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Abstract. The Keccak hash function is the winner of the SHA-3 com-
petition and became the SHA-3 standard of NIST in 2015. In this paper,
we focus on practical collision attacks against round-reduced Keccak
hash function, and two main results are achieved: the first practical col-
lision attacks against 5-round Keccak-224 and an instance of 6-round
Keccak collision challenge. Both improve the number of practically at-
tacked rounds by one. These results are obtained by carefully studying the
algebraic properties of the nonlinear layer in the underlying permutation
of Keccak and applying linearization to it. In particular, techniques for
partially linearizing the output bits of the nonlinear layer are proposed,
utilizing which attack complexities are reduced significantly from the
previous best results.
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tion, adaptive.

1 Introduction

The Keccak hash function [4] was a submission to the SHA-3 competition [19] in
2008. After four years of evaluation, it was selected as the winner of the competi-
tion in 2012. In 2015, it was formally standardized by the National Institute of
Standards and Technology of the U.S. (NIST) as Secure Hash Algorithm-3 [23].
The SHA-3 family contains four main instances of the Keccak hash function with
fixed digest lengths, denoted by Keccak-d with d ∈ {224, 256, 384, 512}, and
two eXtendable-Output Functions (XOFs) SHAKE128 and SHAKE256. To promote
the analysis of the Keccak hash function, the Keccak designers proposed
versions with lower security levels in the Keccak Crunchy Crypto Collision and
Pre-image Contest (the Keccak challenge for short) [2], for which the digest
lengths are 80 and 160 bits for preimage and collision resistance, respectively.
For clarity, these variants are denoted by Keccak[r, c, nr, d] with parameters
r, c, nr, d to be specified later.



Since the Keccak hash function was made public in 2008, it has attracted
intensive cryptanalysis from the community [1,9,10,11,12,13,14,15,16,18,21]. In
this paper, we mainly focus on the collision resistance of Keccak hash function,
in particular those collision attacks with practical complexities. In collision
attacks, the aim is to find two distinct messages which lead to the same hash
digest. Up to date, the best practical collision attacks against Keccak-224/256
is for 4 out of 24 rounds due to Dinur et al.’s work [10] in 2012. These 4-round
collisions were found by combining a 1-round connector and a 3-round differential
trail. The same authors gave practical collision attacks for 3-round Keccak-
384/512, and theoretical collision attacks for 5/4-round Keccak-256/384 in [11]
using internal differentials. Following the work of Dinur et al., Qiao et al. [21]
further introduced 2-round connectors by adding a fully linearized round to
the 1-round connectors, and gave practical collisions for 5-round SHAKE128 and
two 5-round instances of the Keccak collision challenge, as well as collision
attack against 5-round Keccak-224 with theoretical complexities. To the best
of our knowledge, there exists neither practical collision attacks against 5-round
Keccak-224/256/384/512, nor solution for any 6-round instances of the Keccak
collision challenge.

Our contributions. We develop techniques of non-full linearizaion for the
Keccak Sbox, upon which two major applications are found. Firstly, improved
2-round connectors are constructed and actual collisions are consequently found
for 5-round Keccak-224. Secondly, we extend the connectors to 3 rounds, and
apply it to Keccak[1440, 160, 6, 160] — a 6-round instance of the Keccak
collision challenge, which leads to the first 6-round real collision of Keccak.

These results are obtained by combining a differential trail and a connector
which links the initial state of Keccak and the input of the trail. Our work
benefits from two observations on linearization of the Keccak Sbox, which are
necessary for building connectors for more than one round. One is to linearize
part (not all) of the output bits of a non-active Sbox, at most 2 binary linear
equations over the input bits are needed. The other is that, for an active Sbox
whose entry in the differential distribution table (DDT) is 8, 4 out of 5 output
bits are already linear when the input is chosen from the solution set. Note that
to restrict the input to the solution set for such an Sbox, two linear equations
of input bits are required, as noted by Dinur et al. in [10]. Therefore, for both
non-active and active Sboxes, 2 or less equations can be used to linearize part of
the output bits. In this paper, we call it non-full linearization. When all output
bits of an Sbox need to be linearized, at least three equations of input bits are
required as shown in [21]. So, the non-full linearization saves degrees of freedom on
Sboxes where it is applicable. With this in mind, we apply techniques of non-full
linearization to the first round permutation of Keccak-224, and successfully
construct a 2-round connector with a much larger solution space, which brings
the collision attack complexity against 5-round Keccak-224 from 2101 down
to practise. Applying techniques of non-full linearization to the second round,
3-round connectors are constructed for Keccak for the first time. Furthermore,
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adaptive constructions for connectors are proposed to save degrees of freedom,
and applied to Keccak[1440,160,6,160]. In adaptive 3-round connectors, non-
full linearization of the second round actually does not consume any degree of
freedom, but rather it divides the solution space into subspaces of smaller sizes.
This guarantees that sufficiently many message pairs that bypass the first three
rounds can be generated such that a colliding pair following the latter 3-round
differential trail can be found eventually.

Results obtained in this paper are listed in Table 1, compared with the best
previous practical collision attacks and related theoretical attacks.

Table 1: Summary of our attacks and comparison with related works
Target nr Rounds Complexity Reference
Keccak-512 3 Practical [11]
Keccak-384 3 Practical [11]
Keccak-256 4 Practical [10]
SHAKE128 5 Practical [21]

Keccak-224
4 Practical [10]
5 2101 [21]
5 Practical Sect. 6

Keccak[1440, 160, 160]
5 Practical [21]
6 270.24 [21]
6 Practical Sect. 7

Organization. The rest of the paper is organized as follows. In Section 2, a
brief description of the Keccak family is given, followed by some notations
to be used in this paper. The framework of our collision attacks is sketched in
Section 3. We propose techniques of non-full linearization in Section 4. Section 5
presents GPU implementation of Keccak for searching differential trails and
collisions. Section 6 and Section 7 are applications to 5-round Keccak-224 and
Keccak[1440, 160, 6, 160], respectively. We conclude the paper in Section 8.

2 Description of Keccak

2.1 The sponge function

The sponge construction is a framework for constructing hash functions from
permutations, as depicted in Fig. 1. The construction consists of three components:
an underlying b-bit permutation f , a parameter r called rate and a padding rule.
A hash function following this construction takes in a message M as input and
outputs a digest of d bits. Given a messageM , it is first padded and split into r-bit
blocks. The b-bit state is initialized to be all zeros. The sponge construction then
proceeds in two phases. In the absorbing phase, each message block is XORed
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into the first r bits of the state, followed by application of the permutation f .
This process is repeated until all message blocks are processed. Then, the sponge
construction switches to the squeezing phase. In this phase, each iteration returns
the first r bits of the state as output and then applies the permutation f to the
current state. This repeats until all d bits digest are obtained.

