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Abstract. qDSA is a high-speed, high-security signature scheme that
facilitates implementations with a very small memory footprint, a cru-
cial requirement for embedded systems and IoT devices, and that uses
the same public keys as modern Diffie–Hellman schemes based on Mont-
gomery curves (such as Curve25519) or Kummer surfaces. qDSA resem-
bles an adaptation of EdDSA to the world of Kummer varieties, which
are quotients of groups by ±1. Interestingly, it does not require any full
group operations or point recovery: all computations, including signature
verification, occur on the quotient where there is no group law. We in-
clude details on four implementations of qDSA, using Montgomery and
fast Kummer arithmetic on the 8-bit AVR ATmega and 32-bit Cortex M0
platforms. We find that qDSA significantly outperforms state-of-the-art
signature implementations in terms of stack usage and code size. We also
include a compression algorithm for points on fast Kummer surfaces, re-
ducing them to the same size as compressed elliptic curve points for the
same security level.
Keywords. Signatures, Kummer, Curve25519, Diffie–Hellman, elliptic
curve, hyperelliptic curve.

1 Introduction

Modern asymmetric cryptography based on elliptic and hyperelliptic curves [28,
30] achieves two important goals. The first is the efficient exchange of secret
keys by the (elliptic-curve) Diffie–Hellman protocol [16], using the fact that the
(Jacobian of the) curve carries the structure of an abelian group. In fact, as Miller
observed [30], we do not need the full group structure for Diffie–Hellman: the
associated Kummer variety (the quotient by ±1) suffices, which permits more
efficiently-computable arithmetic [20,31]. Perhaps the most well-known example
is Curve25519 [5], offering fast scalar multiplications based on x-only arithmetic.

The second objective is efficient digital signatures, which are critical for au-
thentication. There are several group-based signature schemes, the most im-
portant of which are ECDSA [1], Schnorr [39], and EdDSA [8] signatures. In
? This work has been supported by the Technology Foundation STW (project 13499
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contrast to the Diffie–Hellman protocol, all of these signature schemes explic-
itly require the group structure of the (Jacobian of) the curve. An unfortunate
side-effect of this is that users essentially need two public keys to support both
curve-based protocols. Further, basic cryptographic libraries need to provide im-
plementations for arithmetic on both the Jacobian and the Kummer variety, thus
complicating and increasing the size of the trusted code base. For example, the
NaCl library [9] relies on Ed25519 [8] for signatures, while it uses Curve25519 [5]
to exchange keys. This problem is worse for genus-2 hyperelliptic curves, where
the Jacobian is significantly harder to use safely than its Kummer surface.

There have been multiple partial solutions to this problem. By observing
that elements of the Kummer variety are elements of the Jacobian up to sign,
one can build scalar multiplication on the Jacobian based on the fast Kummer
arithmetic [14, 34]. This avoids the need for a separate scalar multiplication on
the Jacobian, but does not avoid the need for its group law; it also introduces
the need for projecting to and recovering from the Kummer. In any case, it does
not solve the problem of having different public key types.

Another proposal is XEdDSA [35], which uses the public key on the Kummer
variety to construct EdDSA signatures. In essence, it creates a key pair on the
Jacobian by appending a sign bit to the public key on the Kummer variety, which
can then be used for signatures. In [22] Hamburg shows that one can actually
verify signatures using only the x-coordinates of points on an elliptic curve, which
is applied in the recent STROBE framework [23]. We generalize the approach
to allow Kummer varieties of curves of higher genera, and naturally adapt the
scheme by only allowing challenges up to sign. This allows us to provide a proof
of security, which has thus far not been attempted (in [22] Hamburg remarks
that verifying up to sign does “probably not impact security at all”). Similar
techniques have been applied for batch verification of ECDSA signatures [27],
using the theory of summation polynomials [40].

In this paper we show that there is no intrinsic reason why Kummer varieties
cannot be used for signatures. We present qDSA, a signature scheme relying
only on Kummer arithmetic, and prove it secure in the random oracle model. It
should not be surprising that the reduction in our proof is slightly weaker than
the standard proof of security of Schnorr signatures [36], but not by more than we
should expect. There is no difference between public keys for qDSA and Diffie–
Hellman. After an abstract presentation in §2, we give a detailed description
of elliptic-curve qDSA instances in §3. We then move on to genus-2 instances
based on fast Kummer surfaces, which give better performance. The necessary
arithmetic appears in §4, before §5 describes the new verification algorithm.

We also provide an efficient compression method for points on fast Kummer
surfaces in §6, solving a long-standing open problem [6]. Our technique means
that qDSA public keys for g = 2 can be efficiently compressed to 32 bytes, and
that qDSA signatures fit into 64 bytes; it also finally reduces the size of Kummer-
based Diffie–Hellman public keys from 48 to 32 bytes.

Finally, we provide constant-time software implementations of genus-1 and
genus-2 qDSA instances for the AVR ATmega and ARM Cortex M0 platforms.
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The performance of all four qDSA implementations, reported in §7, comfortably
beats earlier implementations in terms of stack usage and code size.

Source code. We place all of the software described here into the public domain,
to maximize the reusability of our results. The software is available at http:
//www.cs.ru.nl/~jrenes/.

2 The qDSA signature scheme

In this section we define qDSA, the quotient Digital Signature Algorithm. We start
by recalling the basics of Kummer varieties and defining key operations in §2.1.
The rest of the section is dedicated to the definition of the qDSA signature scheme,
which is presented in full in Algorithm 1, and its proof of security. qDSA closely
resembles the Schnorr signature scheme [39], as it results from applying the Fiat–
Shamir heuristic [19] to an altered Schnorr identification protocol, together with
a few standard changes as in EdDSA [8]. The security proof follows Pointcheval
and Stern [36,37]. We comment on some special properties of qDSA in §2.5.

2.1 The Kummer variety setting

Let C be a (hyper)elliptic curve and J its Jacobian3. The Jacobian is a com-
mutative algebraic group with group operation +, inverse −, and identity 0.
We assume J has a subgroup of large prime order N . The associated Kummer
variety K is the quotient K = J /±. By definition, working with K corresponds
to working on J up to sign. If P is an element of J , we denote its image in K
by ±P . In this paper we take log2N ≈ 256, and consider two important cases.

Genus 1. Here J = C/Fp is an elliptic curve with log2 p ≈ 256, while K = P1

is the x-line. We choose K to be Curve25519 [5], which is the topic of §3.
Genus 2. Here J is the Jacobian of a genus-2 curve C/Fp, where log2 p ≈ 128,

and K is a Kummer surface. We use the Gaudry–Schost parameters [21] for
our implementations. Kummer arithmetic, including some new constructions
we need for signature verification and compression, is described in §§4-6.

A point ±P in K(Fp) is the image of two points {P,−P} on J . It is important
to note that P is not necessarily in J (Fp); if not, then P and −P are conjugate
points in J (Fp2), and correspond to points in J ′(Fp), where J ′ is the quadratic
twist of J . Both J and J ′ always have the same Kummer variety. We return
to this fact, and its implications for our scheme, in §2.5 below.

3 In what follows, we could replace J by an arbitrary (additive) abelian group and all
the proofs would be completely analogous. For simplicity we restrict to the crypto-
graphically most interesting case of a Jacobian.
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2.2 Basic operations

While a Kummer variety K has no group law, the operation

{±P,±Q} 7→ {±(P +Q),±(P −Q)} (1)

is well-defined. We can therefore define a pseudo-addition operation by xADD :
(±P,±Q,±(P −Q)) 7→ ±(P +Q). The special case where ±(P −Q) = ±0 is the
pseudo-doubling xDBL : ±P 7→ ±[2]P . In our applications we can often improve
efficiency by combining two of these operations in a single function

xDBLADD : (±P,±Q,±(P −Q)) 7−→ (±[2]P,±(P +Q)) .

For any integer m, the scalar multiplication [m] on J induces the key crypto-
graphic operation of pseudomultiplication on K, defined by

Ladder : ±P 7−→ ±[m]P .

As its name suggests, we compute Ladder using Montgomery’s famous ladder
algorithm [31], which is a uniform sequence of xDBLADDs and constant-time con-
ditional swaps.4 This constant-time nature will be important for signing.

Our signature verification requires a function Check on K3 defined by

Check : (±P,±Q,±R) 7−→

{
True if ±R ∈ {±(P +Q),±(P −Q)}
False otherwise

Since we are working with projective points, we need a way to uniquely
represent them. Moreover, we want this representation to be as small as possible,
to minimize communication overhead. For this purpose we define the functions

Compress : K → {0, 1}256

and
Decompress : {0, 1}256 −→ K ∪ {⊥} .

We denote ±P := Compress(±P ) such that Decompress(±P ) = ±P . If X ∈
{0, 1}256 \ Im(Compress), then Decompress(X) = ⊥.

For the remainder of this section we assume that Ladder, Check, Compress,
and Decompress are defined. Their implementation depends on whether we are
in the genus 1 or 2 setting; we return to this in later sections.

2.3 The qID identification protocol

Let P be a generator of a prime order subgroup of J , of order N , and ±P its
image in K. Let Z+

N denote the subset of ZN with zero least significant bit. The
private key is an element d ∈ ZN . The public key is ±Q = ±[d]P . Now consider
the following Schnorr-style identification protocol, which we call qID:
4 In contemporary implementations such as NaCl, the Ladder function is sometimes
named crypto_scalarmult.
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(1) The prover sets r ←R Z∗N , ±R← ±[r]P and sends ±R to the verifier;
(2) The verifier sets c←R Z+

N and sends c to the prover;
(3) The prover sets s← (r − cd) mod N and sends s to the verifier;
(4) The verifier accepts if and only if ±R ∈ {±([s]P + [c]Q),±([s]P − [c]Q)}.

There are some important differences between qID and the basic Schnorr iden-
tification protocol.

Scalar multiplications on K. It is well-known that one can use K to perform
the scalar multiplication [14,34] within a Schnorr identification or signature
scheme. However, with this approach one must always lift back to an element
of a group. In contrast, in our scheme this recovery step is not necessary.

Verification on K. The original verification [39] requires checking that R =
[s]P + [c]Q for some R, [s]P, [c]Q ∈ J . Working on K, we only have these
values up to sign (i. e. ±R, ±[s]P and ±[c]Q), which is not enough to check
that R = [s]P + [c]Q. Instead, we only verify that ±R = ± ([s]P ± [c]Q).

Challenge from Z+
N . A Schnorr protocol using the weaker verification above

would not satisfy the special soundness property. Indeed, the transcripts
(±R, c, s) and (±R,−c, s) are both valid, and do not allow us to extract a
witness. Choosing c from Z+

N instead of Z eliminates this possibility. This is
the main difference with the implementation of Hamburg [23], and is what
is required for the proof security of qDSA.

Proposition 1. The qID identification protocol is a sigma protocol.

Proof. We prove the required properties (see [24, §6]).
Completeness: If the protocol is followed, then r = s + cd, and therefore

[r]P = ±[s]P ± [c]Q on J , where P and Q are arbitrary lifts of ±P and ±Q.
Mapping to K, it follows that ±R = ±([s]P ± [c]Q).

Special soundness: Let (±R, c0, s0) and (±R, c1, s1) be two valid tran-
scripts such that c0 6= c1. By verification, each si ≡ ±r ± cid (mod N), so
s0 ± s1 ≡ (c0 ± c1) d (mod N), where the signs are chosen to cancel r. Now
c0 ± c1 6≡ 0 (mod N) because c0 and c1 are both in Z+

N , so we can extract a
witness d ≡ (s0 ± s1) (c0 ± c1)−1 (mod N).

