr(zi − y ≡ 0 mod 2) = 1. In general, if given full (or parts of)

shuffled y, all these probabilities can be easily computed as:

Pr(zi − y ≡ 0 mod 2) =
∑

yj ∈y:zi−yj≡0 mod 2

Pr(zi ∼ yj)

Thus, the error probability for computation over GF(2) at least as

small as over Z, and in most cases significantly smaller. Thus, less

signatures are required to gather enough samples with low-enough

error probability.

4.3 Step 3: Recovering the Position of Twos
After the above second attack step, we know s∗ ≡ s mod 2. If we

have d2 = δ2n > 0 (i.e., in BLISS-0, BLISS-III or BLISS-IV), we

denote s ∈ {0, 1}n the vector with si = 1whenever si = ±2, i.e. this
vector is non-zero at each coefficient where vector s has coefficient

±2.

In the third attack step, we use one of two methods to recover

s, one based on integer programming and the other based on a

maximum likelihood test. Both make use of the fact that the weight

κ of the challenge vector c (and hence also c′) is relatively small.

Thus, in any inner product ⟨s, c′i ⟩, only a small number of coeffi-

cients in s are relevant. From knowledge of s∗, we can immediately

derive how many of the selected coefficients are ±1. We define this

quantity as η1 = ⟨s∗, |ci |⟩. The other κ − η1 are then either 0 or

±2. We define the (unknown) number of twos as η2 = ⟨s, |ci |⟩, this
number is bound by 0 ≤ η2 ≤ min(d2,κ − η1)

Both methods then compare the output of the side-channel anal-

ysis, i.e., |zi −yi | = |⟨s, c′i ⟩|, to η1 and use this to derive information

on η2. We will now discuss both methods.

Integer Programming Method. Our first method recovers s by
formulating it into an Integer Program. First, suppose we perfectly

retrieved yji from a side-channel. If

|zi − yi | = |⟨s, c′i ⟩| > η1 + 1,

we know that η2 > 0, i.e. there has to be a at least one ±2 involved

making up for the difference in the above inequality. We save all

|ci | for which the above is true in a list M. Then, we need to find a

solution r for the following constraints:

Mr ≥ 1.

We also add another constraint stating that a solution must satisfy

| |r| |1 = δ2n, so that we end up with the correct number coefficients

in the solution.

Finding the solution s can be seen as a minimal set cover prob-

lem. Here, the indices of Mi form sets and r a cover. We find the

smallest solution for this problem using an Integer Program solver,

namely GLPK [40]. Note that by adding more constraints, i.e., more

rows in M, the probability that the solver finds the correct solution

increases.

The above method cannot be used if the errors in the recovered

samples y exceeds ±2. Such errors could break the Integer program

due to conflicting constraints. However, it is possible to deal with

±1 errors, as the difference between |zi − yi | and η1 needs to be at

least 2. Samples with an error of ±1 can be detected an discarded,

simply due to knowledge of the correct parity. Note that in the work

of Groot Bruinderink et al. [19], an (idealized) adversary targeting

the CDT sampling algorithm only makes errors of ±1. Hence, this

method can be used for this scenario.

Statistical Approach. We now give a second approach that can

recover the position of twos in the s1. It differs from the first as we

use a statistical approach rather than integer programming. Thus,

it can withstand errors more easily.

We use the following observation. The probability that a certain

zi −yi is observed clearly depends on η1 and η2. If η2 = 0, then the

probability density function is essentially a binomial distribution

picking from {±1} instead of the usual {0, 1}. If η2 , 0 but η1 = 0,

the same goes with {±2}. We compute the joint distribution for all

possible combinations of η1 and η2
We then perform a standard hypothesis testing. That is, for every

recovered sample we compute Pr(Z −Y = zi −yi |H1 = η1,H2 = η2)
for the correct η1 and for all 0 ≤ η2 ≤ min(d2,κ − η1). Note that
all distributions, and thus also the joint one, are symmetric. Thus,

the actual sign of zi − yi is not relevant. Then, we apply Bayes’

Theorem to get every Pr(H2 = η2 |Z − Y = zi − yi), compute the

expected value of H2, and divide this number by min(d2,κ − η1).
This gives us the probability that any one of the min(d2,κ − η1)
unknown but involved key coefficients is 2.

Finally, we perform a log-likelihood testing. For each unknown

coefficient sk in s1, we compute the mean of the logarithm of above

probability, over all recovered samples where ci is 1 at index k . We

then set the d2 coefficients with the highest score to 2.