Figure 1: Sponge Construction [3].

2.2 The Keccak hash function
The Keccak hash function follows the sponge construction. The underlying
permutation of Keccak is chosen from a set of seven Keccak-f permutations,
denoted by Keccak-f [b], where b ∈ {25, 50, 100, 200, 400, 800, 1600} is the width
of the permutation in bits. The default Keccak employs Keccak-f [1600]. The
1600-bit state can be viewed as a 3-dimensional 5× 5× 64 array of bits, denoted
as A[5][5][64]. Let 0 ≤ i, j < 5, and 0 ≤ k < 64, A[i][j][k] represents one bit of
the state at position (i, j, k). Defined by the designers of Keccak, A[∗][j][k] is
called a row, A[i][∗][k] is a column, and A[i][j][∗] is a lane.

The Keccak-f [1600] permutation has 24 rounds, each of which consists of
five mappings R = ι ◦ χ ◦ π ◦ ρ ◦ θ.

θ : A[i][j][k]← A[i][j][k] +
4∑

j′=0
A[i− 1][j′][k] +

4∑
j′=0

A[i+ 1][j′][k − 1]

ρ : A[i][j][k]← A[i][j][(k + T (i, j))%64],where T (i, j) is a predefined constant

π : A[i][j][k]← A[i′][j′][k],where
(
i
j

)
=
(

0 1
2 3

)(
i′

j′

)
.

χ : A[i][j][k]← A[i][j][k] + ((A[i+ 1][j][k] + 1) ·A[i+ 2][j][k]),
ι : A← A+RCir ,where RCir is the round constants for ir-th round.

Here, ‘+’ denotes XOR and ‘·’ denotes logic AND. As ι plays no essential role in
our attacks, we will ignore it in the rest of the paper unless otherwise stated.
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2.3 Instances of Keccak and SHA-3

There are four instances Keccak-d of the Keccak sponge function, where c is
chosen to be 2d and d ∈ {224, 256, 384, 512}. To promote cryptanalysis against
Keccak, the Keccak design team also proposed versions with lower security
levels in the Keccak challenge, where b ∈ {1600, 800, 400, 200}, (d = 80, c = 160)
for preimage challenge and (d = 160, c = 160) for collision challenge. In this
paper, we follow the designers’ notation Keccak[r, c, nr, d] for the instances
in the challenge, where r is the rate, c = b − r is the capacity, d is the digest
size, and nr is the number of rounds the underlying permutation Keccak-f is
reduced to.

The Keccak hash function uses the multi-rate padding rule which appends
to the original message M a single bit 1 followed by the minimum number of bits
0 and a single bit 1 such that the length of the resulted message is a multiple of
the block length r. Namely, the padded message M is M‖10∗1.

The SHA-3 standard adopts the four Keccak instances with digest lengths
224, 256, 384, and 512. The only difference is the padding rule. In SHA-3 standard,
the message is appended ‘01’ first. After that, the multi-rate padding is applied.
In this paper, we only fucus on collision attacks against 5-round Keccak-224
and Keccak[1440, 160, 6, 160].

2.4 Notations

In this paper, only one-block padded messages are considered for collision attacks,
i.e., we choose message M such that M = M ||10∗1 is one block. According to
the multi-rate padding rule, the minimal number of padded bits is 2 while the
minimal number of fixed padding bit p is 1. The first three mappings θ, π, ρ of
the round function are linear, and we denote their composition by L , π ◦ ρ ◦ θ.
The nonlinear layer χ applying to each row is called an Sbox, denoted by S(·).
The differential distribution table (DDT) is a 2-dimensional 32× 32 array, where
all differences are calculated with respect to bitwise XOR. δin and δout are used
to denote the input and output difference of an Sbox. Then DDT (δin, δout) is the
size of the solution set {x | S(x) + S(x + δin) = δout}. Let AS(α) denote the
number of active Sboxes in the state α.

3 The Collision Attack Framework

This section gives an overview of the framework of our collision attacks, and
describes our motivations after a brief review of previous works.

In our attacks, as well as two previous related works [10, 21], an nr1-round
connector and a high probability nr2 -round differential trail are combined to find
collisions for (nr1 +nr2)-round Keccak. Here, an nr1-round connector is defined
as a certain procedure which produces message pairs (M1,M2) satisfying three
requirements.

(1) The last (c+ p)-bit difference of the initial state is zeros;

5



(2) The last (c+ p)-bit value of the initial state is fixed;
(3) The output difference after nr1 rounds should be fixed and equal to the input

difference of the differential trail.

Given an nr2-round differential, there are two stages of our (nr1 + nr2)-round
attack, as illustrated in Fig. 2 below:

– Connecting stage. Construct an nr1-round connector and get a subspace of
messages bypassing the first nr1 rounds.

– Brute-force searching stage. Find a colliding pair following the nr2-round
differential trail from the subspace by brute force.

nr1 rounds nr2 rounds

① Connecting stage

②  Brute-force searching stage with complexity 2w 

Differential trail with probability 2-w

Figure 2: Overview of (nr1 + nr2)-round collision attacks

We use χi to represent the nonlinear layer χ at round i. Then the first nr1

rounds of Keccak can be denoted as

χnr1−1 ◦ L ◦ · · · ◦ χ0 ◦ L.

For the differential trail, we denote the differences before and after i-th round
by αi and αi+1, respectively. Let βi = L(αi), then an nr2 -round differential trail
starting from the nr1 -th round is of the following form

αnr1

L−→ βnr1

χ−→ αnr1 +1
L−→ · · ·αnr1 +nr2−1

L−→ βnr1 +nr2−1
χ−→ αnr1 +nr2

.

For the sake of simplicity, a differential trail can also be represented with only
βi’s or αi’s. Additionally, let the weight wi = −log2Pr(βi → αi+1). For the last
round, since only the Sboxes related to the digest matter, we denote the weight
and difference for those Sboxes as wdnr1 +nr2−1 and αdnr1 +nr2

, respectively.

3.1 Dinur et al.’s one-round connector

In [10], collisions of 4-round Keccak-224 and Keccak-256 are found by com-
bining 1-round connectors and 3-round differential trails. The 1-round connector
is implemented by a procedure called target difference algorithm which converts
the construction of a 1-round connector to solving a system of linear equations.
An important property used in the target difference algorithm is as follow.
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Property 1. [10] Given a pair of input and output difference (δin, δout) of a
Keccak Sbox such that DDT(δin, δout) 6= 0, the set of values V = {v | S(v) +
S(v + δin) = δout} forms an affine subspace.

Note that, any i-dimensional affine subspace of {0, 1}5 can be deduced from
(5− i) linear equations. Now, given an output difference of the first round (or the
input difference of a 3-round differential trail), the target difference algorithm
proceeds in two phases by adding certain linear equations.