Honest-verifier zero-knowledge: A simulator S generates c←R Z+
N and

sets s←R ZN and R← [s]P + [c]Q. If R = O, it restarts. It outputs (±R, c, s).
As in [37, Lemma 5], we let

δ =

(±R, c, s)

∣∣∣∣∣∣∣∣∣
c ∈R Z+

N

r ∈R Z∗N
±R = ±[r]P
s = r − cd

 , δ′ =

(±R, c, s)

∣∣∣∣∣∣∣∣∣
c ∈R Z+

N

s ∈R ZN
R = [s]P + [c]Q

R 6= O

 .

be the distributions of honest and simulated signatures, respectively. The ele-
ments of δ and δ′ are the same. First, consider δ. There are exactly N−1 choices
for r, and exactly (N + 1)/2 for c; all of them lead to distinct tuples. There-
fore there are exactly (N2 − 1)/2 possible tuples, all of which have probability

5



2/(N2− 1) of occurring. Now consider δ′. Again, there are (N +1)/2 choices for
c. We have N choices for s, exactly one of which leads to R = O. Thus, given
c, there are N − 1 choices for s. We conclude that δ′ also contains (N2 − 1)/2
possible tuples, which all have probability 2/(N2 − 1) of occurring. ut

2.4 Applying Fiat–Shamir

Applying the Fiat–Shamir transform [19] to qID yields a signature scheme qSIG.
We will need a hash function H : {0, 1}∗ → Z+

N , which we define by taking a
hash function H : {0, 1}∗ → ZN and then setting H by

H(M) 7−→

{
H(M) if LSB(H(M)) = 0

−H(M) if LSB(H(M)) = 1
.

Note that since N is odd, LSB(−H(M)) = 1 − LSB(H(M)) if H(M) 6= 0. The
qSIG signature scheme is defined as follows:

(1) To sign a message M ∈ {0, 1}∗ with private key d ∈ ZN and public key
±Q ∈ K, the prover sets r ←R Z∗N , ±R ← ±[r]R, h ← H(±R || M), and
s← (r − hd) mod N , and sends (±R || s) to the verifier.

(2) To verify a signature (±R || s) ∈ K × ZN on a message M ∈ {0, 1}∗ with
public key ±Q ∈ K, the verifier sets h← H(±R ||M), ±T0 ← ±[s]P , and
±T1 ← ±[c]Q, and accepts if and only if ±R ∈ {±(T0 + T1),±(T0 − T1)}.

Proposition 2 asserts that the security properties of qID carry over to qSIG.

Proposition 2. In the random oracle model, if an existential forgery of the qSIG
signature scheme under an adaptive chosen message attack has non-negligible
probability of success, then the discrete logarithm problem in J can be solved in
polynomial time.

Proof. This is the standard proof of applying the Fiat–Shamir transform to a
sigma protocol: see [36, Theorem 13] or [37, §3.2]. ut

2.5 The qDSA signature scheme

Moving towards the real world, we slightly alter the qSIG protocol with some
pragmatic choices, as done by Bernstein et al. [8]:

(1) We replace the randomness r by the output of a pseudo-random function,
which makes the signatures deterministic.

(2) We include the public key ±Q in the generation of the challenge to prevent
attackers from attacking multiple public keys at the same time.

(3) We compress and decompress points on K where necessary.

The resulting signature scheme, qDSA, is summarized in Algorithm 1.
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Algorithm 1: The qDSA signature scheme

1 function keypair
Input: ()
Output: (±Q || (d′ || d′′)): a compressed public key ±Q ∈ {0, 1}256

where ±Q ∈ K, and a private key (d′ || d′′) ∈
(
{0, 1}256

)2
2 d← Random({0, 1}256)
3 (d′ || d′′)← H(d)

4 ±Q← Ladder(d′,±P ) // ±Q = ±[d′]P
5 ±Q← Compress(±Q)

6 return (±Q || (d′ || d′′))

7 function sign
Input: d′, d′′ ∈ {0, 1}256, ±Q ∈ {0, 1}256, M ∈ {0, 1}∗

Output: (±R || s) ∈
(
{0, 1}256

)2
8 r ← H(d′′ ||M)

9 ±R← Ladder(r,±P ) // ±R = ±[r]P
10 ±R← Compress(±R)
11 h← H(±R || ±Q ||M)

12 s← (r − hd′) mod N

13 return (±R || s)

14 function verify
Input: M ∈ {0, 1}∗, the (compressed) public key ±Q ∈ {0, 1}256 and

(±R || s) ∈
(
{0, 1}256

)2 a putative signature
Output: True if (±R || s) is a valid signature on M under ±Q, False

otherwise
15 ±Q← Decompress(±Q)

16 if ±Q = ⊥ then
17 return False

18 h← H(±R || ±Q ||M)

19 ±T0 ← Ladder(s,±P ) // ±T0 = ±[s]P
20 ±T1 ← Ladder(h,±Q) // ±T1 = ±[h]Q
21 ±R← Decompress(±R)
22 if ±R = ⊥ then
23 return False

24 v ← Check(±T0,±T1,±R) // is ±R = ± (T0 ± T1)?
25 return v



Unified keys. Signatures are entirely computed and verified on K, which is also
the natural setting for Diffie–Hellman key exchange. We can therefore use iden-
tical key pairs for Diffie–Hellman and for qDSA signatures. This significantly
simplifies the implementation of cryptographic libraries, as we no longer need
arithmetic for the two distinct objects J and K. Technically, there is no reason
not to use a single key pair for both key exchange and signing; but one should
be very careful in doing so, as using one key across multiple protocols could
potentially lead to attacks. The primary interest of this aspect of qDSA is not
necessarily in reducing the number of keys, but in unifying key formats and
reducing the size of the trusted code base.

Security level. The security reduction to the discrete logarithm problem is almost
identical to the case of Schnorr signatures [36]. Notably, the challenge space
has about half the size (Z+

N versus ZN ) while the proof of soundness computes
either s0 + s1 or s0 − s1. This results in a slightly weaker reduction, as should
be expected by moving from J to K and by weakening verification. By choosing
log2N ≈ 256 we obtain a scheme with about the same security level as state-
of-the-art schemes (eg. EdDSA combined with Ed25519). This could be made
more precise (cf. [37]), but we do not provide this analysis here.

Key and signature sizes. Public keys fit into 32 byte in both the genus 1 and
genus 2 settings. This is standard for Montgomery curves; for Kummer surfaces
it requires a new compression technique, which we present in §6. In both cases
log2N < 256, which means that signatures (±R || s) fit in 64 bytes.

Twist security. The Decompress function returns images of points of either J or
its quadratic twist. As opposed to Diffie–Hellman, in qDSA scalar multiplications
with secret scalars are only performed on the public parameter ±P , which is
chosen as the image of large prime order element of J . Therefore J is not
technically required to have a secure twist, unlike in the modern Diffie–Hellman
setting. This allows for smaller parameters than the Kummer varieties commonly
used for key exchange [5, 21]. But if the Kummer varieties are also used for key
exchange (which is the whole point!), then twist security is crucial. We therefore
strongly recommend twist-secure parameters for qDSA implementations.

Hash function. The functionH can be any hash function with at least a log2
√
N -

bit security level and at least 2 log2N -bit output. Throughout this paper we
take H to be the extendable output function SHAKE128 [18] with a fixed 512-bit
output.

Signature compression. Schnorr mentions in [39] that signatures (R || s) may be
compressed to (H(R || Q ||M) || s), taking only the first 128 bits of the hash,
thus reducing signature size from 64 to 48 bytes. This is possible because we
can recompute R from P , Q, s, and h = H(R || Q || M). However, on K, we
cannot recover ±R from ±P , ±Q, s, and h = H(±R || ±Q || M), so Schnorr’s
compression technique is not an option for us.
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Batching. Proposals for batch signature verification typically rely on the group
structure, verifying random linear combinations of points [8,32]. Since K has no
group structure, these batching algorithms are not possible.

Scalar multiplication for verification. Instead of computing the full point [s]P +
[c]Q with a two-dimensional multiscalar multiplication operation, we have to
compute ±[s]P and ±[c]Q separately. This has the benefit of relying on the
already implemented Ladder function, mitigating the need for a separate al-
gorithm, and is more memory-friendly. Our implementations show a significant
decrease in stack usage, at the cost of a small loss of speed (see §7).

3 Implementing qDSA with elliptic curves

In this section we elaborate on the instantiation of the signature scheme on
the Kummer variety of an elliptic curve, which is just the x-line P1. In §3.1 we
recall standard results on Montgomery curves, in §3.2 we derive how to verify
signatures, and in §3.3 we fix our parameters.

The algorithms below include costs in terms of basic Fp-operations. Through-
out, M, S, C, a, s, I, and E denote the unit costs of computing a single mul-
tiplication, squaring, multiplication by a small constant, addition, subtraction,
inverse, and square root, respectively.

3.1 Montgomery curves

Let Fp be a finite field of characteristic greater than three. Let A,B ∈ Fp such
that A2 6= 4 and B 6= 0. The elliptic curve

EAB/Fp : By2 = x(x2 +Ax+ 1)

is in Montgomery form [31]. The map EAB → K = P1 defined by

P = (X : Y : Z) 7−→ ±P =

{
(X : Z) if Z 6= 0

(1 : 0) if Z = 0

gives rise to efficient x-only arithmetic on P1. The Ladder operation we use is
specified in [17, Alg. 1]. Compression uses Bernstein’s map

Compress : (X : Z) ∈ P1(Fp) 7−→ XZp−2 ∈ Fp ,

while decompression is the near-trivial

Decompress : x ∈ Fp 7−→ (x : 1) ∈ P1(Fp) .

Note that Decompress never returns ⊥, and that Decompress(Compress((X :
Z))) = (X : Z) whenever Z 6= 0 (however, the points (0 : 1) and (1 : 0) should
never appear as public keys or signatures).
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3.2 Signature verification

It remains to define the Check operation for Montgomery curves. In the final step
of verification we are given ±R,±P,±Q ∈ P1, and we need to check whether
±R ∈ {±(P +Q),±(P −Q)}. Proposition 3 reduces this to checking a quadratic
relation in the coordinates of ±R, ±P , and ±Q.

Proposition 3. If (XP : ZP ) = ±P and (XQ : ZQ) = ±Q for some P and Q
on EAB, then

±R = (XR : ZR) ∈
{
±(P +Q),±(P −Q)

}
if and only if

BZZ(X
R)2 − 2BXZX

RZR +BXX(ZR)2 = 0 (2)

where

BXX =
(
XPXQ − ZPZQ

)2
, (3)

BXZ =
(
XPXQ + ZPZQ

)(
XPZQ + ZPXQ

)
+ 2AXPZPXQZQ , (4)

BZZ =
(
XPZQ − ZPXQ

)2
. (5)

Proof. Let S = (XS : ZS) = ±(P + Q) and D = (XD : ZD) = ±(P − Q). If
we temporarily assume ±0 6= ±P 6= ±Q 6= ±0 and put xP = XP /ZP , etc., then
the group law on EAB gives us

xSxD = (xPxQ − 1)2/(xP − xQ)2 ,
xS + xD = 2((xPxQ + 1)(xP + xQ) + 2AxPxQ) .