4.4 Step 4: Recovering s1 with the Public Key
After the above 3 steps we have recovered |s|. In the fourth and

final step, we recover the signs of all its nonzero coefficients and

thereby the full signing key s.
We do so by combining all knowledge on |s| = |s1 | with the

public key. Key generation (Algorithm 1) computes a public key

A = {2aq ,q − 2}, with aq = s2/s1 = (2g + 1)/f in the ring Rq . In

case of the BLISS-I and BLISS-II parameter sets (Table 1), both f , g
have ⌈δ1n⌉ = 154 entries in {±1}, while all other elements are zero.

Thus, both these vectors are small.
When writing s1 · aq = s2, it is easy to see that s2 = 2g + 1 is a

short vector in the q-ary lattice generated by aq (or more correctly,

the rows of Aq). Obviously, the parameters of BLISS were chosen in

a way such that a straight-forward lattice-basis reduction approach

is not feasible. However, knowledge of |s| allows a reduction of the

problem size and thus the ability to recover the key.

8

With matrix-vector notation, i.e., s1Aq = s2, it becomes evident

that all rows of Aq at indices where the coefficients of |s| (and thus

s1) are zero can be simply ignored. Thus, we discard these rows

and generate a matrix A⋆
q with size (⌈δ1n⌉ × n), i.e., (154 × 512) for

parameter sets BLISS-I and BLISS-II). Hence, the rank of the lattice,

i.e., the number of basis vectors, is decreased.

We further transform the key-recovery problem as follows. First,

we do not search for s2 directly, but instead search for the even

shorter g used in the key-generation process. We have that f · aq =
2g+1, thus f ·aq ·2−1 = g+2−1 and we simply multiply all elements

of A⋆
q with 2

−1
mod q. We discard the computation of the first

coefficient, which contains the added 2
−1

mod q, and thus reduce

the dimension of the lattice to n − 1.
And second, we reduce the lattice dimension further to some d

with δ1n < d < n − 1 by discarding the upper n − 1 − d coefficients.

Hence, we do not search for the full g but for the d-dimensional

sub-vector g⋆. If, on the one hand, this dimension d is too low, then

g⋆ is not the shortest vector in the q-ary lattice spanned by the

now (⌈δ1n⌉ × n) matrix A⋆
q . If, on the other hand, d is chosen too

large, then a lattice-reduction algorithm might not be able to find

the short g⋆. For our experiments with parameter sets BLISS-I and

BLISS-II, we set d = 250.

Finally, we feed the basis of the q-ary lattice generated by the

columns of A⋆
q into a basis-reduction, i.e, the BKZ algorithm. The

returned shortest-vector is the sought-after g⋆. We then simply

solve f⋆A⋆
q = g⋆ for f⋆ ∈ Z ⌈δ1n ⌉ . This f⋆ will only consist of

elements in ±1, which are the signs of the nonzero coefficients of

the full f . By simply putting the elements of f⋆ into the nonzero

coefficients of s′
1
, we can fully recover the first part of the signing

key f = s1. Finally, the second part of the key is s2 = aq · s1. Thus,
the full signing key is now recovered.

5 EVALUATION OF KEY RECOVERY
In this section, we give an evaluation of our new key-recovery

technique. That is, we apply our algorithm on attacks presented

in earlier work on original BLISS and compare its performance.

Recall, however, that all previous work was unable to perform

key-recovery for BLISS-B.

In order to allow a fair comparison, we reuse the modeled and

idealized adversaries of earlier work. Concretely, we look at the

idealized cache-adversary targeting the CDT sampling algorithm

of Groot Bruinderink et al. [19] and the modeled adversaries for

the attack on shuffling by Pessl [35]. Thus, for the evaluation our

Step 1 is identical to theirs.

We analyze the performance of the following steps in our key

recovery. We analyze the key recovery mod 2, i.e., the LPN solving

approach (Step 2). Then, we evaluate the success rate of both two-

recovery approaches (Step 3). And finally, we state figures for the

full-key recovery using a lattice reduction (Step 4).

5.1 Step 2: Key-Recovery mod 2
For evaluation of the second attack step, i.e., mod-2 key recovery,

we only consider the BLISS-I parameter set.

Our used LPN approach utilizes differing error probabilities of

samples. Its first step is to filter samples, i.e., keep only those with

lowest error probability. Evidently, this means that the success prob-

ability increases with the number of gathered LPN samples. Thus,

we tested the performance for a broad set of observed signatures.

For each test, we ran decoding on all 16 hyperthreads of a Xeon

E5-2630v3 CPU running at 2.4GHz. If this does not find a solution

after at most 10 minutes, then we abort and mark the experiment

as failed.

