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Abstract. Guo et al. recently presented a reaction attack against the
QC-MDPC McEliece cryptosystem. Their attack is based on the ob-
servation that when a bit-flipping decoding algorithm is used in the
QC-MDPC McEliece, then there exists a dependence between the se-
cret matrix H and the failure probability of the bit-flipping algorithm.
This dependence can be exploited to reveal the matrix H which consti-
tutes the private key in the cryptosystem. It was conjectured that such
dependence is present even when a soft-decision decoding algorithm is
used instead of a bit-flipping algorithm.
This paper shows that a similar dependence between the secret matrix
H and the failure probability of a decoding algorithm is also present
in the QC-LDPC McEliece cryptosystem. Unlike QC-MDPC McEliece,
the secret key in QC-LDPC McEliece also contains matrices S and Q in
addition to the matrix H. We observe that there also exists a dependence
between the failure probability and the matrix Q. We show that these
dependences leak enough information to allow an attacker to construct a
sparse parity-check matrix for the public code. This parity-check matrix
can then be used for decrypting ciphertexts.
We tested the attack on an implementation of the QC-LDPC McEliece
using a soft-decision decoding algorithm. Thus we also confirmed that
soft-decision decoding algorithms can be vulnerable to leaking informa-
tion about the secret key.

Keywords: QC-LDPC McEliece cryptosystem, reaction attack, soft-decision
decoding.

1 Introduction

In 1978, R. J. McEliece proposed a public key cryptosystem based on coding
theory [8], now called the McEliece cryptosystem. The cryptosystem has never
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been adopted widely, mainly due to the large size of the public key. The interest
in the McEliece cryptosystem has, however, risen recently, since it has become
a candidate for post-quantum cryptography.

In [2], Baldi and Chiaraluce proposed a variant of the McEliece cryptosystem
based on quasi-cyclic low-density parity-check codes (QC-LDPC codes). Their
cryptosystem is now known as the QC-LDPC McEliece cryptosystem. The use
of quasi-cyclic codes in this cryptosystem allows to reduce the size of the pub-
lic key. However, in [10], Otmani et al. showed that the proposed system had
serious vulnerabilities. In [3], Baldi et al. proposed an amended version of the
cryptosystem which was immunized against the attacks from [10]. An important
role in the cryptosystem is played by matrices which are formed by blocks of cir-
culant matrices. In [12], it was demonstrated that when the block size is chosen
to be an even number a more efficient information-set decoding attack on the
cryptosystem can be executed. However, this attack is not applicable when the
block size is odd.

A cryptosystem related to the QC-LDPC McEliece cryptosystem, the QC-
MDPC McEliece cryptosystem, was proposed by Misoczki et al. in [9]. Both QC-
LDPC McEliece and QC-MDPC McEliece use an iterative decoding algorithm
in their decryption procedure. Two types of iterative decoding algorithms are
proposed in the literature; bit-flipping algorithms and soft-decision decoding
algorithms. Both types of algorithms fail with some small probability. In [5],
Guo et al. demonstrated that when the QC-MDPC McEliece cryptosystem is
implemented with a bit-flipping algorithm, there exists a dependence between
the secret matrix H and the failure probability of the bit-flipping algorithm.
They further demonstrated that this dependence allows an attacker to recover
the secret matrix H very efficiently. They conjectured that such dependence is
present when a soft-decision decoding algorithm is used, as well.

In the present paper, we show that a similar dependence between the secret
matrix H and the failure probability of a decoding algorithm is also present in
the QC-LDPC McEliece cryptosystem. Unlike in QC-MDPC McEliece, the se-
cret key in QC-LDPC McEliece also contains matrices S and Q in addition to
the matrix H. We observe that there also exists a dependence between the fail-
ure probability and the matrix Q. We show that these dependences leak enough
information to allow an attacker to construct a sparse parity-check matrix for
the public code. This parity-check matrix can then be used for decrypting ci-
phertexts.

For our experiments we used an implementation of the QC-LDPC McEliece
cryptosystem which uses a soft-decision decoding algorithm. Thus, apart from
showing that an attack similar to the one in [5] can be mounted on the QC-
LDPC McEliece cryptosystem, we also confirm the conjecture from [5] that these
types of attacks are also possible when a soft-decision decoding algorithm is used
instead of a bit-flipping algorithm.

The paper is structured as follows. In Section 2, we review the QC-LDPC
McEliece cryptosystem, the QC-MDPC McEliece cryptosystem and the attack
on the QC-MDPC McEliece from [5]. In Section 3, we describe a new attack on



the QC-LDPC McEliece. Finally, in Section 4, we summarize our results and
conclude the paper.

2 Preliminaries

2.1 The QC-LDPC McEliece Cryptosystem

In [2], Baldi et al. proposed a variant of the McEliece cryptosystem based on
LDPC codes – the QC-LDPC McEliece cryptosystem. A part of the private
key in this cryptosystem is formed by an (n − k) × n parity-check matrix H
of an LDPC code able to correct t errors. The matrix H is formed by a row
{H0, . . . ,Hn0−1} of n0 = n/(n− k) binary circulant blocks of size p × p, where
p = n− k. Each block has a row weight (i.e. the number of ones in a row) equal
to a number w which is small compared to p. If Hn0−1 is invertible, a generator
matrix G for the code can be obtained as

G =


(
H−1n0−1 ·H0

)T
I

...(
H−1n0−1 ·Hn0−2

)T
 .