Homogenizing, we obtain(
XSXD : XSZD + ZSXD : ZSZD

)
= (λBXX : λ2BXZ : λBZZ) . (6)

One readily verifies that Equation (6) still holds even when the temporary as-
sumption does not (that is, when ±P = ±Q or ±P = ±0 or ±Q = ±0). Having
degree 2, the homogeneous polynomial BZZX2 − BXZXZ + BXXZ

2 cuts out
two points in P1 (which may coincide); by Equation (6), they are ±(P +Q) and
±(P−Q), so if (XR : ZR) satisfies Equation (2) then it must be one of them. ut

3.3 Using cryptographic parameters

We use the elliptic curve E/Fp : y2 = x3 + 486662x2 + x where p = 2255 − 19,
which is commonly referred to as Curve25519 [5]. Let P ∈ E(Fp) be such that
±P = (9 : 1). Then P has order 8N , where

N = 2252 + 27742317777372353535851937790883648493

is prime. The xDBLADD operation requires us to store (A + 2)/4 = 121666, and
we implement optimized multiplication by this constant. In [5, §3] Bernstein sets
and clears some bits of the private key, also referred to as “clamping”. This is
not necessary in qDSA, but we do it anyway in keypair for compatibility.

10



Algorithm 2: Checking the verification relation for P1

1 function Check
Input: ±P , ±Q, ±R = (x : 1) in P1 images of points of EAB(Fp)
Output: True if ±R ∈ {±(P +Q),±(P −Q)}, False otherwise
Cost: 8M+ 3S+ 1C+ 8a+ 4s

2 (BXX , BXZ , BZZ)← BValues(±P,±Q)
3 if BXXx2 −BXZx+BZZ = 0 then
4 return True

5 return False

6 function BValues
Input: ±P = (XP : ZP ), ±Q = (XQ : ZQ) in K(Fp)
Output: (BXX(±P,±Q), BXZ(±P,±Q), BZZ(±P,±Q)) in F3

p

Cost: 6M+ 2S+ 1C+ 7a+ 3s
// See Algorithm 8 and Proposition 3

4 Implementing qDSA with Kummer surfaces

A number of cryptographic protocols that have been successfully implemented
with Montgomery curves have seen substantial practical improvements when
the curves are replaced with Kummer surfaces. From a general point of view, a
Kummer surface is the quotient of some genus-2 Jacobian J by ±1; geometrically
it is a surface in P3 with sixteen point singularities, called nodes, which are the
images in K of the 2-torsion points of J (since these are precisely the points
fixed by −1). From a cryptographic point of view, a Kummer surface is just a 2-
dimensional analogue of the x-coordinate used in Montgomery curve arithmetic.

The algorithmic and software aspects of efficient Kummer surface arithmetic
have already been covered in great detail elsewhere (see eg. [20], [7], and [38]).
Indeed, the Kummer scalar multiplication algorithms and software that we use
in our signature implementation are identical to those described in [38], and use
the cryptographic parameters proposed by Gaudry and Schost [21].

This work includes two entirely new Kummer algorithms that are essential
for our signature scheme: verification relation testing (Check, Algorithm 3) and
compression/decompression (Compress and Decompress, Algorithms 4 and 5).
Both of these new techniques requires a fair amount of technical development,
which we begin in this section by recalling the basic Kummer equation and
constants, and deconstructing the pseudo-doubling operation into a sequence
of surfaces and maps that will play important roles later. Once the scene has
been set, we will describe our signature verification algorithm in §5 and our
point compression scheme in §6. The reader primarily interested in the resulting
performance improvements may wish to skip directly to §7 on first reading.
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4.1 Constants

Our Kummer surfaces are defined by four fundamental constants α1, α2, α3, α4

and four dual constants α̂1, α̂2, α̂3, and α̂4, which are related by

2α̂2
1 = α2

1 + α2
2 + α2

3 + α2
4 ,

2α̂2
2 = α2

1 + α2
2 − α2

3 − α2
4 ,

2α̂2
3 = α2

1 − α2
2 + α2

3 − α2
4 ,

2α̂2
4 = α2

1 − α2
2 − α2

3 + α2
4 .

We require all of the αi and α̂i to be nonzero. The fundamental constants deter-
mine the dual constants up to sign, and vice versa. These relations remain true
when we exchange the αi with the α̂i; we call this “swapping x with x̂” operation
“dualizing”. To make the symmetry in what follows clear, we define

µ1 := α2
1 , ε1 := µ2µ3µ4 , κ1 := ε1 + ε2 + ε3 + ε4 ,

µ2 := α2
2 , ε2 := µ1µ3µ4 , κ2 := ε1 + ε2 − ε3 − ε4 ,

µ3 := α2
3 , ε3 := µ1µ2µ4 , κ3 := ε1 − ε2 + ε3 − ε4 ,

µ4 := α2
4 , ε4 := µ1µ2µ3 , κ4 := ε1 − ε2 − ε3 + ε4 ,

along with their respective duals µ̂i, ε̂i, and κ̂i. Note that

(ε1 : ε2 : ε3 : ε4) = (1/µ1 : 1/µ2 : 1/µ3 : 1/µ4)

and µiµj − µkµl = µ̂iµ̂j − µ̂kµ̂l for {i, j, k, l} = {1, 2, 3, 4}. There are many
clashing notational conventions for theta constants in the cryptographic Kummer
literature; Table 1 provides a dictionary for converting between them.

Our applications use only the squared constants µi and µ̂i, so only they need
be in Fp. In practice we want them to be as “small” as possible, both to reduce
the cost of multiplying by them and to reduce the cost of storing them. In fact, it
follows from their definition that it is much easier to find simultaneously small µi
and µ̂i than it is to find simultaneously small αi and α̂i (or a mixture of the two);
this is ultimately why we prefer the squared surface for scalar multiplication. We
note that if the µi are very small, then the εi and κi are also small, and the same
goes for their duals. While we will never actually compute with the unsquared
constants, we need them to explain what is happening in the background below.

Finally, the Kummer surface equations involve some derived constants

E :=
16α1α2α3α4µ̂1µ̂2µ̂3µ̂4

(µ1µ4 − µ2µ3)(µ1µ3 − µ2µ4)(µ1µ2 − µ3µ4)
,

F := 2
µ1µ4 + µ2µ3

µ1µ4 − µ2µ3
, G := 2

µ1µ3 + µ2µ4

µ1µ3 − µ2µ4
, H := 2

µ1µ2 + µ3µ4

µ1µ2 − µ3µ4
,

and their duals Ê, F̂ , Ĝ, Ĥ. We observe that

E2 = F 2 +G2 +H2 + FGH − 4 , Ê2 = F̂ 2 + Ĝ2 + Ĥ2 + F̂ ĜĤ − 4 .
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Source Fundamental constants Dual constants
[20] and [7] (a :b :c :d) = (α1 :α2 :α3 :α4) (A :B :C :D) = (α̂1 : α̂2 : α̂3 : α̂4)

[11] (a :b :c :d) = (α1 :α2 :α3 :α4) (A :B :C :D) = (µ̂1 : µ̂2 : µ̂3 : µ̂4)

[38] (a :b :c :d) = (µ1 :µ2 :µ3 :µ4) (A :B :C :D) = (µ̂1 : µ̂2 : µ̂3 : µ̂4)

[15] (α :β :γ :δ) = (µ1 :µ2 :µ3 :µ4) (A :B :C :D) = (µ̂1 : µ̂2 : µ̂3 : µ̂4)
Table 1. Relations between our theta constants and others in selected related work

4.2 Fast Kummer surfaces

We compute all of the pseudoscalar multiplications in qDSA on the so-called
squared Kummer surface

KSqr : 4E2 ·X1X2X3X4 =

(
X2

1 +X2
2 +X2

3 +X2
4 − F (X1X4 +X2X3)

−G(X1X3 +X2X4)−H(X1X2 +X3X4)

)2

,

which was proposed for factorization algorithms by the Chudnovskys [13], then
later for Diffie–Hellman by Bernstein [6]. Since E only appears as a square, KSqr

is defined over Fp. The zero point on KSqr is ±0 = (µ1 : µ2 : µ3 : µ4). In
our implementations we used the xDBLADD and Montgomery ladder exactly as
they were presented in [38, Algorithms 6-7] (see also Algorithm 9). The pseudo-
doubling xDBL on KSqr is

±P =
(
XP

1 : XP
2 : XP

3 : XP
4

)
7−→

(
X

[2]P
1 : X

[2]P
2 : X

[2]P
3 : X

[2]P
4

)
= ±[2]P

where

X
[2]P
1 = ε1(U1 + U2 + U3 + U4)

2 , U1 = ε̂1(X
P
1 +XP

2 +XP
3 +XP

4 )2 , (7)

X
[2]P
2 = ε2(U1 + U2 − U3 − U4)

2 , U2 = ε̂2(X
P
1 +XP

2 −XP
3 −XP

4 )2 , (8)

X
[2]P
3 = ε3(U1 − U2 + U3 − U4)

2 , U3 = ε̂3(X
P
1 −XP

2 +XP
3 −XP

4 )2 , (9)

X
[2]P
4 = ε4(U1 − U2 − U3 + U4)

2 , U4 = ε̂4(X
P
1 −XP

2 −XP
3 +XP

4 )2 (10)

for ±P with all XP
i 6= 0; more complicated formulæ exist for other ±P (cf. §5.1).

The Check, Compress, and Decompress algorithms defined below require the
following subroutines:

– Mul4 implements a 4-way parallel multiplication. It takes a pair of vectors
(x1, x2, x3, x4) and (y1, y2, y3, y4) in F4

p, and returns (x1y1, x2y2, x3y3, x4y4).
– Sqr4 implements a 4-way parallel squaring. Given a vector (x1, x2, x3, x4) in

F4
p, it returns (x21, x22, x23, x24).

– Had implements a Hadamard transform. Given a vector (x1, x2, x3, x4) in F4
p,

it returns (x1+x2+x3+x4, x1+x2−x3−x4, x1−x2+x3−x4, x1−x2−x3+x4).
– Dot computes the sum of a 4-way multiplication. Given a pair of vectors

(x1, x2, x3, x4) and (y1, y2, y3, y4) in F4
p, it returns x1y1+x2y2+x3y3+x4y4.
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4.3 Deconstructing pseudo-doubling

Figure 1 deconstructs the pseudo-doubling on KSqr from §4.2 into a cycle of
atomic maps between different Kummer surfaces, which form a sort of hexagon.
Starting at any one of the Kummers and doing a complete cycle of these maps

KCan S
(2,2)

// KSqr

H
∼= ##

K̂Int

C
∼=

;;

KInt

Ĉ

∼=

||
K̂Sqr

Ĥ

∼=
bb

K̂Can

Ŝ

(2,2)oo

Fig. 1. Decomposition of pseudo-doubling on fast Kummer surfaces into a cycle of
morphisms. Here, KSqr is the “squared” surface we mostly compute with; KCan is the
related “canonical” surface; and KInt is a new “intermediate” surface which we use in
signature verification. (The surfaces K̂Sqr, K̂Can, and K̂Int are their duals.)

carries out pseudo-doubling on that Kummer. Doing a half-cycle from a given
Kummer around to its dual computes a (2, 2)-isogeny splitting pseudo-doubling.

Six different Kummer surfaces may seem like a lot to keep track of—even if
there are really only three, together with their duals. However, the new surfaces
are important, because they are crucial in deriving our Check routine (of course,
once the algorithm has been written down, the reader is free to forget about the
existence of these other surfaces).

The cycle actually begins one step before KSqr, with the canonical surface

KCan : 2E · T1T2T3T4 =
T 4
1 + T 4

2 + T 4
3 + T 4

4 − F (T 2
1 T

2
4 + T 2

2 T
2
3 )

−G(T 2
1 T

2
3 + T 2

2 T
2
4 )−H(T 2

1 T
2
2 + T 2

3 T
2
4 ) .

This was the model proposed for cryptographic applications by Gaudry in [20];
we call it “canonical” here because it is the model arising from a canonical basis
of theta functions of level (2, 2).