Shuffling. Figure 1 shows the success rate for the attack on shuf-

fling. It was already shown that shuffling once cannot increase se-

curity [35]. Thus, we focus solely on the shuffling-twice approach,

i.e., y = k · Shuffle(y′) + Shuffle(y′′). For the analysis, we reused
previously proposed attacker models [35]. The idealized attacker A1

is given the full y′, y′′ but in a random order. Attacker A2 models a

profiled side-channel adversary and can classify samples that have

some minimum value. Attacker A3 is non-profiled and only detects

samples that are uniquely determined with the control flow of the

sampling algorithm.

We give results for BLISS-AI (Figure 1a) and BLISS-BI (Figure 1b)

separately, as the introduction of the GreedySC algorithm leads

to different results and slightly better performance for BLISS-B
4
.

For A1, one needs approximately 70 000 signatures in order to

achieve a success rate larger than 0.9. A2 needs 90 000 signatures,

A3 200 000. Compared to [35], the number of required signatures

is cut by a factor of around 3. Note that their numbers require the

recoverability of the secret bit b, which we do not need. If this is

not given, then their numbers increase by a factor of 6.6. Then, our

attack only needs about 1/20th of their signatures.

Cache attack on CDT sampling. Figure 2 shows the results of
the idealized cache-attack on a CDT sampler by Groot Bruinderink

et al. [19]. We did not perceive any significant differences between

BLISS-A and BLISS-B here, so we performed experiments for both

versions and give the average. We reach a success rate of about

0.9 when using 325 signatures. This is roughly 28% less than the

450 signatures required in previous work. These savings can be

explained as follows. We can now use all recovered samples, and

not only those where z = y. However, this is somewhat offset by

the fact that our LPN-based approach is not as error-tolerant as

their lattice-based method which is not applicable in our setting.

5.2 Step 3: Recovery of Twos
For evaluation of the third attack step, we analyzed the success rate

of both twos-recovery procedures (Section 4.3) with the idealized

CDT adversary. We consider all parameter sets with δ2 > 0, i.e.,

BLISS-0, BLISS-III, and BLISS-IV.

We show the success rate as a function of the number of recov-

ered samples in Figure 3. Please note that this is not equal to the

number of required signatures (see [19]). As seen in Figure 3a, the

linear-programming approach requires 30 000 samples for BLISS-0

and 400 000 samples for BLISS-III, respectively. Here we did not

evaluate the performance with BLISS-IV due to even higher sample

requirements. The second approach, which is based on statistical

methods, requires more samples for BLISS-0 (45 000) but performs

better for BLISS-III (35 000) and BLISS-IV (130 000).

4
GreedySC aims at minimizing the norm of s · c′, thus the difference z − y is, on

average, smaller. The attack on shuffling benefits from this, as it tests this difference.

9

50 100 150 200 250

10 3

0

0.2

0.4

0.6

0.8

1

A1
A2
A3

(a) BLISS-AI

50 100 150 200 250

10 3

0

0.2

0.4

0.6

0.8

1

A1
A2
A3

(b) BLISS-BI

Figure 1: Success rate of LPN decoding for the attack on shuf-
fling

100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

Figure 2: Success rate of LPNdecoding for an idealized attack
on CDT sampling

5.3 Step 4: Key-Recovery using Lattice
Reduction

In the last step, i.e., recovery of the full signing key s from |s| (Sec-
tion 4.4), we use the BKZ lattice-reduction algorithm. Concretely,

we use the implementation provided by Shoup’s Number Theory

Library NTL [43]. We set the BKZ block size to 25 and abort the re-

duction algorithm as soon as a fitting, i.e., short enough, candidate

for the d-dimensional vector g⋆ is found. Such a candidate vector

must have a Hamming weight of at most ⌈δ1n⌉ and must consist

solely of elements in {±1}.

We evaluated the correctness and performance of this method by

running over 250 key-recovery experiments for both BLISS-AI and

BLISS-BI. In each experiment, we generated a new key, performed a

0 100 200 300 400 500

10 3

0

0.2

0.4

0.6

0.8

1

BLISS-B0
BLISS-BIII

(a) Linear Programming

0 50 100 150

10 3

0

0.2

0.4

0.6

0.8

1

BLISS-B0
BLISS-BIII
BLISS-BIV

(b) Statistical

Figure 3: Success rate for Twos recovery

key recovery mod 2 (assuming a perfect and errorless side-channel),

and finally performed a lattice reduction. All our experiments were

successful, hence we can assume that once s∗ = s1 mod 2 is known,

the full signing key can always be recovered. The average runtime

of lattice reduction (with early abort) was roughly 4-5 minutes on

an Intel Xeon E5-2660 v3 running at 2.6GHz.