The remaining part of the private key is formed by two other matrices; an in-
vertible k × k matrix S and a sparse invertible n × n matrix Q. The matrices
S and Q are formed by blocks of circulant p× p matrices. In addition, Q has a
fixed row weight m. The public key is then computed as G′ = S−1 ·G ·Q−1.

Encryption is done as follows. Let the original message be u. Alice encrypts
u as x = u ·G′+ e, where e is a randomly generated error vector of length n and
Hamming weight wH(e) = t′ ≤ t

m .
When Bob receives the encrypted message x, he first computes

x′ = x ·Q = u · S−1 ·G+ e ·Q.

The vector x′ is a codeword of the LDPC code chosen by Bob (corresponding
to the information vector u′ = u · S−1), affected by the error vector e · Q,
whose maximum weight is t. Bob is able to correct all the errors with very high
probability by means of LDPC decoding, thus recovering u′, and then u through
a post-multiplication by S.

In [10], Otmani et al. demonstrated that this cryptosystem is vulnerable to
attacks which exploit the facts that Q is block-diagonal and S is sparse. In order
to immunize their cryptosystem against these attacks, Baldi et al. proposed
versions of the QC-LDPC McEliece cryptosystem with the matrix S dense and
the matrix Q no longer block-diagonal in [3].

In [12], it was demonstrated that when the value of the block size is chosen
to be an even number, a more efficient information-set decoding attack on the
cryptosystem can be executed. However, this attack is not applicable when the
block size is odd.



2.2 The QC-MDPC McEliece Cryptosystem

The QC-MDPC McEliece cryptosystem was proposed in [9]. This cryptosystem
uses moderate density parity check (MDPC) codes, which are codes that admit
a parity check matrix HMDPC which is sparse, but not as sparse as in LDPC
codes. The matrix HMDPC again has to be quasi-cyclic, i.e. it has to be formed
by a row of circulant blocks

{
HMDPC

0 , . . . ,HMDPC
n0−1

}
. The matrix HMDPC forms

the whole private key in the QC-MDPC McEliece cryptosystem. If HMDPC
n0−1 is

invertible, a generator matrix GMDPC for the code can be obtained by the same
calculation as in QC-LDPC McEliece. The matrix GMDPC forms the public key
for the cryptosystem.

Encryption is done as follows. Let the original message be u. Alice encrypts u
as x = u ·GMDPC+e, where e is a randomly generated vector with the Hamming
weight equal to a number of errors tMDPC that the MDPC code can correct.

When Bob receives the encrypted message x, he is able to correct all the
errors with very high probability by means of an LDPC decoding algorithm,
thus recovering the message u.

2.3 Previous Attack on the QC-MDPC McEliece Cryptosystem

In [5], Guo et al. presented a reaction attack on the QC-MDPC McEliece cryp-
tosystem. They demonstrate that if the QC-MDPC McEliece cryptosystem em-
ployes a bit-flipping decoding algorithm in its decryption procedure, then there
exists a dangerous dependence between the probability of decoding error and
the secret key.

Guo et al. demonstrate their attack on a version of the cryptosystem with two
blocks in the secret parity check matrix HMDPC. Since the blocks are circulant,
the block HMDPC

0 is determined by its first row hMDPC
0 . They show that an

attacker who sends a large number of messages encrypted by the public key and
for each message learns whether it was successfully decrypted can learn distances
between ones in hMDPC

0 . The distance between two ones in positions p1 and p2,
p2 > p1, in hMDPC

0 is defined as min {p2 − p1, p− (p2 − p1)}, where p is the
length of hMDPC

0 (i.e. the distance is computed cyclically). With the knowledge
of distances in hMDPC

0 , the attacker can reconstruct hMDPC
0 and recover the

private key.
Guo et al. consider two different scenarios in their paper. In the first scenario,

the attacker is allowed to choose the error vector e that is added to the message
during encryption. In the second scenario, the attacker has no such freedom
and the error vector is always chosen at random. Here we focus on the second
scenario.

In the second scenario, the attacker sends a large number of messages contain-
ing a randomly generated error vector. The attacker then groups the messages
into sets Σd, d ∈ {1, . . . p/2} by the following principle: a message belongs to
the set Σd if its error vector contains the distance d. Guo et al. observe that if
d is present in hMDPC

0 , then the estimate for the probability of decoding failure
based on the set Σd is smaller than the estimate obtained from Σd when d is



not present in hMDPC
0 . Thus, the attacker is able to learn which distances are

present in hMDPC
0 .

3 The Attack

As in [5], we also consider an attacker who sends a large number of messages
encrypted by the public key and for each message learns whether it was suc-
cessfully decrypted. Similarly to the more restrictive attack scenario in [5], we
assume that the attacker has no freedom to choose the error vector e that is
added to the message during encryption, i.e. the error vector is always generated
randomly. We will demonstrate that the attacker can learn information about
the matrices H and Q which allow him to construct a sparse parity check matrix
for the public code. Using this matrix, the attacker can then decrypt ciphertexts
encrypted by the cryptosystem.

Similarly to [5], a special role in our attack is played by distances between ones
in matrices H and Q. Following [5], we define the distance between two ones in
positions p1 and p2, p2 > p1, in a vector of length p as min {p2 − p1, p− (p2 − p1)}
(i.e. the distance is computed cyclically).