Now we can begin our tour around the hexagon, moving from KCan to KSqr

via the squaring map

S :
(
T1 : T2 : T3 : T4

)
7−→

(
X1 : X2 : X3 : X4

)
=
(
T 2
1 : T 2

2 : T 2
3 : T 3

4

)
,
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which corresponds to a (2, 2)-isogeny of Jacobians. Moving on from KSqr, the
Hadamard transform isomorphism

H : (X1 : X2 : X3 : X4) 7−→ (Y1 : Y2 : Y3 : Y4) =


X1 +X2 +X3 +X4

: X1 +X2 −X3 −X4

: X1 −X2 +X3 −X4

: X1 −X2 −X3 +X4


takes us into a third kind of Kummer, which we call the intermediate surface:

KInt :
2Ê

α1α2α3α4
· Y1Y2Y3Y4 =

Y 4
1

µ2
1
+

Y 4
2

µ2
2
+

Y 4
3

µ2
3
+

Y 4
4

µ2
4
− F̂

(
Y 2
1

µ1

Y 2
4

µ4
+

Y 2
2

µ2

Y 2
3

µ3

)
− Ĝ

(
Y 2
1

µ1

Y 2
3

µ3
+

Y 2
2

µ2

Y 2
4

µ4

)
− Ĥ

(
Y 2
1

µ1

Y 2
2

µ2
+

Y 2
3

µ3

Y 2
4

µ4

)
.

We will use KInt for signature verification. Now the dual scaling isomorphism

Ĉ : (Y1 : Y2 : Y3 : Y4) 7−→
(
T̂1 : T̂2 : T̂3 : T̂4

)
= (Y1/α̂1 : Y2/α̂2 : Y3/α̂3 : Y4/α̂4)

takes us into the dual canonical surface

K̂Can : 2Ê · T̂1T̂2T̂3T̂4 =
T̂ 4
1 + T̂ 4

2 + T̂ 4
3 + T̂ 4

4 − F̂ (T̂ 2
1 T̂

2
4 + T̂ 2

2 T̂
2
3 )

− Ĝ(T̂ 2
1 T̂

2
3 + T̂ 2

2 T̂
2
4 )− Ĥ(T̂ 2

1 T̂
2
2 + T̂ 2

3 T̂
2
4 ) .

We are now halfway around the hexagon; the return journey is simply the dual
of the outbound trip. The dual squaring map

Ŝ :
(
T̂1 : T̂2 : T̂3 : T̂4

)
7−→

(
X̂1 : X̂2 : X̂3 : X̂4

)
=
(
T̂ 2
1 : T̂ 2

2 : T̂ 2
3 : T̂ 3

4

)
,

another (2, 2)-isogeny, carries us into the dual squared surface

K̂Sqr : 4Ê2 · X̂1X̂2X̂3X̂4 =

(
X̂2

1 + X̂2
2 + X̂2

3 + X̂2
4 − F̂ (X̂1X̂4 + X̂2X̂3)

− Ĝ(X̂1X̂3 + X̂2X̂4)− Ĥ(X̂1X̂2 + X̂3X̂4)

)2

,

before the dual Hadamard transform

Ĥ :
(
X̂1 : X̂2 : X̂3 : X̂4

)
7−→

(
Ŷ1 : Ŷ2 : Ŷ3 : Ŷ4

)
=


X̂1 + X̂2 + X̂3 + X̂4

: X̂1 + X̂2 − X̂3 − X̂4

: X̂1 − X̂2 + X̂3 − X̂4

: X̂1 − X̂2 − X̂3 + X̂4


takes us into the dual intermediate surface

K̂Int :
2E

α1α2α3α4
· Ŷ1Ŷ2Ŷ3Ŷ4 =

Ŷ 4
1

µ2
1
+

Ŷ 4
2

µ2
2
+

Ŷ 4
3

µ2
3
+

Ŷ 4
4

µ2
4
− F̂

(
Ŷ 2
1

µ1

Ŷ 2
4

µ4
− Ŷ 2

2

µ2

Ŷ 2
3

µ3

)
− Ĝ

(
Ŷ 2
1

µ1

Ŷ 2
3

µ3
− Ŷ 2

2

µ2

Ŷ 2
4

µ4

)
− Ĥ

(
Ŷ 2
1

µ1

Ŷ 2
2

µ2
− Ŷ 2

3

µ3

Ŷ 2
4

µ4

)
.
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A final scaling isomorphism

C :
(
Ŷ1 : Ŷ2 : Ŷ3 : Ŷ4

)
7−→

(
T1 : T2 : T3 : T4

)
=
(
Ŷ1/α1 : Ŷ2/α2 : Ŷ3/α3 : Ŷ4/α4

)
then maps us from K̂Int back to KCan, where we started.

The canonical surfaces KCan resp. K̂Can are only defined over Fp(α1α2α3α4)

resp. Fp(α̂1α̂2α̂3α̂4), while the scaling isomorphisms Ĉ resp. C are defined over
Fp(α̂1, α̂2, α̂3, α̂4) resp. Fp(α1, α2, α3, α4). Everything else is defined over Fp.

We confirm that one cycle around the hexagon, starting and ending on KSqr,
computes the pseudo-doubling of Equations (7), (8), (9), and (10). Similarly,
one cycle around the hexagon starting and ending on KCan computes Gaudry’s
pseudo-doubling from [20, §3.2].

5 Signature verification on Kummer surfaces

To verify signatures in the Kummer surface implementation, we need to supply a
Check algorithm which, given ±P , ±Q, and ±R on KSqr, decides whether ±R ∈
{±(P +Q),±(P −Q)}. For the elliptic version of qDSA described in §3, we saw
that this came down to checking that ±R satisfied one quadratic relation whose
three coefficients were biquadratic forms in ±P and ±Q. The same principle
extends to Kummer surfaces, where the pseudo-group law is similarly defined
by biquadratic forms; but since Kummer surfaces are defined in terms of four
coordinates (as opposed to the two coordinates of the x-line), this time there are
six simple quadratic relations to verify, with a total of ten coefficient forms.

5.1 Biquadratic forms and pseudo-addition

Let K be a Kummer surface. If ±P is a point on K, then we will write (ZP1 : ZP2 :
ZP3 : ZP4 ) for its projective coordinates. The classical theory of abelian varieties
tells us that there exist biquadratic forms Bij for 1 ≤ i, j ≤ 4 such that for all
±P and ±Q, if ±S = ±(P +Q) and ±D = ±(P −Q) then(
ZSi Z

D
j + ZSj Z

D
i

)4
i,j=1

= λ
(
Bij(Z

P
1 , Z

P
2 , Z

P
3 , Z

P
4 , Z

Q
1 , Z

Q
2 , Z

Q
3 , Z

Q
4 )
)4
i,j=1

(11)

where λ ∈ k× is some common projective factor depending only on the affine
representatives chosen for ±P , ±Q, ±(P +Q) and ±(P −Q). These biquadratic
forms are the foundation of pseudo-addition and doubling laws on K: if the
“difference” ±D is known, then we can use the Bij to compute ±S.

Proposition 4. Let {Bij : 1 ≤ i, j ≤ 4} be a set of biquadratic forms on K×K
satisfying Equation (11) for all ±P , ±Q, ±(P +Q), and ±(P −Q). Then

±R = (ZR1 : ZR2 : ZR3 : ZR4 ) ∈ {±(P +Q),±(P −Q)}

if and only if (writing Bij for Bij(ZP1 , . . . , Z
Q
4 )) we have

Bjj · (ZRi )2 − 2Bij · ZRi ZRj +Bii · (ZRj )2 = 0 for all 1 ≤ i < j ≤ 4 . (12)
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Proof. Looking at Equation 11, we see that the system of six quadratics from
Equation 12 cuts out a zero-dimensional degree-2 subscheme of K: that is, the
pair of points {±(P +Q),±(P −Q)} (which may coincide). Hence, if (ZR1 : ZR2 :
ZR3 : ZR4 ) = ±R satisfies all of the equations, then it must be one of them. ut

5.2 Deriving efficiently computable forms

Proposition 4 is the exact analogue of Proposition 3 for Kummer surfaces. All
that we need to turn it into a Check algorithm for qDSA is an explicit and
efficiently computable representation of the Bij . These forms depend on the
projective model of the Kummer surface; so we write BCan

ij , BSqr
ij , and BInt

ij for
the forms on the canonical, squared, and intermediate surfaces.

On the canonical surface, the forms BCan
ij are classical (see e.g. [3, §2.2]). The

on-diagonal forms BCan
ii are

BCan
11 =

1

4

(V1
µ̂1

+
V2
µ̂2

+
V3
µ̂3

+
V4
µ̂4

)
, BCan

22 =
1

4

(V1
µ̂1

+
V2
µ̂2
− V3
µ̂3
− V4
µ̂4

)
, (13)

BCan
33 =

1

4

(V1
µ̂1
− V2
µ̂2

+
V3
µ̂3
− V4
µ̂4

)
, BCan

44 =
1

4

(V1
µ̂1
− V2
µ̂2
− V3
µ̂3

+
V4
µ̂4

)
, (14)

where

V1 =
(
(TP1 )2 + (TP2 )2 + (TP3 )2 + (TP4 )2

)(
(TQ1 )2 + (TQ2 )2 + (TQ3 )2 + (TQ4 )2

)
,

V2 =
(
(TP1 )2 + (TP2 )2 − (TP3 )2 − (TP4 )2

)(
(TQ1 )2 + (TQ2 )2 − (TQ3 )2 − (TQ4 )2

)
,

V3 =
(
(TP1 )2 − (TP2 )2 + (TP3 )2 − (TP4 )2

)(
(TQ1 )2 − (TQ2 )2 + (TQ3 )2 − (TQ4 )2

)
,

V4 =
(
(TP1 )2 − (TP2 )2 − (TP3 )2 + (TP4 )2

)(
(TQ1 )2 − (TQ2 )2 − (TQ3 )2 + (TQ4 )2

)
,

while the off-diagonal forms Bij with i 6= j are

BCan
ij =

2

µ̂iµ̂j − µ̂kµ̂l

(
αiαj

(
TPi T

P
j T

Q
i T

Q
j + TPk T

P
l T

Q
k T

Q
l

)
− αkαl

(
TPi T

P
j T

Q
k T

Q
l + TPk T

P
l T

Q
i T

Q
j

)) (15)

where {i, j, k, l} = {1, 2, 3, 4}.
All of these forms can be efficiently evaluated. The off-diagonal BCan

ij have a
particularly compact shape, while the symmetry of the on-diagonal BCan

ii makes
them particularly easy to compute simultaneously: indeed, that is exactly what
we do in Gaudry’s fast pseudo-addition algorithm for KCan [20, §3.2].

Ideally, we would like to evaluate the BSqr
ij on KSqr, since that’s where our

inputs ±P , ±Q, and ±R already live. We can compute the BSqr
ij by dualizing

the BCan
ij to get the forms B̂Can

ij for K̂Can, then pulling the B̂Can
ij back to KSqr

via Ĉ ◦H. But while the resulting on-diagonal BSqr
ii maintain5 the symmetry and

efficiency of the BCan
ii , the off-diagonal BSqr

ij turn out to be much less pleasant,

5 As they should, since they are the basis of the efficient pseudo-addition on KSqr!
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with less apparent exploitable symmetry. For our applications on small devices,
this means that evaluating BSqr

ij for i 6= j implies taking a significant hit in terms
of stack and code size, not to mention time.

