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Abstract. When constructing practical zero-knowledge proofs based on the hardness of the Ring-
LWE or the Ring-SIS problems over polynomial rings Zp[X]/(Xn + 1), it is often necessary that the
challenges come from a set C that satisfies three properties: the set should be large (around 2256), the
elements in it should have small norms, and all the non-zero elements in the difference set C −C should
be invertible. The first two properties are straightforward to satisfy, while the third one requires us to
make efficiency compromises. We can either work over rings where the polynomial Xn + 1 only splits
into two irreducible factors modulo p, which makes the speed of the multiplication operation in the ring
sub-optimal; or we can limit our challenge set to polynomials of smaller degree, which requires them
to have (much) larger norms.

In this work we show that one can use the optimal challenge sets C and still have the polynomial Xn+1
split into more than two factors. This comes as a direct application of our more general result that
states that all non-zero polynomials with “small” coefficients in the cyclotomic ring Zp[X]/(Φm(X)) are
invertible (where “small” depends on the size of p and how many irreducible factors the mth cyclotomic
polynomial Φm(X) splits into). We furthermore establish sufficient conditions for p under which Φm(X)
will split in such fashion.

For the purposes of implementation, if the polynomial Xn + 1 splits into k factors, we can run FFT for
log k levels until switching to Karatsuba multiplication. Experimentally, we show that increasing the
number of levels from one to three or four results in a speedup by a factor of ≈ 2 – 3. We point out that
this improvement comes completely for free simply by choosing a modulus p that has certain algebraic
properties. In addition to the speed improvement, having the polynomial split into many factors has
other applications – e.g. when one embeds information into the Chinese Remainder representation of
the ring elements, the more the polynomial splits, the more information one can embed into an element.

1 Introduction

Cryptography based on the presumed hardness of the Ring / Module-SIS and Ring / Module-LWE
problems [Mic07, PR06, LM06, LPR10, LS15] is seen as a very likely replacement of traditional
cryptography after the eventual coming of quantum computing. There already exist very efficient
basic public key primitives, such as encryption schemes and digital signatures, based on the hard-
ness of these problems. For added efficiency, most practical lattice-based constructions work over
polynomial rings Zp[X]/(f(X)) where f(X) is the cyclotomic polynomial f(X) = Xn + 1 and
p is chosen in such a way that the Xn + 1 splits into n linear factors modulo p. With such a
choice of parameters, multiplication in the ring can be performed very efficiently via the Num-
ber Theoretic Transform, which is an analogue of the Fast Fourier Transform that works over
a finite field. Some examples of practical implementations that utilize NTT implementations of
digital signatures and public key encryption based on the Ring-LWE problem can be found in
[GLP12, PG13, ADPS16, BDK+17, DLL+17].



Constructions of more advanced lattice-based primitives sometimes require that the underlying
ring has additional properties. In particular, practical protocols that utilize zero-knowledge proofs
often require that elements with small coefficients are invertible (e.g. [BKLP15, BDOP16, LN17,
DLNS17]). This restriction, which precludes using rings where Xn + 1 splits completely modulo p,
stems from the structure of approximate zero-knowledge proofs, and we sketch this intuition below.

1.1 Approximate Zero-Knowledge Proofs

Abstractly, in a zero-knowledge proof the prover wants to prove the knowledge of s that satisfies
the relation f(s) = t, where f and t are public. In the lattice setting, the function

f(s) := As (1)

where A is a random matrix over some ring (the ring is commonly Zp or Zp[X]/(Xn + 1)) and s is
a vector over that same ring, where the coefficients of all (or almost all) the elements comprising s
are bounded by some small value � p.

The function f in (1) satisfies the property that f(s1) + f(s2) = f(s1 + s2) and for any c in
the ring and any vector s over the ring we have f(sc) = c · f(s). The zero-knowledge proof for
attempting to prove the knowledge of s proceeds as follows:

The Prover first chooses a “masking parameter” y and sends w := f(y) to the Verifier. The
Verifier picks a random challenge c from a subset of the ring and sends it to the prover (in a non-
interactive proof, the Prover himself would generate c := H(t, w), where H is a cryptographic hash
function). The Prover then computes z := sc+ y and sends it to the Verifier.1

The Verifier checks that f(z) = ct + w and, crucially, it also checks to make sure that the
coefficients of z are small. If these checks pass, then the Verifier accepts the proof. To show that
the protocol is a proof of knowledge, one can rewind the Prover to just after his first move and
send a different challenge c′, and get a response z′ such that f(z′) = c′t + w. Combined with the
first response, we extract the equation

f(s̄) = c̄t (2)

where s̄ = z − z′ and c̄ = c− c′.
Notice that while the prover started with the knowledge of an s with small coefficients such

that f(s) = t, he only ends up proving the knowledge of an s̄ with larger coefficients such that
f(s̄) = c̄t. If c̄ also has small coefficients, then this type of proof is good enough in many (but not
all) situations.

Applications of Approximate Zero-Knowledge Proofs. As a simple example of the utility
of approximate zero-knowledge proofs, we consider commitment schemes where a commitment to
a message m involves choosing some randomness r, and outputting f(s) = t, where s is defined as[
r
m

]
where r and m have small coefficients.2 Using the zero-knowledge proof from Section 1.1, one

1 In lattice-based schemes, it is important to keep the coefficients of z small, and so y must be chosen to have small
coefficients as well. This can lead to the distribution of z being dependent on sc, which leaks some information
about s. This problem is solved in [Lyu09, Lyu12] via various rejection-sampling procedures. How this is done is
not important to this paper, and so we ignore this step.

2 It was shown in [BKLP15, BDOP16] that one actually does not need the message m to have small coefficients,
but for simplicity we assume here that it still has them.
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can prove the knowledge of an s̄ and c̄ such that f(s̄) = c̄t. If c̄ is invertible in the ring, then we
can argue that this implies that if t is later opened to any valid commitment s′ where f(s′) = t,
then it must be s′ = s̄/c̄.

