
Quantum Security of NMAC and Related
Constructions

— PRF domain extension against quantum attacks

Fang Song1 and Aaram Yun2

1 Portland State University, U.S.A.
fang.song@pdx.edu

2 Ulsan National Institute of Science and Technology (UNIST), Korea
aaramyun@unist.ac.kr

Abstract. We prove the security of NMAC, HMAC, AMAC, and the
cascade construction with fixed input-length as quantum-secure pseudo-
random functions (PRFs). Namely, they are indistinguishable from a
random oracle against any polynomial-time quantum adversary that can
make quantum superposition queries. In contrast, many blockcipher-
based PRFs including CBC-MAC were recently broken by quantum su-
perposition attacks.
Classical proof strategies for these constructions do not generalize to the
quantum setting, and we observe that they sometimes even fail com-
pletely (e.g., the universal-hash then PRF paradigm for proving security
of NMAC). Instead, we propose a direct hybrid argument as a new proof
strategy (both classically and quantumly). We first show that a quantum-
secure PRF is secure against key-recovery attacks, and remains secure
under random leakage of the key. Next, as a key technical tool, we extend
the oracle indistinguishability framework of Zhandry in two directions:
we consider distributions on functions rather than strings, and we also
consider a relative setting, where an additional oracle, possibly correlated
with the distributions, is given to the adversary as well. This enables a
hybrid argument to prove the security of NMAC. Security proofs for
other constructions follow similarly.

Keywords: cascade construction, NMAC, HMAC, augmented cascade,
AMAC, PRF domain extension, quantum query, quantum security, post-
quantum cryptography

1 Introduction

After Shor proposed his celebrated quantum algorithm for solving integer fac-
torization and discrete logarithms efficiently, it became apparent that once prac-
tical quantum computers become reality, a large part of public-key cryptogra-
phy, including elliptic curve cryptography and RSA, will be completely broken.
Therefore, research in post-quantum cryptography has been emerging: new cryp-
tographic algorithms are designed which can still run on conventional classical
computers, but their security holds against potential quantum attacks.

There are two possible approaches for modeling quantum attacks in post-
quantum cryptography. One is to assume a quantum attacker who has only
quantum computational capabilities. In other words, a classical attacker who has
a quantum computer in its garage. Such an attacker can run quantum algorithms,
but its interaction with the environment remains classical. In such an adversarial
model, while some important classical proof techniques do not carry over such
as rewinding [20,17], there are also many examples of existing security proofs
that go through relatively easily as long as we switch to hardness assumptions
which are not broken by quantum computers [16].

On the other hand, we can be more conservative, and design cryptographic
schemes secure against quantum attackers who have not only quantum com-
putational capabilities, but are also capable of interacting quantumly with the
environment. In other words, such an attacker can access the cryptographic prim-
itive under attack in quantum superposition. Such a scheme would be secure not
only now, but also in the far future when quantum computing and quantum net-
working technologies become prevalent and ubiquitous, and could be also used as
a subprotocol in larger quantum computing protocols. We take this adversarial
model in this work and refer to this security notion as quantum security [21].

Proving quantum security is notoriously challenging. Classically, when an
adversary has access to an oracle, each query examines only one point in the
domain of the oracle, and that fact is often used crucially in classical security
proofs. On the other hand, when an adversary can make superposed queries,
each query can potentially probe all points in the input domain in superposition.
Therefore, for example, one cannot perform lazy sampling when simulating such
an oracle. In fact, there are schemes which are secure classically but fail to be
quantum-secure. For example, Kuwakado and Morii showed that three-round
Luby-Rackoff cipher [12] and Even-Mansour cipher [13] do not have quantum
security, even though they are secure classically.

Later in a series of works [21,7,8], the quantum security of several basic prim-
itives, such as PRFs, MACs and signatures, was proved. However one important
question was still largely unclear, as Boneh and Zhandry noted [8]:

Can we construct a quantum-secure PRF for a large domain from a
quantum-secure PRF for a small domain? In particular, do the CBC-
MAC or NMAC constructions give quantum-secure PRFs?

Unfortunately, in Crypto 2016, Kaplan et al. showed that many popular
MACs and authenticated encryption schemes are not quantum-secure [11]. For
example, CBC-MAC is shown to be insecure when the adversary is allowed to
make quantum queries, even when the underlying blockcipher is quantum-secure,
and the number of blocks are fixed. Since it is known that a quantum-secure
PRF is also quantum-secure as a MAC [7], this shows that CBC-MAC is not
a quantum-secure PRF, and the same is true for many other blockcipher-based
MACs attacked in the paper. Similar results were independently discovered by
Santoli and Schaffner in [15]. This brings us to the basic question:

Is domain extension for PRFs possible in the quantum setting?

2

1.1 Our contributions

In this paper, we give a positive answer to this question. Our discovery is that
NMAC and related schemes like HMAC, AMAC, and the (fixed-length) cascade
construction are quantum-secure as PRFs. Together with results in [11], our work
provides almost a complete picture on the PRF domain extension problem in the
quantum world. We highlight some of our main proof ideas and contributions,
followed by a gentle technical overview.

– A general framework for oracle-indistinguishablitiy of function dis-
tributions. All constructions consist of iterated evaluations of the basic
PRF, and the output from previous round is used as the key to determine
the PRF in the next round. This is essentially giving multiple PRF oracles
F (ki, ·) with independent keys ki to the adversary. Luckily since the number
of oracles is polynomially bounded classically (i.e., number of adversary’s
queries), this does not give the adversary more power by a simple hybrid ar-
gument relating to the standard PRF indistinguishability. However, when we
allow quantum-accessible oracles, in effect, the adversary can query in quan-
tum superposition exponentially many PRF oracles each with an indepen-
dently random key. Our first technical contribution shows that, the standard
notion of quantum-secure PRF implies this seemingly stronger notion, which
enables us to prove security of the cascade construction (for fixed-length in-
puts) already. More generally we view this as oracle-indistinguishability of
distributions over functions. Therefore we extend Zhandry’s work to this
setting and show equivalence between ordinary and oracle indistinguishabil-
ity. We further generalize it, for applications in NMAC for example, to the
setting that some additional oracle possibly dependent on the two distribu-
tions under consideration is also given to the adversary (we call this relative
oracle-indistinguishability).

– Direct hybrid argument for NMAC and variants. NMAC and other
variants can be viewed as “encrypted” version of the cascade construction
by evaluating the output from cascade by another function (e.g., PRF under
an independent key). Classical security proofs usually proceed by reducing
to some property of its inner cascade. For example the famous “hash-then-
PRF” paradigm states that the composition of a (computationally) almost
universal hash function with a PRF gives a secure PRF with larger domain.
Bellare [2] shows that the cascade construction is indeed computationally
almost universal, and the composition theorem implies that NMAC is a se-
cure PRF immediately. However, it is easy to see that this would not work
in the quantum world; there are many universal hash functions with non-
trivial periods, and if we start with such a periodic universal hash function,
any hash-then-PRF construction inherits that period, which can be detected
efficiently by quantum Fourier sampling. Therefore, one cannot prove the
quantum security of hash-then-PRF constructions by relying solely on the
(computationally almost) universality and the PRF security. Another ap-
proach by Gaži, Pietrzak, and Rybár [9] proves the security of NMAC by

3

reducing it to the security of the cascade construction against prefix-free
queries. However the notion of prefix-free does not have a natural counter-
part in the regime of quantum superposition queries. Instead, we prove the
security of NMAC by a direct hybrid argument based on our relative oracle-
indistinguishability framework for function distributions. We stress that this
also provides an alternative (and cleaner in our opinion) proof for classical
security as well.

– Further properties of quantum-secure PRFs. In proving the security
of these constructions, we also give further characterizations and strength-
ened properties of PRFs. Specifically, we show that a quantum-secure PRF is
also secure against key-recovery attacks, and in addition a PRF remains in-
distinguishable from a random oracle even if the PRF key is leaked in some
restricted way. While the corresponding classical results are more or less
straightforward, they face considerable difficulties to carry through quan-
tumly. We hence demonstrate more examples and tools of quantum proof
techniques where classical security can be “lifted” to quantum security.

Technical Overview. NMAC is a construction producing a variable-input-length
PRF NMAC[f], given a secure PRF f : {0, 1}c×{0, 1}b → {0, 1}c (with b ≥ c)3.
Here, the first input argument is the key k ∈ {0, 1}c, the second input argument
is the message block x ∈ {0, 1}b, and the output f(k, x) = y ∈ {0, 1}c has the
same bit length as the key. NMAC turns this f into a PRF with the key length
of 2c, the output length of c, and the unbounded input length by

NMAC[f]((k1, k2), x1 . . . xl) := f(k2,Casc[f](k1, x1 . . . xl)‖0b−c),

where Casc[f] is the cascade construction given as

Casc[f](k, x1 . . . xl) = f(. . . f(f(k, x1), x2), . . . , xl).

To explain our methods, first let us discuss the cascade construction. It is
well-known that the cascade construction would not be a secure PRF if mes-
sages of variable lengths are allowed. For example, an adversary may query
y = Casc[f](k, x1) = f(k, x1), and compute f(y, x2) = Casc[f](k, x1x2), then
query Casc[f](k, x1x2) to check if the queried oracle is Casc[f] or a true ran-
dom function. To prevent such an extension attack, one obvious way is to fix
the number of blocks. More generally, one can prove security against prefix-free
adversaries, who never make queries m and m′ where m is a proper prefix of m′.
In fact, the cascade construction is proved to be secure in this sense in [5]. To
achieve full security, one would process the output of the cascade construction
further, and this would give us schemes like NMAC/HMAC or AMAC.

3 To be precise, the definition of NMAC given here is a simplified version which is
not exactly the same as the original definition given in [4], which for example can
handle messages whose lengths are not divisible by the block length b. However, the
differences do not affect the security, so previous works on NMAC, like [2] and [9],
also analyzed this simplified version.

4

Quantum security of fixed-length cascade. For quantum security, there
seems no natural analogue of prefix-freeness in presence of quantum superposed
queries. Instead, we consider fixed-input-length cascade Cascl[f], processing mes-
sages of total block length l, for arbitrary but fixed l.

It is easy to observe that, when b = 1, the l-fold cascade Cascl[f] is the same as
the Goldreich-Goldwasser-Micali construction [10] of a PRF out of a secure PRG.
Zhandry in [21] proved that if the underlying PRG is secure against polynomial-
time quantum adversaries, then the GGM construction remains quantum-secure.
In fact, a PRG is equivalent to a PRF with a polynomial-size domain, therefore
Zhandry’s proof almost immediately applies to Cascl[f] with such a small-sized
PRF f . But, to remove the small-domain restriction, we need more work.

To get a sense of the general difficulty of proving quantum security, we briefly
review the classical GGM proof. Roughly speaking, two hybrid arguments are
used to construct a distinguisher for the underlying PRG from a distinguisher
for the GGM construction; one hybrid argument is over the bit-length of the
message inputs of the GGM PRF, and the other is over the individual queries
made by the adversary. When trying to adapt the classical proof to quantum
security, the first hybrid is not at all problematic, but the second hybrid is not
usable; since the adversary in general makes many superposed queries which
examine all bitstrings of the given length, the fact that only polynomially-many
bitstrings are examined by queries of the adversary is no longer true in the
quantum setting.

Zhandry resolves this, by observing that the second hybrid is in fact not
necessary, and instead the first hybrid can be carried out by relying on the or-
acle security of the underlying PRG. Suppose D is a distribution on a set Y.
Let us define DX as a distribution of functions of form X → Y where for each
x ∈ X , a function value y ∈ Y is chosen independently according to D. Then,
two distributions D1 and D2 are said to be oracle-indistinguishable, if DX1 and
DX2 are indistinguishable for all X . We also say that a PRG G is oracle-secure,
if its output distribution is oracle-indistinguishable from the uniform random
distribution. This notion expresses indistinguishability of possibly exponentially
many independent samples from the PRG (indexed by each x ∈ X) and possibly
exponentially many uniform random numbers, and oracle indistinguishability
together with the first hybrid argument gives the security proof of GGM, both
classically and quantumly. In the classical case, the oracle indistinguishability
can be proved via a hybrid argument over the total number of adversarial queries,
since at most polynomially many of the samples will be examined by the adver-
sary. On the other hand, in the quantum case, a completely different approach
is needed, which is given by Zhandry’s “small-range distributions”.

Returning to the cascade construction, we need to work with PRFs instead
of PRGs. We may follow the same outline of the proof for the GGM construc-
tion, except we need oracle security of PRFs. Hence, we adapt the notion of
oracle indistinguishability to function distributions. When D is a distribution of
functions of form X → Y, then for any set Z, we define DZ as the distribution
of functions of form f : Z × X → Y, sampled by choosing f(z) ← D indepen-

5

dently for each z ∈ Z. (Note that we are using the ‘currying’ isomorphism here,
regarding f as f : Z → YX .) Then, the oracle indistinguishability of D1 and D2

can be defined as indistinguishability of DZ1 and DZ2 for every set Z. We prove
oracle security of secure PRFs also by the small-range distributions.