We could avoid this difficulty by mapping the inputs of Check from KSqr

into K̂Can, and then evaluating the B̂Can
ij . But this would involve using—and,

therefore, storing—the four large unsquared α̂i, which is an important drawback.
Why do the nice off-diagonal B̂Can

ij become so ugly when pulled back to KSqr?
The dual scaling map Ĉ : KInt → K̂Can has no impact on the shape or number
of monomials, so most of the pain is coming from the Hadamard transform
H : KSqr → KInt. In particular, if we only pull back the B̂Can

ij as far as KInt, then
the resulting BInt

ij retain the nice form of the BCan
ij but do not involve the large

unsquared constants. This fact prompts our solution: we map ±P , ±Q, and ±R
through H onto KInt, and verify using the forms BInt

ij .

Theorem 1. The on-diagonal biquadratic forms on the intermediate surface
KInt are, up to a common projective factor,

BInt
11 = µ̂1 (κ1F1 + κ2F2 + κ3F3 + κ4F4) , (16)

BInt
22 = µ̂2 (κ2F1 + κ1F2 + κ4F3 + κ3F4) , (17)

BInt
33 = µ̂3 (κ3F1 + κ4F2 + κ1F3 + κ2F4) , (18)

BInt
44 = µ̂4 (κ4F1 + κ3F2 + κ2F3 + κ1F4) , (19)

where

F1 = P1Q1 + P2Q2 + P3Q3 + P4Q4 , F2 = P1Q2 + P2Q1 + P3Q4 + P4Q3 ,

F3 = P1Q3 + P3Q1 + P2Q4 + P4Q2 , F4 = P1Q4 + P4Q1 + P2Q3 + P3Q2 ,

where Pi = ε̂i(Y
P
i )2 and Qi = ε̂i(Y

Q
i )2 for 1 ≤ i ≤ 4. Up to the same common

projective factor, the off-diagonal forms are

BInt
ij = C · Cij ·

(
µ̂kµ̂l

(
Y Pij − Y Pkl

)(
Y Qij − Y

Q
kl

)
+
(
µ̂iµ̂j − µ̂kµ̂l

)
Y Pkl Y

Q
kl

)
(20)

for {i, j, k, l} = {1, 2, 3, 4} where Cij := µ̂iµ̂j(µ̂iµ̂k − µ̂j µ̂l)(µ̂iµ̂l − µ̂j µ̂k), Y Pij :=

Y Pi Y
P
j , Y Qij := Y Qi Y

Q
j , and

C :=
8(µ1µ2µ3µ4)(µ̂1µ̂2µ̂3µ̂4)

(µ̂1µ̂2 − µ̂3µ̂4)(µ̂1µ̂3 − µ̂2µ̂4)(µ̂1µ̂4 − µ̂2µ̂3)
.

Proof. By definition, we have T̂Si T̂Dj +T̂Sj T̂
D
i = B̂Can

ij (T̂P1 , . . . , T̂
Q
4 ). Pulling back

via Ĉ using T̂i = Yi/α̂i yields

BInt
ij (Y P1 , . . . , Y

Q
4 ) = Y Si Y

D
j + Y Sj Y

D
i

= α̂iα̂j
(
T̂Si T̂

D
j + T̂Sj T̂

D
i

)
= α̂iα̂j · B̂Can

ij (T̂P1 , . . . , T̂
Q
4 )

= α̂iα̂j · B̂Can
ij (Y P1 /α̂1, . . . , Y

Q
4 /α̂4)
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If we do this with the duals of the BCan
ij from Equations (13), (14), and (15),

then after some algebra we get

BInt
11 =

µ̂1

4µ1µ2µ3µ4(µ̂1µ̂2µ̂3µ̂4)2
(
κ1F1 + κ2F2 + κ3F3 + κ4F4

)
,

BInt
22 =

µ̂2

4µ1µ2µ3µ4(µ̂1µ̂2µ̂3µ̂4)2
(
κ2F1 + κ1F2 + κ4F3 + κ3F4

)
,

BInt
33 =

µ̂3

4µ1µ2µ3µ4(µ̂1µ̂2µ̂3µ̂4)2
(
κ3F1 + κ4F2 + κ1F3 + κ2F4

)
,

BInt
44 =

µ̂4

4µ1µ2µ3µ4(µ̂1µ̂2µ̂3µ̂4)2
(
κ4F1 + κ3F2 + κ2F3 + κ1F4

)
,

while the off-diagonal forms Bij with i 6= j are

BInt
ij =

2

µ̂kµ̂l(µ̂iµ̂j − µ̂kµ̂l)

(
µ̂kµ̂l

(
Y Pij − Y Pkl

)(
Y Qij − Y

Q
kl

)
+ (µ̂iµ̂j − µ̂kµ̂l)Y Pkl Y

Q
kl

)

for {i, j, k, l} = {1, 2, 3, 4}. Multiplying all of these forms by a common pro-
jective factor of 4(µ1µ2µ3µ4)(µ̂1µ̂2µ̂3µ̂4)

2, to eliminate the denominators in the
coefficients, yields the forms of the Theorem. ut

5.3 Signature verification

We are now finally ready to implement the Check algorithm for KSqr. Algo-
rithm 3 does this by applying H to its inputs, then using the biquadratic forms
of Theorem 1. Its correctness is implied by Proposition 4.

5.4 Using cryptographic parameters

Gaudry and Schost [21] take (µ1 : µ2 : µ3 : µ4) = (−11 : 22 : 19 : 3) in F2127−1.
We need (µ̂1 : µ̂2 : µ̂3 : µ̂4) = (−33 : 11 : 17 : 49), (κ1 : κ2 : κ3 : κ4) = (−4697 :
5951 : 5753 : −1991), and (ε̂1 : ε̂2 : ε̂3 : ε̂4) = (−833 : 2499 : 1617 : 561)6. In
practice, where these constants are “negative”, we reverse their sign and amend
the formulæ above accordingly. All of these constants are small, and fit into one
or two bytes each (and the ε̂i are already stored for use in Ladder). We store
one large constant

C = 0x40F50EEFA320A2DD46F7E3D8CDDDA843,

and recompute the Cij on the fly.

6 Following the definitions of §4.1, the µ̂i are negated and doubled. The ε̂i are divided
through by 11, and the constant C divided by 112 and doubled. These changes
influence the BInt

ij , but only up to the same projective factor.
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Algorithm 3: Checking the verification relation for points on KSqr

1 function Check
Input: ±P , ±Q, ±R in KSqr(Fp)
Output: True if ±R ∈ {±(P +Q),±(P −Q)}, False otherwise
Cost: 76M+ 8S+ 88C+ 42a+ 42s

2 (YP ,YQ)← (Had(±P ), Had(±Q))

3 (B11,B22,B33,B44)← BiiValues(YP ,YQ)
4 YR ← Had(±R)
5 for (i, j) in {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)} do
6 LHS← Bii · (YRj )2 + Bjj · (YRi )2

7 Bij ← BijValue(YP ,YQ, (i, j))
8 RHS← 2Bij · YRi · Y

R
j

9 if LHS 6= RHS then
10 return False

11 return True

12 function BiiValues
Input: ±P , ±Q in KInt(Fp)
Output: (BInt

ii (±P,±Q))4i=1 in F4
p

Cost: 16M+ 8S+ 28C+ 24a

// See Algorithm 13 and Theorem 1

13 function BijValue
Input: ±P , ±Q in KInt(Fp) and (i, j) with 1 ≤ i, j ≤ 4 and i 6= j

Output: BInt
ij (±P,±Q) in Fp

Cost: 10M+ 10C+ 1a+ 5s

// See Algorithm 12 and Theorem 1

6 Kummer point compression

Our public keys are points on KSqr, and each signature includes one point on
KSqr. Minimizing the space required by Kummer points is therefore essential.

A projective Kummer point is composed of four field elements; normaliz-
ing by dividing through by a nonzero coordinate reduces us to three field ele-
ments (this can also be achieved using Bernstein’s “wrapping” technique [6], as
in [7] and [38]). But we are talking about Kummer surfaces—two-dimensional
objects—so we might hope to compress to two field elements, plus a few bits to
enable us to correctly recover the whole Kummer point. This is analogous to el-
liptic curve point compression, where we compress projective points (X : Y : Z)
by normalizing to (x, y) = (X/Z, Y/Z), then storing (x, σ), where σ is a bit indi-
cating the “sign” of y. Decompressing the datum (x, σ) to (X : Y : Z) = (x : y : 1)
then requires solving a simple quadratic to recover the correct y-coordinate.
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For some reason, no such Kummer point compression method has explicitly
appeared in the literature. Bernstein remarked in 2006 that if we compress a
Kummer point to two coordinates, then decompression appears to require solving
a complicated quartic equation [6]. This would be much more expensive than
computing the single square root required for elliptic decompression; this has
perhaps discouraged implementers from attempting to compress Kummer points.

But while it may not be obvious from their defining equations, the classical
theory tells us that every Kummer is in fact a double cover of P2, just as elliptic
curves are double covers of P1. We use this principle below to show that we can
always compress any Kummer point to two field elements plus two auxiliary bits,
and then decompress by solving a quadratic. In our applications, this gives us a
convenient packaging of Kummer points in exactly 256 bits.

6.1 The general principle

First, we sketch a general method for Kummer point compression that works for
any Kummer presented as a singular quartic surface in P3.

First, recall that if N is any point in P3, then projection away from N defines
a map πN : P3 → P2 which sends every point in P3 on the same line through N
to a single point in P2. (The map πN is only a rational map, and not a morphism;
the image of N itself is not well-defined.) Now, let N be a node of a Kummer
surface K: that is, N is one of the 16 singular points of K. The restriction of πN
to K forms a double cover of P2. By definition, πN maps the points on K that
lie on the same line through N to the same point of P2. Now K has degree 4,
so each line in P3 intersects K in four points; but since N , being a node, is a
double point of K, every line through N intersects K at N twice, and then in two
other points. These two remaining points may be “compressed” to their common
image in P2 under πN , plus a single bit to distinguish the appropriate preimage.

To make this more concrete, let L1, L2, and L3 be linearly independent linear
forms on P3 vanishing on N ; then N is the intersection of the three planes in P3

cut out by the Li. We can now realise the projection πN : K → P2 as

πN : (P1 : P2 : P3 : P4) 7−→

 L1(P1, P2, P3, P4)

: L2(P1, P2, P3, P4)

: L3(P1, P2, P3, P4)

 .

Replacing (L1, L2, L3) with another basis of 〈L1, L2, L3〉 yields another projec-
tion, which corresponds to composing πN with a linear automorphism of P2.

If L1, L2, and L3 are chosen as above to vanish onN , and L4 is any linear form
not in 〈L1, L2, L3〉, then the fact that πN is a double cover of the (L1, L2, L3)-
plane implies that the defining equation of K can be rewritten in the form

K : K2(L1, L2, L3)L
2
4 − 2K3(L1, L2, L3)L4 +K4(L1, L2, L3) = 0

where each Ki is a homogeneous polynomial of degree i in L1, L2, and L3. This
form, quadratic in L4, allows us to replace the L4-coordinate with a single bit
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indicating the “sign” of the corresponding root of this quadratic; the remaining
three coordinates can be normalized to an affine plane point. The net result is
a compression to two field elements, plus one bit indicating the normalization,
plus another bit to indicate the correct value of L4.

Remark 1. Stahlke gives a compression algorithm in [41] for points on genus-2
Jacobians in the usual Mumford representation. The first step can be seen as
a projection to the most general model of the Kummer (as in [12, Chapter 3]),
and then the second is an implicit implementation of the principle above.

6.2 From squared Kummers to tetragonal Kummers

We want to define an efficient point compression scheme for KSqr. The general
principle above makes this possible, but it leaves open the choice of node N and
the choice of forms Li. These choices determine the complexity of the result-
ing Ki, and hence the cost of evaluating them; this in turn has a non-negligible
impact on the time and space required to compress and decompress points, as
well as the number of new auxiliary constants that must be stored.