The sketch of the argument is as follows: If we extract s̄, c̄ and the commitment is opened with
s′ such that f(s′) = t, then multiplying both sides by c̄ results in f(c̄s′) = c̄t. Combining this with
what was extracted from the zero-knowledge proof, we obtain that

f(c̄s′) = f(s̄). (3)

If s′ 6= s̄/c̄, then c̄s′ 6= s̄ and we found a collision (with small coefficients) for the function f . Such
a collision implies a solution to the (Ring-)SIS problem, or, depending on the parameters, may
simply not exist (and the scheme can thus be based on (Ring-)LWE).

There are more intricate examples involving commitment schemes (see e.g. [BKLP15, BDOP16])
as well as other applications of such zero knowledge proofs, (e.g. to verifiable encryption [LN17]
and voting protocols [DLNS17]) which require that the c̄ be invertible.

The Challenge Set and its Effect on the Proof. The challenge c is drawn uniformly from
some domain C which is a subset of Zp[X]/(Xn + 1). In order to have small soundness error, we
would like C to be large. When building non-interactive schemes that should remain secure against
quantum computers, one should have |C| be around 2256. On the other hand, we also would like c
to have a small norm. The reason for the latter is that the honest prover computes z := sc+ y and
so the s̄ that is extracted from the Prover in (2) is equal to z − z′, and must also therefore depend
on ‖sc‖. Thus, the larger the norms of c, c′ are, the larger the extracted solution s̄ will be, and the
easier the corresponding (Ring-)SIS problem will be.

As a running example, suppose that we’re working over the polynomial ring Zp[X]/(X256 + 1).
If invertibility were not an issue, then a simple and nearly optimal way (this way of choosing the
challenge set dates back to at least the original paper that proposed a Fiat-Shamir protocol over
polynomial rings [Lyu09]) to choose C of size 2256 would be to define

C = {c ∈ R256
p : ‖c‖∞ = 1, ‖c‖1 = 60}. (4)

In other words, the challenges are ring elements consisting of exactly 60 non-zero coefficients
which are ±1.3 The l2 norm of such elements is

√
60.

If we take invertibility into consideration, then we need the difference set C − C (excluding 0)
to consist only of invertible polynomials. There are some folklore ways of creating sets all of whose
non-zero differences are invertible (c.f. [SSTX09, BKLP15]). If the polynomial X256 + 1 splits into
k irreducible polynomials modulo p, then all of these polynomials must have degree 256/k. It is
then easy to see, via the Chinese Remainder Theorem that every non-zero polynomial of degree
less than 256/k is invertible in the ring Zp[X]/(X256 + 1). We can therefore define the set

C′ = {c ∈ R256
p : deg(c) < 256/k, ‖c‖∞ ≤ γ},

where γ ≈ 2k−1 in order for the size of the set to be greater than 2256. The `2 norm of elements in
this set is

√
256/k ·γ. If we, for example, take k = 8, then this norm becomes

√
32 ·27 ≈ 724, which

is around 90 times larger than the norms of the challenges in the set defined in (4). It is therefore

3 The size of this set is
(
256
60

)
· 260 > 2256.
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certainly not advantageous to increase the norm of the challenge by this much only to decrease the
running time of the computation. In particular, the security of the scheme will decrease and one
will need to increase the ring dimension to compensate, which will in turn negate any savings in
running time. For example, the extracted solution to the SIS instance in (3) is c̄s′ − s̄, and its size
heavily depends on the size of the coefficients in c̄. A much more desirable solution would be to
have the polynomial Xn + 1 split, but still be able to use the challenge set from (4).

1.2 Our Contribution

Our main result is a general theorem (Theorem 1.1) about the invertibility of polynomials with small
coefficients in polynomial rings Zp[X]/(Φm(X)), where Φm(X) is the mth cyclotomic polynomial.
The theorem states that if a non-zero polynomial has small coefficients (where “small” is related
to the prime p and the number of irreducible factors of Φm(X) modulo p), then it’s invertible in
the ring Zp[X]/(Φm(X)). For the particular case of Φm(X) = Xn+ 1, we show that the polynomial
Xn + 1 can split into several (in practice up to 8 or 16) irreducible factors and we can still use
the optimal challenge sets, like ones of the form from (4). This generalizes and extends a result in
[LN17] which showed that one can use the optimal set when Xn + 1 splits into two factors. We also
show, in Section 3.3, some methods for creating challenge sets that are slightly sub-optimal, but
allow for the polynomial to split further.

The statement of Theorem 1.1 uses notation from Definition 2.1, while the particular case of
Xn + 1 in Corollary 1.2 is self-contained. We therefore recommend the reader to first skim the
Corollary statement. The proofs of the Theorem and the Corollary are given at the end of Section
3.2. For completeness, we also state sufficient conditions for invertibility based on the `2-norm of
the polynomial. This is an intermediate result that we need on the way to obtaining our main
result about the invertibility of polynomials with small coefficients (i.e. based on the `∞ norm of
the polynomial), but it could be of independent interest.

Theorem 1.1. Let m =
∏
peii for ei ≥ 1 and z =

∏
pfii for any 1 ≤ fi ≤ ei. If p is a prime such

that p ≡ 1 (mod z) and ordm(p) = m/z, then the polynomial Φm(X) factors as

Φm(X) ≡
φ(z)∏
j=1

(Xm/z − rj) (mod p)

for distinct rj ∈ Z∗p where Xm/z − rj are irreducible in the ring Zp[X]. Furthermore, any y in
Zp[X]/(Φm(X)) that satisfies either

0 < ‖y‖∞ <
1

s1(z)
· p1/φ(z)

or

0 < ‖y‖ <
√
φ(m)

s1(m)
· p1/φ(z)

has an inverse in Zp[X]/(Φm(X)).

