HACL": A Verified Modern Cryptographic Library

JEAN-KARIM ZINZINDOHOUE, INRIA Paris
KARTHIKEYAN BHARGAVAN, INRIA Paris
JONATHAN PROTZENKO, Microsoft Research
BENJAMIN BEURDOUCHE, INRIA Paris

HACL" is a new verified cryptographic library that implements popular modern cryptographic primitives such as the
ChaCha20 and Salsa20 encryption algorithms, Poly1305 and HMAC authentication, SHA-256 and SHA-512 hash functions,
the Curve25519 elliptic curve Diffie-Hellman group, and Ed25519 signatures. Using these primitives, HACL* implements the
NaCl cryptographic API and can be used as a drop-in replacement for NaCl implementations like libsodium and TweetNaCl.
HACL" also provides the cryptographic components for one of the mandatory ciphersuites of TLS 1.3, and is already being
used within the miTLS verified implementation.

HACL" is written and verified in the F* programming language and then compiled to readable C code. The F* source
code is verified for side-channel mitigations, memory safety, and functional correctness with respect to succinct high-level
specifications derived from the standard specification for each cryptographic primitive. The translation to C preserves these
properties and the generated code can itself be compiled via the CompCert verified C compiler or mainstream compilers like
GCC or CLANG.

When compiled with GCC on 64-bit platforms, our implementations are as fast as the fastest C implementations in
OpenSSL and libsodium, significantly faster than the reference C code in TweetNaCl and SuperCop, and between 3x-5x of
hand-optimized assembly code. We show how to verify code that relies on low-level hardware features like 128-bit integers
and vector instructions. A distinctive feature of HACL* is that we aggressively try to share code and verification effort across
primitives, while preserving performance. Our results show that writing fast, verified, and self-contained C cryptographic
libraries is now practical.

1 THE NEED FOR VERIFIED CRYPTO

Cryptographic libraries lie at the heart of the trusted computing base of the Internet, and consequently, they are
held to a higher standard of correctness, robustness, and security than the applications that use them. Even minor
bugs in cryptographic code typically result in CVEs and software updates. For instance, since 2016, OpenSSL
has issued 11 CVEs for bugs in its core cryptographic primitives, including 6 memory safety errors, 3 side
channels leaks, and 2 incorrect bignum computations.! Such flaws may seem difficult to exploit at first, but as
Brumley et al. [24] demonstrate, even an innocuous looking arithmetic bug hiding deep inside an elliptic curve
implementation may allow an attacker to efficiently retrieve a victim’s long-term private key.

Bugs in cryptographic code have historically been found by a combination of manual inspection, testing, and
fuzzing, on a best-effort basis. Rather than finding and fixing bugs one-by-one, we join Brumley et al. and a line
of recent work [7, 11, 25, 28, 36] to advocate the use of formal verification to mathematically prove the absence of
entire classes of potential bugs. In this paper, we will show how to implement a cryptographic library and prove
that it is memory safe and functionally correct with respect to its published specification. Our goal is to write
verified code that is as fast as state-of-the-art C implementations, while implementing standard countermeasures
to side-channel attacks.

A Modern Cryptographic Library. A key design question for a high-assurance cryptographic library is which
primitives to include and what platforms to support. The more code we include, the more we have to verify,
and their proofs can take considerable time and effort. Mixing verified and unverified primitives in a single

Thttps://www.openssl.org/news/vulnerabilities.html

, Vol. 1, No. 1, Article 1. Publication date: June 2017.

https://www.openssl.org/news/vulnerabilities.html

library is dangerous, since simple memory-safety bugs in unverified code can completely break the correctness
guarantees of verified code. General-purpose libraries like OpenSSL implement a notoriously large number of
primitives, totaling hundreds of thousands of lines of code, making it infeasible to verify the full library. In
contrast, minimalist libraries such as NaCl [16] support a few carefully chosen primitives and hence are better
verification targets. For example, TweetNaCl [18], a portable C implementation of NaCl is fully implemented in
700 lines of code.

For our library, we choose to implement popular modern algorithms that are used both in NaCl and in protocols
like Transport Layer Security (TLS) 1.3: the ChaCha20 and Salsa20 stream ciphers [1, 14], the SHA-2 family of hash
functions [35], the Poly1305 [1, 12] and HMAC [26] message authentication codes, the Curve25519 elliptic curve
Diffie-Hellman group [2, 13], and the ED25519 elliptic curve signature scheme [3, 15]. By restricting ourselves
to these primitives, we obtain a compact verified library of about 7000 lines of C code. Our library provides
the full NaCl API that is designed for ease-of-use by application developers. It also provides a TLS-specific API
that can be used by libraries like OpenSSL and NSS. In particular, our library is being used as the basis for the
cryptographic proofs in miTLS, a verified TLS implementation [20].