1. Choose a subspace of input differences for each active Sbox which are required
to be consistent with the (c+ p)-bit initial difference. As noted in [10], for
any non-zero output difference of a Keccak Sbox, the set of possible input
differences include at least five 2-dimensional affine subspaces.

2. Choose a subspace of input values for each active Sbox which are required to
be consistent with the (c+ p)-bit initial value by selecting an input difference
from the difference subspace obtained in the previous phase.

Once a consistent system of linear equations is obtained after processing
all active Sboxes, a 1-round connector succeeds and the first round now can
be fulfilled automatically if messages are chosen from the solution space of the
system.

3.2 Qiao et al.’s two-round connector

In [21], 5-round collisions are found by combining 2-round connectors and 3-
round differential trails. These 5-round collisions directly benefit from the 2-round
connectors in which the first round is fully linearized. It was noted in [21] that
affine subspaces of dimension up to 2 could be found such that the Sbox can be
linearized.

Any affine subspace of dimension 2 requires 3 linear equations to be defined.
Therefore, at least b

5 × 3 degrees of freedom are needed to linearize one full round.
Note that the total number of available degrees of freedom is at most b− (c+ p).
Hence, when the capacity is relatively small, i.e., c < 2b

5 (omitting the small p),
linearization of one full round is possible. Once the first round is linearized, the
constraints (linear equations over the values) for the Sbox in the first round and
in the second round can be united to construct 2-round connectors.

However, linearizing a full round consumes too many degrees of freedom ,
which leads to very small message subspaces or even makes the 2-round connector
fail. To save degrees of freedom, differential trails which impose least possible
conditions to the 2-round connector are more desirable. To this end, a dedicated
search strategy was used [21] to find suitable differential trails of up to 4 rounds.

3.3 Directions for improvements

It can be seen that both Dinur et al.’s original 1-round connectors and Qiao et al.’s
2-round connectors are constructed by processing a system of linear equations. A
side effect of these methods, especially linearizing a full round, is a quick reduction
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of freedom degrees. On the other hand, connectors are possible only when there
are sufficient degrees of freedom. Furthermore, the message space returned by
the connector needs to be large enough, otherwise no collision can be found. For
example, in the collision attack of 5-round Keccak-224 from [21], a 2-round
connector was constructed successfully, however the obtained message space has
a dimension of only 2 which is far from being sufficient to find a colliding pair
following the 3-round differential trail.

In [21], a 2-round connector was also constructed successfully for Kec-
cak[1440, 160, 6, 160], and returned a subspace with large enough messages
that bypass the first two rounds. However, the complexity of the brute-force stage
is 270.24, which leaves the attack against Keccak[1440, 160, 6, 160] impractical.

In order to find practical collisions for both 5-round Keccak-224 and Kec-
cak[1440, 160, 6, 160], these remaining problems in the previous work need be
solved. There are two directions to this end. The first is to save degrees of freedom
and to consume only when necessary. The second is to spend more effort in faster
implementations of Keccak, for finding differential trails which impose less
conditions to the connector, as well as speeding up the brute-force stage.

These are our starting point of this paper. The next four sections elaborate
on our effort in these two directions which finally results in practical collisions
on 5-round Keccak-224 and Keccak[1440, 160, 6, 160].

4 Non-full Sbox Linearization

In this section, techniques of non-full linearization are proposed to save degrees of
freedom. For convenience, we introduce the techniques in the context of 2-round
connectors, even though they can be applied to 3-round connectors or potentially
connectors of even more rounds.

4.1 Two Observations

In the construction of a 2-round connector, there are two systems of linear
equations, EM and Ez, which are generated using Property 1. EM is over the
input value x of the nonlinear layer χ0 of the first round, while Ez is over the
input value z of the nonlinear layer χ1 of the second round. In order to unite
these two systems of linear equations to get a 2-round connector, the nonlinear
layer χ0 between them should be linearized. However, the question is whether all
Sboxes of χ0 must be fully linearized? We show below that the answer is no.

Let the output value of χ0 be y. Then Ez can be re-expressed over y as Ey
since L · (y+RC0) = z, where RC0 is the round constant for the first round. Due
to the diffusion of L, Ey is usually denser than Ez. Let u = (u0, u1, · · · , ub−1) be
a flag vector where ui = 1 (0 ≤ i < b) if yi is involved in Ey, otherwise ui = 0.
Let U = (U0, U1, · · · , U b

5−1) where Ui = u5iu5i+1u5i+2u5i+3u5i+4, 0 ≤ i < b
5 .

According to the definition, 0 ≤ Ui < 25. For the i-th Sbox of χ0, if Ui is not zero,
a.k.a. some bits of the corresponding Sbox are involved in the equation system,
this Sbox should be linearized for the union of the two systems of equations. Note
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that, it requires at least 3 equations to fully linearize an Sbox. However, the aim
of linearization is to unite the two systems of linear equations, which does not
necessarily require a full linearization of all Sboxes.

With this intuition in mind, below we show two observations of the Keccak
Sbox which explain the background for the non-full linearization.

Observation 1 For a non-active Keccak Sbox, when Ui 6= 31,

a. if Ui = 0, it does not require any linearization;
b. if Ui ∈ {01, 02, 04, 08, 10, 03, 06, 0C, 11, 18} (numbers in typerwritter font are

hexadecimals), at least 1 equation should be added to EM to linearize the
output bit(s) of the Sbox marked by Ui;

c. otherwise, at least 2 equations should be added to EM to linearize the output
bits of the Sbox marked by Ui.

This observation comes from the algebraic relation between the input and output
of χ. Suppose the 5-bit input of the Sbox is x0x1x2x3x4 and the 5-bit output
y0y1y2y3y4. Then the algebraic normal forms of the Sbox are as follows.

y0 = x0 + (x1 + 1) · x2,

y1 = x1 + (x2 + 1) · x3,

y2 = x2 + (x3 + 1) · x4,

y3 = x3 + (x4 + 1) · x0,

y4 = x4 + (x0 + 1) · x1.

Take Ui = 01 as an example. It indicates that y0 should be linearized. As can
be seen, the only nonlinear term in the expression of y0 is x1 · x2. Fixing the
value of either x1 or x2 makes y0 linear. Without loss of generality, assume the
value of x1 is fixed to be 0 or 1. When x1 = 0, we have y0 = x0 + x2; otherwise
y0 = x0. When Ui = 0F, it maps to 4 output bits y0, y1, y2, y3 and they should be
linearized. We can fix the value of two bits x2 and x4 only. Once x2 and x4 are
fixed, the nonlinear terms in the algebraic form of all y0, y1, y2, y3 will disappear.
Other cases work similarly. If Ui = 1F, a full linearization is required by fixing the
value of any three input bits which are not cyclically continuous, e.g., (x0, x2, x4).