The above theorem gives sufficient conditions for p so that all polynomials with small coefficients
in Zp[X]/(Φm(X)) are invertible, but it does not state anything about whether there exist such p.
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In Theorem 2.5, we show that if we additionally put the condition on m and z that 8|m ⇒ 4|z,
then there are indeed infinitely many primes p that satisfy these conditions. In practical lattice
constructions involving zero-knowledge proofs, we would normally use a modulus of size at least
220, and we experimentally confirmed (for various cyclotomic polynomials) that one can indeed find
many such primes that are of that size.

Specializing the above to the ring Zp[X]/(Xn + 1), we obtain the following corollary:

Corollary 1.2. Let n ≥ k > 1 be powers of 2 and p = 2k + 1 (mod 4k) be a prime. Then the
polynomial Xn + 1 factors as

Xn + 1 ≡
k∏
j=1

(Xn/k − rj) (mod p)

for distinct rj ∈ Z∗p where Xn/k − rj are irreducible in the ring Zp[X]. Furthermore, any y in
Zp[X]/(Xn + 1) that satisfies either

0 < ‖y‖∞ <
1√
k
· p1/k

or

0 < ‖y‖ < p1/k

has an inverse in Zp[X]/(Xn + 1).

As an application of this result, suppose that we choose k = 8 and a prime p congruent to 17
(mod 32) such that p > 220. Furthermore, suppose that we perform our zero-knowledge proofs over
the ring Zp[X]/(Xn + 1) (where n is a power of 2 greater than 8), and prove the knowledge of s̄, c̄
such that f(s̄) = c̄t where ‖c̄‖∞ ≤ 2 (i.e. the challenges c are taken such that ‖c‖∞ = 1). Then the
above theorem states that Xn + 1 factors into 8 polynomials and c̄ will be invertible in the ring
since 1√

8
· p1/8 > 2.

Having p > 220 is quite normal for the regime of zero-knowledge proofs, and therefore having
the polynomial Xn + 1 split into 8 factors should be possible in virtually every application. If we
would like it to split further into 16 or 32 factors, then we would need p > 248 or, respectively,
p > 2112. In Section 3.3 we describe how our techniques used to derive Theorem 1.1 can also be
used in a somewhat “ad-hoc” fashion to create different challenge sets C that are nearly-optimal
(in terms of the maximal norm), but allow Xn + 1 to split with somewhat smaller moduli than
implied by Theorem 1.1.

In Section 4, we describe how one would combine the partially-splitting FFT algorithm with a
Karatsuba multiplication algorithm to efficiently multiply in a partially-splitting ring. For primes
of size between 220 and 229, one obtains a speed-up of about a factor of 2 by working over rings
where Xn + 1 splits into 8 versus just 2 factors.

In addition to the speed improvement, there are applications whose usability can be improved by
the fact that we work over rings Zp[X]/(Xn+1) where Xn+1 splits into more factors. For example,
[BKLP15] constructed a commitment scheme and zero-knowledge proofs of knowledge that allows
to prove the fact that c = ab when Commit(a), Commit(b), Commit(c) are public (the same
holds for addition). An application of this result is the verifiability of circuits. For this application,
one only needs commitments of 0’s and 1’s, thus if we work over a ring where Xn + 1 splits into
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k irreducible factors, one can embed k bits into each Chinese Remainder coefficient of a and b,
and therefore proving that c = ab implies that all k multiplications of the bits were performed
correctly. Thus the larger k is, the more multiplications one can prove in parallel. Unfortunately
k cannot be set too large without ruining the necessary property that the difference of any two
distinct challenges is invertible or increasing the `2-norm of the challenges as described in Section
1.1. Our result therefore allows to prove products of 8 (or 16) commitments in parallel without
having to increase the parameters of the scheme to accommodate the larger challenges.
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2 Cyclotomics and Lattices

2.1 Cyclotomic Polynomials

Definition 2.1. For any integer m > 1, we write

φ(m) = m ·
∏

p is prime ∧ p |m

p− 1

p

δ(m) =
∏

p is prime ∧ p |m

p

τ(m) =

{
m, if m is odd

m/2, if m is even

s1(m) = largest singular value of the matrix in (7)

ordm(n) = min{k : k > 0 and nk mod m = 1}

The function φ(m) is the Euler phi function, δ(m) is sometimes referred to as the radical of m, and
τ(m) is a function that sometimes comes into play when working with the geometry of cyclotomic
rings. The function ordm(n) is the order of an element n in the multiplicative group Z∗m. In the
special case of m = 2k, we have φ(m) = τ(m) = 2k−1 and δ(m) = 2.

The mth cycltomic polynomial, written as Φm(X), is formally defined to be

Φm(X) =

φ(m)∏
i=1

(X − ωi),

where ωi are the mth complex primitive roots of unity (of which there are φ(m) many). Of particular

interest in practical lattice cryptography is the cyclotomic polynomial Φ2k(X) = X2k−1
+ 1.

If p is some prime and r1, . . . , rφ(m) are elements in Z∗p such that ordp(rj) = φ(m), then one can
write

Φm(X) ≡
φ(m)∏
j=1

(X − rj) (mod p).
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For any m > 1, it is known that we can express the cyclotomic polynomial Φm(X) as

Φm(X) = Φδ(m)

(
Xm/δ(m)

)
, (5)

and the below Lemma is a generalization of this statement.

Lemma 2.2. Let m =
∏
peii for ei ≥ 1 and z =

∏
pfii for any 1 ≤ fi ≤ ei. Then

Φm(X) = Φz(X
m/z).

Proof. By (5), and the fact that δ(m) = δ(z), we can rewrite Φm(X) as

Φm(X) = Φδ(m)(X
m/δ(m)) = Φδ(m)(X

z/δ(m))(Xm/z)

= Φδ(z)(X
z/δ(z))(Xm/z) = Φz(X

m/z). (6)

ut

2.2 The Splitting of Cyclotomic Polynomials

In Theorem 2.3, we give the conditions on the prime p such that the polynomial Φm(X) splits into
irreducible factors Xm/k − r modulo p. In Theorem 2.5, we then show that when m and k satisfy
an additional relation, there are infinitely many p that satisfy the necessary conditions of Theorem
2.3.