3.1 Learning Distances in the Matrix H - Intuition

The key observation from [5] can be loosely rephrased as: ”Let e be an error
vector divided into blocks of length p. Suppose that a block of e contains the
distance d. If the distance d is also present in the corresponding circulant block
of the matrix HMDPC, then a bit-flipping algorithm fails to decode a message
with error vector e less frequently.”

We now analyze whether this behaviour could be utilized in attacking the QC-
LDPC McEliece cryptosystem. In QC-LDPC McEliece, the decoding algorithm
is not applied to e but to eQ, where Q is secret. Thus, we face the question: can
the attacker learn whether a given distance d is present in eQ?

The answer to this question is positive. Suppose that the attacker knows that
e has the distance d in its first block of p digits. We can think of the multiplication
of e and Q as an addition of those rows of Q for which the corresponding entries
in e are one. Thus, if distance d is present in e, two rows of Q, qi and qi+d mod p,
will be added together in the multiplication process. Since the distance d is
present in a block of length p in e and since Q is composed of circulant blocks
of dimension p × p, the blocks of length p in qi+d mod p are cyclic shifts of
the corresponding blocks in qi. The row qi has m ones, with m being a small
number. Thus, the vector qi + qi+d mod p contains m pairs of ones separated by
the distance d, unless an unlikely cancellation occurs. Since all the rows of Q
are sparse, we can expect these pairs to remain in eQ, undisturbed by additions
of further rows of Q. The attacker therefore knows that the distance d will be
present in eQ.

Note that the distance d will always appear in all blocks of eQ. This means
that when the attacker estimates the decoding error probability, he can only hope



to learn whether the distance d is present in one of the blocks of H. Unlike the
QC-MDPC case, the attacker will not learn whether d is present in one particular
block of H. This could potentially make the subsequent reconstruction of H more
involved. However, later we show that this is not a serious issue and that H can
still be reconstructed efficiently.

These ideas give us hope that reconstruction ofH is possible in the QC-LDPC
McEliece cryptosystem with a bit-flipping decoding algorithm. Also, similarities
between bit-flipping algorithms and soft-decision decoding algorithms give us
further hope that this reconstruction is possible even for QC-LDPC McEliece
with a soft-decision decoding algorithm.

3.2 Learning Distances in the Matrix Q - Intuition

The matrix H, however, forms only a part of the private key. The rest of the
private key is formed by matrices S and Q. Here we argue that the attacker can
even learn information about distances in the matrix Q.

Let qi be the i-th row of Q. Suppose that the row q1 contains a distance d
in one of its blocks of length p. Suppose that the attacker knows that the error
vector contains distance d in its first block of length p. Then two rows qi and
qi+d mod p will be added together during the multiplication of e and Q. Since Q
is composed of circulant blocks of size p × p, both rows qi and qi+d mod p will
contain the distance d in the same block of length p. Suppose that qi contains
the ones separated by the distance d in positions j × p + s and j × p + (s + d
mod p). Then qi+d mod p will contain ones in positions j × p + (s + d mod p)
and j×p+(s+2d mod p). Thus, the ones in the position j×p+(s+d mod p)
will cancel in qi + qi+d mod p. Since the matrix Q is very sparse, we normally
expect wH(eQ) = m×wH(e). The cancellation described above will decrease the
Hamming weight of eQ below its standard Hamming weight. Consequently, the
decoding algorithm in the QC-LDPC McEliece will have to correct fewer errors
than normally. Therefore we can expect the probability of the decoding error to
decrease severely when e contains the distance d in its first block of length p. We
can expect this effect to be present in both bit-flipping and soft-decision decoding
algorithms. Thus, observing the probability of the decoding error, the attacker
can learn whether the distance d is present in one of the blocks of length p of
the row q1. Again, the attacker can not learn exactly which block the distance
is present in. Similarly, the attacker can learn about the presence of a distance
d in rows qp+1, q2p+1, . . . , q(n0−1)p+1.

3.3 Learning Distances - Experiments

Below, we present results of our experiments, confirming the intuition from sec-
tions 3.1 and 3.2. We used a version of the QC-LDPC McEliece cryptosystem
with the following parameters: n0 = 3, w = 13, p = 8192 and m = 11.3 These

3 These parameters were selected because they were proposed in [3]. The attack pre-
sented in this paper is equally feasible for other sets of parameters, including param-
eters with p odd.



values were suggested in [3] for 80-bit security. We increased the value of t′ to
48 from 40 in the original suggestion to increase the decoding error probabil-
ity and make it easier to estimate. We discuss the relevance of this change in
the conclusion. We constructed matrices S and Q as suggested in [3]. Thus, we
constructed the matrix S so that every block in S has rows with weight approx-
imately equal to p/2, with blocks along the diagonal having rows with an odd
weight and blocks away from the diagonal having rows with an even weight. We
obtained the matrix Q by constructing a matrix of 3 × 3 circulant blocks with
the blocks on the diagonal having rows of weight 3 and the blocks away from
the diagonal having rows of weight 4, and by randomly permuting its block-rows
and block-columns.

Our implementation is based on the project BitPunch [4], which is a free
standalone cryptographic library containing implementations of various variants
of the McEliece cryptosystem. In our implementation, we used a soft-decision
decoding algorithm from [11].

We conducted an experiment to learn what distances are present in the cir-
culant blocks of matrices H and Q. Since the value of p in our cryptosystem was
8192, we were only interested in distances from 1 to 8192/2=4096. To learn the
distances, we used a slight variation of Algorithm 4 in [5]. Our variation of the
algorithm is presented here as Algorithm 1.