For the nonlinear layer χ0 of the first round, most Sboxes are active and many
of them have a DDT value of 8. As noted in [21], to fully linearize those Sboxes
with DDT of 8, three equations should be added to EM for each of them. However,
Observation 2 shows that two equations may be enough, and thus 1 bit degree of
freedom could be saved.

Observation 2 For a 5-bit input difference δin and a 5-bit output difference
δout such that DDT(δin, δout) = 8, 4 out of 5 output bits are already linear if the
input is chosen from the solution set V = {x | S(x) + S(x+ δin) = δout}.

Take DDT(01, 01) = 8 as an example (see Table 6 of [21]). The solution set is
V = {10, 11, 14, 15, 18, 19, 1C, 1D}. We rewrite these solutions in 5-bit stings
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where the right most bit is the LSB as follows.
10 : 10000
11 : 10001
14 : 10100
15 : 10101
18 : 11000
19 : 11001
1C : 11100
1D : 11101

It is easy to see for the values from this set, x1 = 0 and x4 = 1 always hold,
making y0, y2, y3, y4 linear since their algebraic forms could be rewritten as

y0 = x0 + x2,

y1 = (x2 + 1) · x3,

y2 = x2 + x3 + 1,
y3 = x3,

y4 = 1.
Therefore, if the only nonlinear bit y1 is not involved in Ey, these two equations
x1 = 0 and x4 = 1 are enough for the union. Note that, given the input difference
and the output difference, these two equations are used to restrict the input value
from {0, 1}5 to the solution set and have already been included in EM .

4.2 How to choose β1

In both previous works [10, 21], those β1s are chosen such that all Sboxes of
α1 = L−1(β1) are active. This is reasonable since a fully active α1 makes it easy
to find a β0 that is compatible with α1 and (c + p)-bit zero initial difference.
Additionally, if full linearization is applied to every Sbox of χ0, non-active Sboxes
have no advantage over active Sboxes in saving degree of freedoms.

Now non-full linearizations are to be applied. The observations in this section
demonstrate that for an Sbox less than 3 equations may be enough for the
union. It is likely that non-active Sboxes have advantage over active Sboxes. To
extensively exploit the non-full linearization for a larger solution space, it is better
to have more non-active Sboxes. Moreover, it is interesting to note that once β1
is chosen, we can not only calculate the number of non-active Sboxes #nonact
of the first round, but also the number of non-active Sboxes which require only
1 or 2 equations for the union. Those non-active Sboxes which require only 1
equation for the union are more interesting. Let the number of them be #save.
Large #nonact and #save probably lead to large message subspaces that bypass
the first two rounds. However, too many non-active Sboxes will slow down the
2-round connector finding program. This problem will be further discussed when
techniques of non-full linearization are applied to concrete instances in latter
sections.
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5 GPU Implementation of Keccak

In this section, techniques for GPU implementation of Keccak are introduced
to improve our computing capacity over CPU implementations. While one could
expect a speed of order 221 Keccak-f evaluations per second on a single CPU
core, we show in this section this number could increase to 229 per second on
NVIDIA GeForce GTX1070 graphic card. The significant speedup will benefit us
in two usages: searching for differential trails among larger spaces and bruteforce
search of collisions from differential trails with lower probability.

5.1 Overview of the GPU and CUDA

GPUs (Graphics Processing Unit) are intended to process the computer graphics
and image originally. With more transistors for data processing, a GPU usually
consists of thousands of smaller but efficient ALUs (Arithmetic Logic Unit),
which can be used to process parallel tasks efficiently. So GPU computing is
widely used to accelerate compute-intensive applications nowadays. From the
view of hardware architecture, a GPU is comprised of several SMs (Streaming
Multiprocessors), which determine the parallelization capability of GPU. In
Maxwell architecture, each SM owns 128 SPs (streaming processors) — the basic
processing units. Warp is the basic execution unit in SM and each warp consists
of 32 threads. All threads in a warp execute the same instructions at the same
time. Each thread will be mapped into a SP when it is executed.

CUDA is a general purpose parallel computing architecture and programming
model that is used in Nvidia GPUs [20]. One of programming interfaces of CUDA
is CUDA C/C++ which is based on standard C/C++. Here, we mainly focus
CUDA C++.

5.2 Existing implementations and our implementations

Guillaume Sevestre [22] implemented Keccak in a tree hash mode, the nature
of which allows each thread to run a copy of Keccak. Unfortunately, there are
no implementation details given. In [8], Pierre-Louis Gayrel et al. implemented
Keccak-f [1600] with 25 threads that calculate all 25 lanes in parallel in a warp
and these threads cooperate via shared memory. One disadvantage of this strategy
is bank conflict — concurrent access to shared memory of the same bank by
threads from the same warp will be forced to be sequential. Besides, there are
two open-source softwares providing GPU implementations of Keccak: ccminer
(ref. http://ccminer.org) and hashcat (ref. https://hashcat.net) in CUDA
and OpenCL, respectively.

Having learnt from the existing works and codes, we implemented Keccak
following two different strategies: one thread for one Keccak or one warp for one
Keccak. From experimental results, we find that one thread for one Keccak
gives a better number of Keccak-f evaluations per second. So we adopt this
strategy in this paper. More detailed techniques of implementation optimization
are introduced in Appendix A.1.
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5.3 Benchmark

With all the optimization techniques in mind, we implemented Keccak-f [1600] in
CUDA, and have it tested on NVIDIA GeForce GTX1070 and NVIDIA GeForce
GTX970 graphics cards. The hardware specifications of GTX1070 and GTX970
are given in Appendix A.2.

Table 2: Benchmark of our Keccak implementations in CUDA
Target Keccak-f evaluations per second GPU
Keccak-f [1600]v1 228.90 GTX1070
Keccak-f [1600]v2 229.24 GTX1070

Keccak-f [1600]v1 227.835 GTX970
Keccak-f [1600]v2 228.37 GTX970

Table 2 lists the performance. Keccak-f [1600]v1 and Keccak-f [1600]v2 are
our implementations used to search for differential trails and to find real collisions
in the bruteforce stage, respectively. The difference between the two versions is:
Keccak-f [1600]v1 copies all digests into global memory, and Keccak-f [1600]v2
only copies the digest into global memory when the resulted digest equals to a
given digest value. Both versions did not include the data transfer time. It can
be seen that GTX1070 can be 28 times faster than a CPU core. The source codes
of these two versions are available freely via http://team.crypto.sg/Keccak_
GPU_V1andV2.zip.

5.4 Search for differential trails

We follow the strategies proposed in [21] for searching differential trails. Specifi-
cally, special differences (explained more in Appendix B) before χ of the third
round β3 are first generated by KeccakTools [6], and then extended one-round
forward to check the validity for d-bit collisions. For those β3s which are possible
for collision, we extend them one round backward, and calculate the number of
active Sbox AS in the extended round. A trail with small AS is desirable for
connectors.