Quantum security of NMAC. We prove the security of NMAC by a
direct hybrid argument, adapting the hybrid argument for the cascade con-
struction, rather than reducing to some property of the inner cascade in the
classical literature. We start by the standard procedure of swapping the outer
instance of the PRF f with a random oracle H; now the modified scheme is
H(Casc[f](k, x1 . . . xl)) = H(f(. . . f(f(k, x1), x2), . . . , xl)). Using a hybrid argu-
ment, we would like to repeatedly swap inner instances of the PRF f with true
random functions, until only the true random function remains. However, we
need a stronger security notion for the PRF f to do this: while the random ora-
cle H prevents the fatal extension attack, still, queries of different block lengths
would leak some information on the inner state of PRF instances. In particular,
an adversary can make a single-block query x to obtain H(f(k, x)), and make a
zero-block query to obtain H(k). Here, the hash value H(k) of the secret key k is
leaked by the random oracle H, and this prevents using the indistinguishability
of the PRF f . What we need is that f(k, ·) should remain pseudorandom even
when H(k) is leaked and the random oracle H is accessible. We call this property
the security under random leakage. Nonetheless, we prove that a quantum-secure
PRF remains quantum-secure under random leakage, and therefore we do not
need to impose this additional condition on a PRF.

To carry out the hybrid argument, however, we need another augmentation
to the oracle indistinguishability: while our NMAC security proof itself is in the
standard model, a random oracle H is introduced during the security proof,
and the PRF security under random leakage is inherently a security notion in
the (quantum) random oracle model. Hence we introduce and study oracle in-
distinguishability of function distributions, relative to a random oracle H. The
function distributions may be in general dependent on the random oracle H, and
an adversary always in addition has access to H to attack indistinguishability
or oracle indistinguishability. The tools we introduced so far are enough to en-
able us to complete the hybrid argument and prove quantum security of NMAC
finally.

Quantum security of augmented cascade and AMAC. In [3], Bel-
lare, Bernstein, and Tessaro prove PRF security of AMAC. In fact, they analyze
ACSC, which is the augmented cascade. We can say that ACSC is to AMAC
as NMAC is to HMAC. In ACSC, the output of the usual cascade construction
Casc[f] is further processed by a keyless output transform Out, which is typically
truncation: Out(b1 . . . bc) = b1 . . . br for some r < c. They show that the aug-
mented cascade is a secure PRF, if f is secure under Out-leakage, that is, f(k, ·)
remains pseudorandom even when Out(k) is leaked. In this paper, using oracle
indistinguishability of functions, we also prove that ACSC is quantum-secure if
f is secure under Out-leakage.

6

Organization Sect. 2 introduces basic notations and definitions. We develop
our technical tool of oracle distribution for function distributions in Sect. 3.
Combined with the further properties of PRFs we establish in Sect. 4, we prove
quantum security of NMAC and other constructions in Sect. 5.

2 Preliminaries

2.1 Notations and conventions

In this paper, all constructions and security notions are implicitly asymptotic:
many quantities and objects are parametrized by the main security parameter
λ, but for simplicity, we will often omit writing the dependency on λ explicitly.
So, when we consider a set X , often it is in reality a family of sets {Xλ}λ, but
we write it simply as Xλ, or even just X . Similarly, a function f : X → Y in
such a case is really a family {fλ : Xλ → Yλ}λ of functions. We also omit the
size input 1λ from arguments of polynomial-time computable functions.

A quantity p = p(λ) is polynomially bounded, if p(λ) = O(λd) for some d > 0.
We denote this as p(λ) = poly(λ), or even, p = poly(). Similarly, a quantity
ε = ε(λ) is negligible, if ε(λ) ≤ 2−ω(log λ). We denote this as ε(λ) = negl(λ), or
even, ε = negl().

If D is a distribution, then x← D means x is sampled according to D. Also,
if X is a set, then x← X means that x is sampled from X uniform randomly.

For any r ∈ N, we define [r] := {0, 1, . . . , r − 1}.
Let X and Y be two sets. We denote by YX the set of all functions from X

to Y. We sometimes call it the function space from X to Y.
In this paper, we are mostly interested in quantum security. So, unless explic-

itly mentioned otherwise, by an adversary, we always mean a polynomial-time
quantum algorithm which may have access to some oracles, to which it can make
polynomially-many quantum superposed queries. Similarly, when we mention ‘se-
curity’, unless it is in a context describing previous works and comparing them
with ours, it means quantum security. On the other hand, by an ‘algorithm’, we
always mean a classical algorithm, unless mentioned otherwise.

2.2 I.i.d. samples of functions

Following Zhandry [21], we introduce the notation DX as follows.

Definition 2.1 (Indexed family of i.i.d. samples). Let D be a probability
distribution over a set Y, and let X be another set. Then, we denote by DX the
probability distribution over YX , defined such that, f is sampled according to DX

if and only if f(x) is sampled according to D, independently for each x ∈ X .

In other words, if f ← DX , then {f(x)}x∈X is an indexed family of i.i.d.
samples, where each f(x) is distributed according to D.

Suppose D is a distribution over YX . Since YX itself is just a set, the previous
definition is applicable. Let us clarify this as the following definition.

7

Definition 2.2 (Indexed family of i.i.d. samples of functions). Let D
be a probability distribution over YX , and let Z be another set. We define the
distribution DZ of functions f ∈ (YX)Z as in Definition 2.1; if f is sampled
according to DZ , then f(z) ∈ YX is sampled according to D, independently for
each z ∈ Z.

Then, evaluating f(z) ∈ YX on x ∈ X will give a value f(z)(x) = y ∈ Y.
Considering the ‘currying’ isomorphism (YX)Z ∼= YZ×X , we may regard DZ as
a distribution over YZ×X , writing f(z, x), instead of f(z)(x). We will use the
two perspectives interchangeably.

In this paper, although our results are not in the quantum random oracle
model, during the security proofs, we mostly work in the quantum random oracle
model. In other words, all players, including the adversary, are given oracle access
to a uniform random function H : A → B, and various constructions depend
on H. Therefore, we need to consider the case when a distribution D over YX
depends on H, that is, D and the uniform distribution of H are both marginal
distributions of a joint distribution. Therefore, we give a definition ofDZ , relative
to a random oracle H:

Definition 2.3 (Indexed family of relative i.i.d. samples of functions).
Let D be a probability distribution over YX , and let Z be another set. And let
H : A → B be a random oracle. We define the distribution DZH relative to H
as follows. To jointly sample f from DZH and also a particular h : A → B as
realization of the random variable H, first sample h ← BA uniform randomly,
and form D|h, which is the conditional distribution of D conditioned on the event
H = h. Finally, sample f ← (D|h)Z . When the dependence on the random oracle
H is clear, we abuse the notation and simply write DZ , instead of DZH .

In other words, when we are in the quantum random oracle model, at first
a function h is sampled uniformly, as a realization of the random variable H.
When a distribution D is dependent on H, then sampling f ← DZ means that,
f(z) is independently sampled from D|h, for each z ∈ Z.

2.3 Various security notions of PRFs

First, let us define the syntax of the pseudorandom function as follows:

Definition 2.4 (Pseudorandom function). A pseudorandom function (PRF)
is a polynomial-time computable function f of form f : K×X → Y. We call the
sets K, X , Y as the key space, the domain, and the codomain of f , respectively.

The domain of a PRF may be of fixed size or arbitrarily large. For a blockci-
pher, X would be {0, 1}n for some n. On the other hand, for HMAC, the domain
X is the set of all bitstrings, or bitstrings up to some large fixed length.

In this paper, we are concerned with polynomial-time quantum adversaries
who can make quantum superposed queries to their oracles. Therefore, our stan-
dard definition of PRF security is as follows:

8

Definition 2.5 (Quantum security of PRF). Let f : K×X → Y be a PRF.
We say that f is secure, if for any adversary A, we have the following:

Advprf
f (A) :=

∣∣∣Pr[Af(k,·)() = 1]−Pr[Aρ() = 1]
∣∣∣ = negl(),

where k ← K, ρ← YX are uniformly and independently random.

That is, sampling k ← K and letting F as F (x) := f(k, x), any quantum
adversary cannot distinguishing F from a true random function ρ : X → Y.

Here, Advprf
f (A) is the advantage of A in distinguishing f(k, ·) from ρ, and

if f is a secure PRF, then the advantage is negligible for any adversary A.
Sometimes, we may want less than the full PRF security against distinguish-

ing attack, and only require the following:

Definition 2.6 (Security of PRF against key recovery). Let f : K×X →
Y be a PRF. We say that f is secure against key recovery, if for any adversary
A, we have the following:

Advprf-kr
f (A) := Pr[Af(k,·)() = k] = negl(),

where k ← K is uniformly random.

Classically, it is well known, and indeed trivial to prove that a secure PRF is
also secure against key recovery. However, in the quantum world, it is less trivial
than classically. We discuss this more in Section 4, and also in Section C of the
Appendix.

Finally, let us present a stronger security notion for PRF, which will be
crucial later when we prove the security of NMAC.

Definition 2.7 (Security of PRF under random leakage). Let f : K×X →
Y be a PRF. We say that f is secure under random leakage, if for any set W
and any adversary A, we have the following:

Advprf-rl
f (A) :=

∣∣∣Pr[Af(k,·),H(H(k)) = 1]−Pr[Aρ,H(w) = 1]
∣∣∣ = negl(),

where k ← K, w ←W, H ←WK, ρ← YX are uniform, independent random.

The above notion is related to the leakage-resilient cryptography. Here, the
PRF key k is leaked once, via the leakage function H(·). But, this leakage is very
weak; the adversary does not choose H, which is just a random oracle.

2.4 NMAC and related constructions

In this subsection, we give definitions of NMAC and other hash-based PRFs
which we study in this paper.

Cascade construction. Suppose that f : K × X → K is a PRF where the
codomain is the same as the key space K. We define the l-fold cascade of f ,

9

denoted by Cascl[f] : K × X l → K, as follows: given k ∈ K and x1, . . . , xl ∈ X ,
we define a sequence of values y0, . . . , yl ∈ K, recursively.

y0 := k,

yi = f(yi−1, xi), for i = 1, . . . , l.

Then, the cascade PRF is given as the last value yl.

Cascl[f](k, x1 . . . xl) := yl.

In other words,

Cascl[f](k, x1 . . . xl) = f(. . . f(f(k1, x1), x2), . . . , xl).

From the definition of Cascl[f], we see Casc0[f] : K ×X 0 → K is given as

Casc0[f](k, ε) = k,

where ε ∈ X 0 is the empty string of length 0.
NMAC. Suppose that f : K × X → K is a PRF where the codomain is the

same as the key space K. Here, we assume that |K| ≤ |X |. The NMAC of f ,
denoted by NMAC[f] : K2 ×X ∗ → K is defined as

NMAC[f]((k1, k2), x1 . . . xm) := f(k2, pad(Cascm[f](k1, x1 . . . xm))),

where pad : K → X is a simple injective ‘padding function’. Typically, when
X = {0, 1}b and K = {0, 1}c, then pad(k) = k‖0b−c, but the choice of pad does
not affect the security of NMAC.

Augmented cascade. Suppose that f : K × X → K is a PRF where the
codomain is the same as the key space K. Also, suppose that Out : K → Y is an
unkeyed function. Then, the augmented cascade ACSC[f,Out] : K ×X ∗ → Y is

ACSC[f,Out](k, x1 . . . xm) := Out(Cascm[f](k, x1 . . . xm)).

2.5 Implementing oracles

Here, we are going to discuss which function distributions can be ‘efficiently
implemented’. One possible answer is the following:

Definition 2.8. Let D be a function distribution over YX . We say that D is
efficiently samplable, if there exists a set R and a polynomial-time deterministic
algorithm D.eval : R × X → Y, such that sampling f ∈ YX according to the
distribution D can be done by sampling r ← R and defining f by f(x) :=
D.eval(r, x). Also, we require that log |R| = poly().

In other words, we may sample a function f ← D, by sampling r ← R.
One typical example of an efficiently samplable distribution is PRFf over YX

of a PRF f : K ×X → Y. Here, R = K, and PRFf .eval = f .

10

Zhandry shows that in fact we can efficiently ‘implement’ function distri-
butions which are not necessarily efficiently samplable. One such example is
the uniform distribution over YX . While it is not efficiently samplable in the
above sense, still, given any adversary A making at most q quantum superposed
queries, it is possible to implement the uniform distribution for the adversary A
perfectly. This is due to Theorem 3.1 of [22]. Here, we give a slightly extended
version as follows, which we prove in Section A.1 of the appendix.

Theorem 2.9. Let A be an adversary having oracle access to O1, . . . , Ot, and
makes at most qi quantum queries to Oi ∈ YXi

i for i = 1, . . . , t. If we draw
Oi from any joint distribution for i = 1, . . . , t, then for every v, the quantity
Pr[AO1,...,Ot() = v] is a linear combination of the quantities

Pr[∀i ∈ {1, . . . , t},∀j ∈ {1, . . . , 2qi}, Oi(x(i)j) = y
(i)
j]

for all possible settings of the values x
(i)
j ∈ X and y

(i)
j ∈ Y.