Theorem 2.3. Let m =
∏
peii for ei ≥ 1 and z =

∏
pfii for any 1 ≤ fi ≤ ei. If p is a prime such

that p ≡ 1 (mod z) and ordm(p) = m/z, then the polynomial Φm(X) factors as

Φm(X) ≡
φ(z)∏
j=1

(Xm/z − rj) (mod p)

for distinct rj ∈ Z∗p where Xm/z − rj are irreducible in Zp[X].

Proof. Since p is a prime and p ≡ 1 (mod z), there exists an element r such that ordp(r) = z.
Furthermore, for all the φ(z) integers 1 < i < z such that gcd(i, z) = 1, we also have ordp(r

i) = z.
We therefore have, by definition of Φ, that

Φz(X) ≡
φ(z)∏
j=1

(X − rj) (mod p).

Applying Lemma 2.2, we obtain that

Φm(X) ≡
φ(z)∏
j=1

(Xm/z − rj) (mod p).

We now need to prove that the terms Xm/z − rj are irreducible modulo p. Suppose they are not
and Xm/z− rj has an irreducible divisor f of degree d < m

z . Then f defines an extension field of Zp
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of degree d, i.e. a finite field with pd elements that all satisfy Xpd = X. Hence f divides Xpd −X.
Now, from ordm(p) = m

z > d it follows that we can write pd = am+ b where b 6= 1. Thus

Xpd −X = Xam+b −X = X(Xam+(b−1) − 1).

If we now consider an extension field of Zp in which f splits, the roots of f are also roots of
Xam+(b−1)− 1 and therefore have order dividing am+ (b− 1). This is a contradiction. As a divisor
of Xm/z − rj (and therefore of Φm), f has only roots of order m. ut

In the proof of Theorem 2.5 we need a small result about the multiplicative order of odd integers
modulo powers of 2. Since we also need this later in the proof of Corollary 1.2, we state this result
in the next lemma.

Lemma 2.4. Let a ≡ 1 + 2f (mod 2f+1) for f ≥ 2. Then the order of a in the group of units
modulo 2e for e ≥ f is equal to 2e−f , i.e. ord2e(a) = 2e−f .

Proof. We can write a = 1 + 2fk1 with some odd k1 ∈ Z. Then notice a2 = 1 + 2f+1k1 + 22fk21 =

1 + 2f+1(k1 + 2f−1k21) = 1 + 2f+1k2 with odd k2 = k1 + 2f−1k21. It follows iteratively that a2
e−f

=

1 + 2ek2e−f ≡ 1 (mod 2e), which implies the order of a modulo 2e divides 2e−f , but a2
e−f−1

=
1+2e−1k2e−f−1 6≡ 1 (mod 2e) since k2e−f−1 is odd. So, the multiplicative order of a modulo 2e must
be 2e−f . ut

Theorem 2.5. Let m =
∏
peii for ei ≥ 1 and z =

∏
pfii for any 1 ≤ fi ≤ ei. Furthermore, assume

that if m is divisible by 8, then z is divisible by 4. Then there are infinitely many primes p such
that p ≡ 1 (mod z) and ordm(p) = m/z.

Proof. First we show that an integer not necessarily prime exists that fulfills the two conditions.
By the Chinese remainder theorem it suffices to find integers ai such that ai mod pfii = 1 and

ordpeii
(ai) = pei−fii . First consider the odd primes pi 6= 2. It is easy to show that if g is a generator

modulo pi then either g or g + pi, say g′, is a generator modulo every power of pi (c.f. [Coh00,

Lemma 1.4.5]). Define ai = (g′)(pi−1)p
fi−1
i . Then, since g′ has order (pi − 1)pfi−1i modulo pfii and

order (pi − 1)pei−1i mod peii , it follows that ai mod pfii = 1 and

ordpeii
(ai) =

(pi − 1)pei−1i

(pi − 1)pfi−1i

= pei−fii

as we wanted. Next, consider p = 2 and the case where m is divisible by 8; that is, e1 ≥ 3. This
implies f1 ≥ 2. From Lemma 2.4 we see that 5 is a generator of a cyclic subgroup of Z×2e of index

2 for every e ≥ 3, i.e. ord2e(5) = 2e−2. Therefore, 52
f1−2

mod 2f1 = 1 and

ord2e1 (52
f1−2

) =
2e1−2

2f1−2
= 2e1−f1 .

Hence a1 = 52
f1−2

is a valid choice in this case. If e1 = 2, note that 3 is a generator modulo 4 and
a1 = 32

f1−1
is readily seen to work. When e1 = f1 = 1, take a1 = 1. So, there exists an integer a

that fulfills our two conditions and in fact every integer congruent to a mod m does. By Dirichlet’s
theorem on arithmetic progressions, there are infinitely many primes among the a+ lm (l ∈ Z). ut

As an experimental example consider m = 22337 = 756 and z = 2 · 3 · 7 = 42. Then Φm splits
into 12 polynomials modulo primes of the form in Theorem 2.5. There are 2058 primes of this form
between 220 and 221.
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2.3 The Vandermonde Matrix

To each cyclotomic polynomial Φm(X) with roots of unity ω1, . . . , ωφ(m), we associate the Vander-
monde matrix

Vm =


1 ω1 ω2

1 . . . ω
φ(m)−1
1

1 ω2 ω2
2 . . . ω

φ(m)−1
2

. . .