Note that all extensions should be traversed. Given a β3, suppose there are
C1 possible one-round forward extensions and C2 one round backward exten-
sions. These two numbers are determined by the active Sboxes of β3. If the
number of active Sboxes is AS, then roughly C1 = 4AS and C2 = 9AS according
to the DDT referred from Table 6 in [21]. In the search for 3-round trails of
Keccak-224, C2 is the dominant time complexity, while for 4-round trails of
Keccak[1440, 160, 6, 160], we start from (β3, β4) generated by KeccakTools, and
C1 is almost as large as C2.

With the help of the GPU implementation, the β3s generated by KeccakTools
where C2 ≤ 235 are traversed for finding differential trails for Keccak-224 with
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AS as small as possible, and (β3, β4) where C1 ≤ 336 are explored for finding
4-round trails for Keccak[1440, 160, 6, 160] with w3 +w4 +wd5 as small as possible.
As a comparison, the search for differential trails in [21] only covers β3 and (β3, β4)
with C1, C2 being less than 230. In summary, the best 3-round differential trail
we obtained for Keccak-224 has AS = 81, and the best 4-round differential trail
for Keccak[1440, 160, 6, 160] holds with w3 + w4 + wd5 = 52. These two trails
are used in our collision attacks in the following two sections respectively. More
details of the searching algorithm are given in Appendix B.

6 Application to 5-Round Keccak-224

In this section, techniques for non-full linearization are applied to 5-round Kec-
cak-224. Firstly, the best 3-round differential trail we found for Keccak-224 is
described. With this differential trail, an improved 2-round connector using non-
full linearizations is constructed and it outputs sufficient message pairs among
which collisions of 5-round Keccak-224 are found with real examples.

6.1 3-Round differential trail

The information of the best 3-round differential trail we obtain is listed in Table
3 and the trail itself is displayed in Table 7. Specifically, the weight of χ1 is 187.
Once the 2-round connector succeeds and outputs an sufficiently large message
space, the complexity for searching a collision is 248 and can be reduced to 245.62

if multiple trails of last two rounds are taken into account. In brief, this trail
imposes 187 equations to the 2-round connector and requires a solution space of
size at least 245.62. As shown in the table, our trail is better than the one used
in [21] which imposes a bit more equations to the 2-round connector.

Table 3: Differential trails for collision attacks against Keccak-224.

No. AS(α2-β2-β3-βd
4 ) w1-w2-w3-wd

4 w2 + w3 + wd
4 Reference

1 85- 9-10-2 190-25-20-3 48 [21]
2 81-10-10-1 187-26-20-2 48 This paper

6.2 Improved 2-round connector

In order to extensively exploit the non-full linearization, large #nonact and
#save would be beneficial. However, too many non-active Sboxes may make
it difficult or impossible to find β0s that are compatible with the (c + p)-bit
zero initial difference, and further make it difficult for the 2-round connector
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to succeed. To find a balance, values for #nonact and #save are heuristically
explored. Finally, we set 10 < #nonact ≤ 30 and #save ≥ 16.

Our improved 2-round connector is given as follows and the steps are visualized
in Fig. 3.

α0 

Equation system:

α2 β1 α1 β0 

zyx

EzEyEM

①②

①③

④

(Δ)

χ1χ0L L
(c+p)-bit 
constraint

(c+p)-bit 
constraint

Difference:

Value:

Figure 3: Visualized 2-round connector.

The 2-Round Connector for Keccak-224.
Inputs: 449-bit fixed initial value, α2, two bound variables bnd1, bnd2.
Outputs: Difference ∆, a subspace of messages.

1. Randomly choose a possible input difference β1 of χ1 according to α2 such
that the differential β1 → α2 has the best probability. Calculate α1 = L−1(β1)
and #nonact of α1. Construct a system of linear equations Ez over the values
of the second χ using Property 1. Derive Ey from Ez using L,RC0. Calculate
U and #save. If 10 < #nonact ≤ 30 and #save ≥ 16, go to Step 2, otherwise
repeat this step.

2. Launch Dinur et al.’s target difference algorithm with β1 and 449-bit fixed
initial value. Once the algorithm succeeds, the input differences for the first
two rounds are fixed and a system of linear equations EM over the input x
of χ0 that defines a subspace is obtained, and move to Step 3. If this step
fails bnd1 times, go to Step 1, otherwise repeat this step.

3. Partially linearize the first round according to Observation 1 and 2 by adding
equations to EM . Once succeed, a smaller subspace defined by the updated
EM and the corresponding partial linear mapping of the first χ is obtained,
and move to Step 4, otherwise repeat this step.

4. Unite EM and Ey using the partial linear mapping of χ0. Once a consistent
system is obtained, go to Step 5. If this step fails bnd2 times, go to Step 1,
otherwise go to Step 3.

14



5. A 2-round connector is constructed successfully. Check the size of the solution
space of the resulted equation system. If the size of the solution space is less
than 246, go to Step 1; otherwise output difference ∆ and the solution space.

6.3 Experiments and results

Our 2-round connector succeeds in 15 core hours. The obtained subspace of
messages has a size of 255, larger than the required size of 246. The number of
non-active Sboxes of χ0 is 29 and #save = 16. Among the non-active Sboxes, no
Sbox has Ui = 0, and seven Sboxes require 2 equations for the union. Among
the 105 active Sboxes with DDT entry 8, 26 of them are exempted from adding
an extra equation to EM . These results confirm that the non-full linearization
does save some degrees of freedom and both observations contribute to a larger
message subspace that bypasses the first two rounds.

After the 2-round connector succeeds, from the message space returned by
the connector, a brute-force search is needed to find a colliding message pair
which follows the differential trail in latter 3 rounds. The brute-force search is
implemented in CUDA and the search is done on an NVIDIA GeForce GTX1070
graphic card. The first collision is found in 21 minutes, which corresponds to
239.90 message pair evaluations in the brute-force stage5. The actual complexity
is smaller than expected by a non-negligible factor. This may be due to the
possibility that there are some other differential trails missing from our collision
probability calculation, or we might be just lucky. We give one instance of collision
in Table 6.

7 Applications to Keccak[1440, 160, 6, 160]

In this section, 3-round connectors are firstly introduced to attack more rounds
of Keccak practically. Since one more round is covered by the connector, hence
one less round needs to be fulfilled probabilistically in the bruteforce stage,
resulting in lower complexities for the bruteforce search stage. This idea leads
to a practical attack against Keccak[1440, 160, 6, 160]. In the following, the
differential trail used in our attack is described first, and details of 3-round
connectors and experiments are given afterwards.