In this section we define a choice of Li reflecting the special symmetry of KSqr.
A similar procedure for KCan appears in more classical language7 in [25, §54].
The trick is to distinguish not one node of KSqr, but rather the four nodes
forming the kernel of the (2, 2)-isogeny Ŝ ◦ Ĉ ◦ H : KSqr → K̂Sqr, namely

±0 = N0 = (µ1 : µ2 : µ3 : µ4) , N1 = (µ2 : µ1 : µ4 : µ3) ,

N2 = (µ3 : µ4 : µ1 : µ2) , N3 = (µ4 : µ3 : µ2 : µ1) .

We are going to define a coordinate system where these four nodes become the
vertices of a coordinate tetrahedron; then, projection onto any three of the four
coordinates will represent a projection away from one of these four nodes. The
result will be an isomorphic Kummer KTet whose defining equation is quadratic
in all four of its variables. This might seem like overkill for point compression—
quadratic in just one variable would suffice—but it has the agreeable effect of
dramatically reducing the overall complexity of the defining equation, saving
time and memory in our compression and decompression algorithms.

The key is the matrix identity
κ̂4 κ̂3 κ̂2 κ̂1

κ̂3 κ̂4 κ̂1 κ̂2

κ̂2 κ̂1 κ̂4 κ̂3

κ̂1 κ̂2 κ̂3 κ̂4



µ1 µ2 µ3 µ4

µ2 µ1 µ4 µ3

µ3 µ4 µ1 µ2

µ4 µ3 µ2 µ1

 = 8µ̂1µ̂2µ̂3µ̂4


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 , (21)

7 The analogous model of KCan in [25, §54] is called “the equation referred to a Rosen-
hain tetrad”, whose defining equation “...may be deduced from the fact that Kum-
mer’s surface is the focal surface of the congruence of rays common to a tetrahedral
complex and a linear complex.” Modern cryptographers will understand why we have
chosen to give a little more algebraic detail here.
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which tells us that the projective isomorphism T : P3 → P3 defined by

T :


X1

: X2

: X3

: X4

 7→


L1

: L2

: L3

: L4

 =


κ̂4X1 + κ̂3X2 + κ̂2X3 + κ̂1X4

: κ̂3X1 + κ̂4X2 + κ̂1X3 + κ̂2X4

: κ̂2X1 + κ̂1X2 + κ̂4X3 + κ̂3X4

: κ̂1X1 + κ̂2X2 + κ̂3X3 + κ̂4X4


maps the four “kernel” nodes to the corners of a coordinate tetrahedron:

T (N0) = (0 : 0 : 0 : 1) , T (N2) = (0 : 1 : 0 : 0) ,

T (N1) = (0 : 0 : 1 : 0) , T (N3) = (1 : 0 : 0 : 0) .

The image of KSqr under T is the tetragonal surface

KTet : 4tL1L2L3L4 =

r21(L1L2 + L3L4)
2 + r22(L1L3 + L2L4)

2 + r23(L1L4 + L2L3)
2

− 2r1s1((L
2
1 + L2

2)L3L4 + L1L2(L
2
3 + L2

4))

− 2r2s2((L
2
1 + L2

3)L2L4 + L1L3(L
2
2 + L2

4))

− 2r3s3((L
2
1 + L2

4)L2L3 + L1L4(L
2
2 + L2

3))

where t = 16µ1µ2µ3µ4µ̂1µ̂2µ̂3µ̂4 and

r1 = (µ1µ3 − µ2µ4)(µ1µ4 − µ2µ3) , s1 = (µ1µ2 − µ3µ4)(µ1µ2 + µ3µ4) ,

r2 = (µ1µ2 − µ3µ4)(µ1µ4 − µ2µ3) , s2 = (µ1µ3 − µ2µ4)(µ1µ3 + µ2µ4) ,

r3 = (µ1µ2 − µ3µ4)(µ1µ3 − µ2µ4) , s3 = (µ1µ4 − µ2µ3)(µ1µ4 + µ2µ3) .

As promised, the defining equation of KTet is quadratic in all four of its variables.
For compression we will project away from T (±0) = (0 : 0 : 0 : 1) onto the

(L1 : L2 : L3)-plane. Rewriting the defining equation as a quadratic in L4 gives

KTet : K4(L1, L2, L3)− 2K3(L1, L2, L3)L4 +K2(L1, L2, L3)L
2
4 = 0

where

K2 := r23L
2
1 + r22L

2
2 + r21L

2
3 − 2 (r3s3L2L3 + r2s2L1L3 + r1s1L1L2) ,

K3 := r1s1(L
2
1 + L2

2)L3 + r2s2(L
2
1 + L2

3)L2 + r3s3(L
2
2 + L2

3)L1

+ (2t− (r21 + r22 + r23))L1L2L3 ,

K4 := r23L
2
2L

2
3 + r22L

2
1L

2
3 + r21L

2
1L

2
2 − 2 (r3s3L1 + r2s2L2 + r1s1L3)L1L2L3 .

Lemma 1. If (l1 : l2 : l3 : l4) is a point on KTet, then

K2(l1, l2, l3) = K3(l1, l2, l3) = K4(l1, l2, l3) = 0 ⇐⇒ l1 = l2 = l3 = 0 .

Proof. Write ki for Ki(l1, l2, l3). If (l1, l2, l3) = 0 then (k2, k3, k4) = 0, because
each Ki is nonconstant and homogeneous. Conversely, if (k2, k3, k4) = 0 and
(l1, l2, l3) 6= 0 then we could embed a line in KTet via λ 7→ (l1 : l2 : l3 : λ); but
this is a contradiction, because KTet contains no lines. ut
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6.3 Compression and decompression for KSqr

In practice, we will compress points on KSqr to tuples (l1, l2, τ, σ), where l1 and l2
are field elements and τ and σ are bits. The recipe is

(1) Map (X1 : X2 : X3 : X4) through T to a point (L1 : L2 : L3 : L4) on KTet.
(2) Compute the unique (l1, l2, l3, l4) in one of the forms (∗, ∗, 1, ∗), (∗, 1, 0, ∗),

(1, 0, 0, ∗), or (0, 0, 0, 1) such that (l1 : l2 : l3 : l4) = (L1 : L2 : L3 : L4).
(3) Compute k2 = K2(l1, l2, l3), k3 = K3(l1, l2, l3), and k4 = K4(l1, l2, l3).
(4) Replace l4 with the single bit σ = Sign(k2l4 − k3). We have q(l4) = 0,

where q(X) = k2X
2 − 2k3X + k4; and Lemma 1 tells us that q(X) is either

quadratic, linear, or identically zero.
– If q(X) is a nonsingular quadratic, then l4 is determined by (l1, l2, l3)

and σ, because σ = Sign(R) where R is the correct square root in the
quadratic formula l4 = (k3 ±

√
k23 − k2k4)/k2.

– If q(X) is singular or linear, then l4 is determined by (l1, l2, l3), so σ is
redundant.

– If q(X) = 0 then (l1, l2, l3) = (0, 0, 0), so l4 = 1; again, σ is redundant.
Setting σ = Sign(k2l4 − k3) in every case, regardless of whether or not we
need it to determine l4, avoids ambiguity and simplifies code.

(5) The normalization in Step 2 forces l3 ∈ {0, 1}; so encode l3 as a single bit τ .

The datum (l1, l2, τ, σ) completely determines (l1, l2, l3, l4), and thus determines
(X1 : X2 : X3 : X4) = T −1((l1 : l2 : l2 : l4)). Conversely, the normalization in
Step 2 ensures that (l1, l2, τ, σ) is uniquely determined by (X1 : X2 : X3 : X4),
and is independent of the representative values of the Xi.

Algorithm 4 carries out the compression process above; the most expensive
step is the computation of an inverse in Fp. Algorithm 5 is the corresponding
decompression algorithm; its cost is dominated by computing a square root in Fp.

Proposition 5. Given (l1, l2, τ, σ) in F2
p × {0, 1}2, Decompress (Algorithm 5)

always returns either a valid point in KSqr(Fp) or ⊥; and

Decompress(Compress((X1 : X2 : X3 : X4))) = (X1 : X2 : X3 : X4)

for every (X1 : X2 : X3 : X4) in KSqr(Fp).

Proof. In Algorithm 5 we are given (l1, l2, τ, σ). We can immediately set l3 = τ ,
viewed as an element of Fp. We want to compute an l4 in Fp, if it exists, such
that k2l24 − 2k3l4 + k4 = 0 and Sign(k2l4 − l3) = σ where ki = Ki(l1, l2, l3). If
such an l4 exists, then we will have a preimage (l1 : l2 : l3 : l4) in KTet(Fp), and
we can return the decompressed T −1((l1 : l2 : l3 : l4)) in KSqr.

If k2 = 0 and k3 = 0, then k4 = 2k3l4 − k2l
2
4 = 0 and Lemma 1 implies

l1 = l2 = τ = 0. The only legitimate datum in this form is is (l1 : l2 : τ : σ) =
(0 : 0 : 0 : Sign(0)). If this was the input, then the preimage is (0 : 0 : 0 : 1);
otherwise we return ⊥.

If k2 = 0 but k3 6= 0, then we have k4 = 2k3l4, so (l1 : l2 : τ : l4) = (2k3l1 :
2k3l2 : 2k3τ : k4). The datum is a valid compression unless σ 6= Sign(−k3), in
which case we return ⊥; otherwise, the preimage is (2k3l1 : 2k3l2 : 2k3τ : k4).
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Algorithm 4: Kummer point compression for KSqr

1 function Compress
Input: ±P in KSqr(Fp)
Output: (l1, l2, τ, σ) with l1, l2 ∈ Fp and σ, τ ∈ {0, 1}
Cost: 8M+ 5S+ 12C+ 8a+ 5s+ 1I

2 L←

(
Dot(±P, (κ̂4, κ̂3, κ̂2, κ̂1)), Dot(±P, (κ̂3, κ̂4, κ̂1, κ̂2)),
Dot(±P, (κ̂2, κ̂1, κ̂4, κ̂3)), Dot(±P, (κ̂1, κ̂2, κ̂3, κ̂4))

)
3 if L3 6= 0 then
4 (τ, λ)← (1, L−13 ) // Normalize to (∗ : ∗ : 1 : ∗)
5 else if L2 6= 0 then
6 (τ, λ)← (0, L−12 ) // Normalize to (∗ : 1 : 0 : ∗)
7 else if L1 6= 0 then
8 (τ, λ)← (0, L−11 ) // Normalize to (1 : 0 : 0 : ∗)
9 else

10 (τ, λ)← (0, L−14 ) // Normalize to (0 : 0 : 0 : 1)

11 (l1, l2, l4)← (L1 · λ, L2 · λ, L4 · λ) // (l1 : l2 : τ : l4) = (L1 : L2 : L3 : L4)
12 (k2, k3)← (K2(l1, l2, τ),K3(l1, l2, τ)) // See Algorithm 14,15
13 R← k2 · l4 − k3
14 σ ← Sign(R)
15 return (l1, l2, τ, σ)

If k2 6= 0, then the quadratic formula tells us that any preimage satisfies
k2l4 = k3±

√
k23 − k2k4, with the sign determined by Sign(k2l4−k3). If k23−k2k4

is not a square in Fp then there is no such l4 in Fp; the input is illegitimate, so we
return ⊥. Otherwise, we have a preimage (k2l1 : k2l2 : k2l3 : l3 ±

√
k23 − k2k4).