So, if D, D′ are distributions over YX which are 2q-wise equivalent, i.e.,

PrO←D[∀i ∈ {1, ..., 2q}, O(xi) = yi] = PrO←D′ [∀i ∈ {1, ..., 2q}, O(xi) = yi],

for any distinct x1, . . . , x2q ∈ X and any y1, . . . , y2q ∈ Y, then when A makes at
most q queries to its oracle, for any output value v of A, we have

PrO←D[AO() = v] = PrO←D′ [A
O() = v].

In particular, for any adversary making at most q quantum queries, the
uniform random function U ∈ YX can be efficiently ‘implemented’ by any 2q-wise
independent function family. We use the following standard fact (for example,
see p. 72 of [19]):

Proposition 2.10. For every n,m, k, there exists a family of k-wise indepen-
dent functions H = {h : {0, 1}n → {0, 1}m} such that, choosing a function
h from H takes k · max{n,m} random bits, and evaluating h ∈ H takes time
poly(n,m, k).

Therefore, implementing a uniform distribution in YX for any adversary mak-
ing q quantum queries requires sampling 2q ·max{log |X |, log |Y|} bits, and an-
swering one query takes time poly(log |X |, log |Y|, q).

Let us propose the following definition which captures both efficiently sam-
plable distributions and uniform distributions.

Definition 2.11. Let D be a function distribution over YX . We say that D
is bounded samplable, if there exists a set R(q) for each q and a polynomial-
time deterministic algorithm D.eval : 1∗ ×

⋃
qR(q) × X → Y such that, if we

sample f ∈ YX according to the distribution D, and sample f ′ ∈ YX by sampling
r ← R(q) and defining f ′ by f ′(x) := D.eval(1q, r, x), then two random functions
f and f ′ are 2q-wise equivalent. Also, we require that log |R(q)| = poly(λ, q).

11

So, if D is bounded samplable, then a function f can be sampled according
to D by sampling r ← R(q), and it can be evaluated by f(x) = D.eval(1q, r, x).
The resulting distribution may not be identical to D, but would be enough to
‘fool’ any adversary making at most q queries. The following lemma is obvious.

Lemma 2.12. For any X ,Y, the uniform distribution over YX is bounded sam-
plable.

Moreover, we can see from Theorem 2.9 that, when A has access to several
oracles O1, . . . , Ot sampled according to D1, . . . , Dt, and if they are independent,
then if the distributions Di are all bounded samplable, then they can be ‘imple-

mented’ separately: sampling fi ← Di can be done by sampling ri ← R(q)
i , and

letting fi(x) = Di.eval(1qi , ri, x) for all i = 1, . . . , t, since we have

Pr[∀i ∈ {1, . . . , t},∀j ∈ {1, . . . , 2qi}, Oi(x(i)j) = y
(i)
j]

=

t∏
i=1

Pr[∀j ∈ {1, . . . , 2qi}, Oi(x(i)j) = y
(i)
j]

Let H : A → B be a random oracle, that is, a uniform random function. For
our purpose, we need to ‘relativize’ the efficient samplability and the bounded
samplability, with respect to H. First, let us give the following definitions.

Definition 2.13. Let H : A → B be a random oracle, and let Di be a dis-
tribution over YXi

i , for i = 1, . . . , t. We say that D1, . . . , Dt are conditionally
independent relative to H, if for any h ∈ BA, the distributions D1, . . . , Dt are
independent, conditioned on the event that H = h.

Definition 2.14. Let H : A → B be a random oracle, and let D,D′ be dis-
tributions over YX . We say that D, D′ are k-wise equivalent relative to H,
if

PrO←D[∀i ∈ {1, ..., k}, O(xi) = yi |H = h]

= PrO←D′ [∀i ∈ {1, ..., k}, O(xi) = yi |H = h],

for any distinct x1, . . . , xk ∈ X , any y1, . . . , yk ∈ Y, and any h ∈ BA.

Then, we are ready to define relative versions of efficient samplability and
bounded samplability as follows.

Definition 2.15. Let H : A → B be a random oracle, and let D be a distribution
over YX . We say that D is efficiently samplable relative to H, if there exists a set
R and a polynomial-time deterministic oracle algorithm D.evalH : R× X → Y
such that sampling f ∈ YX according to D can be done by sampling r ← R and
defining f by f(x) := D.evalH(r, x). Also, we require that log |R| = poly().

Definition 2.16. Let H : A → B be a random oracle, and let D be a distri-
bution over YX . We say that D is bounded samplable relative to H, if there

12

exists a set R(q) for each q, and a polynomial-time deterministic oracle algo-
rithm D.evalH : 1∗ ×

⋃
qR(q) × X → Y such that, if we sample f ∈ YX ac-

cording to D, and sample f ′ ∈ YX by sampling r ← R(q) and defining f ′ by
f ′(x) := D.evalH(1q, r, x), then f and f ′ are 2q-wise equivalent relative to H.
Also, we require that log |R(q)| = poly(λ, q).

We have the following lemma about ‘relative implementation’ of an oracle.

Lemma 2.17. Let H : A → B be a random oracle, and let D be a distribution
over YX . Suppose D is bounded samplable relative to H, and suppose an ad-
versary AO,H makes at most q queries to O, and at most qH queries to H. Let
D′ be the distribution of function O sampled by sampling r ← R(q) and letting
O(x) := D.evalH(1q, r, x). Then, we have

PrO←D[AO,H() = v] = PrO←D′ [A
O,H() = v],

for any possible output value v of A.

Lemma 2.17 is an extension of the previous result that, if a distribution
D is bounded samplable, then for each adversary A, we can implement D to
completely fool A. This time, Lemma 2.17 says that if D is bounded samplable
relative to a random oracle H, then for any adversary A, we can implement D
to completely fool A, even when D is dependent on H and A also has access to
H. The proof can be done by simple arguments using conditional probability.
We give the proof in Section A.2 of the Appendix.

Similar to the non-relative case, if D1, . . . , Dt are all distributions bounded
samplable relative to H, and if they are conditionally independent relative to
H, then it is easy to see that we can implement each oracle Oi sampled from
Di separately, which will fool any adversary which has oracle access to not only
O1, . . . , Ot, but also to the random oracle H.

Let us give another lemma, to be used later. Note that the definition of the
distribution DZ and its dependence on H is given in Definition 2.3.

Lemma 2.18. Suppose that D is an efficiently samplable distribution over YX
relative to a random oracle H : A → B. If Z is any set, then DZ is bounded
samplable relative to H.

Lemma 2.18 is generalization of the following: if D is an efficiently samplable
distribution over a set Y, then Zhandry points out in [22] that the distribution
DX can be ‘constructed’ for any set X : ifR is the randomness space for sampling
D, and if y = f(r) is the element of Y sampled using randomness r ∈ R, then we
can implement O ← DX by first implementing a random function ρ ∈ RX and
then letting O(x) = f(ρ(x)). In our terminology, the distribution DX is bounded
samplable.

Lemma 2.18 says that, when we form DZ from an efficiently samplable dis-
tribution D of functions (relative to a random oracle H), the result is analogous:
the distribution DZ is bounded samplable (relative to H). The proof is similar,
but the fact that we are dealing with functions, and also relative to a random
oracle, makes this slightly more complex. We give the proof of Lemma 2.18 in
Section A.3 of the Appendix.

13

3 Relative oracle indistinguishability of functions

In this paper, we are primarily interested in distributions of functions. We also
consider the case where these distributions may be dependent on a random oracle
H : A → B, and the adversary has access to H as well.

Zhandry [21] defines “oracle indistinguishability” of two distributions D1, D2

over a set Y. We adapt this notion to our case, giving the following definitions.

Definition 3.1 (Relative indistinguishability of functions). Let H : A →
B be a random oracle, and let D1, D2 be two distributions on YX , which are
conditionally independent relative to H. Then, we say that D1 and D2 are indis-
tinguishable relative to H, if for any adversary A, the distinguishing advantage

Advrel-dist
D1,D2,H(A) :=

∣∣PrO←D1

[
AO,H() = 1

]
−PrO←D2

[
AO,H() = 1

]∣∣
is negligible.

Definition 3.2 (Relative oracle indistinguishability of functions). Let
H : A → B be a random oracle, and let D1, D2 be two distributions over YX ,
which are conditionally independent relative to H. We say that D1 and D2 are
oracle-indistinguishable relative to H, if, for any set Z, and any adversary A,
we have the following:

Advoracle-rel-dist
D1,D2,Z,H (A) :=

∣∣∣PrO←DZ1

[
AO,H() = 1

]
−PrO←DZ2

[
AO,H() = 1

]∣∣∣
is negligible.

Note that, when A and B are singleton sets, the random oracle H is trivial,
and we obtain non-relativized definitions of the above. Also, in the above def-
initions, we are only interested in the case when D1 and D2 are conditionally
independent relative to H, which would make sense since these are definitions
of indistinguishability in the quantum random oracle model.

The following is our main result regarding oracle indistinguishability.

Theorem 3.3. Let H : A → B be a random oracle, and let D1, D2 be two
function distributions over YX for some X ,Y. Suppose that both DZ1 and DZ2
are bounded samplable relative to H, for any set Z. Further, suppose that D1 and
D2 are conditionally independent relative to H, and indistinguishable relative to
H. Then, they are oracle-indistinguishable relative to H.

Concretely, for any adversary AO,H making at most q queries to O and at

most qH queries to H, we can construct an adversary AO
′,H

rd satisfying

Advoracle-rel-dist
D1,D2,Z,H (A) < 12q3/2

√
Advrel-dist

D1,D2,H(Ard).

Moreover, AO
′,H

rd makes at most 2q queries to O′ and qH + 2(qe1 + qe2)q
queries to H. Here, qei is the maximum number of queries to H needed by one
invocation to the evaluation algorithm DZi .evalH(), for i = 1, 2, respectively.

14

Theorem 3.3 says that, if two function distributions are indistinguishable
(relative to H), and if they satisfy some additional conditions, then they are
also oracle-indistinguishable (relative to H).

Our proof of Theorem 3.3 proceeds similarly as Zhandry’s proof of the cor-
responding result in [21]. Therefore, we are going to defer the complete proof to
the Appendix, but here let us describe some outline of the proof.

To prove oracle indistinguishability of indistinguishable distributions over a
set, Zhandry uses ‘small-range distribution’ [21], given as follows.

Definition 3.4. Given a distribution D on Y, we define SRD
r (X) as the follow-

ing distribution on functions O ∈ YX :

– For each i ∈ [r], sample a value yi ∈ Y according to the distribution D.
– For each x ∈ X , sample a uniform random i ∈ [r] and set O(x) = yi.

This can be applied to a distribution D over YX : since YX is just a set, surely
we may talk about a small-range distribution for D. Let us make this explicit:

Definition 3.5. Given a function distribution D on YX , we define the small-
range distribution SRD

r (Z) as the following distribution on functions O ∈ YZ×X :

– For each i ∈ [r], sample a function fi ∈ YX according to the distribution D.
– For each z ∈ Z, sample a uniform random i ∈ [r] and set O(z) = fi.

Following Definition 2.3, when D depends on the random oracle H, we in-
terpret SRD

r (Z) as follows:

Definition 3.6. Given a function distribution D on YX depending on a random
oracle H : A → B, we define the small-range distribution SRD

r (Z) as follows. To
jointly sample O from SRD

r (Z) and also a particular h : A → B as realization of
the random variable H, first sample h← BA uniform randomly, and form D|h.
Then,

– For each i ∈ [r], sample a function fi ∈ YX according to D|h.
– For each z ∈ Z, sample a uniform random i ∈ [r] and set O(z) = fi.

Then, we have the following theorem.

Theorem 3.7. Let H : A → B be a random oracle, and let D be a function
distribution over YX which is not necessarily independent from H. Suppose that
A is an adversary making at most q queries to an oracle O ∈ YX , and at most
qH queries to the random oracle H. Then, we have∣∣∣PrO←SRD

r (Z)[A
O,H() = 1]−PrO←DZ [AO,H() = 1]

∣∣∣ < 16q3

r
,

for any r > 0, and any set Z.

Remark 3.8. Note that Theorem 3.7 holds, whether D is bounded samplable or
not. Also, the bound in the theorem does not depend on qH .

15

Just like the corresponding result in [21], Theorem 3.7 says that the dis-
tribution DZ , which is the distribution of an exponentially many independent
samples of D indexed by Z is, in fact, indistinguishable from similar collection
of samples, this time duplicated from only r independent samples. Theorem 3.7
also says that the result holds regardless of dependence to a random oracle H.
we give the complete proof in Section B.1 of the Appendix.

In the classical cases, we can prove oracle indistinguishability of two indistin-
guishable distributions by a hybrid argument over the adversarial queries: even
though O ← DZ can be considered as a collection of exponentially many inde-
pendent samples of D, if a classical adversary A makes q queries z1, . . . , zq, then
all A examines are O(z1), . . . , O(zq)← D, and these can be swapped to samples
from another indistinguishable distribution D′ one by one.