Other parameter sets. For parameter sets BLISS-0, BLISS-III, and

BLISS-IV, we were not able to perform full key-recovery using the

above method. In case of BLISS-I and BLISS-II, the Hamming weight

of s1 and hence the rank of the reduced q-ary lattice is δ1n = 154.

For BLISS-III and BLISS-IV, this quantity increases to 232 and 262,

respectively. Due to the resulting increased rank of the lattice, we

were not able to recover the key using BKZ.

6 ATTACKING STRONGSWANS BLISS-B
In this section, we perform a cache attack on the BLISS-B implemen-

tation of the strongSwan IPsec-based VPN suite [45]. Concretely,

we use the parameter set BLISS-I. We describe the setup and the

execution of the cache attack in Section 6.1. Our adversary is not

synchronized with the victim, thus we perform synchronization

based on the signature output (Section 6.2). This corresponds to the

first step of our key-recovery method. Finally, we apply the other

three steps and describe the outcome.

10

6.1 Asynchronous Cache Attack
We carry out the experiment on a server featuring an 8 core Intel

Xeon E5-2618L v3 2.3GHz processor and 8GB of memory, run-

ning a CentOS 6.8 Linux, with gcc 4.4.7. We use strongSwan ver-

sion 5.5.2, which is the current version at the time of writing. We

build strongSwan from the sources with BLISS enabled and with C

compile options -g -falign-functions=64. To validate the side-

channel results against the ground-truth, we collect a trace of key

operations executed as part of the signature generation. The trace

only has a negligible effect on the timing behaviour of the code and

is not used for key extraction.

For the side channel atack, we use the FR-trace tool of the

Mastik toolkit version 0.02 [47]. FR-trace is a command line utility

that allows mounting the Flush+Reload attack with amplification.

We set FR-trace to perform the Flush+Reload attack every 30000

cycles. We describe the locations we monitor below. We set an

amplification attack against the function pos_binary, which is used
as part of Line 1 of Algorithm 7. This slows the average running

time of the function from 500 to 233000 cycles, creating a temporal

separation between calls to Algorithm 7. However, this slowdown

is not uniform and 26% of the calls take less than 30000 cycles, i.e.

below the temporal resolution of our attack.

strongSwans implementation of BLISS uses the Bernoulli-sampling

approach described in Section 2.3. Thus, we reuse the exploit of

Groot Bruinderink et al. [19] and detect if the input to Algorithm 6

was 0. Our cache adversary is asynchronous. Thus, to detect the

zero input we have to keep track of several events. First, we detect

calls to the Gaussian sampler (Algorithm 7). Second, strongSwan

interleaves the sampling of the two noise vectors y
1
and y

2
, i.e.,

it calls the sampler twice in each of the 512 iterations of a loop.

As we only target the generation of y
1
, we detect the end of each

iteration and only use the first call to the Gaussian sampler in each

iteration. Third, we track the entry to Algorithm 6 and only use the

last entry per sampled value. Other calls to this function correspond

to rejections (Lines 5 and 6 of Algorithm 7) and thus cannot be used.

Finally, if we detect that Line 3 of Algorithm 6 was not executed,

we know that x = 0. In this case, the sampled value y is a multiple

of K = 254.

For BLISS-I, the above events, which we will dub zero events from
now on, happen on average twice per signature. In order to mini-

mize the error rate, we apply aggressive filtering. Also, we found

that possibly due to prefetching, access to Line 3 of Algorithm 6 is

often detected although x = 0. As a result, we detect zero events

on average 0.74 times per signature. 92% of these detections were

correct, the other 8% were false positives in which the access to

Line 3 was missed by the cache attack.

6.2 Resynchronization
Even though zero events can be detected by an adversary, due

to the asynchronous nature of the attack it is not obvious which

of the 512 samples corresponds to this detection. In other words,

we can detect (with high probability) that there exists a sample

y ∈ {0,±K ,±2K , . . .}, but we do not know which sample.

We recover the index i of a detected zero event as follows. First,

we locate the first and the last call to the Gaussian sampler in the

cache trace. We then estimate the positions of the other 510 calls by

placing them evenly in between. Note that Algorithm 7 does not run

in constant time, hence this can only give a rough approximation.