Algorithm 1

INPUT: number N of ciphertexts to generate
OUTPUT: vectors a, b, u and v

1. a ← zero-initialized vector of length p/2
2. b ← zero-initialized vector of length p/2
3. u ← zero-initialized vector of length p/2
4. v ← zero-initialized vector of length p/2
5. i← 0
6. while i < N do:

(a) generate a ciphertext c with a random error vector e
(b) s ← distances present in at least one block of length p in e
(c) r ← distances present in the first block of length p in e
(d) l ← 1 if the decoding failure occurs, 0 otherwise
(e) for d from 1 to p/2 do:

i. if s[d] ≥ 1 then:
A. a[d]← a[d] + l
B. b[d]← b[d] + 1

ii. if r[d] ≥ 1 then:
A. u[d]← u[d] + l
B. v[d]← v[d] + 1

(f) i← i+ 1

The algorithm decrypts a large number of messages with randomly generated
error vectors. The algorithm uses two vectors of counters: a and b. Each vector of



counters has length 4096 and is initialized as the zero vector. After the algorithm
decrypts a ciphertext c with an error vector e, the algorithm computes distances
between ones in every block of length p in e. If a distance d is present in one
of the blocks of e, the value of b[d] is increased by 1. If a distance d is present
in one of the blocks of e and there occurred a decoding error when decrypting
c, the value of a[d] is increased by 1. Thus, after a large number of ciphertexts

is processed, the ratio a[d]
b[d] estimates the probability of the decoding failure for

ciphertexts with error vectors containing a distance d.
Our variation of the algorithm in addition uses two other vectors of counters:

u and v. They again have length 4096 and are initialized as zero vectors. Vectors
u and v are useful for reconstruction of the first block-row of Q. Similarly as a
and b, they are updated every time the algorithm decrypts a new ciphertext. If
a distance d is present in the first block of the error vector e, the value of v[d] is
increased by 1. If a distance d is present in the first block of e and there occurred
a decoding error when decrypting the ciphertext, the value of u[d] is increased

by 1. Thus, after a large number of decryptions, the ratio u[d]
v[d] estimates the

probability of the decoding failure for ciphertexts with error vectors containing
a distance d in its first block.

We decrypted 103 million ciphertexts. The resulting probability estimates
a[d]
b[d] are presented in Fig. 1.

If d was present in one of the circulant blocks of Q the estimates ranged
from 0.095 to 0.109. If d was present in one of the circulant blocks of H the
estimated probability typically ranged from 0.110 to 0.118. For four distances in
H the probability was below this range but this was due to the fact that these
distance were present in Q at the same time. If a distance d was present neither
in Q nor in H, the estimated probability ranged from 0.115 to 0.122. Thus, our
experiment confirms the expectation that the lowest probabilities are obtained
for distances in Q and that probabilities for distances in H are on average lower
than probabilities for distances which are neither in Q nor in H.

3.4 Distance Spectrum Reconstruction Problem

In order to explain how the attacker can reconstruct the secret matrices H and
Q, we need to consider the problem of recovering a circulant matrix C, provided
we only know the distances in C. This problem was already introduced in [5].
However, here we present a different approach to the problem, translating the
problem into a graph problem.

Let us consider a circulant matrix C of the dimension p × p. Let P =
{p0, p1, . . . , pw−1} be the ordered sequence of positions of ones in the first row
of C. We define the distance spectrum of P as the set

DS(P ) = {pi − pj mod p; pi, pj ∈ P}.

Suppose we know the distance spectrum D and we want to learn the matrix
C. Since every row of C gives rise to the same distance spectrum, we can only



Fig. 1. Estimates of the probability of the decoding error from the experiment in
Section 3.3. Distances in one of the circulant blocks of Q are marked in blue. Distances
in one of the circulant blocks of H are marked in red. Distances which are present
neither in Q nor in H are marked in black.



hope to learn C up to a shift of rows. Thus we can look for all sets P such
that DS(P ) = D with the additional constraint that p0 = 0. In addition, we
know that the smallest distance in D must correspond to a distance between
two cyclically consecutive ones. Thus, we can add the additional constraint that
p1 = min(D).

Definition 1. Distance spectrum reconstruction (DSR) problem: Given a set D,
find all P such that DS(P ) = D, p0 = 0 and p1 = min(D).

It is easy to show that if a set P = {p0, p1, p2, . . . , pw−1} is a solution to the
DSR problem, then so is the set

P ′ = {p0, p1, p− pw−1 + p1, p− pw−2 + p1, . . . , p− p2 + p1} .

Given the spectrum D, let us define the graph GD as follows: a set of vertices
is given by the set D. Edge (di, dj) exists, if and only if di − dj mod p ∈ D. If
DS(P ) = D, the induced subgraph GD[P ] is a complete graph.

We will change the DSR problem into a graph problem: Given graph GD,
find a clique of w vertices, that contains vertices {p0 = 0, p1 = min(D)}. From
each clique, we obtain a candidate for a solution P of the DSR problem. The
candidate sequence P can be verified by checking whether DS(P ) = D holds.

It is well known that the clique problem is NP-hard in general. In our exper-
iments, we exploit the fact that the spectrum D and the graph GD are sparse.
In sparse graphs, we expect to find only a small number of possible w-cliques.