On the other hand, in the quantum case, each query can be superposed,
so the previous approach would not work. Small-range distribution solves this:
once we switch to a small-range distribution of size r, then only r independent
samples from a distribution D are involved, and they can be swapped to samples
from another indistinguishable distribution D′ one by one, and the resulting
small-range distribution can be once again switched to D′Z . Hence, the proof of
Theorem 3.3 is again a standard hybrid argument, which we give in Section B.2
of the Appendix.

4 Security against key recovery and security under
random leakage

In this section, we characterize further properties about a quantum-secure PRF,
which will be useful later (to establish quantum security of NMAC for example).
We first show that a secure PRF is also secure against key recovery. Using this,
we prove that a secure PRF is secure under random leakage as well. This further
enables us to study oracle security under random leakage for PRFs.

4.1 Security of PRFs against key recovery

First, we have the following theorem:

Theorem 4.1. Let f : K × X → Y be a secure PRF. Suppose that both the
domain and the codomain of f are superpolynomially large: |X |, |Y| ≥ 2ω(log λ).
Then, f is also secure against key recovery.

Concretely, for any adversary Af(k,·) making at most q queries to f(k, ·) with
uniform random k ← K, we can construct an adversary Ad that makes at most
q + 1 queries such that

Advprf-kr
f (A) ≤ Advprf

f (Ad) +
1

|Y|
+

4q√
|X |

.

Classically, it is easy to prove that a secure PRF f is also secure against key
recovery: if A is a classical key recovery attacker, then using A, we can construct

16

a PRF distinguisher B: BO runs AO, while answering any query of A by its own
query. In the end, if A outputs a candidate k, then B uses this k to determine
whether O is a true random function ρ or a PRF instance f(k, ·), by choosing
an unqueried point z ∈ X and see if

f(k, z) = O(z).

If O(·) = f(k, ·) and if A correctly found the key k, then the above equation
holds. On the other hand, if O = ρ, then O(z) is uniform random, independent
from f(k, z), so the probability that f(k, z) = O(z) is only 1/|Y|. This difference
in probability can be used to distinguish the two cases.

On the other hand, if A is a quantum adversary, the case when O(·) = f(k, ·)
is essentially the same as in the classical case. However, we may not apply the
classical argument when O is a truly random function since the notion of “un-
queried” point no longer makes sense under quantum (e.g., uniform superpo-
sition) queries. Therefore, we need a different approach in the quantum world.
We defer the proof of Theorem 4.1 to Appendix C. Note that it is possible to
employ a coarse counting argument to prove key-recovery security, which works
against both classical and quantum attacks. But it relies on specific settings of
keyspace, domain and codomain, and the bound is typically not as tight as what
our strategy can prove.

4.2 Security of PRFs under random leakage

We show next that random leakage of the PRF key does not compromise the
security of a PRF.

Theorem 4.2. Let f : K × X → Y be a secure PRF, with X and Y superpoly-
nomially large. Then, f is also secure under random leakage.

Concretely, for any adversary AO,H making at most q queries to O and qH
queries to H, we can construct adversaries Akr and Ad such that

Advprf-rl
f (A) ≤ 2qH

√
Advprf-kr

f (Akr) + Advprf
f (Ad).

Here, both Akr and Ad make at most q oracle queries.

To prove Theorem 4.2, we are going to use the following lemma of Unruh.

Lemma 4.3 (One-Way to Hiding Lemma of [18]). Let H : X → Y be a
random oracle. Consider an adversary A making at most q queries to H. Let
B be an adversary that on input x does the following: pick i ← {1, . . . , q} and
y ← Y, run AH(x, y) until (just before) the ith query, then measure the ith query
in the computational basis, and output the outcome. (When A makes less than i
queries, B outputs ⊥ 6∈ X .) Then, we have∣∣∣∣Prx←X [AH(x,H(x)) = 1]−Prx←X ,

y←Y
[AH(x, y) = 1]

∣∣∣∣ ≤ 2q
√

Prx←X [BH(x) = x].

17

Now, we are ready to prove Theorem 4.2:

Proof. Let f : K × X → Y be a secure PRF. To show that f is secure under
random leakage, we need to show that for any set W and any adversary A, the
advantage Advprf-rl

f (A) is negligible. Suppose A makes at most q queries to O,
and at most qH queries to H. Then,

Advprf-rl
f (A) =

∣∣∣Pr[Af(k,·),H(H(k)) = 1]−Pr[Aρ,H(w) = 1]
∣∣∣

≤
∣∣∣Pr[Af(k,·),H(H(k)) = 1]−Pr[Af(k,·),H(w) = 1]

∣∣∣
+
∣∣∣Pr[Af(k,·),H(w) = 1]−Pr[Aρ,H(w) = 1]

∣∣∣ .
So we need only to bound both terms. First, let us bound∣∣∣Pr[Af(k,·),H(H(k)) = 1]−Pr[Af(k,·),H(w) = 1]

∣∣∣ .
Let us define the algorithm AH1 (k,w) as follows: it runs AO,H(w) while any H-
query is answered by H-query of A1 itself, and any O-query |x〉 is answered by
|x〉|f(k, x)〉. And when AO,H(w) eventually halts with an output v, AH1 (k,w)
outputs v and halts.

So,

AH1 (k,H(k)) = Af(k,·),H(H(k)),

AH1 (k,w) = Af(k,·),H(w).

From Lemma 4.3, we have∣∣∣Pr[Af(k,·),H(H(k)) = 1]−Pr[Af(k,·),H(w) = 1]
∣∣∣

=
∣∣Pr[AH1 (k,H(k)) = 1]−Pr[AH1 (k,w) = 1]

∣∣
≤ 2qH

√
Pr[BH1 (k) = k],

where the algorithmBH1 (k) can be described as follows:B1 picks i← {1, . . . , qH},
w ←W, and runs AH1 (k,w) = Af(k,·),H(w) until the ith H-query, then measure
the ith query and output the outcome.

Now, using A, we construct an adversary Akr mounting key recovery attack on
f . The algorithm Akr has oracle access to f(k, ·) for uniform random k ← K, and
Akr works as follows: Akr picks i← {1, . . . , qH}, w ←W, and runs Af(k,·),H(w),
while implementing H : K → W by a 2qH -wise independent function, until the
ith H-query, then measure the ith query and output the outcome.

By construction, we have Pr[A
f(k,·)
kr () = k] = Pr[BH1 (k) = k]. So,∣∣∣Pr[Af(k,·),H(H(k)) = 1]−Pr[Af(k,·),H(w) = 1]

∣∣∣ ≤ 2qH

√
Advprf-kr

f (Akr).

Note that the adversary Akr makes at most q queries to its oracle f(k, ·).

18

Next, let us bound∣∣∣Pr[Af(k,·),H(w) = 1]−Pr[Aρ,H(w) = 1]
∣∣∣ .

This is straightforward: using A, we construct an adversary Ad attacking
PRF security of f . The algorithm Ad has oracle access to O, which can be
f(k, ·) or a true random function ρ. Now, the algorithm Ad works as follows: Ad

picks w ← W, and runs AO,H(w), answering any O-query of A by an O-query
of itself, and implementing H : K → W by a 2qH -wise independent function.
When A halts and outputs a value v eventually, Ad also halts and outputs v.

By construction, we have∣∣∣Pr[Af(k,·),H(w) = 1]−Pr[Aρ,H(w) = 1]
∣∣∣

=
∣∣∣Pr[A

f(k,·)
d () = 1]−Pr[Aρd() = 1]

∣∣∣ = Advprf
f (Ad).

The adversary Ad also makes at most q queries. This proves the theorem. ut

4.3 Oracle-secure PRF under random leakage

In order to prove security of NMAC, we are going to use the notion of oracle
security under random leakage, which we define as follows.

Definition 4.4 (Oracle security under random leakage). Let f : K×X →
Y be a PRF. We say that f is oracle-secure under random leakage, if for any
sets W,Z, the following holds for any adversary A:

Advos-rl
f,Z,W(A) :=

∣∣Pr[AO0,H() = 1]−Pr[AO1,H() = 1]
∣∣ = negl()

where the oracles O0, O1 are defined as

O0(z, x) := (H(κ(z)), f(κ(z), x)),

O1(z, x) := (ρ1(z), ρ2(z, x)),

and H ← WK, κ ← KZ , ρ1 ← WZ , ρ2 ← YZ×X are chosen uniform randomly,
and independently.

We can show that any secure PRF f is also oracle-secure under random
leakage:

Theorem 4.5. Let f : K × X → Y be a secure PRF, with X and Y superpoly-
nomially large. Then, f is also oracle-secure under random leakage.

Concretely, for any adversary AO,H making at most q queries to O and at
most qH queries to H, we can construct an adversary Arl such that

Advos-rl
f,Z,W(A) < 12q3/2

√
Advprf-rl

f (Arl),

where AO,Hrl makes at most 2q queries to O, and qH + 2q queries to H.

19

Proof. Consider the distribution PRFRLf over (W × Y)X which is efficiently
samplable relative to H: the randomness space R is just the key space K of f ,
and the evaluation algorithm is given by PRFRLf .evalH(k, x) := (H(k), f(k, x)).

Consider another distribution RU over (W × Y)X of f defined by f(x) :=
(w, ρ(x)), where w ← W and ρ ← YX are chosen uniform randomly and inde-
pendently.

It is clear that the oracle security of f under random leakage is merely re-
statement of the oracle indistinguishability of PRFRLf and RU relative to H.

Since f is secure, we may use Theorem 4.2 to show that f is secure under
random leakage, and this is equivalent to indistinguishability of PRFRLf and RU
relative to H. Therefore, we are going to use Theorem 3.3 to show that the two
are oracle-indistinguishable relative to H.

By construction, PRFRLf and RU are independent, and since PRFRLf is

efficiently samplable relative to H, PRFRLZf is bounded samplable relative to H
for any set Z, due to Lemma 2.18. Then, the only thing remaining to be proved
to invoke Theorem 3.3 is that RUZ is bounded samplable for any set Z. But
this is to prove that the distribution of the oracle O1(z, x) = (ρ1(z), ρ2(z, x)) is
bounded samplable, which is now trivially true.

Concretely, for any adversary A attacking oracle security under random leak-
age of f making at most q queries to O and qH queries to H, by Theorem 3.3,
we have

Advos-rl
f,Z,W(A) = Advoracle-rel-dist

PRFRLf ,RU,Z,H(A)

< 12q3/2
√

Advrel-dist
PRFRLf ,RU,H(Ard),

for some adversary AO
′,H

rd attacking indistinguishability of PRFRLf and RU rel-
ative to H, which makes at most 2q queries to O′ and qH + 2(1 + 0)q queries
to H, since 1 call to H is required to implement PRFRLZf , and 0 calls to H are

required to implement RUZ .
Now we can trivially turn Ard into Arl attacking security of f under random

leakage:AO,Hrl (w) := A
w‖O′,H
rd (), satisfying Advrel-dist

PRFRLf ,RU,H(Ard) = Advprf-rl
f (Arl).

Like Ard, A
O,H
rl makes at most 2q queries to O and qH + 2q queries to H. ut

5 Security of NMAC and other constructions

In this section, we prove the PRF security of cascade, NMAC, HMAC, aug-
mented cascade, and AMAC, using ingredients we have developed so far.

5.1 Security of the cascade

The cascade construction is not secure when queries of different block lengths
are allowed. However, if we fix the total number l of blocks for all messages, then
it becomes a quantum-secure PRF. Since its proof is a simple version of that of
NMAC, we only state the theorem below and refer the readers to the proof of
NMAC in Sect. 5.2.

20

Theorem 5.1 (Security of the cascade construction). Let f : K×X → K
be a secure PRF. Then, Cascl[f] is a secure PRF, for any fixed l.

Concretely, for any adversary A of Cascl[f] making at most q oracle queries,
we can construct an adversary Ad making at most 4q oracle queries, such that

Advprf
Cascl[f]

(A) ≤ 34lq3/2
√

Advprf
f (Ad).

5.2 Security of NMAC

We are now ready to prove the security of NMAC as a quantum PRF.

Theorem 5.2 (NMAC security). Let f : K×X → K be a secure PRF. Then,
NMAC[f] is a secure PRF.

Concretely, for any adversary A of NMAC[f] making at most q oracle queries,
where each message has at most l message blocks, we can construct adversaries
Ad, Arl, such that

Advprf
NMAC[f](A) ≤ Advprf

f (Ad) + 34(l + 1)q3/2
√

Advprf-rl
f (Arl).

Also, AOd makes at most q queries to O, and AO,Hrl makes at most 4q queries to
O, and at most 6q queries to H.

Proof. Let A be an adversary making at most q oracle queries, where each mes-
sage has at most l message blocks. We are going to define a sequence of games,
where in each game, A has access to an oracle O. The only difference between
the games is how the oracle O is defined.

Here’s our first game N .

Game N : In this game, the oracle O is given exactly as NMAC[f]: first, k1, k2 ←
K are picked uniform randomly and independently. Then, for any message x1 . . . xj
of j-blocks (j = 0, 1, . . . , l), the oracle O is defined as

O(x1 . . . xj) = f(k2, pad(f(. . . f(f(k1, x1), x2), . . . , xj))).

In the next game G0, the outer instance of the PRF f is swapped with a
random function H : K → K.