However, we found that run-time differences average out and that

the estimated positions are relatively close to the real calls. In

fact, this method gives better results than counting the calls to

Algorithm 7 in the trace, as some calls are missed and counting

errors accumulate. We also found that the error, i.e., the difference

from the estimated index of an event to its real index in the signature,

roughly follows a Gaussian distribution with standard deviation 3.5.

We then compute the time span between the detected event and the

estimated calls to the sampler, match it against the above Gaussian

distribution, and then apply Bayes theorem to derive the probability

that the detected call to the Gaussian sampler corresponds to each

index 0. . . 511 in the signature.

This alone, however, does not allow a sufficient resynchroniza-

tion. We use the signature output z in order to further narrow down

the index i . For each coefficient in z, we compute the distance d to

the closest multiple of parameter K used in Algorithm 7. Then we

look up the prior-probability that the sample y corresponding to

any signature coefficient z was a multiple of K , this is simply the

probability that a coefficient of s1 · c′ is equal to d . We estimated

this distribution using a histogram approach, it is shown in Figure 4

(for BLISS-I). As K = 254 and the coefficient-wise probability distri-

bution of s1 · c′ is narrow, many elements of the unknown y have

a zero or very small probability of being a multiple of K . Note that
this approach is somewhat similar to the attack on the shuffling

countermeasure described in Section 3.3.

-15 -10 -5 0 5 10 15
0

0.05

0.1

0.15

0.2

Figure 4: Coefficient-wise probability distribution of s1 · c′

Finally, we combine the prior-probabilities derived from the

signature output z with the matching of the trace, which we do

by applying Bayes theorem once more. We then use only these

zero events that can be reassigned to a single signature index

with high probability, i.e., > 0.975, and where the prior-probability

Pr(⟨s1, c′i ⟩ = d) is also high, i.e., d < 3.

Roughly 1/3 of detected zero events fulfill both criteria. Out

of these, 95% are correct, i.e., correspond to a real zero event and

were reassigned to the correct index. Recall that our key-recovery

approach only requires the value of zi − yi mod 2. Thus, 97.5% of

all recovered samples are correct in GF(2).

6.3 LPN and Results
For LPN-decoding (Section 4.2) we set the code length to 1024. With

the above detection rates, we require on average 6 000 signatures in

11

order to collect this number of samples. Note that for the selection

of used samples we again made use of probabilities. For instance,

we use only zero events that can be reassigned to a single sample

with high probability. Unlike in the case of attacking the shuffling

countermeasure or the attack on the CDT sampling algorithm,

however, we were not able to accurately determine any differing

error probabilities within the selected 1024 samples. Thus, we used

a used a non-modified algorithm for decoding the random linear

code. Our used decoding algorithm is based on the descriptions

in [8].

We performed 100 decoding experiments using the error distri-

bution obtained from the previous step. In the 1024 used samples

we encountered between 26 and 36 errors. We ran decoding using

64 threads on two Xeon E5-2699 v4 running at 2.2 GHz. Similar to

Section 5.1, we abort decoding after 10 minutes and then consider it

to have failed. 98 experiments were successful, 82 of them finished

within the first minute.

As we used the parameter set BLISS-I and thus have s ∈ {0,±1},
the third attack step is not required. The fourth attack step, lattice

reduction, then finally returns the secret signing key. The runtime

of this step was already stated in Section 5.3.

7 CONCLUSION
In this work we present the first side-channel attack against the

BLISS-B variant of the BLISS signature scheme. Apart from being

able to attack this improved version, the theoretical attack is also

more efficient than prior attacks on the BLISS family, requiring only

325 observations by an ideal attacker. We complement the theoreti-

cal attack with the first asynchronous cache-based attack against

lattice-based cryptography. When using the BLISS-I parameter set,

our combined attack is able to recover the BLISS-B secret key after

observing 6 000 signatures.

We now give a brief discussion on possible future work, coun-

termeasures against our attack, and ways to avoid Gaussian noise

altogether.

Future work. The discrepancy between the low number of obser-

vations required for the theoretical attack and the much higher

number required for the actual attack is due to the high level of

noise we see in the cache channel. Reducing the noise would result

in a stronger attack. A promising direction is to combine our attack

with the work of Moghimi et al. [27], which investigates attack on

the Intel Software Guard Extension (SGX), to see if it is possible to

reduce the noise in the SGX setting.

Possible countermeasures. To protect against the side-channel
attack described in this paper, it is vital that Algorithm 6 is imple-

mented in constant-time and without secret-dependent branching.