Instead of looking for w-cliques directly, we filter potential sets of positions
with the following algorithm:

Algorithm 2

INPUT: set of distances D, size of cliques w
OUTPUT: set of candidates for w-cliques

1. (Identify 3-cliques) Find a set of candidates A: ∀p2 ∈ A: {0, p1, p2} is a 3-
clique. This can be checked by testing for each p2 ∈ D \ {0, p1} whether
p2 − p1 ∈ D.

2. (Combine 3-cliques) Set E = ∅. For each pair (p1, p2), p2 ∈ A:
(a) Construct set B: ∀p3 ∈ B: {0, p1, p2, p3} is a 4-clique. This can be checked

by testing each p3 ∈ A \ {p2}, whether p3 − p2 ∈ D.
(b) (Filter 1 ) If |B| < w − 3, try another pair (p1, p2).
(c) Repeat: Remove from C = {0, p1, p2} ∪ B all elements that are not

connected to at least w − 1 until either |C| < w, or no more elements
can be removed.

(d) (Filter 2 ) Remove all C’s with |C| < w.
(e) Set E = E ∪ {C}.

3. Return E.

After the algorithm finishes, E contains sets of positions, that can contain
an original position sequence P . Clearly, if some set C ∈ E contains exactly w



elements, it must form a w-clique: there are exactly w vertices in the induced
subgraph, and each is connected to w−1 other vertices. If the size of C is greater
than w, we can apply further clique finding algorithms to this set.

We implemented a controlled experiment, where we tried to reconstruct a
randomly generated sequence of positions. We used parameters n = 8192, w =
13. Out of 1000 experiments, Algorithm 2 reported surplus results (4 or 3 sets
instead of the expected 2) only in 10 cases. The set of 1000 experiments with
software written in Python took 558s on Intel i7-3820 CPU @ 3.60GHz.

3.5 Reconstructing the Matrix H

Suppose that the attacker performed the experiment from Section 3.3. Due to the
intuition presented in Section 3.1 he expects that if a distance d is present in one

of the circulant blocks of the matrix H, then the estimate a[d]
b[d] of the probability

of the decoding error will be lower than normal. Thus he might select distances
for which the estimated probability in the experiment was below some threshold
and try to reconstruct the matrix H from these distances. Let D′T be the set
of distances for which the estimated probability in the experiment was below a
threshold T . The attacker can create a set DT = {d : d ∈ D′T or p− d ∈ D′T }.
Let Pi be the ordered sequence of positions of ones in the first row of Hi. Assum-
ing that DS(Pi) ⊂ DT ∀i, the attacker can try to solve the following variation
of the DSR problem:

Problem 1. Given a set DT , find all P such that |P | = w, DS(P ) ⊂ DT , p0 = 0
and p1 = min(DS(P )).

If P satisfies all the conditions in the problem, it becomes a candidate for
a row in one of the blocks Hi. Similarly as in the DSR problem, if a set P =
{p0, p1, p2, . . . , pw−1} satisfies the conditions in Problem 1, then so does the set
P ′ = {p0, p1, p− pw−1 + p1, p− pw−2 + p1, . . . , p− p2 + p1}.

We attempted to solve Problem 1 using the data presented in Fig. 1 and
the threshold T = 0.118. Running a variant of Algorithm 2 on a standard PC4,
we instantly obtained n0 = 3 pairs of solutions (P, P ′). Upon observing such
result, the attacker knows that with a very high probability only one sequence
in each pair (P, P ′) represents a row in one of the blocks Hi and for every two
different pairs these sequences correspond to rows in distinct blocks Hi and
Hj . Let P1 be the set of positions of ones in the first row of H1. If we reorder
rows of H by a cyclical shift, the resulting matrix will still be a parity check
matrix for the private code composed of circulant blocks. Thus the attacker can
assume that the first position in P1 is 0 and that the second position is equal to
min(DS(P1)). Therefore, upon observing solutions to Problem 1 to be n0 pairs
(P, P ′), the attacker obtains (n0!) × 2n0 × pn0−1 candidates for the matrix H.
For the parameters from Section 3.3 this means obtaining approximately 232

candidates.
4 In particular, we ran Algorithm 2 with inputs D = D0.118 and w = 13 for all possible

values of p1. We tested candidates for p1 in ascending order. After a candidate for
p1 was tested, it was removed from D0.118.



3.6 Reconstructing the Matrix Q

Due to the intuition presented in Section 3.2, the attacker expects distances
present in circulant blocks in the first block-row of the matrix Q to give the

smallest ratios u[d]
v[d] in the experiment from Section 3.3. This was the case in our

experiment, where for distances present in circulant blocks in the first block-row
of Q the ratio was always below 0.085, whereas for other distances it was always

above 0.105. The graph of the ratios u[d]
v[d] is presented in Fig. 2. Thus the attacker

Fig. 2. Ratios u[d]
v[d]

from the experiment in Section 3.3. The ratios below 0.09 correspond
precisely to the distances present in circulant blocks in the first block-row of Q.

can select distances for which the ratio u[d]
v[d] in the experiment was below some

small threshold L and try to reconstruct the first block-row of the matrix Q

from these distances. Let D′L be the set of distances for which the ratio u[d]
v[d] in

the experiment was below a threshold L. Suppose that the attacker knows that
the Hamming weight of rows in circulant blocks of Q is either w1 or w2. (this
was the case in the cryptosystems proposed in [3]). Then the attacker can try to
solve the following problem:

Problem 2. Given a set DL = {d : d ∈ D′L or p− d ∈ D′L}, find all P such that
|P | ∈ {w1, w2}, DS(P ) ⊂ DL, p0 = 0 and p1 = min(DS(P )).