7.1 4-Round differential trail

Four-round differential trails are searched and used in the attack against Keccak
[1440, 160, 6, 160]. The first round of the trail is covered by the connector. Namely,
β2 → α3 is included as the last round of 3-round connector. Thus the weight
of the last three rounds, namely w3 + w4 + wd5 , determines the time complexity
for the brute-force searching stage. To make the attack practical, w3 + w4 +
5 Our experiment shows 229.6 pairs of 5-round Keccak could be evaluated per second
on NVIDIA GeForce GTX1070 graphic card.
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wd5 should be as small as possible. So in the search for differential trails for
Keccak[1440, 160, 6, 160], our major goal is to find a 4-round trail with minimal
w3 + w4 + wd5 , which is different from the goal of searching trails for 5-round
Keccak-224. The best 4-round trail we obtained using GPU is listed in Table
4. The exact differential trail is shown in Table 9. The time complexity for the
brute-force stage is 252 which can be reduced to 251.14 if we consider multiple
trails starting from the same β4. The weight of the third round is 25, indicating
25 linear equations of this round should be added to the whole equation system
by surmounting the barrier of χ1.

Table 4: Differential trails for collision attacks against Keccak[1440, 160, 6, 160].

No. AS(α2-β2-β3-β4-βd
5 ) w1-w2-w3-w4-wd

5 w3 + w4 + wd
5 Reference

1 145-6-6-10-14 340-15-12-22-23 57 [21]
2 127-9-8- 8-10 292-25-18-18-16 52 This paper

7.2 Adaptive 3-round connector

To construct 3-round connectors, a 2-round connectors is constructed first. Here,
full linearizations are applied to χ0 in the first round, since almost all (1595 ∼
1600) output bits of χ0 are involved in the equation system of latter two rounds
due to the diffusion of the linear layer L. Suppose the resulted equation system
of the 2-round connector over the first two rounds is EM . Then equations for the
third round are added to EM adaptively to get 3-round connectors.

Note that, the first three rounds of Keccak permutation is represented as

χ2 ◦ L ◦ χ1 ◦ L ◦ χ0 ◦ L

by omitting the ι. Let the input and output of χ0 be x and y, the input and
output of χ1 be z and y′, and the input of χ2 be z′, as shown in Fig. 4. Suppose
the system of equations EM returned by the 2-round connector is

A · x = t0.

The full linear map of χ0 is also returned and expressed as

Lχ0 · x+ t1 = y.

That is to say, x = L−1
χ0
· (y + t1). Since z = L · (y + RC0), now EM can be

re-expressed over z as follow.

A · x = A · L−1
χ0
· (y + t1)

= A · L−1
χ0
· (L−1 · z +RC0 + t1)

= t0.
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Let A′ = A · L−1
χ0
· L−1 and t′0 = t0 + A · L−1

χ0
· (RC0 + t1). Then an equivalent

equation system E′M of EM is obtained as

A′ · z = t′0. (1)

χ1χ0

Difference:

Value:

Equation system:

α2 β1 β0 (Δ)

zyx

Ez

L L

①～④ EM, Δ, (Lχ0,t0), E'M

⑥

χ2

α3 β2 

z'

Ez'

L

⑤
Ey'

y'

⑦

Figure 4: Visualized 3-round connector.

With E′M , equations of the third round, i.e., χ2, now can be processed in the
following way. Suppose the equation system Ez′ constructed using Property 1 for
χ2 is

D · z′ = t4.

Since z′ = L · (y′ +RC1), then Ez′ can be re-expressed as Ey′ over y′, i.e.,

D · L · (y′ +RC1) = t4. (2)

Now to combine E′M and Ey′ , a linear map between z and y′ is needed. Suppose
using techniques of non-full linearization a couple of equations Ez,

B · z = t2

linearize y′ as
Lχ1 · z + t3 = y′. (3)

By stacking E′M and Ez, we get [
A′ t′0
B t2

]
(4)

Check the consistency of system (4). If it is consistent, then the linear map (3) is
valid, otherwise it is not valid. If the linear map (3) is valid, the equation system
(2) for the third round now can be united, since

D · L · (y′ +RC1) = D · L · (Lχ1 · z + t3 +RC1)
= t4.
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If the consistency of the following system (5) holds, then the 3-round connector
succeeds, and returns a subspace of z and β1. A′ t′0

B t2
D · L · Lχ1 t4 +D · L · (t3 +RC1)

 (5)

Special Sboxes of χ1. The 3-round connector for Keccak[1440, 160, 6, 160]
may not return a sufficiently large solution space due to a great consumption of
degrees of freedom for linearizing χ1, so multiple 3-round connectors are needed.
Whether a 3-round connector succeeds or not depends on the consistency of (5).
Note that, if (4) is consistent, (5) is consistent with high probability. However,
(4) is consistent with a low probability. This is because Ez′ has a few equations,
while Ez has much more. Take Trail 2 as an example, Ez has 146 equations,
while Ez′ has only 25.

To make the 3-round connector succeed faster, Ez is scrutinized in depth. For
an Sbox of χ1 that should be linearized for uniting Ez with E′M , let the 5-bit
input be z0z1z2z3z4 and the 5-bit output y′0y′1y′2y′3y′4. Suppose the value of z0 is
to be fixed to partially linearize χ1. There are two cases for z0. The first case is
that the value of z0 has not been fixed in E′M . In this case both values (0 or 1)
for z0 are valid for the linearization of χ1. The other case is that z0 has already
been fixed in E′M . Then only the value that is consistent with E′M is valid for the
linearization. For the latter case, this Sbox is defined to be a special Sbox. Our
idea is to spot all special Sboxes of χ1 and always choose the valid linearization
for them. For the rest Sboxes, any linearization is valid. In this way, (4) is always
consistent.

For Trail 2, 125 Sboxes of χ1 require to be linearized. The number of special
Sboxes is 19. So for the rest 106 Sboxes, any linearization is valid and can be
used to successfully construct sufficiently many 3-round connectors.

Algorithm of adaptive 3-round connectors. In adaptive 3-round connectors,
full linearizations are applied to χ0, while non-full linearizations are used for χ1.
Each time the algorithm outputs a subspace of messages by solving (5). More
subspaces of messages can be obtained by replacing the linearization of χ1 with
an unused one.

The Adaptive 3-Round Connector
Inputs: 161-bit fixed initial value, α3, β2 and α2
Outputs: initial difference ∆ and β1, multiple subspaces of messages.

1. Apply The 2-Round Connector using the 161-bit fixed initial value and α2.
When the 2-round connector succeeds, it returns EM , ∆, β1 and the linear
map (Lχ0 , t1) with which the equivalent system E′M can be derived.

2. Construct Ez′ using β2 and α3. Then deduce Ey′ from Ez′ . Calculate U ′ for
Ey′ . Now the bits of y′ that need to be linearized are known. Spot special
Sboxes by trying all linearizations for each Sbox whose output bits are
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marked by U ′. After that, a list of special Sboxes and a corresponding valid
linearization are obtained. Initialize a list structure for all Sboxes of χ1 that
are marked by U ′. Each Sbox is a node on the list structure. For special
Sboxes, the node has only one choice for the linearization, while for other
Sboxes, the node contains multiple choices for the linearization.