Game G0: In this game, the oracle O is given as follows: first, k ← K, H ← KK
are picked uniform randomly and independently. Then, for any message x1 . . . xj
of j-blocks (j = 0, 1, . . . , l), the oracle O is defined as

O(x1 . . . xj) = H(f(. . . f(f(k, x1), x2), . . . , xj)).

Continuing, for each i = 1, . . . , l + 1, we define games Gi as follows.

Game Gi: In this game, the oracle O is given as follows: first, H ← KK,

R ← KX i

, Rj ← KX
j

(for j = 0, . . . , i − 1) are picked uniform randomly and

21

independently. Then, for any message x1 . . . xj of j-blocks (j = 0, 1, . . . , l), the
oracle O is defined as

O(x1 . . . xj) =


Rj(x1 . . . xj) if j = 0, . . . , i− 1,

H(R(x1 . . . xi)) if j = i,

H(f(. . . f(R(x1 . . . xi), xi+1), . . . , xj)) if j = i+ 1, . . . , l.

Note that the game G0 is in fact a special case of the above games Gi; when
i = 0, the definition of O in the game Gi degenerates to

O() = H(R()),

O(x1 . . . xj) = H(f(. . . f(R(), x1), . . . , xj)),

where k = R() ∈ K serves as the secret key in the game G0.
Also, let’s take a special look at the final game Gl+1: we have

O() = R0(),

O(x1) = R1(x1),

...

O(x1 . . . xl) = Rl(x1 . . . xl).

Therefore, in the game Gl+1, the oracle O is a true random function defined

over the domain
⋃l
i=0 X i.

For any game G and an adversary A, let G(A) be the final output of A when
A is executed in the game G. We see that

Advprf
NMAC[f](A) = |Pr[N(A) = 1]−Pr[Gl+1(A) = 1]|

≤ |Pr[N(A) = 1]−Pr[G0(A) = 1]|
+ |Pr[G0(A) = 1]−Pr[Gl+1(A) = 1]| .

First, it is easy to see that

|Pr[N(A) = 1]−Pr[G0(A) = 1]| ≤ Advprf
f (Ad),

for some adversary Ad attacking the PRF security of f ; we can construct the
adversary Ad

O distinguishing f(k, ·) and ρ← KX as follows: the adversary Ad
O

picks k′ ← K, and runs A. For any query x1 . . . xj of A (for j ≤ l), return

O(pad(f(. . . f(f(k′, x1), x2), . . . , xj))).

When A eventually halts with an output v, Ad also halts with v.
Now, when O(x) = f(k, x) for k ← K, the query x1 . . . xj is answered by

NMAC[f], and when O = ρ ← KX , then the function H(k) := O(pad(k)) is a
true random function uniformly random over KK. So, in this case, the query of
the adversary A is answered exactly like in the game G0. So, in fact,

Advprf
f (Ad) = |Pr[N(A) = 1]−Pr[G0(A) = 1]| .

22

Next, we are going to construct an adversary Aos-rl attacking the oracle se-
curity of f under random leakage, with respect to the set X l−1 and the random

oracle H : K → K. The adversary AO
′,H

os-rl can be described as follows.

1. Aos-rl has access to two oracles O′, H, where H : K → K is a random oracle,
and the oracleO′ : X l−1×X → K×K is eitherO′0(z, x) = (H(κ(z)), f(κ(z), x))
or O′1(z, x) = (ρ1(z), ρ2(z, x)), for uniform random and independent κ ←
KX l−1

, ρ1 ← KX
l−1

, and ρ2 ← KX
l−1×X . Let us parse O′ into two parts

and let O′(z, x) = (O(1)(z), O(2)(z, x)). Here, O(1) : X l−1 → K and O(2) :
X l−1 ×X → K.

2. Aos-rl picks a uniform random i ← {0, . . . , l}. Also, Aos-rl implements inde-

pendent uniform random functions Rj ← KX
j

using bounded samplability,
for j = 0, . . . , i− 1.

3. Aos-rl runs the adversary A until it halts, while answering any query x1 . . . xj
of A (for j = 0, 1, . . . , l) as O(x1 . . . xj), which is defined as follows:

O(x1 . . . xj)

=


Rj(x1 . . . xj) if j = 0, . . . , i− 1,

O(1)(0l−i−1x1 . . . xi) if j = i,

H(f(. . . f(O(2)(0l−i−1x1 . . . xi, xi+1), xi+2), . . . , xj)) if j = i+ 1, . . . , l.

In the above, 0 ∈ X is an arbitrarily fixed element of X .
4. Eventually, when A halts with an output v, Aos-rl also halts, outputting v.

We remark that Aos-rl makes at most two O′-queries and two H-queries to
answer one query of A (for computing and uncomputing). Since A makes at most
q oracle queries, Aos-rl makes at most 2q queries to O′ and 2q queries to H.

Now, conditioned on the event that a specific i is chosen on line 2, if the
oracle O′ is given as O′0(z, x) = (H(κ(z)), f(κ(z), x)), then the oracle O is given
as follows:

O(x1 . . . xj)

=


Rj(x1 . . . xj) if j = 0, . . . , i− 1,

H(κ(0l−i−1x1 . . . xi)) if j = i,

H(f(. . . f(f(κ(0l−i−1x1 . . . xi), xi+1), xi+2), . . . , xj)) if j = i+ 1, . . . , l.

We see that this oracle is identically distributed as the oracle in game Gi.
On the other hand, if the oracle O′ is given as O′1(z, x) = (ρ1(z), ρ2(z, x)),

then we have:

O(x1 . . . xj)

=


Rj(x1 . . . xj) if j = 0, . . . , i− 1,

ρ1(0l−i−1x1 . . . xi) if j = i,

H(f(. . . f(ρ2(0l−i−1x1 . . . xi, xi+1), xi+2), . . . , xj)) if j = i+ 1, . . . , l.

We see that this oracle is identically distributed as the oracle in game Gi+1.

23

So, for each i, we have

Pr[A
O′0,H
os-rl () = 1 | i]−Pr[A

O′1,H
os-rl () = 1 | i]

= Pr[Gi(A) = 1]−Pr[Gi+1(A) = 1].

Therefore,

Advos-rl
f,X l−1,K(Aos-rl) =

∣∣∣Pr[A
O′0,H
os-rl () = 1]−Pr[A

O′1,H
os-rl () = 1]

∣∣∣
=

∣∣∣∣∣
l∑
i=0

(
Pr[A

O′0,H
os-rl () = 1 | i]−Pr[A

O′1,H
os-rl () = 1 | i]

)
Pr[i]

∣∣∣∣∣
=

1

l + 1

∣∣∣∣∣
l∑
i=0

(
Pr[A

O′0,H
os-rl () = 1 | i]−Pr[A

O′1,H
os-rl () = 1 | i]

)∣∣∣∣∣
=

1

l + 1

∣∣∣∣∣
l∑
i=0

(Pr[Gi(A) = 1]−Pr[Gi+1(A) = 1])

∣∣∣∣∣
=

1

l + 1
|Pr[G0(A) = 1]−Pr[Gl+1(A) = 1]| .

So, we get

|Pr[G0(A) = 1]−Pr[Gl+1(A) = 1]| = (l + 1) Advos-rl
f,X l−1,K(Aos-rl).

Now, by Theorem 4.5, we have proved the theorem. ut

5.3 Security of HMAC

Here let us briefly discuss the quantum security of HMAC. The security of HMAC
is formally studied in [2]. There, the security of HMAC is reduced to the security
of NMAC, with an additional assumption on the compression function f : K ×
X → K. The assumption is that the ‘dual’ PRF of f , which is keyed by its
data input as f(·,K) for K ← X , is a secure PRF against a minor related-
key attack: when the key K is chosen, the adversary may query f(·,K ⊕ ipad)
and f(·,K ⊕ opad), and these two oracles should be indistinguishable from two
independent random functions ρ1, ρ2 : K → K. This reduction is still applicable
to the quantum security, if we assume that the dual PRF of f is secure against
the related-key attack. Hence, under this additional assumption, we can conclude
that HMAC is a quantum-secure PRF.

Remark 5.3. In [14], Rötteler and Steinwandt showed that related-key attacks
can be very powerful, when combined with the ability to make quantum super-
posed queries. Under a minor, reasonable assumption on the PRF f , if an oracle
O(δ, x) = f(k ⊕ δ, x) is given to an adversary who can make quantum super-
posed queries, then the secret key k can be efficiently recovered. Therefore, if a
quantum adversary is allowed to derive keys by XORing an arbitrary constant δ,
then there exist essentially no quantum-secure PRFs against such an adversary.

24

However, in this case, we only need our dual PRF f to be standard-secure
against this minor related-key attack, not quantum-secure: all we need is that the
pair (f(IV,K⊕ ipad), f(IV,K⊕ opad)) ∈ K2 is indistinguishable from (k1, k2)←
K2, and for this we do not need quantum security. Hence, it is a reasonable
assumption to make that f is secure in the above sense.

5.4 Security of the augmented cascade and AMAC

Also, we may prove the quantum security of the augmented cascade ACSC[f,Out].
The proof is very similar to the security proof of NMAC, but unlike the case of
NMAC, we need to assume that the PRF f is secure under Out-leakage. (The
security proof of NMAC also uses similar security of f under random leakage,
but this can be proved from the ordinary PRF security of f .)

First, let us give the following definition, which is similar to Definition 2.7.

Definition 5.4 (Security of PRF under Out-leakage). Let f : K×X → Y
be a PRF, and Out : Y → Z be an unkeyed function. We say that f is secure
under Out-leakage, if for any adversary A, we have the following:

Advprf-ol
f,Out(A) :=

∣∣∣Pr[Af(k,·)(Out(k)) = 1]−Pr[Aρ(z) = 1]
∣∣∣ = negl(),

where k ← K, z ← Z, ρ← YX are uniformly and independently random.

Remark 5.5. Definition 5.4 is not exactly the same as the definition given in [3].
Their version, in our notation, would be negligibility of∣∣∣Pr[Af(k,·)(Out(k)) = 1]−Pr[Aρ(Out(k)) = 1]

∣∣∣ .
Definition 5.4 is, in fact, two claims combined in one: the first is that f(k, ·)

remains pseudorandom even when Out(k) is leaked, and the second is that Out(k)
itself is indistinguishable from a uniform random z ← Z, for a uniform randomly
chosen k ← K. The definition in [3] is more general, but in order to obtain a
PRF, eventually an output function Out close to regular should be selected,
hence two definitions are essentially the same.

Now we may state the theorem showing that ACSC[f,Out] is quantum-secure.

Theorem 5.6 (Quantum security of ACSC). Let f : K × X → K be a
PRF, and Out : K → Y be an unkeyed function. Suppose that f is secure under
Out-leakage. Then, ACSC[f,Out] is a secure PRF.

Concretely, for any adversary A of ACSC[f,Out] making at most q oracle
queries, where each message has at most l message blocks, we can construct an
adversary Aol making at most 4q queries, such that

Advprf
ACSC[f,Out](A) ≤ 34(l + 1)q3/2

√
Advprf-ol

f,Out(Aol).

25

In the proof, we first use oracle security of f under Out-leakage to carry out
the hybrid argument, and then relate the oracle security to the PRF security
under Out-leakage, again using Theorem 3.3. In fact, the proof is almost identical
to that of Theorem 5.2, so we will omit the proof.

Similar to the security of HMAC, the security of AMAC follows directly
from the security of ACSC, with an additional assumption on the compression
function f : K×X → K, namely, that the dual of f , that is, f(·,K) for K ← X ,
is a (standard-)secure PRF. This reduction is also applicable in the quantum
security. Hence, with that additional assumption, we may conclude that AMAC
is also quantum-secure.

Acknowledgements

We would like to thank the anonymous reviewers of Crypto 2017 for many helpful
comments. The second author was supported by Samsung Research Funding
Center of Samsung Electronics under Project Number SRFC-IT1601-07.