If P satisfies all the conditions in the problem, it becomes a candidate for
a row in one of the blocks in the first block-row of Q. Again, if a set P =



{p0, p1, p2, . . . , pw−1} satisfies the conditions in Problem 2, then so does the set
P ′ = {p0, p1, p− pw−1 + p1, p− pw−2 + p1, . . . , p− p2 + p1}.

We attempted to solve Problem 2 for the set D0.085 derived from the data
from the experiment in Section 3.3. For the cryptosystem used in Section 3.3, it
is a public knowledge that every block-row of Q contains two blocks with rows
with the Hamming weight 4 and one block with rows with the Hamming weight
3. We found 2 pairs of sequences (P, P ′) of length 4. For the length 3 we found
5 pairs (P, P ′) which were not derived from the solutions for the length 4. This
result allows the attacker to build a set of 3!× 22 × 5× 2× p3 ≈ 247 candidates
for the first block-row of Q.

Provided that suitable counters are added to Algorithm 1, the attacker can
analogously build sets of candidates for other block-rows of Q. However, if the
attacker wanted to combine these sets to produce one set of candidates for Q,
the resulting set would be too large.

3.7 Learning to Decrypt

Instead of reconstructing the private key {H,S,Q}, the attacker can try to con-
struct the matrix H̃ = H × QT . The matrix H̃ is a parity check matrix of the
public code since G′ · H̃T = S−1 ·G ·Q−1 ·Q ·HT = S−1 ·G ·HT = S−1 · 0 = 0.
The matrix H̃ contains at most n0×w×m ones in a row. Due to the sparsity of
the matrix H̃, the attacker can hope to use an LDPC decoding algorithm with
H̃ to decrypt an arbitrary message encrypted by the cryptosystem.

The attacker can try to construct the first block of the matrix H̃. For the
block H̃0 it holds that H̃0 =

∑n0−1
i=0 Hi (Q0i)

T
. For each Hi, the set of solutions

to Problem 1 contains a sequence P i which represents a row in Hi. Since the
first column of a circulant matrix is equal to its last row reversed, the transpose
of a circulant matrix generates the same distance spectrum as the original ma-
trix. Therefore, for every (Q0i)

T
, the set of solutions of Problem 2 contains a

sequence PQ,i which represents a row in (Q0i)
T

. For the sequences P i and PQ,i

we consider polynomials pi(x) and pQ,i(x) obtained as follows: to a sequence

P = {p0, p1, . . . , ps−1} we allocate the polynomial p(x) =
∑s−1
j=0 x

pj .
Next, we will use the fact that the ring of circulant binary matrices of dimen-

sion p× p is isomorphic to the ring Z2[x]/(xp + 1). The isomorphism maps a cir-
culant matrix with the first row (c0, c1, c2, . . . , cp−1) onto the polynomial c(x) =

c0+c1x+c2x
2+· · ·+cp−1xp−1. Therefore for the polynomial h̃0(x) corresponding

to the block H̃0 we have h̃0(x) =
∑n0−1
i=0

(
xαipi(x)

) (
xβipQ,i(x)

)
(mod xp + 1)

for some αi, βi ∈ {0, 1, . . . , p− 1}. Thus we have h̃0(x) =
∑n0−1
i=0 xγipi(x)pQ,i(x)

(mod xp+1) for some γi ∈ {0, 1, . . . , p− 1}. If we reorder rows of H̃ by a cyclical
shift, the resulting matrix will still be a parity check matrix for the public code.
Thus it suffices the attacker to look for the polynomial h̃0(x) with γ0 = 0.

Suppose that the attacker attacks the cryptosystem which we used in Section
3.3 and suppose that he obtains the same number of solution to Problem 1 and
Problem 2 as we obtained in sections 3.5 and 3.6. Then the attacker can create
3!× 23 × 22 × 5× 2× p2 ≈ 237 candidates for h̃0(x).



Having obtained a number of candidates for the first row of H̃0, the attacker
can proceed to create a set of candidates for the first row of H̃. Let V be the set
of candidates for the first row of H̃0. For every v ∈ V , the attacker will look for
words in the dual code to G′ starting with v and having the Hamming weight
at most n0 × w ×m. Thus the attacker can look for vectors u1, . . . , un0−1 ∈ Zp2
satisfying

 G′00 G′01 . . . G′0,n0−1
...

...
. . .

...
G′n0−2,0 G

′
n0−2,1 . . . G

′
n0−2,n0−1




v
u1

...
un0−1

 =


0
0
...
0

 .

The equation can be rewritten as G′01 . . . G′0,n0−1
...

. . .
...

G′n0−2,1 . . . G
′
n0−2,n0−1


 u1

...
un0−1

 =

G′00
G′10
G′20

(v ) . (1)

For the cryptosystem from Section 3.3 the matrix on the left-hand side of
the equation (1) had a full rank. Therefore, for the cryptosystem from Section
3.3, the equation (1) has at most one solution for a given v. In Appendix, we
consider a scenario when the matrix on the left-hand side of the equation (1)
has each of its circulant blocks generated uniformly independently at random.
We argue that for values of n0 and the block length p relevant for the QC-LDPC
McEliece cryptosystem the probability that the rank of the matrix is close to the
full rank is always nontrivial. Thus it is reasonable to expect that the equation
(1) will with a nontrivial probability have only a small number of solutions.