1 ωφ(m) ω2
φ(m) . . . ω

φ(m)−1
φ(m)

 ∈ Cφ(m)×φ(m). (7)

The important property for us in this paper is the largest singular value of Vm, which we write
as

s1(m) = max
u∈Cφ(m)

‖Vmu‖
‖u‖

. (8)

It was shown in [LPR13, Lemma 4.3] that when m = pk for any prime p and positive integer k,
then

s1(m) =
√
τ(m). (9)

m s1(m)
√
τ(m)/s1(m)

105 = 3 · 5 · 7 9.952 1.0296172

165 = 3 · 5 · 11 12.785 1.0046612

195 = 3 · 5 · 13 13.936 1.0019718

210 = 2 · 3 · 5 · 7 9.952 1.0296172

315 = 32 · 5 · 7 17.237 1.0296172

330 = 2 · 3 · 5 · 11 12.785 1.0046612

390 = 2 · 3 · 5 · 13 13.936 1.0019718

420 = 22 · 3 · 5 · 7 14.074 1.0296172

495 = 32 · 5 · 11 22.145 1.0046612

525 = 3 · 52 · 7 22.253 1.0296172

585 = 32 · 5 · 13 24.139 1.0019718

Table 1. Values of m less than 600 for which s1(m) 6=
√
τ(m).

We do not know of a theorem analogous to (9) that holds for all m, and so we numerically com-
puted s1(m) for all m < 3000 and observed that s1(m) ≤

√
τ(m) was always satisfied. Furthermore,

for most m, we still had the equality s1(m) =
√
τ(m). The only exceptions where s1(m) <

√
τ(m)

were integers that have at least 3 distinct odd prime factors. As an example, Table 1 contains a
list of all such values up to 600 for which s1(m) <

√
τ(m). We point out that while it appears that

having three prime factors is a necessary condition for m to appear in the table, it is not sufficient.
For example, 255 = 3 · 5 · 17, but still s1(255) =

√
τ(255) =

√
255.

For all practical sizes of m used in cryptography, the value s1(m) is fairly easy to compute
numerically using basic linear algebra software (e.g. MATLAB, Scilab, etc.), and we will state all
our results in terms of s1(m). Nevertheless, being able to relate s1(m) to τ(m) certainly simplifies
the calculation. Based on our numerical observations, we formulate the following conjecture:

Conjecture 2.6. For all positive integers m, s1(m) ≤
√
τ(m).
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2.4 Cyclotomic Rings and Ideal Lattices

Throughout the paper, we will write Rm to be the cyclotomic ring Z[X]/(Φm(X)) and Rm,p to be
the ring Zp[X]/(Φm(X)), with the usual polynomial addition and multiplication operations. We
will denote by normal letters elements in Z and by bold letters elements in Rm. For an odd p,

an element w ∈ Rm,p can always be written as
φ(m)−1∑
i=0

wiX
i where |wi| ≤ (p − 1)/2. Using this

representation, for w ∈ Rm,p (and in Rm), we will define the lengths of elements as

‖w‖∞ = max
i
|wi| and ‖w‖ =

√∑
i

|wi|2.

Just as for vectors over Z, the norms satisfy the inequality ‖w‖ ≤
√
φ(m) · ‖w‖∞.

Another useful definition of length is with respect to the embedding norm of an element in Rm.
If ω1, . . . , ωφ(m) are the complex roots of Φm(X), then the embedding norm of w ∈ Rm is

‖w‖e =

√∑
i

w(ωi)2.

If we view of w =


w0

w1

. . .
wφ(m)−1

 as a vector over Zφ(m), then the above definition is equivalent to

‖w‖e =

√∑
i

w(ωi)2 = ‖Vmw‖

due to the fact that the ith position of Vmw is w(ωi). This gives a useful relationship between the
‖ · ‖e and ‖ · ‖ norms as

‖w‖e ≤ s1(m) · ‖w‖. (10)

An integer lattice of dimension n is an additive sub-group of Zn. For the purposes of this paper,
all lattices will be full-rank. The determinant of a full-rank integer lattice Λ of dimension n is the
size of the quotient group |Zn/Λ|. We write λ1(Λ) to denote the Euclidean length of the shortest
non-zero vector in Λ.

If I is an ideal in the polynomial ring Rm, then it is also an additive sub-group of Zφ(m), and
therefore a φ(m)-dimensional lattice (it can be shown that such lattices are always full-rank). Such
lattices are therefore sometimes referred to as ideal lattices. For any ideal lattice Λ of the ring Rm,
there exists a lower bound on the embedding norm of its vectors (c.f. [PR07, Lemma 6.2])

∀w ∈ Λ, ‖w‖e ≥
√
φ(m) · det(Λ)1/φ(m).

Combining the above with (10) yields the following lemma:

Lemma 2.7. If Λ is an ideal lattice in Rm, then

λ1(Λ) ≥
√
φ(m)

s1(m)
· det(Λ)1/φ(m).

10



3 Invertible Elements in Cyclotomic Rings

The main goal of this section is to prove Theorem 1.1. To this end, we first prove Lemma 3.1, which
proves the Theorem for the `2 norm. Unfortunately directly applying this Lemma to prove the `∞
part of the Theorem 1.1 by using the relationship between the `2 and `∞ norms is sub-optimal. In
Section 3.2 we instead show that by writing elements of partially-splitting rings Rm,p as sums of
polynomials over smaller, fully-splitting rings, one can obtain a tighter bound. We prove in Lemma
3.2 that if any of the parts of y ∈ Rm,p is invertible in the smaller fully-splitting ring, then the
polynomial y is invertible in Rm,p. The full proof of Theorem 1.1 will follow from this Lemma, the
special case of Lemma 3.1 applicable to fully-splitting rings, and Theorem 2.3.

3.1 Invertibility and the `2 Norm

Our main result only needs a special case of the below Lemma corresponding to when the prime p
is of a certain form and Φm(X) fully splits, but we prove a more general statement since it doesn’t
bring with it any additional complications.

Lemma 3.1. Let m and d be any integers such that

Φm(X) ≡
d∏
i=1

fi(X) (mod p)

for distinct polynomials fi(X) of degree φ(m)/d that are irreducible in Zp[X], and let y be any

element in the ring Rm,p. If 0 < ‖y‖ <
√
φ(m)

s1(m) · p
1/d, then y is invertible in Rm,p.