More specifically, the handling of rejections and table look-ups

should not depend on the input. As shown in Algorithm 8, this can

be done by performing all ℓ steps in the loop and always sample an

Ai . The return value v is then updated according to the values of

Ai and xi in constant time. We use C-style bitwise-logic operands

to describe this update.

Alternatives toGaussiannoise.As our and previouswork clearly
shows, high-precision Gaussian samplers are a prime target for at-

tacking lattice-based schemes. Andwhile the above countermeasure

Algorithm 8 Sampling a bit fromB(exp(−x/(2σ 2))) for x ∈ [0, 2ℓ),
constant-time version

Input: x ∈ [0, 2ℓ) an integer in binary form x = xℓ−1 . . . x0. Pre-
computed table E with E[i] = exp(−2i/(2σ 2)) for 0 ≤ i < ℓ

Output: A bit b from B(exp(−x/(2σ 2)))

1: v = 1

2: for i = ℓ − 1 downto 0 do
3: sample Ai from B(E[i])
4: v = v & (Ai | ∼xi)

5: return v

can fix the exploited leak in this specific implementation, different

attack techniques and side-channels can still allow key recovery.

Implementing thoroughly secured samplers seems to be a difficult

task. In fact, due to their complex structure, implementing them

both correctly and efficiently is challenging and error prone already,

even without considering implementation security.

Some cryptographers seem to have noted this, as there already

exist lattice-based schemes that avoid Gaussians for these reasons.

For instance, the NewHope key exchange [2] uses the centered bino-

mial distribution (which is trivial to sample from) as a low-precision

approximation to Gaussians. The more recently proposed signa-

ture schemes ring-Tesla [1] and Dilithium [15] also avoid discrete

Gaussians and use uniform noise instead. Both cite implementation

concerns as a motivation for this design choice.

Acknowledgements
Yuval Yarom performed part of this work as a visiting scholar at

the University of Pennsylvania.

This work was supported by the Austrian Research Promotion

Agency (FFG) under the COMET K-Project DeSSnet (grant number

862235); by an Endeavour Research Fellowship from the Australian

Department of Education and Training; and by the Commission

of the European Communities through the Horizon 2020 program

under project number 645622 (PQCRYPTO).

REFERENCES
[1] Sedat Akleylek, Nina Bindel, Johannes A. Buchmann, Juliane Krämer, and Gior-

gia Azzurra Marson. 2016. An Efficient Lattice-Based Signature Scheme with

Provably Secure Instantiation. In AFRICACRYPT 2016. 44–60.
[2] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. 2016. Post-

quantum Key Exchange - A New Hope. In 25th USENIX Security Symposium.

327–343.

[3] Thomas Allan, Billy Bob Brumley, Katrina E. Falkner, Joop van de Pol, and Yuval

Yarom. 2016. Amplifying side channels through performance degradation. In

ACSAC 2016. 422–435.
[4] Sonia Belaïd, Jean-Sébastien Coron, Pierre-Alain Fouque, Benoît Gérard, Jean-

Gabriel Kammerer, and Emmanuel Prouff. 2015. Improved Side-Channel Analysis

of Finite-Field Multiplication. In CHES 2015. 395–415.
[5] Sonia Belaïd, Pierre-Alain Fouque, and Benoît Gérard. 2014. Side-Channel Anal-

ysis of Multiplications in GF(2
128

) - Application to AES-GCM. In ASIACRYPT
2014. 306–325.

[6] Naomi Benger, Joop van de Pol, Nigel P. Smart, and Yuval Yarom. 2014. “Ooh

Aah. . . , Just a Little Bit”: A Small Amount of Side Channel can Go a Long Way.

In CHES 2014. 75–92.
[7] Daniel J. Bernstein. 2005. Cache-timing attacks on AES. (2005). Preprint available

at http://cr.yp.to/antiforgery/cachetiming-20050414.pdf.

[8] Daniel J. Bernstein, Tanja Lange, and Christiane Peters. 2008. Attacking and

Defending the McEliece Cryptosystem. In PQCrypto 2008. 31–46.
[9] Nina Bindel, Johannes A. Buchmann, and Juliane Krämer. 2016. Lattice-Based

Signature Schemes and Their Sensitivity to Fault Attacks. In FDTC 2016. 63–77.
[10] Avrim Blum, Adam Kalai, and Hal Wasserman. 2003. Noise-tolerant learning, the

parity problem, and the statistical query model. J. ACM 50, 4 (2003), 506–519.

12

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

[11] Matt Braithwaite. 2016. Experimenting with Post-Quantum Cryp-

tography. (July 2016). https://security.googleblog.com/2016/07/

experimenting-with-post-quantum.html.