3. Use the current linearization (Lχ0 , t3) to deduce a united equation system
(5). If the system (5) is consistent, solve this system, return a solution space
and β1 and go to Step 4; otherwise, shift the pointer of the list to the next
linearization, go to Step 3.

4. Check whether more messages are needed or not. If yes, shift the pointer of
the list to the next linearization, go to Step 3; otherwise, exit.

In brief, in 3-round adaptive connectors, the freedom degrees for linearizing
the second round are reused and hence not consumed. Thus, multiple solution
spaces can be generated successively if one is not enough.

7.3 Experiments and results

The 3-round adaptive connector is applied to Trail 2 in our experiments. In
the first step, the 2-round connector succeeds in 4.5 core hours and returns
an EM with 174 degrees of freedom. Every time Step 4 outputs a subspace of
messages of size 232 ∼ 235 which bypass the first three rounds. In order to find
one colliding pair, at least 251.14 pairs of messages are required. This could be
achieved by repeating Step 3 ∼ 4 for 216.14 ∼ 219.14 times. By running our CUDA
implementation on three NVIDIA GeForce GTX970 GPUs, the first collision is
found in 112 hours, which equals to 249.07 message pair evaluations6. An example
of collision is given in Table 8.

8 Conclusions

In conclusion, we proposed two major types of techniques for saving degrees
of freedom in constructing connectors: non-full linearizations and adaptive con-
nectors. Techniques of non-full linearization avoid unnecessary consumption of
degrees of freedom, and its application directly leads to practical collision at-
tacks against 5-round Keccak-224. Adaptive connectors are constructed in an
adaptive way that some degrees of freedom are reused, hence not consumed. By
combining techniques of non-full linearization and adaptive connectors, 3-round
connectors are constructed successfully, resulting in a practical collision attack
against Keccak[1440, 160, 6, 160].

These two types of techniques significantly save degrees of freedom. Therefore,
one potential future work is to apply these techniques to other Keccak instances
which have a tighter budget of freedom degrees, such as Keccak[240, 160, 5, 160].
6 Our experiment shows 228.87 pairs of 5-round Keccak could be evaluated per second
on NVIDIA GeForce GTX970 graphic card.
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A GPU Implementation

A.1 Techniques of GPU implementation optimization

The techniques commonly used to optimize the CUDA program include mem-
ory optimizations, execution configuration optimizations, and instruction-level
parallelism (ILP).

Memory optimizations. Usually registers have the shortest access latency
compared with other memory, so keeping data in registers as much as possible
improves the efficiency in general. However, dynamically indexed arrays cannot
be stored in registers, so we define some variables for the 25 lanes by hand in
order to have them stored in registers. Constant memory is a type of read-only
memory. When it is necessary for a warp of threads read the same location of
memory, constant memory is the best choice. So we store 24 round constants on
it. When the threads in a warp read data which is physically adjacent to each
other, texture memory provides better performance than global memory, and it
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reduces memory traffic as well. So we can bind input data and some frequent
accessed read-only data with texture memory.

Execution configuration. With resources like registers and shared memory
limited in each graphic card, the number of threads run in each block will affect
the performance since too many threads running in parallel will cause shortage
of registers and shared memory allocated to each thread, while too few parallel
threads reduce the overall performance directly. According to our experiments,
one block with 128 threads gives the best performance.

Instruction-level parallelism. From [24], hashcat, and ccminer, we see that
forcing adjacent instructions independent gives better performance. Without
prejudice to the functions of the program, we can adjust the order of instructions
to improve the efficiency of the operations. In addition, loop unrolling [17] is also
a good practice to obtain ILP.

A.2 Hardware specification sheet of GPU

Table 5: The hardware specification sheet of GTX1070 and GTX970
GTX1070 GTX970

Core Clock Rate 1645 MHz 1228 MHz
Multiprocessors 16 13
Regs Per Block 65536 65536

Total Global Memory 8105.06 MiB 4036.81 MiB
Bus Width 256 bits 256 bits

Memory Clock Rate 4004 MHz 3505 MHz
L2 Cache Size 48 KiB 48 KiB

Shared Memory Per Block 48 KiB 48 KiB
Total Constant Memory 64 KiB 64 KiB

B Algorithm for Searching Differential Trails

Before the description of our algorithm for searching differential trails, we intro-
duce more notations which are mainly defined by the designers of Keccak. A
state s is in the Column Parity kernel (CP-kernel) if s = θ(s) [5], which means
θ acts as an identity and dose not diffuse any bit of the state. The differential
trail in the CP-kernel has a number of rounds at most 2, as studied in [9, 14, 18].
Also, an n-round trail core (suppose starting from Round 0) is defined with
n − 1 consecutive βi’s, (β1, · · · , βn−1), which contains a set of n-round trails
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α0
L−→ β0

χ−→ α1
L−→ β1 · · ·

L−→ βn−1
χ−→ αn where the first round is of the mini-

mal weight determined by α1 = L−1(β1), and αn is compatible with βn−1. In
the collision attack of 5-round Keccak-224, actually a 4-round trail core is
needed even though the first round is covered by the 2-round connector. In the
attack of Keccak[1440, 160, 6, 160], a 5-round core is required and the first two
rounds of the trail are covered by 3-round connectors. We list below the steps
for finding 4-round cores for Keccak-224, and then describe the difference for
Keccak[1440, 160, 6, 160].

– Generate β3 such that α3 = L−1(β3) lies in CP-kernel, and that there exists a
compatible α3 in CP-kernel, using TrailCoreInKernelAtC of KeccakTools [6]
where the parameter aMaxWeight is set to be 64. The number of such β3 we
obtained is 2347.

– For each β3, if C1 ≤ 236, we traverse all possible α4, compute β4, and check
whether the collision is possible for β4. If yes, keep this β3 and record this
forward extension, otherwise, discard this β3.

– For remaining β3, if C2 ≤ 235, try all possible β2 which are compatible with
α3 = L−1(β3), and compute AS(α2) where α2 = L−1(β3). If AS(α2) ≤ 86,
check whether this trail core β2, β3, β4 is practical for the collision attack.

Using this algorithm, the best 4-round trail core we found for Keccak-224
has AS(α2) = 81 and w2 +w3 +wd4 = 48. In the case of Keccak[1440, 160, 6, 160],
trails with one more round are searched, so the second step is adapted as follow.

– For each β3, extend forwards for one round using KeccakFTrailExtension of
KeccakTools [6] with weight up to 45. As a result, 43042 two-round cores
are generated. Then for each generated two-round core, if C1 ≤ 236 for β4,
traverse all possible α5 and compute β5. Check whether there exists a α6
such that αd6 = 0. If yes, record the three-round core β3, β4, β5, otherwise,
discard the β3. In total, there are only 11 β3s left for the 160-bit collision.