Proof. Suppose that y is not invertible in Rm,p. By the Chinese Remainder Theorem, this implies
that for (at least) one i, y mod fi(X) = 0. For an i for which y mod fi(X) = 0 (if there is more
than one such i, pick one of them arbitrarily) define the set

Λ = {z ∈ Rm : z mod fi(X) = 0 mod p} .

Notice that Λ is an additive group. Also, because fi(X) is a factor of Φm(X) modulo p, for any
polynomial z ∈ Λ, the polynomial z ·X ∈ Rm is also in Λ. This implies that Λ is an ideal of Rm,
and so an ideal lattice in the ring Rm. By looking at the Chinese Remainder representation modulo
p of all the elements in Λ (they have 0 in the coefficient corresponding to modulo fi(X), and are
arbitrary in all other coefficients), one can see that

∣∣Zφ(m)/Λ
∣∣ = pφ(m)/d, which is the determinant

of Λ. By Lemma 2.7, we then know that λ1(Λ) ≥
√
φ(m)

s1(m) · p
1/d.

Since y mod (fi(X), p) = 0 and 0 < ‖y‖, we know that y is a non-zero vector in Λ. But we also

have by our hypothesis that ‖y‖ <
√
φ(m)

s1(m) · p
1/d ≤ λ1(Λ), which is impossible.

ut

One can see that a direct application of Lemma 3.1 gives a weaker bound than what we are
claiming in Theorem 1.1 – we can only conclude that all vectors y such that

‖y‖∞ ≤
1

s1(m)
· p1/d (11)
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are invertible. Since z � m, having s1(m) vs. s1(z) in the denominator makes a very noticeable
difference in the tightness of the result (for example, if m, z are powers of 2, then s1(m) =

√
m/2

and s1(z) =
√
z/2).

Notice that Lemma 3.1 does not put any restrictions on what the irreducible polynomials fi(X)
look like and so the lemma’s bound on the `2 norm, and the one in (11) on the `∞ one, holds for
general cyclotomics. To obtain a more “permissive” bound on the `∞ norm of invertible polynomials,
we need to use the special properties of m and d that are specified in Theorem 1.1 which force the
polynomials fi(X) to be of the form Xφ(m)/d − ri. We use this form of the fi(X) in Section 3.2, to
break up y into a sum of elements in smaller rings and prove that only some of these summands
need to be invertible in the smaller ring in order for the entire element y to be invertible in Rm,p.

We point out that Lemma 3.1 was already implicit in [SS11, Lemma 8] for Φm(X) = Xn+1. To
obtain a bound in the `∞ norm, the authors of that work then applied the norm inequality between
the `2 and `∞ norms to obtain the bound that we described above. Using the more refined approach
in the current paper, however, that bound can be tightened and would immediately produce an
improvement in the main result of [SS11] which derives the statistical closeness of a particular
distribution to uniform. Such applications are therefore another area in which our main result can
prove useful.

3.2 Partially-Splitting Rings

In this section, we will be working with rings Rm,p where p is chosen such that the polynomial
Φm(X) factors into k irreducible polynomials of the form Xφ(m)/k − ri. Theorem 2.3 states the
sufficient conditions on m, k, p in order to obtain such a factorization. Throughout this section, we
will use the following notation: suppose that

y =

φ(m)−1∑
j=0

yjX
j

is an element of the ring Rm,p, where the value p is chosen as above. Then for all integers 0 ≤ i <
φ(m)/k − 1, we define the polynomials y′i as

y′i =

k−1∑
j=0

yjφ(m)/k+iX
j . (12)

For example, if φ(m) = 8 and k = 4, then for y =
7∑
i=0

yiX
i, we have y′0 = y0+y2X+y4X

2+y6X
3

and y′1 = y1 + y3X + y5X
2 + y7X

3.
The intuition behind the definition in (12) is that one can write y in terms of the y′i as

y =

φ(m)/k−1∑
i=0

y′i(X
φ(m)/k) ·Xi.

Then to calculate y mod (Xφ(m)/k − rj) where (Xφ(m)/k − rj) is one of the irreducible factors of
Φm(X) modulo p, we have

y mod (Xφ(m)/k − rj) =

φ(m)/k−1∑
i=0

y′i(rj) ·Xi (13)
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simply because we plug in rj for every Xφ(m)/k.

Lemma 3.2. Let m =
∏
peii for ei ≥ 1 and z =

∏
pfii for any 1 ≤ fi ≤ ei, and suppose that we

can write

Φm(X) ≡
φ(z)∏
j=1

(Xm/z − rj) (mod p) (14)

for distinct rj ∈ Z∗p where (Xm/z − rj) are irreducible in Zp[X]. Let y be a polynomial in Rm,p
and define the associated y′i as in (12), where k = φ(z). If some y′i is invertible in Rz,p, then y is
invertible in Rm,p.

Proof. By the Chinese Remainder Theorem, the polynomial y is invertible in Rm,p if and only if
y mod (Xm/z − rj) 6= 0 for all r1, . . . , rk. When we use k = φ(z), (13) can be rewritten as

y mod (Xm/z − rj) =

m/z−1∑
i=0

y′i(rj) ·Xi.

To show that y is invertible, it is therefore sufficient to show that

∃i s.t ∀j, y′i(rj) mod p 6= 0.

Let i be such that y′i is invertible in the ring Rz,p. From (14) and Lemma 2.2 we have that

Φz(X) ≡
φ(z)∏
j=1

(X − rj) (mod p),

and so the ring Rz,p is fully-splitting. Since y′i is invertible in Rz,p, the Chinese Remainder Theorem
implies that for all 1 ≤ j ≤ φ(z), y′i(rj) mod p 6= 0, and therefore y is invertible in Rm,p.

ut

Theorem 1.1 now follows from the combination of Theorem 2.3, and Lemmas 3.1 and 3.2.