Note that the attacker needs to put the matrix on the left-hand side of the
equation (1) in the reduced upper echelon form only once and can use the reduced
upper echelon form for every v ∈ V . The attacker will keep only those solutions
with wH((v, u1, . . . , un0−1)) ≤ n0 × w × m. Each solution fully determines a
candidate for the matrix H̃. If the resulting set of candidates for H̃ contains
more than one element, the correct candidate can be determined by checking
against a plaintext-ciphertext pair.

For the cryptosystem from Section 3.3, we have verified that H̃ can be used
in a LDPC decoding algorithm to successfully decrypt ciphertexts.

4 Conclusion

We have presented a reaction attack on the QC-LDPC McEliece cryptosystem.
Our attack is based on ideas from [5], where the attack on the closely related QC-
MDPC McEliece cryptosystem was described. Compared to the recent attack on
the QC-LDPC McEliece presented in [12], our attack has the advantage that it
is feasible even when the size of circulant blocks in the cryptosystem is chosen
to be odd.



We have verified the attack ideas on a version of QC-LDPC McEliece cryp-
tosystem with parameters as proposed in [3], except for the parameter t′ which
we increased from 40 to 48. The parameter t′ represents the number of errors
added to an encoded message. Its increase resulted in the cryptosystem’s prob-
ability of the decoding error to increase to approximately 0.1. This allowed us
to estimate the probability of the decoding error using fewer decryptions. Con-
sequently, we were able to break the cryptosystem after running 103 million
decryptions.

In real applications the probability of the decoding error of around 0.1 would
be very impractical. Thus, one would expect the QC-LDPC cryptosystem to
be used with a value of t′ which makes the probability of the decoding error
significantly smaller. If this is the case, and if the attacker cannot inject into
encoded messages a number of errors higher than t′, then the attacker would
need significantly more decryptions to estimate the probability of the decoding
error and execute the attack. For instance, results of simulations presented in
[1] (Fig.6.1. on p.88 in [1]) indicate that if the original value t′ = 40 was used in
the cryptosystem considered in this paper, then the probability of the decoding
error would be of order 10−5. Therefore, we expect that the attacker who can
only send messages with t′ = 40 errors would need 104 times more decryptions
in order to break the cryptosystem.

In the experiments presented in this paper, we always assumed that the
attacker does not have the freedom to choose what error vector is added to the
message during encryption. Although we omitted the results from this paper, we
also conducted experiments for the scenario where the attacker is free to choose
the error vector. Similarly as in [5], we considered an attacker who for every
possible distance d constructs error vectors with many pairs of ones separated
by the distance d. In this case, it turns out that the attacker can break the same
cryptosystem with t′ = 48 with only 4 million decryptions.

The version of the QC-LDPC McEliece cryptosystem we used to verify our
attack ideas employed a soft-decision decoding algorithm. Thus our results also
confirm the conjecture from [5] that soft-decision decoding algorithms can be
vulnerable to leak information about the secret parity-check matrix.
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Appendix: On the rank of a randomly generated
block-circulant matrix

In this appendix we study the rank over GF(2) of a matrix composed of n0×n0
randomly generated circulant blocks, the blocks being of size p × p. We focus
on the case when p is odd, since this ensures that the QC-LDPC McEliece
cryptosystem is immune against the attack presented in [12].

Firstly, we recall some well-known facts about circulant matrices.

Fact 1 [Proposition 1.7.1 in [7]] Consider the mapping τ which sends the cir-
culant binary (p×p)-matrix with the first row (c0, c1, c2, . . . , cp−1) onto the poly-
nomial c(x) = c0 + c1x + c2x

2 + · · · + cp−1x
p−1. Then the mapping τ is an

isomorphism between the ring of circulant binary (p × p)-matrices and the ring
Z2[x]/(xp + 1).

Fact 2 [p. 42 in [7]] The inverse of a non-singular circulant matrix is again
circulant. A circulant binary (p × p)-matrix C is non-singular if and only if
τ(C) is relatively prime to xp + 1.

Let f be a polynomial in Z2[x]/(xp + 1) and let f(x) = g(x)h(x) where
g(x) = gcd(f(x), xp + 1). Then τ−1(f) = τ−1(g)τ−1(h). By Fact 2, τ−1(h) is
non-singular. Therefore τ−1(f) has the same rank as τ−1(g). It is well-known
(e.g. Theorem 12.12 in [6]) that τ−1(g) generates a cyclic code of dimension p−d
where d is the degree of g. Thus we have:



Fact 3 The rank of a circulant binary (p× p)-matrix C is equal to p− d where
d is the degree of gcd(τ(C), xp + 1).

Let f and g be polynomials in Z2[x], and denote by ψ(f) the number of
polynomials of smaller degree which are relatively prime to f in Z2[x].

Fact 4 [Theorem 1.7.5 in [7]] If gcd(f(x), g(x)) = 1, then ψ(fg) = ψ(f)ψ(g)

Fact 5 [Theorem 1.7.6 in [7]] Let p be odd. Then we have

ψ(xp + 1) = 2p
∏
j|p

(
1− 2−oj(2)

)φ(j)/oj(2)
.

Here oj(2) denotes the order of 2 in the group Z∗j and φ(j) denotes the Euler
function.