The best 5-round trail core we found for Keccak[1440, 160, 6, 160] has AS(α2) =
127 and w3 +w4 +wd5 = 52. In order to estimate the complexity for the brute-force
stage accurately, we consider all possible trails which are possible for the collision
and start from the same β3 for Keccak-224 (β4 for Keccak[1440, 160, 6, 160]).

C Differential Trails and Collisions

In this section, we give details of differential trails used in our attacks and the
obtained collisions. The 1600-bit state is displayed as a 5× 5 array, ordered from
left to right, where ‘|’ acts as the separator; each lane is denoted in hexadecimal
using little-endian format; ‘0’ is replaced with ‘-’ for differential trails.
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Table 6: Collision for 5-round Keccak-224

M1

F49A78F0E0CBB2C0|997CF6C13F9F5E37|091EF2AE68CA026C|787A6189D311D2AB|F410786AB060476E
A56E341B9175DDBD|ED9381C907F7DEFD|EAF49557D1F449F4|BBFDC0C22F0ED3C6|A5FCE33236960AAE
192598A5E0B275ED|DA7C4363F554A4AE|85B14515A3040D1B|2C5E5C7DDC7E43C3|A900385251BB4F77
DB530E201E571450|A9C981793A78152F|C55991AC63389C0F|0000000000000000|0000000000000000
0000000000000000|0000000000000000|0000000000000000|0000000000000000|0000000000000000

M2

C316798E019C8ECB|2EFDF516C6322BEA|B9FE8432A626B2B2|4EEA0858AF5684C2|1793DC9B8BE1EFF0
DDF791B683238A70|E43E484F5F767DB3|6AE5AD63D1FD51DC|57C509C21AF67220|AF14D053F09C4E6C
44E594BA9943900F|F2995743C285D101|00C055CA1502459A|013AD29EE0FFB76B|8A9B6A7750956AFF
D200A9BD2E38993F|54583BF0DAF4D84D|E9784271C6556FFF|0000000000000000|0000000000000000
0000000000000000|0000000000000000|0000000000000000|0000000000000000|0000000000000000

digest 9F78D9AAD557721B|8DA633A88E5FA089|97403614B9152D9D| 0E1F496F

Table 7: Differential trail used in the collision attack of 5-round Keccak-224. The
total probability is 2−45.62 considering multiple trails of the last two rounds. After
collisions were obtained, we found that the trail obtained by cyclically rotating this one
22 bits to the right has a better probability of 2−44.59.

β2

-----------8----|--22------------|--2--------8----|--2-------------|--22------8-----

2−26
----------------|----------------|----------------|----------------|----------------
-----------8----|----------------|-----------8----|-----------8----|----------8-----
-------2--------|----------------|----------------|--2----2--------|----------------
-------2--------|---2------------|----------------|----------------|----------------

β3

----------------|----------------|4---------------|-------------4--|----------------

2−20
-----------2----|----------------|----------------|----------------|----------------
---4------------|----------------|----------------|----------------|---8------------
---4------------|----------------|----------------|----------------|----------------
-----------2----|----------------|4---------------|-------------4--|---8------------

β4

----------------|----------------|----------------|----------------|---------------2

2−2
------4---------|----------------|--2-------------|----------------|-8--------------
----------------|----------------|----------------|----------------|-------8--------
----------------|--2-------------|----------------|----------------|---------------4
1---------------|----------------|---------4------|---------8------|----------------

Table 8: Collision for the challenge instance Keccak[1440, 160, 6, 160]

M1

DA27ABE5B7EC359D|328A2AB4CD0E256A|00DBDEECA184390E|3843F66481C745F4|DDF83BEF39D4F594
46BA2A960272C97A|8CC8CE3E13185558|2D7C6CC662546532|4D8DCDC25DC7F4B8|574252F43F85BF94
BDCFA2D6B04CBDEE|208D7A02168A7596|AFE7C652F0A68792|467C04748D85916F|F1BFEAF63C4B97C3
C2B0AAEA35887CD4|72A3D23F9D84434D|97A5D9A090590B61|BBE1EC62DBD4327E|64284BCB9BE462C5
8843CBC8B55E106A|DD3DD96A1AC48100|00000000E9151D67|0000000000000000|0000000000000000

M2

5A0C640730278910|32C1A7D724790C0B|8BCE75C46404A83A|7FCE23E92ECE7E31|1BEE08F9F932C785
3969BA55EB6B17F9|E82948B06C21C6A8|AF42ACEF22202C1F|A9C1BD90BF96FB60|0F98E27C36B57BDA
A02B26453D88C70F|5EC5F74DC919C7E6|31391D7A23A3C8DD|C0BECDAD0AC7F275|14FA28F6B2C9D390
69F67EEAEF258217|159B7FEDCED37178|DA89C2B0291CCA7D|7BDDE79F989414AE|3088CBE192E15B4B
138617865C48CEA9|2A917CE5E3AD1374|0000000098425E60|0000000000000000|0000000000000000

digest 602133DD97109089|611B5125914B0F05| 532B96C0

24



Table 9: Differential trail used in the collision attack of Keccak[1440, 160, 6, 160]. The
total probability is 2−76.14 considering multiple trails of last two rounds. The probability
of last three rounds is 2−51.14.

β2

–--------------|-----8----------|-----8------4---|----------------|------------4---

2−25
-----------2---8|-----------2----|---------------8|-----------2---8|-----------2----
----------------|-----8----------|----------------|----------------|-----8------4---
-----------2----|----------------|-----8----------|-----------2---8|----------------
----------------|----------------|----------------|----------------|----------------

β3

----------------|----------------|----------------|---------1------|----------------

2−18
----------------|----------------|----------------|---------1------|----------------
----------------|----------------|----------------|----------------|----------------
-----2----------|--2-------------|--2-------------|-4--------------|----------------
-----2----------|-4--------------|--2-------------|-4--------------|----------------

β4

----------------|----------------|----------------|------------8---|----------------

2−18
--1-------------|----------------|----------------|----------------|---4------------
----------------|----------------|----------------|----------------|-8--------------
----------------|----------------|----------------|--------------1-|---4------------
----------------|------------8---|----------------|-----------4----|----------------

β5

-8--------------|-------1--------|48-1---1--------|---------2-2----|-------12--4---C

2−16
-----8---1------|------48-1---34-|4---------------|-------2--------|---4-------12--4
--2--------1----|-9-------24--8--|----------2-----|34-------48-1---|------------2---
----24--8--18---|--------81------|4---------------|-------48-1---12|--1----------4--
---8-------24--8|---8-8----------|-24--8-418------|------1---------|--4--------2----
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