Proof (Theorem 1.1). For the conditions on m, z, and p, it follows from Theorem 2.3 that the

polynomial Φm(X) can be factored into irreducible factors modulo p as
φ(z)∏
j=1

(Xm/z − rj). Lemma

2.2 then states that Φz(X) ≡
φ(z)∏
j=1

(X − rj) (mod p).

For any y ∈ Rm,p, let the y′i be defined as in (12) where k = φ(z). If 0 < ‖y‖∞ < 1
s1(z)

· p1/φ(z),

then because each y′i consists of φ(z) coefficients, we have that for all i, ‖y′i‖ <
√
φ(z)

s1(z)
·p1/φ(z). Since

y 6= 0, it must be that for some i, y′i 6= 0.

Lemma 3.1 therefore implies that the non-zero y′i is invertible in Rz,p. In turn, Lemma 3.2
implies that y is invertible in Rm,p. ut
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Proof. (Of Corollary 1.2) If n ≥ k > 1 are powers of 2, then we set m = 2n and z = 2k in Theorem
1.1. Then Φm(X) = Xn + 1 and the condition that p ≡ 2k + 1 (mod 4k), i.e. p ≡ z + 1 (mod 2z),
implies p ≡ 1 (mod z). Now we need to show that ordm(p) = m/z, but this follows immediately
from Lemma 2.4 by setting m = 2e and z = 2f and noting that f ≥ 2. Finally, from (9) we have
s1(z) =

√
τ(z) =

√
z
2 =
√
k and s1(m) =

√
n. Therefore the upper bounds for the ‖ · ‖∞ and ‖ · ‖

inequalities read 1√
k
p1/k = 1

s1(z)
p1/k and p1/k =

√
n

s1(m)p
1/k, respectively, as in Theorem 1.1. ut

3.3 Example of “Ad-hoc” Applications of Lemma 3.2

Using Lemma 3.2, as we did in the proof of Theorem 1.1 above, gives a clean statement as to a
sufficient condition under which polynomials are invertible in a partially-splitting ring. One thing
to note is that putting a bound on the `∞ norm does not take into account the other properties that
our challenge space may have. For example, our challenge space in (4) is also sparse, in addition to
having the `∞ norm bounded by 1. Yet we do not know how to use this sparseness to show that
one can let Φm(X) split further while still maintaining the invertibility of the set C − C.

In some cases, however, there are ways to construct challenge sets that are more in line with
Lemma 3.2 and will allow further splitting. We do not see a simple way in which to systematize
these ideas, and so one would have to work out the details on a case-by-case basis. Below, we give
such an example for the case in which we are working over the ring Zp[X]/(X256 + 1) and would
like to have the polynomial X256+1 split into 16 irreducible factors. If we would like to have Xn+1
split into 16 factors modulo p and the set C−C to have elements whose infinity norm is bounded by
2, then applying Theorem 1.1 directly implies that we need to have 2 < 1√

16
· p1/16, which implies

p > 248.
We will now show how one can lower the requirement on p in order to achieve a split into 16

factors by altering the challenge set C in (4).
For a polynomial y ∈ Zp[X]/(X256 + 1), define the y′i as in (12). Define D as

D = {y ∈ Zp[X]/(X256 + 1) : ‖yi‖∞ = 1 and ∀ 1 ≤ i ≤ 16 , ‖y′i‖ = 2} (15)

In other words, D is the set of polynomials y, such that every y′i has exactly 4 non-zero elements that

are ±1. The size of D is
((

16
4

)
· 24
)16 ≈ 2237, which should be enough for practical quantum security.

The `2 norm of every element in D is exactly
√

64 = 8. For a fair comparison, we should redefine
the set C so that it also has size 2237. The only change that one must make to the definition in (4) is
to lower the `1 norm to 53 from 60. Thus all elements in C have `2 norm

√
53. The elements in set

D therefore have norm that is larger by a factor of about 1.1. It then depends on the application as
to whether having Xn + 1 split into 16 rather than 8 factors is worth this modest increase. We will
now prove that for primes p > 230.5 of a certain form, X256 + 1 will split into 16 irreducible factors
modulo p and all the non-zero elements in D − D will be invertible. Therefore if our application
calls for a modulus that is larger than 230.5 but smaller than 248, we can use the challenge set D
and the below lemma.

Lemma 3.3. Suppose that p > 216 log2
√
14 ≈ 230.5 is a prime congruent to 33 (mod 64). Then the

polynomial X256 + 1 splits into 16 irreducible polynomials of the form X16 + rj modulo p, and any
non-zero polynomial y ∈ D −D (as defined in (15)) is invertible in the ring Zp[X]/(X256 + 1).

Proof. The fact that X256 + 1 splits into 16 irreducible factors follows directly from Theorem 2.3.
Notice that for any y ∈ D − D, the maximum `2 norm of y′i is bounded by 4. Furthermore, the
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degree of each y′i is 256/16 = 16. Thus an immediate consequence of Lemmas 3.2 and 3.1 is that
if p > 232, then any non-zero element in D −D is invertible. To slightly improve the lower bound,
we can observe that the y′i of norm 4 are polynomials in Zp[X]/(X16 + 1) with exactly four 2’s in
them. But such elements can be written as a product of 2 and a polynomial with 4 ±1’s in it. So if
both of those are invertible, so is the product. The maximum norm of these polynomials is 2 and so
they are not the elements that set the lower bound. The next largest element in D−D is one that
has three 2’s and two ±1’s. The norm of such elements is

√
14. Thus for all p > 216·log2(

√
14) ≈ 230.5,

the y′i will be invertible in Zp[X]/(X16 + 1), and thus every non-zero element in D − D will be
invertible in Zp[X]/(X256 + 1). ut

4 Polynomial Multiplication Implementation

We now describe in more detail the computational advantage of having the modulus Φm split into
as many factors as possible and present our experimental results. We focus on the case where m is
a power of two and write n = φ(m) = m/2. In this case one can use the standard radix-2 FFT-
trick to speed up the multiplication. Note that for other m, one can also exploit the splitting in a
divide-and-conquer fashion similar to the radix-2 FFT.