Line 17 maps the preimage (l1 : l2 : l3 : l4) in KTet(Fp) back to KSqr(Fp) via
T −1, yielding the decompressed point (X1 : X2 : X3 : X4). ut

6.4 Using cryptographic parameters

Our compression scheme works out particularly nicely for the Gaudry–Schost
Kummer over F2127−1. First, since every field element fits into 127 bits, every
compressed point fits into exactly 256 bits. Second, the auxiliary constants are
small: we have (κ̂1 : κ̂2 : κ̂3 : κ̂4) = (−961 : 128 : 569 : 1097), each of which fits
into well under 16 bits. Computing the polynomials K2, K3, K4 and dividing
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Algorithm 5: Kummer point decompression to KSqr

1 function Decompress
Input: (l1, l2, τ, σ) with l1, l2 ∈ Fp and τ, σ ∈ {0, 1}
Output: A point ±P in KSqr(Fp) such that

Compress(±P ) = (l1, l2, τ, σ) or ⊥ if no such ±P exists
Cost: 10M+ 9S+ 18C+ 13a+ 8s+ 1E

2 (k2, k3, k4)← (K2(l1, l2, τ),K3(l1, l2, τ),K4(l1, l2, τ))
// Alg. 14,15,16

3 if k2 = 0 and k3 = 0 then
4 if (l1, l2, τ, σ) 6= (0, 0, 0, Sign(0)) then
5 return ⊥ // Invalid compression

6 L← (0, 0, 0, 1)

7 else if k2 = 0 and k3 6= 0 then
8 if σ 6= Sign(−k3) then
9 return ⊥ // Invalid compression

10 L← (2 · l1 · k3, 2 · l2 · k3, 2 · τ · k3, k4) // k4 = 2k3l4
11 else
12 ∆← k23 − k2k4
13 R← HasSquareRoot(∆,σ) // R = ⊥ or R2 = ∆, Sign(R) = σ
14 if R = ⊥ then
15 return ⊥ // No preimage in KTet(Fp)
16 L← (k2 · l1, k2 · l2, k2 · τ, k3 + R) // k3 + R = k2l4

17

(
X1, X2,

X3, X4

)
←

(
Dot(L, (µ4, µ3, µ2, µ1)), Dot(L, (µ3, µ4, µ1, µ2)),

Dot(L, (µ2, µ1, µ4, µ3)), Dot(L, (µ1, µ2, µ3, µ4))

)
18 return (X1 : X2 : X3 : X4)

them all through by 112 (which does not change the roots of the quadratic) gives

K2(l1, l2, τ) = (q5l1)
2 + (q3l2)

2 + (q4τ)
2 − 2q3 (q2l1l2 + τ(q0l1 − q1l2)) , (22)

K3(l1, l2, τ) = q3 ·
(
q0(l

2
1 + τ)l2 − q1l1(l22 + τ) + q2(l

2
1 + l22)τ

)
− q6 · q7l1l2τ , (23)

K4(l1, l2, τ) = ((q3l1)
2 + (q5l2)

2 − 2 · q3 · l1l2 (q0l2 − q1l1 + q2))τ

+ (q4l1l2)
2 , (24)

where (q0, . . . , q7) = (3575, 9625, 4625, 12259, 11275, 7475, 6009, 43991); each of
the qi fits into 16 bits. In total, the twelve new constants we need for Compress
and Decompress together fit into less than two field elements’ worth of space.
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7 Implementation

In this section we present the results of the implementation of the scheme on
the AVR ATmega and ARM Cortex M0 platforms. We have a total of four
implementations: on both platforms we implemented both the Curve25519-based
scheme and the scheme based on a fast Kummer surface in genus 2. We used
avr-gcc to compile the AVR ATmega code, and clang for the Cortex M0 code.
In all cases optimization flags were chosen to obtain the most beneficial results,
and we refer to the (publicly available) code for details. For both Diffie–Hellman
and signatures we follow the eBACS [4] API.

7.1 Core functionality

The arithmetic of the underlying finite fields is well-studied and optimized, and
we do not reinvent the wheel. For field arithmetic in F2255−19 we use the highly
optimized functions presented by Hutter and Schwabe [26] for the AVR ATmega.
For the field arithmetic in F2127−1 we use the functions from Renes et al. [38],
which in turn rely on [26]. For the arithmetic in F2255−19 on the Cortex M0
we use the code from Düll et al. [17], while the arithmetic in F2127−1 is that
from [38], which again in turn relies on [17].

The SHAKE128 functions for the ATmega are taken from [10], while on the
Cortex M0 we use a modified version from [2]. Cycle counts for the main func-
tions defined in the rest of this paper are presented in Table 2. Notably, the
Ladder routine is by far the most expensive function. In genus 1 the Compress
function is relatively costly (it is essentially an inversion), while in genus 2 Check,
Compress and Decompress have only minor impact on the total run-time. More
interestingly, as seen in Table 3 and Table 4, the simplicity of operating only on
the Kummer variety allows smaller code and less stack usage.

Genus Function Ref. AVR ATmega ARM Cortex M0

1

Ladder Alg. 6 12 539 098 3 338 554

Check Alg. 2 46 546 17 044

Compress §3.1 1 067 004 270 867

Decompress §3.1 694 102

2

Ladder Alg. 9 9 624 637 2 683 371

Check8 Alg. 3 84 424 24 249

Compress Alg. 4 212 374 62 165

Decompress Alg. 5 211 428 62 471

Table 2. Cycle counts for the four key functions of qDSA at the 128-bit security level.

8 The implementation decompresses ±R within Check, while Algorithm 3 assumes ±R
to be decompressed. We have subtracted the cost of the Decompress function once.
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7.2 Comparison to previous work

There are not many implementations of complete signature and key exchange
schemes on microcontrollers. On the other hand, there are implementations of
scalar multiplication on elliptic curves. The current fastest on our platforms are
presented by Düll et al. [17]. However, since we are relying on exactly the same
arithmetic, we have essentially the same results. Similarly, the current records
for scalar multiplication on Kummer surfaces are presented by Renes et al. [38].
Since we use the same underlying functions, we have similar results.

More interestingly, we compare the speed and memory usage of signing and
verification to best known results of implementations of complete signature
schemes. To the best of our knowledge, the only other works are the Ed25519-
based scheme by Nascimento et al [33], the FourQ-based scheme (obtaining fast
scalar multiplication by relying on easily computable endomorphisms) by Liu et
al [29], and the genus-2 implementation from [38].

AVR ATmega. As we see in Table 3, our implementation of the scheme based on
Curve25519 outperforms the Ed25519-based scheme from [33] in every way. It
reduces the number of clock cycles needed for sign resp. verify by more than
26% resp. 17%, while reducing stack usage by more than 65% resp. 47%. The
code size is not reported in [33]. Comparing against the FourQ implementation
of [29], we see a clear trade-off between speed and size: FourQ has a clear speed
advantage, but qDSA on Curve25519 requires only a fraction of the stack space.

The implementation based on the Kummer surface of the genus-2 Gaudry-
Schost Jacobian does better than the Curve25519-based implementation across
the board. Compared to [38], the stack usage of sign resp. verify decreases by
more than 54% resp. 38%, while decreasing code size by about 11%. On the other
hand, verification is about 26% slower. This is explained by the fact that in [38]
the signature is compressed to 48 bytes (following Schnorr’s suggestion), which
means that one of the scalar multiplications in verification is only half length.
Comparing to the FourQ implementation of [29], again we see a clear trade-off
between speed and size, but this time the loss of speed is less pronounced than
in the comparison with Curve25519-based qDSA.

ARM Cortex M0. In this case there is no elliptic-curve-based signature scheme
to compare to, so we present the first. As we see in Table 4, it is significantly
slower than its genus-2 counterpart in this paper (as should be expected), while
using a similar amount of stack and code.

The genus-2 signature scheme has similar trade-offs on this platform when
compared to the implementation by Renes et al. [38]. The stack usage for sign
resp. verify is reduced by about 57% resp. 43%, while code size is reduced by
about 8%. For the same reasons as above, verification is about 28% slower.
9 The reported code size is estimated as the sum of the memory used by the separate
functions reported in [29, Table 6]. This includes ephemeral Diffie–Hellman, signature
generation and signature verification, and we have in all cases chosen the smallest
version.
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Ref. Object Function Clock cycles Stack Code size

[33] Ed25519
sign 19 047 706 1 473 bytes

–
verify 30 776 942 1 226 bytes

[29] FourQ sign 5 175 400 1 590 bytes
60 770 bytes9

verify 11 467 900 5 050 bytes

This work Curve25519
sign 14 067 995 512 bytes

21 347 bytes
verify 25 355 140 644 bytes

[38]
Gaudry– sign 10 404 033 926 bytes

20 242 bytes
Schost J verify 16 240 510 992 bytes

This work
Gaudry– sign 10 477 347 417 bytes

17 880 bytes
Schost K verify 20 423 937 609 bytes

Table 3. Performance comparison of the qDSA signature scheme against the current
best implementations, on the AVR ATmega platform.

Ref. Object Function Clock cycles Stack Code size10

This work Curve25519
sign 3 889 116 660 bytes

18 443 bytes
verify 6 793 695 788 bytes

[38]
Gaudry– sign 2 865 351 1 360 bytes

19 606 bytes
Schost J verify 4 453 978 1 432 bytes

This work
Gaudry– sign 2 908 215 580 bytes

18 064 bytes
Schost K verify 5 694 414 808 bytes

Table 4. Performance comparison of the qDSA signature scheme against the current
best implementations, on the ARM Cortex M0 platform.
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A Elliptic implementation details

The algorithms in this section complete the description of elliptic qDSA in §3.
To make our Ladder constant-time, we use a conditional swap procedure CSWAP.
This takes a single bit and a pair of items as arguments, and swaps those items
if and only if the bit is 1.

A.1 Pseudoscalar multiplication

The keypair, sign, and verify functions all require Ladder, which we define be-
low. Algorithm 6 describes the scalar pseudomultiplication that we implemented
for Montgomery curves, closely following our C reference implementation.

Algorithm 6: Ladder: the Montgomery ladder for elliptic pseudo-
multiplication on P1, using a combined differential double-and-add (Al-
gorithm 7).
1 function Ladder

Input: ±P = (x : 1) ∈ P1(Fp), x 6= 0 and m =
∑255
i=0mi2

i ∈ Z
Output: ±[m]P
Cost: 1280M+ 1024S+ 256C+ 1024a+ 1024s

2 prevbit← 0

3 (V0,V1)←
(
(1 : 0),±P

)
4 for i = 255 down to 0 do
5 (bit, prevbit, swap)← (mi, bit, bit⊕ prevbit)
6 CSWAP(swap, (V0,V1))
7 xDBLADD(V0,V1, x)

8 CSWAP(bit, (V0,V1))
9 return V0

Algorithm 7 implements xDBLADD for Montgomery curves in the usual way.
Note that the assumption that ±(P−Q) 6∈ {(1 : 0), (0 : 1)} implies that xDBLADD
will always return the correct result.