References

1. Ambainis, A., Rosmanis, A., Unruh, D.: Quantum attacks on classical proof sys-
tems - the hardness of quantum rewinding (2014), extend abstract appeared in
FOCS 2014

2. Bellare, M.: New proofs for NMAC and HMAC: Security without collision-
resistance. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619.
Springer, Heidelberg (2006)

3. Bellare, M., Bernstein, D.J., Tessaro, S.: Hash-function based PRFs: AMAC and
its multi-user security. In: Fischlin, M., Coron, J. (eds.) EUROCRYPT 2016, Part
I. LNCS, vol. 9665, pp. 566–595. Springer, Heidelberg (2016)

4. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996)

5. Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom functions revisited: The
cascade construction and its concrete security. In: FOCS ’96. pp. 514–523. IEEE
Computer Society (1996)

6. Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses
of quantum computing. SIAM journal on Computing 26(5), 1510–1523 (1997)

7. Boneh, D., Zhandry, M.: Quantum-secure message authentication codes. In: Jo-
hansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 592–
608. Springer, Heidelberg (2013)

8. Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in a
quantum computing world. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 361–379. Springer, Heidelberg (2013)

9. Gazi, P., Pietrzak, K., Rybár, M.: The exact PRF-security of NMAC and HMAC.
In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp.
113–130. Springer, Heidelberg (2014)

10. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

26

11. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmetric
cryptosystems using quantum period finding. In: Robshaw, M., Katz, J. (eds.)
CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 207–237. Springer, Heidelberg (2016)

12. Kuwakado, H., Morii, M.: Quantum distinguisher between the 3-round Feistel ci-
pher and the random permutation. In: ISIT 2010. pp. 2682–2685. IEEE (2010)

13. Kuwakado, H., Morii, M.: Security on the quantum-type Even-Mansour cipher. In:
ISITA 2012. pp. 312–316. IEEE (2012)

14. Rötteler, M., Steinwandt, R.: A note on quantum related-key attacks. Inf. Process.
Lett. 115(1), 40–44 (2015)

15. Santoli, T., Schaffner, C.: Using Simon’s algorithm to attack symmetric-key cryp-
tographic primitives. Quantum Inf. Comput. 17(1&2), 65–78 (2017)

16. Song, F.: A note on quantum security for post-quantum cryptography. In: Post-
Quantum Cryptography, pp. 246–265. Springer (2014)

17. Unruh, D.: Quantum proofs of knowledge. In: Advances in Cryptology – Eurocrypt
2012. LNCS, vol. 7237, pp. 135–152. Springer (April 2012), preprint on IACR ePrint
2010/212

18. Unruh, D.: Revocable quantum timed-release encryption. J. ACM 62(6), 49:1–49:76
(2015)

19. Vadhan, S.P.: Pseudorandomness. Foundations and TrendsR© in Theoretical Com-
puter Science 7(1–3), 1–336 (2012)

20. Watrous, J.: Zero-knowledge against quantum attacks. SIAM Journal on Comput-
ing 39(1), 25–58 (2009)

21. Zhandry, M.: How to construct quantum random functions. In: FOCS 2012. pp.
679–687. IEEE Computer Society (2012)

22. Zhandry, M.: Secure identity-based encryption in the quantum random oracle
model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 758–775. Springer, Heidelberg (2012)

A Missing proofs in Section 2

A.1 Proof of Theorem 2.9

In this section, we prove the following Theorem 2.9, given on p. 11.

Theorem 2.9. Let A be an adversary having oracle access to O1, . . . , Ot, and
makes at most qi quantum queries to Oi ∈ YXi

i for i = 1, . . . , t. If we draw
Oi from some joint distribution for i = 1, . . . , t, then for every v, the quantity
Pr[AO1,...,Ot() = v] is a linear combination of the quantities

Pr[∀i ∈ {1, . . . , t},∀j ∈ {1, . . . , 2qi}, Oi(x(i)j) = y
(i)
j]

for all possible settings of the values x
(i)
j ∈ X and y

(i)
j ∈ Y.

Proof. Let |φ0〉 be the state of the adversary A right before any query. This can
be written as

|φ0〉 =
∑

x1,...,xt,y1,...,yt,z

αx1,...,xt,y1,...,yt,z|x1 . . . xty1 . . . ytz〉,

27

where xi ∈ Xi, yi ∈ Yi, and z ∈ Z for some Z.
Here, the oracle Oi is of form Oi : Xi → Yi. The oracle query operator for

the oracle Oi, also denoted by the same symbol Oi, acts on the computational
basis vectors as follows:

Oi|x1 . . . xty1 . . . ytz〉 = |x1 . . . xty1 . . . yi−1yi ⊕Oi(xi)yi+1 . . . ytz〉.

To simplify the notation somewhat, let us denote x1, . . . , xt as x and so on.
This would simplify the notation for the state |φ0〉 above, for example, as

|φ0〉 =
∑
xyz

αxyz|xyz〉.

The adversary A will evaluate its quantum circuit, so the general state of A
after q queries to some oracles O1, . . . , Ot can be written as

|φ〉 = UqOiq . . . U2Oi2U1Oi1 |φ0〉,

where Oi1 , Oi2 , . . . , Oiq is the sequence of oracle query operators, in the order
appearing in the quantum circuit of A, and U1, . . . , Uq are unitary operators
applied between the queries.

Let us make the following claim: if |φ〉 is the state of A after q1 queries to O1,
q2 queries to O2, . . . , and qt queries to Ot, in some arbitrary order of queries,
then each entry (|φ〉〈φ|)xyz,x′y′z′ of the matrix |φ〉〈φ| can be written as∑
x
(1)
1 ...x

(1)
2q1

. . .
∑

x
(t)
1 ...x

(t)
2qt

βxyz,x′y′z′
(
O1(x

(1)
1), . . . , O1(x

(1)
2q1

), . . . , Ot(x
(t)
1), . . . , Ot(x

(t)
2qt

)
)
,

for some function βxyz,x′y′z′
(
r
(1)
1 , . . . , r

(1)
2q1
, . . . , r

(t)
1 , . . . , r

(t)
2qt

)
.

We prove this claim by mathematical induction.
First, the claim holds when no queries are made so far: when the state is

|φ0〉, we have
(|φ0〉〈φ0|)xyz,x′y′z′ = αxyzα

∗
x′y′z′ .

So, in this basis case, the function βxyz,x′y′z′() is just the constant value αxyzα
∗
x′y′z′ ,

and the claim holds for this case.
Now, let us prove the induction step. Suppose |φ〉 is a state where the claim

holds, and suppose |φ′〉 = UOi|φ〉 for some unitary operator U and some i ∈
{1, . . . , t}. That is, one more query is made. We then prove that the claim holds
for |φ′〉. Without loss of generality, let us assume i = 1: other cases can be done
symmetrically.

Note that

(UO1)xyz,x′y′z′ = 〈xyz|UO1|x′y′z′〉
= 〈xyz|U |x′, y′1 ⊕O1(x′1)y′2 . . . y

′
t, z
′〉.

To simplify the notation, given x′,y′, z′, let us write y′1 ⊕ O1(x′1)y′2 . . . y
′
t as

y′[y′1 ⊕O1(x′1)]1. That is, y[v]i means the same sequence of values as y, except

28

that the value of the ith position is substituted with v: y[v]i = y1 . . . yi−1vyi+1 . . . yt.
Then,

(UO1)xyz,x′y′z′ = 〈xyz|U |x′y[y′1 ⊕O1(x′1)]1z′〉 = Uxyz,x′y[y′1⊕O1(x′1)]
1z′ .

Using this, we get

(|φ′〉〈φ′|)xyz,x′y′z′ = (UO1|φ〉〈φ|O1U
∗)xyz,x′y′z′

=
∑

x′′y′′z′′

∑
x′′′y′′′z′′′

(UO1)xyz,x′′y′′z′′

(|φ〉〈φ|)x′′y′′z′′,x′′′y′′′z′′′

(O1U
∗)x′′′y′′′z′′′,x′y′z′

=
∑

x′′y′′z′′

∑
x′′′y′′′z′′′

(U)xyz,x′′y′′[y′′1⊕O1(x′′1)]
1z′′

(|φ〉〈φ|)x′′y′′z′′,x′′′y′′′z′′′

(U∗)x′′′y′′′[y′′′1 ⊕O1(x′′′1)]1z′′′,x′y′z′

Plugging in the derived formula for (|φ〉〈φ|)x′′y′′z′′,x′′′y′′′z′′′ , the above can
be written as∑
x′′1 ,x

′′′
1

∑
x
(1)
1 ...x

(1)
2q1

. . .
∑

x
(t)
1 ...x

(t)
2qt

β′xyz,x′y′z′
(
O1(x′′1), O1(x′′′1),

O1(x
(1)
1), . . . , O1(x

(1)
2q1

), . . . , Ot(x
(t)
1), . . . , Ot(x

(t)
2qt

)
)
,

where the function β′xyz,x′y′z′ is given by the following formula:

β′xyz,x′y′z′
(
r′′1 , r

′′′
1 , r

(1)
1 , . . . , r

(1)
2q1
, . . . , r

(t)
1 , . . . , r

(t)
2qt

)
=

∑
x′′2 ...x

′′
t

∑
y′′z′′

∑
x′′′2 ...x

′′′
t

∑
y′′′z′′′

(U)xyz,x′′y′′[y′′1⊕r′′1]1z′′(U
∗)x′′′y′′′[y′′′1 ⊕r′′′1]1z′′′,x′y′z′

βx′′y′′z′′,x′′′y′′′z′′′
(
r
(1)
1 , . . . , r

(1)
2q1
, . . . , r

(t)
1 , . . . , r

(t)
2qt

)
.

So the claim holds for |φ′〉 = UOi|φ〉, if it holds for |φ〉. This proves the claim
by mathematical induction.

In fact, the state of the adversaryA after some sequence of queriesOi1 , Oi2 , . . .
would be represented as the density matrix

ρ =
∑

o1,...,ot

Pr[∀i, Oi = oi] |φ〉〈φ|.

29

Then, using the formula for the matrix entries (|φ〉〈φ|)xyz,x′y′z′ , now we can
compute the entries of the density matrix ρ.

ρxyz,x′y′z′ =
∑

o1,...,ot

Pr[∀i, Oi = oi] (|φ〉〈φ|)xyz,x′y′z′

=
∑

x
(1)
1 ...x

(1)
2q1

. . .
∑

x
(t)
1 ...x

(t)
2qt

∑
o1,...,ot

Pr[∀i, Oi = oi]

βxyz,x′y′z′
(
o1(x

(1)
1), . . . , o1(x

(1)
2q1

), . . . , ot(x
(t)
1), . . . , ot(x

(t)
2qt

)
)

=
∑

x
(1)
1 ...x

(1)
2q1

. . .
∑

x
(t)
1 ...x

(t)
2qt

∑
r
(1)
1 ...r

(1)
2q1

. . .
∑

r
(t)
1 ...r

(t)
2qt

βxyz,x′y′z′
(
r
(1)
1 , . . . , r

(1)
2q1
, . . . , r

(t)
1 , . . . , r

(t)
2qt

)
Pr
[
∀i ∈ {1, . . . , t},∀j ∈ {1, . . . , 2qi}, Oi(x(i)j) = r

(i)
j

]
So, each entry of the density matrix ρ is a linear combination of the quantities

Pr[∀i ∈ {1, . . . , t},∀j ∈ {1, . . . , 2qi}, Oi(x(i)j) = r
(i)
j] for all possible x

(i)
j ∈ Xi and

r
(i)
j ∈ Yi. In particular, the probability Pr[AO1,...,Ot() = v] for any output value

v is also such a linear combination. Since Pr[AO1,...,Ot() = v] is a probability,
hence real, by taking the real components, we see that all coefficients of the
linear combination can be considered as real. ut

A.2 Proof of Lemma 2.17

Let us prove Lemma 2.17 from p. 13:

Lemma 2.17. Let H : A → B be a random oracle, and let D be a distribution
over YX . Suppose D is bounded samplable relative to H, and suppose an ad-
versary AO,H makes at most q queries to O, and at most qH queries to H. Let
D′ be the distribution of function O sampled by sampling r ← R(q) and letting
O(x) := D.evalH(1q, r, x). Then, we have

PrO←D[AO,H() = v] = PrO←D′ [A
O,H() = v],

for any possible output value v of A.

Proof. By Theorem 2.9, for each v, the probability PrO←D[AO,H() = v] is a
linear combination of all possible probabilities of form

PrO←D[∀i, O(xi) = yi ∧ ∀j,H(aj) = bj],

where i runs from 1 to 2q and j runs from 1 to 2qH . But, this can be written as

PrO←D[∀i, O(xi) = yi ∧ ∀j,H(aj) = bj]

=
∑
h∈BA

PrO←D[∀i, O(xi) = yi ∧ ∀j,H(aj) = bj |H = h] ·Pr[H = h]

=
∑
h∈BA

PrO←D[∀i, O(xi) = yi ∧ ∀j,H(aj) = bj |H = h] ·Pr[H = h]

30

Now, for any x1, . . . , x2q ∈ X , any y1, . . . , y2q ∈ Y, any a1, . . . , a2qH ∈ A, any
b1, . . . , b2qH ∈ B, and any h ∈ BA, consider the conditional probability

PrO←D[∀i, O(xi) = yi ∧ ∀j,H(aj) = bj |H = h]

The latter part of the event, namely ∀j,H(aj) = bj , is not probabilistic, and
completely determined by h: either it is true or false. If it is true, then the
conditional probability is simply

PrO←D[∀i, O(xi) = yi |H = h]

and since D and D′ are 2q-wise equivalent relative to H by definition of D′ and
the bounded samplability of D, this is equal to

PrO←D′ [∀i, O(xi) = yi |H = h]

= PrO←D′ [∀i, O(xi) = yi ∧ ∀j,H(aj) = bj |H = h]

On the other hand, if ∀j,H(aj) = bj is false, then

PrO←D[∀i, O(xi) = yi ∧ ∀j,H(aj) = bj |H = h] = 0,

which is regardless of the distribution D, and in fact

PrO←D[∀i, O(xi) = yi ∧ ∀j,H(aj) = bj |H = h]

= PrO←D′ [∀i, O(xi) = yi ∧ ∀j,H(aj) = bj |H = h] = 0.