Suppose that Zp contains a fourth root of unity r so that we can write

Xn + 1 = (Xn/2 + r)(Xn/2 − r).

Then, in algebraic language, the FFT (or NTT) is based on the Chinese remainder theorem, which
says that Rm,p = Zp[X]/(Xn + 1) is isomorphic to the direct product of Zp[X]/(Xn/2 + r) and
Zp[X]/(Xn/2 − r). To multiply two polynomials in Rm,p one can first reduce them modulo the two
factors of the modulus, then multiply the resulting polynomials in the smaller rings, and finally
invert the Chinese remainder map in order to obtain the product of the original polynomials. This is
called the (radix-2) FFT-trick (see [Ber01] for a very good survey). Note that reducing a polynomial
of degree less than n modulo the two sparse polynomials Xn/2 ± r is very easy and takes only n

2
multiplications, n

2 additions and n
2 subtractions. If Zp contains higher roots so that Xn + 1 splits

further, then one can apply the FFT-trick recursively to the smaller rings. What is usually referred
to as the number theoretic transform (NTT) is the case where Zp contains a 2n-th root of unity
so that Xn + 1 splits completely into linear factors. This reduces multiplication in Rm,p to just
multiplication in Zp.

As we are interested in the case where the modulus does not split completely, we need to be
able to multiply in rings of the form Zp[X]/(Xn/k− rj) with k < n. As is common in cryptographic
applications (see, for example [BCLvV17]), we will use the Karatsuba multiplication algorithm to
perform this operation. For both the FFT and the Karatsuba multiplication, we have written a
relatively straight-forward C implementation.

In Table 2 we give the measurements of our experiments. We have performed multiplications
in R512,p = Zp[X]/(X256 + 1) for four completely splitting primes between 220 and 230. For each
prime we have used between 0 and 8 levels of FFT before switching to Karatsuba multiplication.
0 levels of FFT means that no FFT stage was used at all and the input polynomials were directly
multiplied via Karatsuba multiplication. In the other extreme of 8 levels of FFT, no Karatsuba
multiplication was used and the corresponding measurements reflect the speed of our full number
theoretic transform down to linear factors with pointwise multiplication as the base case. As one
more example, when performing 3 levels of FFT, we were multiplying 8 polynomials each of degree
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Primes
Number of FFT levels 220 − 214 + 1 223 − 213 + 1 225 − 212 + 1 227 − 211 + 1

0 123677 123717 134506 144913
1 83820 83778 91775 97641
2 55378 55700 63148 65778
3 38111 38061 43116 43282
4 27374 27626 31782 30836
5 21968 21955 26406 24937
6 17076 17007 21518 19811
7 15149 15144 20483 18026
8 16875 16893 22329 20299

Table 2. CPU cycles of our FFT-accelerated multiplication algorithm for Zp[X]/(X256 + 1) using Karatsuba multi-
plication for the base case. Both the FFT and Karatsuba are plain C implementations.

Primes
Number of FFT levels 220 − 214 + 1 223 − 213 + 1 225 − 212 + 1 227 − 211 + 1

0 28245 31574 33642 35397
1 27168 29343 31419 32613
2 20989 23158 24915 25677
3 20521 22038 23582 23757
4 22543 23695 25016 24628
5 24473 24715 25337 30366
6 13578 13572 14307 13543
7 13981 14020 14522 13986
8 3873 3844 3847 3857

Table 3. CPU cycles of our FFT-accelerated multiplication algorithm for Zp[X]/(X256 + 1) using FLINT for base
case multiplication. The FFT implementation is a highly optimized AVX2-based implementation.

less then 32 via Karatsuba multiplication. The listed numbers are numbers of CPU cycles needed
for the whole multiplication. They are the medians of 10000 multiplications each. The tests where
performed on a laptop equipped with an Intel Skylake i7 CPU running at 3.4 GHz. The cycle
counter in this CPU ticks at a constant rate of 2.6GHz. As one can see, being able to use a prime p
so that Xn + 1 splits into more than two factors is clearly advantageous. For instance, by allowing
Xn + 1 to split into 8 factors compared to just 2, we achieve a speedup of about a factor of two.

We have also experimented with highly-optimized polynomial multiplication algorithms pro-
vided by a popular computer algebra library FLINT [HJP13] and PARI [The16]. FLINT employs
various forms of Kronecker substitution for the task of polynomial multiplication. For these exper-
iments we used a fast vectorized FFT implementation written in assembler language with AVX2
instructions. For completeness, Table 3 gives the measurements for the tests with FLINT. Unfortu-
nately, each call of the FLINT multiplication function produces additional overhead costs such as
deciding on one of several algorithms and computing complex roots for the FFT used in Kronecker
substitution. These additional costs are highly significant for our small polynomials. So for every
additional stage of our FFT, one needs to multiply twice as many polynomials with FLINT, and
hence FLINT spends twice as much time on these auxiliary tasks that one would not have in an
actual cryptographic implementation specialized to a particular prime and modulus. This is espe-
cially inefficient when the number of FFT levels is large. There nearly all of the time is spend on
these tasks as one can see in Table 3 by comparing the cycle counts of 7 and 8 stages of FFT. Note
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that for 7 stages of FFT, FLINT is used for the trivial task of multiplying polynomials of degree
one.

While we were not able to do a meaningful analysis for the combination of our highly-optimized
FFT with FLINT, one can see that at level 0 (where the amount of overhead it does is the lowest),
FLINT outperforms our un-optimized Karatsuba multiplication by a factor between 4 and 5, while
looking at Level 8 shows that our AVX-optimized FFT outperforms the non-optimized version
by approximately the same margin. It is then reasonable to assume that one can improve non-
FFT multiplication by approximately the same factor as we improved the FFT multiplication, and
therefore the improvement going from level 1 and 3 would still be approximately a factor 2 in a
routine where both Karatsuba and FFT multiplication were highly optimized.
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