[12] Yuanmi Chen and Phong Q. Nguyen. 2011. BKZ 2.0: Better Lattice Security

Estimates. In ASIACRYPT 2011. 1–20.
[13] Léo Ducas. 2014. Accelerating Bliss: the geometry of ternary polynomials. IACR

Cryptology ePrint Archive, Report 2014/874. (2014).

[14] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. 2013.

Lattice Signatures and Bimodal Gaussians. In CRYPTO 2013. 40–56.
[15] Léo Ducas, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor

Seiler, and Damien Stehlé. 2017. CRYSTALS - Dilithium: Digital Signatures from

Module Lattices. Cryptology ePrint Archive, Report 2017/633. (2017).

[16] Thomas Espitau, Pierre-Alain Fouque, Benoît Gérard, and Mehdi Tibouchi. 2016.

Loop abort Faults on Lattice-Based Fiat-Shamir & Hash’n Sign signatures. IACR

Cryptology ePrint Archive, Report 2016/449. (2016).

[17] Amos Fiat and Adi Shamir. 1986. How to Prove Yourself: Practical Solutions to

Identification and Signature Problems. In CRYPTO 1986. 186–194.
[18] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. 2016. A Survey of

Microarchitectural Timing Attacks and Countermeasures on Contemporary

Hardware. Journal of Cryptographic Engineering (2016).

[19] Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom. 2016.

Flush, Gauss, and Reload - A Cache Attack on the BLISS Lattice-Based Signature

Scheme. In CHES 2016. 323–345. Full version available at: http://ia.cr/2016/300.

[20] Qian Guo, Thomas Johansson, and Carl Löndahl. 2014. Solving LPN Using

Covering Codes. In ASIACRYPT 2014. 1–20.
[21] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk Sunar. 2014.

Wait a minute! A fast, Cross-VM attack on AES. In RAID 2014. 299–319.
[22] Adam Langley. 2016. CECPQ1 results. (November 2016). https://www.

imperialviolet.org/2016/11/28/cecpq1.html.

[23] A. K. Lenstra, H. W. Lenstra, and L. Lovász. 1982. Factoring polynomials with

rational coefficients. Math. Ann. 261, 4 (1982), 515–534.
[24] Éric Levieil and Pierre-Alain Fouque. 2006. An Improved LPN Algorithm. In SCN

2006. 348–359.
[25] Richard Lindner and Chris Peikert. 2011. Better Key Sizes (and Attacks) for

LWE-Based Encryption. In CT-RSA 2011. 319–339.
[26] Matteo Mariantoni. 2014. Building a superconducting quantum computer -

Invited Talk in PQCrypto 2014. (October 2014). https://www.youtube.com/

watch?v=wWHAs--HA1c.

[27] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. 2017. CacheZoom:

How SGX Amplifies The Power of Cache Attacks. CoRR abs/1703.06986 (2017).

[28] NIST. 2016. Post-Quantum crypto standardization. (December 2016). http:

//csrc.nist.gov/groups/ST/post-quantum-crypto/call-for-proposals-2016.html.

[29] Tobias Oder, Thomas Pöppelmann, and Tim Güneysu. 2014. Beyond ECDSA

and RSA: Lattice-based Digital Signatures on Constrained Devices. In DAC 2014.
110:1–110:6.

[30] Committee on National Security Systems. 2015. Use of Public Standards for

the Secure Sharing of Information Among National Security Systems. CNSS

Advisory Memorundum Information Assurance 02-15. (July 2015).

[31] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and Angelos D.

Keromytis. 2015. The Spy in the Sandbox: Practical Cache Attacks in JavaScript

and their Implications. In 23rd CCS. 1406–1418.
[32] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks and Coun-

termeasures: The Case of AES. In CT-RSA 2006. 1–20.
[33] Cesar Pereida García and Billy Bob Brumley. 2016. Constant-Time Callees

with Variable-Time Callers. IACR Cryptology ePrint Archive, Report 2016/1195.

(2016).