It follows that the number of p×p circulant matrices with full rank is ψ(xp+
1). Circulant p × p matrices with rank p − 1 are precisely the matrices whose
corresponding polynomial is a product of x+1 and a polynomial coprime to xp+1

x+1
with degree less than p − 1. If p is odd, then x + 1 appears in the irreducible
factorization of xp+1 only once. Thus it follows that the number of p×p circulant
matrices with rank p− 1 is ψ(x

p+1
x+1 ) = ψ(xp + 1)/ψ(x+ 1) = ψ(xp + 1).

Now we turn to block-circulant matrices. Let ρ(p) = ψ(xp + 1)/2p.

Proposition 1. Let p be odd. Let B be a matrix composed of (n0 − 1)× (n0 −
1) circulant blocks of size p × p. Suppose that the blocks in B were generated
uniformly and independently at random from the space of all binary circulant
p× p matrices. Then

P (rank(B) ≥ (n0 − 1)× (p− 1)) ≥
n0−1∏
i=1

(
1− (1− ρ(p))

i
+ ρ(p)i

)
.

Proof. Let Bij be the p× p block present in the i-th block-row and j-th block-

column of B. Let bij(x) = τ(Bij). With probability 1−(1− ρ(p))
n0−1+ρ(p)n0−1

it holds that either one of the blocks in the first block-column is invertible or all
blocks in the first block-column have rank p− 1.

Firstly, we look at the case when there exists an invertible block in the first
block-column. Without loss of generality we can assume that this block is B11 (if
not, we can swap block-rows of B ). For every i ∈ {2, . . . , n0 − 1} we can erase
the block Bi1 by adding to the i-th block-row the first block-row multiplied
by
(
Bi1 ×B−111

)
. This corresponds to multiplying B from the left by the matrix

Mi = Ip(n0−1)×p(n0−1)+M̃i, where M̃i is the matrix composed of (n0−1)×(n0−1)

blocks of size p× p with the block Bi1 ×B−111 in the i-th block-row and the first
block-column and with zero blocks everywhere else. Thus the resulting matrix
has the same rank as B. We obtain a matrix of the form

B11 B12 . . . B1,n0−1
0
... B̃
0

 , (2)



where B̃ is a matrix composed of (n0 − 2) × (n0 − 2) circulant blocks of size
p × p. Let B̃ij be the p × p block present in the i-th block-row and j-th block-

column of B̃. Then B̃ij = Bi+1,1×B−111 ×B1,j+1 +Bi+1,j+1. The block Bi+1,j+1

was generated independently from all other blocks in B, hence we can see B̃ij
as a sum of Bi+1,j+1 and an independent circulant matrix. Since Bi+1,j+1 was

generated uniformly at random from the space of circulant p × p matrices, B̃ij
will, like Bi+1,j+1, have the property that each bit in its first row will be 1 with
probability 1/2 independently of other bits in its first row. Thus we can think
of B̃i,j as of another uniformly randomly generated matrix from the space of

circulant p× p matrices. Moreover, B̃i,j is independent of other blocks in B̃ and
it is also independent of blocks in the first block-column of the original matrix
B.

Now we consider the case when all blocks in the first block-column of B have
rank p − 1. Then for every bi1(x) there exists ri(x) ∈ Z2[x]/(xp + 1) such that
bi1(x)ri(x) = x + 1 mod (xp + 1) (the polynomial ri(x) can be found by the
extended Euclidean algorithm). Thus for every i ∈ {2, . . . , n0 − 1} we can erase
the block Bi1 by adding to the i-th block-row the first block-row multiplied by

τ−1
(
bi1(x)
x+1

)
× τ−1 (r1(x)). By the same argument as in the previous case, this

will not change the rank of B. We obtain a matrix of the form (2), where B̃ is
again composed of (n0−2)× (n0−2) circulant blocks of size p×p. Now we have

B̃ij = τ−1
(
bi+1,1(x)
x+1

)
× τ−1 (r1(x))×B1,j+1 +Bi+1,j+1. By the same argument

as in the previous case, we can again think of B̃i,j as of a uniformly randomly

generated matrix from the space of circulant p× p matrices. In addition, B̃i,j is

independent of other blocks in B̃ and it is also independent of blocks in the first
block-column of the original matrix B.

Thus in both cases we were able to transform the matrix B to a matrix of
the form (2), while preserving its rank. The submatrix B̃ in (2) has the same
properties as the original matrix B except it contains (n0 − 2)× (n0 − 2) blocks
instead of (n0−1)×(n0−1) blocks. In addition, the submatrix B̃ is independent of
blocks in the first block-column of the original matrix B. Proceeding inductively,
the statement of the proposition follows.

In the QC-LDPC McEliece cryptosystem n0 is typically small (3 or 4, for
example). Let α(p, n0) be the lower bound from Proposition 1, i.e.

α(p, n0) =

n0−1∏
i=1

(
1− (1− ρ(p))

i
+ ρ(p)i

)
.

In Figure 3 we present values of α(p, 4) for all odd p in the range from 1 to
20000. The smallest value of α(p, 4) in the figure is 0.11. Thus the figure shows
that if n0 = 4 then the probability that the rank of B is close to the full rank is
nontrivial for all odd p below 20000.



Fig. 3. Values of the lower bound α(p, 4) for the probability that a matrix composed
of 3× 3 circulant blocks of size p× p which are generated uniformly and independently
at random has rank at least 3× (p− 1) for all odd p in the range from 1 to 20000.