Hence, we have

PrO←D[∀i, O(xi) = yi∧∀j,H(aj) = bj] = PrO←D′ [∀i, O(xi) = yi∧∀j,H(aj) = bj],

and now we can conclude that

PrO←D[AO,H() = v] = PrO←D′ [A
O,H() = v],

which tells us that switching from D to D′ does not affect the behavior of A. ut

A.3 Proof of Lemma 2.18

Here, let us prove Lemma 2.18 from p. 13:

Lemma 2.18. Suppose that D is an efficiently samplable distribution over YX
relative to a random oracle H : A → B. If Z is any set, then DZ is bounded
samplable relative to H.

Proof. Since D is efficiently samplable relative to H, there exist a set R and a
polynomial-time deterministic oracle algorithm D.evalH , so that we can sample
f ← D by sampling r ← R and defining f(x) := D.evalH(r, x).

Let U be the uniform distribution over RZ . Since this is bounded samplable,
there exist a set R′(q) and a polynomial-time deterministic algorithm U.eval

31

so that, if we sample r′ ← R′(q) and define ρ′(z) := U.eval(1q, r′, z), then the
distribution U ′ of ρ′ is 2q-wise equivalent to that of U .

Now, we define DZ .evalH() as

DZ .evalH(1q, r′, (z, x)) := D.evalH(U.eval(1q, r′, z), x).

Let us define D′ as the distribution of function O sampled by sampling r′ ←
R′(q) and defining O(z, x) := DZ .evalH(1q, r′, (z, x)).

We need only to prove D′ is 2q-wise equivalent to DZ relative to H. Note
that if we sample O ← DZ , then, for each z ∈ Z, O(z)← D. So, we can sample
O ← DZ by sampling ρ← U and defining O(z, x) := D.evalH(ρ(z), x). So,

PrO←DZ [∀i ∈ {1, . . . , 2q}, O(zi, xi) = yi |H = h]

= Prρ←U

[
∀i ∈ {1, . . . , 2q}, D.evalH(ρ(zi), xi) = yi |H = h

]
= Prρ←U

 ∃
r1∈Rh

1

. . . ∃
r2q∈Rh

2q

∀i ∈ {1, . . . , 2q}, ρ(zi) = ri


=
∑
r1∈Rh

1

· · ·
∑

r2q∈Rh
2q

Prρ←U [∀i ∈ {1, . . . , 2q}, ρ(zi) = ri] ,

where Rhi are defined as Rhi :=
{
r ∈ R | D.evalh(r, xi) = yi

}
.

Now, since the distribution of ρ′(z) := U.eval(1q, r′, z) for r′ ← R′(q) is
2q-wise equivalent to U , we have

PrO←DZ [∀i ∈ {1, . . . , 2q}, O(zi, xi) = yi |H = h]

=
∑
r1∈Rh

1

· · ·
∑

r2q∈Rh
2q

Prρ←U [∀i ∈ {1, . . . , 2q}, ρ(zi) = ri]

=
∑
r1∈Rh

1

· · ·
∑

r2q∈Rh
2q

Prr′←R′(q) [∀i ∈ {1, . . . , 2q}, U.eval(1q, r′, zi) = ri]

= Prr′←R′(q)

 ∃
r1∈Rh

1

. . . ∃
r2q∈Rh

2q

∀i ∈ {1, . . . , 2q}, U.eval(1q, r′, zi) = ri


= Prr′←R′(q)

[
∀i ∈ {1, . . . , 2q}, D.evalH(U.eval(1q, r′, zi), xi) = yi |H = h

]
= PrO←D′ [∀i ∈ {1, . . . , 2q}, O(zi, xi) = yi |H = h]

From this we see that DZ is bounded samplable relative to H. ut

B Details on Section 3

B.1 Small-range distributions

In this subsection, we are going to prove Theorem 3.7, given in p. 15.

32

Theorem 3.7. Let H : A → B be a random oracle, and let D be a function
distribution over YX which is not necessarily independent from H. Suppose that
A is an adversary making at most q queries to an oracle O ∈ YX , and at most
qH queries to the random oracle H. Then, we have∣∣∣PrO←SRD

r (Z)[A
O,H() = 1]−PrO←DZ [AO,H() = 1]

∣∣∣ < 16q3

r
,

for any r > 0, and any set Z.

To prove Theorem 3.7, we first apply Theorem 2.9 to our case, when O ← D
for some distribution D over YZ×X . Then we immediately obtain the following.

Corollary B.1. Let H : A → B be a random oracle, and let D be a function
distribution over YX which is not necessarily independent from H. Suppose that
A is an adversary making at most q queries to an oracle O sampled from some
distribution D over (YX)Z ∼= YZ×X , and at most qH queries to H. Then, for
every v, the quantity PrO←D[AO,H() = v] is a linear combination of the quan-
tities

PrO←D [∀i ∈ {1, . . . , 2q}, O(zi, xi) = yi ∧ ∀j ∈ {1, . . . , 2qH}, H(aj) = bj] ,

for all possible tuples (zi, xi, yi) ∈ Z×X×Y for i = 1, . . . , 2q, and (aj , bj) ∈ A×B
for j = 1, . . . , 2qH .

Also, we will use the following lemma of Zhandry.

Lemma B.2 (Lemma 7.4 of [21]). Let D be a distribution over Y. Fix k > 0
arbitrarily. For any set X , any x1, . . . , xk ∈ X and y1, . . . , yk ∈ Y, the quantity

PrO←SRD
r (X)[∀i ∈ {1, . . . , k}, O(xi) = yi]

is a polynomial in 1/r of degree at most k.

We use Lemma B.2 to prove the following:

Lemma B.3. Let H : A → B be a random oracle, and let D be a distribu-
tion over YX which is not necessarily independent from H. For any set Z, the
probability

PrO←SRD
r (Z) [∀i ∈ {1, . . . , 2q}, O(zi, xi) = yi ∧ ∀j ∈ {1, . . . , 2qH}, H(aj) = bj]

is a polynomial in 1/r of degree at most 2q, for any (zi, xi, yi) ∈ Z ×X ×Y for
i = 1, . . . , 2q, and (aj , bj) ∈ A× B for j = 1, . . . , 2qH .

Proof (Of Lemma B.3). We have

PrO←SRD
r (Z) [∀i, O(zi, xi) = yi ∧ ∀j,H(aj) = bj]

=
∑
h∈BA

Pr[H = h] ·PrO←SRD
r (Z) [∀i, O(zi, xi) = yi ∧ ∀j,H(aj) = bj |H = h]

=
∑
h∈BA

Pr[H = h] ·PrO←SRD
r (Z) [∀i, O(zi, xi) = yi ∧ ∀j, h(aj) = bj |H = h] ,

33

where i runs from 1 to 2q, and j runs from 1 to 2qH .
So, the probability is a linear combination of the conditional probabilities

ph := PrO←SRD
r (Z) [∀i, O(zi, xi) = yi ∧ ∀j, h(aj) = bj |H = h] ,

so we need only to prove that ph is a polynomial in 1/r of degree at most 2q.
Again, ∀j, h(aj) = bj is either true or false. If it is false, then ph is 0, so we

are done in this case. On the other hand, if it is true, then

ph = PrO←SRD
r (Z) [∀i, O(zi, xi) = yi |H = h]

= Pr
O←SR

D|h
r (Z) [∀i, O(zi, xi) = yi] ,

where D|h is the conditional distribution of D conditioned on the event H = h.
Then,

ph = Pr
O←SR

D|h
r (Z) [∀i, O(zi)(xi) = yi]

= Pr
O←SR

D|h
r (Z)

 ∃
f1:

f1(x1)=y1

. . . ∃
f2q :

f2q(x2q)=y2q

∀i, O(zi) = fi


This is true: whenever we have the event O(zi)(xi) = yi for all i, letting fi =

O(zi), we have fi(xi) = yi, so we have some functions fi satisfying fi(xi) = yi,
and the event O(zi) = fi for all i occurs. Conversely, whenever we have the some
functions fi satisfying the condition fi(xi) = yi for all i, if the event O(zi) = fi
for all i occurs, then in that case naturally we have O(zi)(xi) = yi for all i.

Any different tuple (f1, . . . , f2q) gives mutually exclusive events. So,

ph =
∑
f1:

f1(x1)=y1

. . .
∑
f2q :

f2q(x2q)=y2q

Pr
O←SR

D|h
r (Z)[∀i, O(zi) = fi].

Now we can apply Lemma B.2 to this case: even though the distribution D|h
is over the function space YX , it is just a set and we can still use Lemma B.2.
So, each Pr

O←SR
D|h
r (Z)[∀i, O(zi) = fi] is a polynomial in 1/r of degree at most

2q. Adding up these polynomials, we see that the conditional probability

ph = PrO←SRD
r (Z) [∀i, O(zi, xi) = yi ∧ ∀j, h(aj) = bj |H = h]

is also a polynomial in 1/r of degree at most 2q. This proves the lemma. ut

Combining Corollary B.1 and Lemma B.3, we see that, for any adversary A
making at most q queries to an oracle O ∈ YZ×X and at most qH queries to
a random oracle H : A → B, any distribution D over YX , and any set Z, the
probability

PrO←SRD
r (Z)[A

O,H() = 1]

is a polynomial in 1/r of degree at most 2q. Therefore, there exists a real poly-
nomial p(x) of degree at most 2q, such that

p(1/r) = PrO←SRD
r (Z)[A

O,H() = 1]

34

for all r = 1, 2, Note that 0 ≤ p(1/r) ≤ 1, since each p(1/r) is a probability.
This is a very strong constraint on the polynomial p(x). In fact, Zhandry proves
the following theorem which exploits such constraint.

Theorem B.4 (Theorem B.1 of [21], simplified). Let p(x) ∈ R[x] be an
arbitrary polynomial. Further, assume that 0 ≤ p(1/r) ≤ 1 for all r ∈ Z+. Then,
for all r ∈ Z+, we get ∣∣∣∣p(1

r

)
− p(0)

∣∣∣∣ < 2 deg(p)3

r
.

We have p(0) = limr→∞ p(1/r), and we see that as r goes to the infinity,
the distribution SRD

r (Z) becomes simply the distribution DZ . Applying Theo-
rem B.4, we obtain∣∣∣PrO←SRD

r (Z)[A
O,H() = 1]−PrO←DZ [AO,H() = 1]

∣∣∣ < 16q3

r
,

which proves Theorem 3.7.

B.2 Proof of relative oracle indistinguishability of functions

Here we give the proof of Theorem 3.3, which is done by using Theorem 3.7 to
switch to small-range distributions.

Theorem 3.3. Let H : A → B be a random oracle, and let D1, D2 be two
function distributions over YX for some X ,Y. Suppose that both DZ1 and DZ2
are bounded samplable relative to H, for any set Z. Further, suppose that D1 and
D2 are conditionally independent relative to H, and indistinguishable relative to
H. Then, they are oracle-indistinguishable relative to H.

Concretely, for any adversary AO,H making at most q queries to O and at

most qH queries to H, we can construct an adversary AO
′,H

rd satisfying

Advoracle-rel-dist
D1,D2,Z,H (A) < 12q3/2

√
Advrel-dist

D1,D2,H(Ard).

Moreover, AO
′,H

rd makes at most 2q queries to O′ and qH + 2(qe1 + qe2)q
queries to H. Here, qei is the maximum number of queries to H needed by one
invocation to the evaluation algorithm DZi .evalH(), for i = 1, 2, respectively.

Proof. Fix an arbitrary set Z. Suppose that A is an adversary attacking relative
oracle-indistinguishability of D1 and D2, while making at most q queries to an
oracle O ∈ YZ×X and at most qH queries to a random oracle H : A → B. Recall
that

Advoracle-rel-dist
D1,D2,Z,H (A) =

∣∣∣PrO←DZ1

[
AO,H() = 1

]
−PrO←DZ2

[
AO,H() = 1

]∣∣∣ .
35

Using A, we construct an adversary Ard attacking relative indistinguishability
of D1 and D2. Let us define ε as

ε = max

{
Advoracle-rel-dist

D1,D2,Z,H (A),
1

2λ

}
,

and set r := d64q3/εe. Then, r ≥ 64q3/ε, so, applying Theorem 3.7 to both D1

and D2, we get∣∣∣Pr
O←SR

D1
r (Z)[A

O,H() = 1]−PrO←DZ1 [AO,H() = 1]
∣∣∣ < 16q3

r
≤ ε

4
,∣∣∣Pr

O←SR
D2
r (Z)[A

O,H() = 1]−PrO←DZ2 [AO,H() = 1]
∣∣∣ < 16q3

r
≤ ε

4
.

From the above, we obtain∣∣∣Pr
O←SR

D1
r (Z)[A

O,H() = 1]−Pr
O←SR

D2
r (Z)[A

O,H() = 1]
∣∣∣ > ε

2
.

Let us define a sequence Oi of oracle distributions for i ∈ [r], over YZ×X :

– For each j ∈ {0, . . . , i− 1}, sample fj ← D1.
– For each j ∈ {i, . . . , r − 1}, sample fj ← D2.
– For each z ∈ Z, sample a uniform random j ← [r] and set Oi(z) := fj .