[34] Cesar Pereida García, Billy Bob Brumley, and Yuval Yarom. 2016. "Make Sure DSA

Signing Exponentiations Really are Constant-Time". In CCS 2016. 1639–1650.
[35] Peter Pessl. 2016. Analyzing the Shuffling Side-Channel Countermeasure for

Lattice-Based Signatures. In INDOCRYPT 2016. 153–170.
[36] Peter Pessl and Stefan Mangard. 2016. Enhancing Side-Channel Analysis of

Binary-Field Multiplication with Bit Reliability. In CT-RSA 2016. 255–270.
[37] Krzysztof Pietrzak. 2012. Cryptography from Learning Parity with Noise. In

SOFSEM 2012. 99–114.
[38] Joop van de Pol, Nigel P. Smart, and Yuval Yarom. 2015. Just a Little Bit More. In

CT-RSA 2015. 3–21.
[39] Thomas Pöppelmann, Léo Ducas, and Tim Güneysu. 2014. Enhanced Lattice-

Based Signatures on Reconfigurable Hardware. In CHES 2014. 353–370.
[40] GNU Project. n.d.. GLPK (GNU Linear Programming Kit). (n.d.). https://www.

gnu.org/software/glpk/.

[41] Oded Regev. 2005. On lattices, learning with errors, random linear codes, and

cryptography. In STOC 2005. 84–93.
[42] Markku-Juhani O. Saarinen. 2017. Arithmetic coding and blinding countermea-

sures for lattice signatures. Journal of Cryptographic Engineering (2017).

[43] Victor Shoup. n.d.. NTL: A Library for doing Number Theory. (n.d.). http:

//www.shoup.net/ntl/.

[44] Jacques Stern. 1988. A method for finding codewords of small weight. In Coding
Theory and Applications 1988. 106–113.

[45] strongSwan. 2015. strongSwan 5.2.2 Released. https://www.strongswan.org/

blog/2015/01/05/strongswan-5.2.2-released.html. (2015).

[46] Yukiyasu Tsunoo, Etsuko Tsujihara, Kazuhiko Minematsu, and Hiroshi Hiyauchi.

2002. Cryptanalysis of Block Ciphers Implemented on Computers with Cache.

In International Symposium on Information Theory and Its Applications. 803–806.
[47] Yuval Yarom. 2016. Mastik: A Micro-Architectural Side-Channel Toolkit. http:

//cs.adelaide.edu.au/~yval/Mastik/Mastik.pdf. (Sept. 2016).

[48] Yuval Yarom and Naomi Benger. 2014. Recovering OpenSSL ECDSA Nonces

Using the Flush+Reload Cache Side-channel Attack. IACR Cryptology ePrint

Archive, Report 2014/140. (2014).

[49] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High Resolution,

Low Noise, L3 Cache Side-Channel Attack. In 23rd USENIX Security Symposium.

719–732.

[50] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. 2014. Cross-

Tenant Side-Channel Attacks in PaaS Clouds. In 22nd CCS. 990–1003.

13

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
http://ia.cr/2016/300
https://www.imperialviolet.org/2016/11/28/cecpq1.html
https://www.imperialviolet.org/2016/11/28/cecpq1.html
https://www.youtube.com/watch?v=wWHAs--HA1c
https://www.youtube.com/watch?v=wWHAs--HA1c
http://csrc.nist.gov/groups/ST/post-quantum-crypto/call-for-proposals-2016.html
http://csrc.nist.gov/groups/ST/post-quantum-crypto/call-for-proposals-2016.html
https://www.gnu.org/software/glpk/
https://www.gnu.org/software/glpk/
http://www.shoup.net/ntl/
http://www.shoup.net/ntl/
https://www.strongswan.org/blog/2015/01/05/strongswan-5.2.2-released.html
https://www.strongswan.org/blog/2015/01/05/strongswan-5.2.2-released.html
http://cs.adelaide.edu.au/~yval/Mastik/Mastik.pdf
http://cs.adelaide.edu.au/~yval/Mastik/Mastik.pdf

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Lattices
	2.2 Bimodal Lattice Signature Scheme (BLISS)
	2.3 Discrete Gaussians
	2.4 Learning Parity with Noise (LPN)

	3 Side-Channel Attacks on BLISS
	3.1 Cache Attacks
	3.2 A Cache Attack on BLISS
	3.3 The Shuffling Countermeasure and Analysis
	3.4 Limitations of Previous Attacks

	4 An Improved Side-Channel Key-Recovery Technique
	4.1 Step 1: Gathering Samples
	4.2 Step 2: Finding s1 mod 2
	4.3 Step 3: Recovering the Position of Twos
	4.4 Step 4: Recovering s1 with the Public Key

	5 Evaluation of Key Recovery
	5.1 Step 2: Key-Recovery mod 2
	5.2 Step 3: Recovery of Twos
	5.3 Step 4: Key-Recovery using Lattice Reduction

	6 Attacking strongSwans BLISS-B
	6.1 Asynchronous Cache Attack
	6.2 Resynchronization
	6.3 LPN and Results

	7 Conclusion
	References