A.2 The BValues subroutine for signature verification

The elliptic version of the crucial Check subroutine of verify (Algorithm 2) used
a function BValues to calculate the values of the biquadratic forms BXX , BXZ ,
and BZZ . This function can be implemented in a number of ways, with different
optimizations for speed or stack usage. Algorithm 8 illustrates the approach we
used for BValues, motivated by simplicity and stack minimisation.
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Algorithm 7: xDBLADD: combined pseudo-addition and doubling on P1.
1 function xDBLADD

Input: ±P = (XP : ZP ) and ±Q = (XQ : ZQ) in P1(Fq), and x ∈ F∗q
such that (x : 1) = ±(P −Q)

Output: (±[2]P,±(P +Q))
Cost: 5M+ 4S+ 1C+ 4a+ 4s

2 (U0,U1,V0,V1)← (XP , ZP , XQ, ZQ)
3 (W0,W1)← (U0 + U1,U0 − U1)
4 (U0,U1)← (V0 + V1,V0 − V1)
5 (V0,U1)← (W0 · U1,W1 · U0)
6 (U0,V1)← (V0 + U1,V0 − U1)

7 (U0,V0,V1)← (U2
0,V

2
0, x · U0)

8 (W0,U0)← (W2
1,W

2
0)

9 U1 ← U0 −W0

10 U0 ←W0 · U0

11 W1 ← A+2
4 · U1

12 W1 ←W0 ·W1

13 U1 ←W1 · U1

14 return (U0,U1), (V0,V1)

B Kummer surface implementation details

The algorithms in this section complete the description of Kummer qDSA in §§4-
6. They follow our C reference implementation very closely. Recall that we have
the following subroutines:

– Mul4 implements a 4-way parallel multiplication. It takes a pair of vectors
(x1, x2, x3, x4) and (y1, y2, y3, y4) in F4

p, and returns (x1y1, x2y2, x3y3, x4y4).
– Sqr4 implements a 4-way parallel squaring. Given a vector (x1, x2, x3, x4) in

F4
p, it returns (x21, x22, x23, x24).

– Had implements a Hadamard transform. Given a vector (x1, x2, x3, x4) in F4
p,

it returns (x1+x2+x3+x4, x1+x2−x3−x4, x1−x2+x3−x4, x1−x2−x3+x4).
– Dot computes the sum of a 4-way multiplication. Given a pair of vectors

(x1, x2, x3, x4) and (y1, y2, y3, y4) in F4
p, it returns x1y1+x2y2+x3y3+x4y4.

B.1 Scalar pseudomultiplication

The Montgomery Ladder for scalar pseudomultiplication on KSqr is implemented
in Algorithm 9, replicating the approach in [38]. It relies on the WRAP and xDBLADD
functions, implemented in Algorithm 10 respectively 11. The function WRAP takes
a Kummer point ±P in KSqr(Fp) and returns w2, w3, and w4 in Fp such that
(1 : w2 : w3 : w4) = (1/XP

1 : 1/XP
2 : 1/XP

3 : 1/XP
4 ). The resulting values are

required in every xDBLADD within Ladder; the idea is to compute them once with
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Algorithm 8: BValues: evaluates BXX , BXZ , and BZZ on P1.
1 function BValues

Input: ±P = (XP : ZP ), ±Q = (XQ : ZQ) in K(Fp)
Output: (BXX(±P,±Q), BXZ(±P,±Q), BZZ(±P,±Q)) in F3

p

Cost: 6M+ 2S+ 1C+ 7a+ 3s
2 (T0,T1)← (XP ·XQ, ZP · ZQ)
3 U← (T0 − T1)

2 // BXX
4 T0 ← T0 + T1

5 (T1,T2)← (XP · ZQ, XQ · ZP )
6 W← (T1 − T2)

2 // BZZ
7 V← T0 · (T1 + T2)
8 T0 ← 4 · T1 · T2

9 T1 ← 2 · T0

10 T1 ← A+2
4 · T1

11 V← V + T1 − T0 // BXZ
12 return (U,V,W)

a single inversion at the start of the procedure, thus avoiding further expensive
inversions. We note that this “wrapped” form of the point ±P was previously
used as a compressed form for Kummer point transmission, but since it requires
three full field values it is far from an optimal compression.

B.2 Subroutines for signature verification

The crucial Check function for KSqr (Algorithm 3) calls subroutines BiiValues
and BijValue to compute the values of the biquadratic forms on KInt. Algo-
rithms 12 and 13 are our simple implementations of these functions. We choose
to only store the four constants µ̂1, µ̂2, µ̂3 and µ̂4, but clearly one can gain some
efficiency by pre-computing more constants (eg. µ̂1µ̂2, µ̂1µ̂4 − µ̂2µ̂3, etc.). As
the speed of this operation is not critical, it allows us to reduce the number of
necessary constants. The four values of B11, B22, B33, and B44 are computed
simultaneously, since many of the intermediate operands are shared (as is clear
from Equations (16) through (19)).

B.3 Subroutines for compression and decompression

The compression and decompression functions in Algorithms 4 and 5 require the
evaluation of the polynomials K2, K3, and K4. We used the simple strategy in
Algorithms 14, 15, and 16 (get_K2, get_K3, and get_K4, respectively), which
prioritises low stack usage over speed (which is again not critical here).
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Algorithm 9: Ladder: the Montgomery ladder for pseudomultiplication
on KSqr, based on a combined differential double-and-add (Algorithm 11).
1 function Ladder

Input: ±P ∈ KSqr(Fp) and m =
∑255
i=0mi2

i ∈ Z
Output: ±[m]P
Cost: 1799M+ 3072S+ 3072C+ 4096a+ 4096s+ 1I

2 prevbit← 0
3 W← WRAP(±P )
4 (V0,V1)←

(
(µ1 : µ2 : µ3 : µ4),±P

)
5 for i = 255 down to 0 do
6 (bit, prevbit, swap)← (mi, bit, bit⊕ prevbit)
7 CSWAP(swap, (V0,V1))
8 xDBLADD(V0,V1,W)

9 CSWAP(bit, (V0,V1))
10 return V0

Algorithm 10: WRAP: (pre)computes inverted Kummer point coordinates.
1 function WRAP

Input: ±P ∈ KSqr(Fp)
Output: (w2, w3, w4) ∈ F3

p such that
(1 : w2 : w3 : w4) = (1/XP

1 : 1/XP
2 : 1/XP

3 : 1/XP
4 )

Cost: 7M+ 1I
2 V1 ← XP

2 ·XP
3 // 1M

3 V2 ← XP
1 /(V1 ·XP

4 ) // 2M+1I
4 V3 ← V2 ·XP

4 // 1M
5 return (V3 ·X3,V3 ·X2,V1 · V2) // 3M

Algorithm 11: xDBLADD: combined pseudo-addition and doubling on KSqr.
1 function xDBLADD

Input: ±P,±Q in KSqr(Fp), and (w2, w3, w4) = WRAP(±(P −Q)) in F3
p

Output: (±[2]P,±(P +Q)) ∈ KSqr(Fp)2
Cost: 7M+ 12S+ 12C+ 16a+ 16s

2 (V1,V2)← (Had(V1), Had(V2))
3 (V1,V2)← (Sqr4(V1), Mul4(V1,V2))
4 (V1,V2)← (Mul4(V1, (ε̂1, ε̂2, ε̂3, ε̂4)), Mul4(V2, (ε̂1, ε̂2, ε̂3, ε̂4)))
5 (V1,V2)← (Had(V1), Had(V2))
6 (V1,V2)← (Sqr4(V1), Sqr4(V2))
7 (V1,V2)← (Mul4(V1, (ε1, ε2, ε3, ε4))), Mul4(V2, (1, w2, w3, w4))))
8 return (V1,V2)



Algorithm 12: BijValue: evaluates one of the off-diagonal Bij on KInt.

1 function BijValue
Input: ±P , ±Q in KInt(Fp) and (i, j) such that {i, j, k, l} = {1, 2, 3, 4}
Output: BInt

ij (±P,±Q) in Fp
Cost: 10M+ 10C+ 1a+ 5s

2 (V0,V1,V2,V3)← (Y Pi · Y Pj , Y Pk · Y Pl , Y
Q
i · Y

Q
j , Y

Q
k · Y

Q
l )

3 (V0,V2)← (V0 − V1,V2 − V3)
4 (V0,V1)← (V0 · V2,V1 · V3)
5 (V0,V1)← (V0 · µ̂kµ̂l,V1 · (µ̂iµ̂j − µ̂kµ̂l))
6 V0 ← V0 + V1

7 V0 ← V0 · µ̂iµ̂j(µ̂iµ̂k − µ̂jµ̂l)(µ̂iµ̂l − µ̂j µ̂k)
8 V0 ← V0 · C
9 return V0

Algorithm 13: BiiValues: evaluates B11, B22, B33, and B44 on KInt.
1 function BiiValues

Input: ±P , ±Q in KInt(Fp)
Output: (BInt

ii (±P,±Q))4i=1 in F4
p

Cost: 16M+ 8S+ 28C+ 24a
2 (V,W)← (±P,±Q)
3 (V,W)← (Sqr4(V), Sqr4(W))
4 (V,W)← (Mul4(V, (ε̂1, ε̂2, ε̂3, ε̂4)), Mul4(W, (ε̂1, ε̂2, ε̂3, ε̂4)))

5 U←

(
Dot(V, (W1,W2,W3,W4)) , Dot(V, (W2,W1,W4,W3)) ,

Dot(V, (W3,W4,W1,W2)) , Dot(V, (W4,W3,W2,W1))

)

6 V←

(
Dot(U, (κ̂1, κ̂2, κ̂3, κ̂4)) , Dot(U, (κ̂2, κ̂1, κ̂4, κ̂3)) ,
Dot(U, (κ̂3, κ̂4, κ̂1, κ̂2)) , Dot(U, (κ̂4, κ̂3, κ̂2, κ̂1))

)
7 V← Mul4(V, (µ̂1, µ̂2, µ̂3, µ̂4))
8 return V



Algorithm 14: get_K2: evaluates the polynomial K2 at (l1, l2, τ).
1 function get_K2

Input: (l1, l2, τ) with l1, l2 ∈ Fp and τ ∈ {0, 1}
Output: K2(l1, l2, τ) in Fp as in Equation (22)
Cost: 1M+ 3S+ 6C+ 4a+ 2s

2 V← l1 · q2
3 V← l2 · V
4 if τ = 1 then
5 W← l1 · q0
6 V← V + W
7 W← l2 · q1
8 V← V −W

9 V← V · q3
10 V← V + V
11 W← l1 + q5

12 W←W2

13 V←W − V
14 W← l2 · q3
15 W←W2

16 V←W + V
17 if τ = 1 then
18 W← q24
19 V←W + V

20 return V

Algorithm 15: get_K3: evaluates the polynomial K3 at (l1, l2, τ).
1 function get_K3

Input: (l1, l2, τ) with l1, l2 ∈ Fp and τ ∈ {0, 1}
Output: K3(l1, l2, τ) in Fp as in Equation (23)
Cost: 3M+ 2S+ 6C+ 4a+ 2s

2 U← l22
3 V← l21
4 if τ = 1 then
5 W← U + V
6 W←W · q2
7 U← U + 1
8 V← V + 1

9 U← U · l1
10 V← V · l2
11 U← U · q1
12 V← V · q0

13 V← V − U
14 if τ = 1 then
15 V← V + W

16 V← V · q3
17 if τ = 1 then
18 U← l1 · l2
19 U← U · q6
20 U← U · q7
21 V← V − U

22 return V



Algorithm 16: get_K4: evaluates the polynomial K4 at (l1, l2, τ).
1 function get_K4

Input: (l1, l2, τ) with l1, l2 ∈ Fp and τ ∈ {0, 1}
Output: K4(l1, l2, τ) in Fp as in Equation (24)
Cost: 3M+ 3S+ 6C+ 4a+ 2s

2 if τ = 1 then
3 W← l2 · q0
4 V← l1 · q1
5 W←W − V
6 W←W + q2
7 W←W · l1
8 W←W · l2
9 W←W · q3

10 W←W + W
11 V← l1 · q3
12 V← V2

13 W← V −W
14 V← l2 · q5
15 V← V2

16 W← V + W

17 V← l1 · q4
18 V← V · l2
19 V← V2

20 if τ = 1 then
21 V← V + W

22 return V
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