Note that O0 is distributed according to SRD2
r (Z), and Or is distributed

according to SRD1
r (Z). Let us define εi as

εi := Pr[AOi+1,H() = 1]−Pr[AOi,H() = 1].

By telescoping and the previous result, we get∣∣∣∣∣
r−1∑
i=0

εi

∣∣∣∣∣ =
∣∣∣Pr

O←SR
D1
r (Z)[A

O,H() = 1]−Pr
O←SR

D2
r (Z)[A

O,H() = 1]
∣∣∣ > ε

2
.

Now we are going to construct the adversary AO
′,H

rd . The adversary AO
′,H

rd

has access to an oracle O′ ∈ YX which is sampled either according to D1 or D2.
The goal of Ard is to distinguish between the two. Also, Ard has access to the
random oracle H : A → B. We define the adversary Ard as follows:

1. Ard picks a uniform random element i← [r].
2. Ard samples a random oracle Ô0 ← [r]Z , using the bounded samplability of

the uniform distribution over [r]Z .

3. Ard samples Ô1 ← D
{0,...,i−1}
1 and Ô2 ← D

{i+1,...,r−1}
2 , using the relative

bounded samplability of the distributions.
4. Ard constructs an oracle O as follows: O(z, x) is defined as:

– Let j = Ô0(z) ∈ [r].
– If j = i, then O(z, x) = O′(x).
– If j < i, then O(z, x) = Ô1(j, x).

36

– If j > i, then O(z, x) = Ô2(j, x).

5. For any O-query of A, Ard answers by the constructed oracle O.
6. Any H-query of A is answered by a H-query of Ard itself.
7. When A finally outputs a value v and halts, Ard also outputs b and halts.

Note that constructing oracles Ô0, Ô1, Ô2 using (relative) bounded samplabil-

ity is possible, since [r]Z , D
{0,...,i−1}
1 , D

{i+1,...,r−1}
2 are conditionally independent

relative to H, due to the conditional independence of D1, D2 relative to H.
Also, note that one query of O is answered by two queries of O′, Ô1, Ô2 each,

for computing and uncomputing. Hence, one query of O involves two queries of
O′, and 2qe1 + 2qe2 queries of H. In total, Ard makes at most 2q queries to O′

and qH + 2(qe1 + qe2)q queries to H.
Conditioned on that a specific i is chosen on line 1, if the oracle O′ is sampled

from D1, then the oracle O constructed by Ard is distributed according to Oi+1,
and if O is sampled from D2, then O is distributed according to Oi. Therefore,

εi = Pr[AOi+1,H() = 1]−Pr[AOi,H() = 1]

= PrO′←D1
[AO

′,H
rd () = 1 | i]−PrO′←D2 [AO

′,H
rd () = 1 | i].

Here, Pr[AO
′,H

rd () = 1 | i] is the conditional probability, conditioned on the
event that a particular i is chosen on line 1 of the description of Ard. Then,∣∣∣PrO′←D1

[AO
′,H

rd () = 1]−PrO′←D2
[AO

′,H
rd () = 1]

∣∣∣
=

∣∣∣∣∣
r−1∑
i=0

(
PrO′←D1

[AO
′,H

rd () = 1 | i]−PrO′←D2
[AO

′,H
rd () = 1 | i]

)
Pr[i]

∣∣∣∣∣
=

1

r

∣∣∣∣∣
r−1∑
i=0

(
PrO′←D1 [AO

′,H
rd () = 1 | i]−PrO′←D2 [AO

′,H
rd () = 1 | i]

)∣∣∣∣∣
=

1

r

∣∣∣∣∣
r−1∑
i=0

εi

∣∣∣∣∣ > ε

2r
.

Since 65q3/ε− 64q3/ε = q3/ε ≥ 1 and r was chosen as r = d64q3/εe, we have
r < 65q3/ε. Then,∣∣∣PrO′←D1

[AO
′,H

rd () = 1]−PrO′←D2
[AO

′,H
rd () = 1]

∣∣∣ > ε

2r
>

ε2

130q3
.

Therefore, we get

Advoracle-rel-dist
D1,D2,Z,H (A) ≤ ε

< 12q3/2
√∣∣∣PrO′←D1

[AO
′,H

rd () = 1]−PrO′←D2
[AO

′,H
rd () = 1]

∣∣∣
= 12q3/2

√
Advrel-dist

D1,D2,H(Ard).

37

Before finishing, we need also to show that Ard runs in polynomial-time. We
need only to check that evaluating the constructed oracles Ô0 ∈ [r]Z , Ô1 ∈
D
{0,...,i−1}
1 , Ô2 ∈ D{i+1,...,r−1}

2 takes polynomial-time. To do this, we need only
to make sure that log r is polynomially bounded. But

log r < log
65q3

ε
= O(log q) + log

1

ε
≤ O(log q) + λ,

for ε ≥ 2−λ by definition. Since q = q(λ) = poly(λ), we are done. ut

C PRF secure against key recovery

In this section, we give the deferred proof of Theorem 4.1:

Theorem 4.1. Let f : K × X → Y be a secure PRF. Suppose that both the
domain and the codomain of f are superpolynomially large: |X |, |Y| ≥ 2ω(log λ).
Then, f is also secure against key recovery.

Concretely, for any adversary Af(k,·) making at most q queries to f(k, ·) with
uniform random k ← K, we can construct an adversary Ad that makes at most
q + 1 queries such that

Advprf-kr
f (A) ≤ Advprf

f (Ad) +
1

|Y|
+

4q√
|X |

.

To prove Theorem 4.1, we first consider a decision version of Grover’s search
problem for a randomly marked item. Namely, we are given an oracle g : X →
{0, 1} which is either the constant zero function g0, or gz(x) := 1 iff x = z for a
uniformly random z ← X . For uniformly random z ← X , any adversary A, and
g ∈ {g0, gz}, let Ag,z() be the procedure that A makes up to certain number of
queries to g, and is given z afterwards. After z is given, A outputs one bit in the
end. We define Advds

g (A) as

Advds
g (A) := |Pr[Ag0,z() = 1]−Pr[Agz,z() = 1]| .

It is easy to show that this decision problem is essentially as hard as the
normal Grover’s search problem by standard technique, and we give a proof for
completeness.

Lemma C.1. For any adversary A making at most q queries to g, we have

Advds
g (A) ≤ 2q√

|X |
.

Proof. For any z, Let |ψz〉 and |φ〉 be the states of A right before z is given,
when interacting with gz and g0 respectively. Denote α = αz := 1/|X | be the

38

probability of a uniform z being chosen. Then what A sees after receiving z will
be

ρ =
∑
z

αz|z〉〈z| ⊗ |ψz〉〈ψz| ,

σ =
∑
z

αz|z〉〈z| ⊗ |φ〉〈φ| .

respectively in the case of gz and g0.
Therefore

Advds
g (A) ≤ td(ρ, σ) ≤

∑
z

αztd(|ψz〉〈ψz|, |φ〉〈φ|)
Claim
≤ 2q/

√
|X | .

The last inequality is due to the following Claim, whose proof concludes the
proof of Lemma C.1:

Claim.
∑
z αztd(|ψz〉〈ψz|, |φ〉〈φ|) ≤ 2q/

√
|X |.

Proof. This is basically a refined analysis of the BBBV [6] proof for the Grover
search lower bound. A similar derivation can be found in [1, Lemma 38]. For
i = 1, . . . q, let |ψiz〉 and |φi〉 be states of A after the ith query to gz and g0
respectively. Then |ψz〉 := |ψqz〉 and |φ〉 := |φq〉 by definition. It is easy to show
that

td(|ψz〉〈ψz|, |φ〉〈φ|) ≤
q∑
i=1

td(gz|φi〉, |φi〉) .

Here gz is a shorthand for the oracle |x, y, w〉 7→ |x, gz(x)⊕ y, w〉 where w is the
work register of A.

Next, let Πz be the projection I ⊗ |z〉〈z| ⊗ I. Then,∑
z

αztd(|ψz〉〈ψz|, |φ〉〈φ|)

≤
∑
z

αz
∑
i

td(gz|φi〉, |φi〉)

=
∑
z,i

αztd(gzΠz|φi〉+ (1−Πz)|φi〉, Πz|φi〉+ (1−Πz)|φi〉)

(∗)
≤
∑
z,i

αz2‖Πz|φi〉‖ ≤ 2
∑
i

√∑
z

αz‖Πz|φi〉‖2

= 2q
√
α = 2q/

√
|X | .

We invoked a lemma by Ambainis et al. [1, Lemma 36] in (∗). In the remaining
steps we applied Jensen’s inequality and observed that∑

z

αz‖Πz|φi〉‖2 = α‖|φi〉‖2 = α

since Πz|φi〉 are orthogonal for different z. This concludes the proof of the Claim,
and Lemma C.1. ut

39

Now we are ready to prove Theorem 4.1:

Proof. Let ρ : X → Y be a random function. For any z ∈ X , we define the
function ρz to be identical to ρ, except that ρz(z) = 0 on input z, where 0 ∈ Y
is an arbitrarily fixed element of Y.

Using the adversary A attacking the security of f against key recovery, let
us construct an adversary AOd attacking PRF security of f : O is either ρ or
f(k, ·) with random k ← K, and Ad is trying to distinguish between two. Ad is
described as follows.

1. Ad picks random z ← X .
2. Ad runs A, answering any query from A by O.
3. When A halts with an output k ∈ K, Ad queries its oracle O with input z.
4. Ad outputs 1 if f(k, z) = O(z), and 0 otherwise.

Note that the adversary Ad makes at most q + 1 queries.
To carry on the analysis, we introduce an imaginary experiment by consider-

ing a variant Âd of the adversary Ad for the case O = ρ: Âd behave exactly like
Ad, except that Âd answers queries from A by ρz instead of ρ (i.e., answering 0 on
a random z and otherwise truly random). Finally Âd outputs 1 if f(k, z) = ρ(z).

We claim that Pr[Âρd() = 1] = 1
|Y| . This is because the function ρz does not

have any information on ρ(z), hence ρ(z) is independent of f(k, z). Therefore
ρ(z) = f(k, z) holds with probability 1/|Y|, regardless of the answer k of A.

We also have that

Pr[A
f(k,·)
d () = 1] ≥ Pr[Af(k,·)() = k] = Advprf-kr

f (A),

since as long as Af(k,·) outputs the correct key k on line 3 of the description of

Ad above, the adversary A
f(k,·)
d outputs 1. Then,

Advprf-kr
f (A) ≤ Pr[A

f(k,·)
d () = 1]

≤ Pr[Âρd() = 1] +
∣∣∣Pr[A

f(k,·)
d () = 1]−Pr[Âρd() = 1]

∣∣∣
=

1

|Y|
+
∣∣∣Pr[A

f(k,·)
d () = 1]−Pr[Âρd() = 1]

∣∣∣
≤ 1

|Y|
+
∣∣∣Pr[A

f(k,·)
d () = 1]−Pr[Aρd() = 1]

∣∣∣
+
∣∣∣Pr[Aρd() = 1]−Pr[Âρd() = 1]

∣∣∣
=

1

|Y|
+ Advprf

f (Ad) +
∣∣∣Pr[Aρd() = 1]−Pr[Âρd() = 1]

∣∣∣ .
Now, we are going to finish the proof by showing that∣∣∣Pr[Aρd() = 1]−Pr[Âρd() = 1]

∣∣∣ ≤ 4q√
|X |

.

40

Namely, “programming” ρ at one point will not be noticed by any adversary
except with “tiny” error.

We prove the inequality above by a reduction from the decision search prob-
lem (Lemma C.1); we construct an adversary Ads making at most 2q queries,
satisfying ∣∣∣Pr[Aρd() = 1]−Pr[Âρd() = 1]

∣∣∣ = Advds
g (Ads).

Given oracle g, which is either g0 = 0 or gz with random z ← X , we define
Ag,zds as follows:

1. Implement a uniform random function h : X → Y by bounded samplability.
2. Define oracle ρ : X → Y so that

ρ(x) :=

{
h(x) if g(x) = 0,

0 if g(x) = 1,

where 0 ∈ Y is an arbitrarily fixed point in Y.
3. Run A with oracle ρ. Wait till A outputs k which defines f(k, ·).
4. Ads is then given z.
5. Ads ouputs 1 if h(z) = f(k, z), and 0 otherwise.

Ads makes at most 2q queries to its oracle g, since each ρ-query of A can be
answered by two queries to g.

Note that if g = g0, then Ads is exactly playing the same game as Ad is
playing with A, and hence, we have Pr[Ag0,zds () = 1] = Pr[Aρd() = 1]. Similarly,

if g = gz, then Pr[Agz,zds () = 1] = Pr[Âρd() = 1] (i.e., the response of one random
position z of ρ has been “programmed” to 0). Therefore∣∣∣Pr[Aρd() = 1]−Pr[Âρd() = 1]

∣∣∣
= |Pr[Ag0,zds () = 1]−Pr[Agz,zds () = 1]| = Advds

g (Ads).

This proves the theorem. ut

41

	Quantum Security of NMAC and Related Constructions — PRF domain extension against quantum attacks