Verification vs. Optimization. TweetNaCl sacrifices performance in order to be small and portable, and is
about 10 times slower than other NaCl libraries that include code that is optimized for specific architectures.
For example, Libsodium includes three versions of Curve25519, two C implementations—tailored for 32-bit and
64-bit platforms—and a vectorized assembly implementation for SIMD architectures. All three implementations
contain their own custom bignum libraries for field arithmetic. Libsodium also includes three C implementations
of Poly1305, again each with its own bignum code. In order to verify a library like Libsodium, we would need to
account for all these independent implementations. To make verification tractable, we focus on implementing and
verifying a single implementation for each primitive that is optimized for commonly-used 64-bit Intel platforms,
but also runs (more slowly) on all other 32-bit and 64-bit devices. Furthermore, we share verified bignum code
between Poly1305, Curve25519, and Ed25519.

Prior work on verifying cryptographic code has explored various strategies. Some authors verify hand-written
assembly code optimized for specific architectures [25]; others verify portable C code that can be run on any
platform [7, 11]; still others verify new implementations written in high-level languages [28, 36]. The trade-off is
that as we move to more generic, higher-level code, verification gets easier but at a significant cost to performance.
In this paper, we attempt to strike a balance between these approaches by verifying cryptographic algorithms in
a high-level language and then compiling it to efficient C code.

Our Approach. We take state-of-the-art optimized C implementations and we adapt and reimplement them in
F* [33] a dependently-typed programming language that supports semi-automated verification by relying on
an external SMT solver. Our code is compiled to C via the KreMLin tool [19]. The resulting C code can then
be compiled using the CompCert compiler [30] which results in verified machine code. Code compiled from
CompCert is still not as fast as CLANG or GCC, but this gap is narrowing as more optimizations are verified and
included in CompCert. In the meantime, for high-performance settings, we use GCC at optimization level -O3 to
compile our C code.

To minimize the code base and the verification effort, we share as much code as possible between different prim-
itives and different architectures. For example, we share bignum arithmetic code between Poly1305, Curve25519,
and Ed25519. We also provide F* libraries that expose (and formally specify) modern hardware features such
as 128-bit integer arithmetic and vector instructions, which are supported by mainstream C compilers through
builtins and intrinsics. Using these libraries, we can build and verify efficient cryptographic implementations that
rely on these features. On platforms that do not support these features, we provide custom implementations for
these libraries, so that our compiled C code is still portable, albeit at reduced performance.

Our Contributions. We present a verified, self-contained, portable, reference cryptographic library that is
written in F* and compiled to C. All our code is verified to be memory safe, functionally correct, and side-channel
resistant. Our library includes the first verified vectorized implementation of a cryptographic primitive (ChaCha20),
the first verified implementations of SHA-512, and Ed25519, and includes new verified implementations of
Salsa20, Poly1305, SHA-256, HMAC, and Curve25519. Our code is roughly as fast as state-of-the-art pure-C
implementations of these primitives and is within a small factor of assembly code.

Our library is the first verified implementation of the full NaCl API and can be used as a drop-in replacement for
any application that uses Libsodium or TweetNaCl. Our code is already being used to implement TLS ciphersuites
in the miTLS project [20] and we are in discussions with Mozilla on including our code within the NSS library.
Our hope is that cryptographic software developers will be able to reuse our libraries and our methodology to
write verified code for new primitives and new optimized implementations of existing primitives.

Throughout the paper, we try to be precise in stating what we have proved about our code, but an early word
of caution: although formal verification can significantly improve our confidence in a cryptographic library,
any such guarantees rely on a large trusted computing base. The semantics of F* has been formalized [5] and
our translation to C has been proven to be correct on paper [19], but we still rely on the correctness of the F*
typechecker, the KreMLin compiler, and the C compiler (that is, if we use GCC instead of CompCert.) We hope to
reduce these trust assumptions over time by moving to verified F* [32] and only using CompCert. For now, we
choose the pragmatic path of relying on a few carefully designed tools and ensuring that the generated C code is
readable, so that it can be manually audited and tested.

Related Work. Formal verification has been successfully used on large security-critical software systems like
the CompCert C compiler [30] and the sel4 operating system kernel [29]. It has been used to prove the security of
cryptographic constructions like RSA-OAEP [9] and MAC-Encode-Encrypt [6]. It has even been used to verify a
full implementation of the Transport Layer Security (TLS) protocol [21]. However, until recently, formal methods
had not been applied to the cryptographic primitives underlying these constructions and protocols.

Recently, several works have taken on this challenge. Hawblitzel et al. [28] wrote and verified new imple-
mentations of SHA, HMAC, and RSA in the Dafny programming language. Appel [7] verified OpenSSL’s C
implementation of SHA-256 in Coq, and Behringer et al. [11] followed up with a proof of OpenSSL’s HMAC code.
Chen et al. [25] used a combination of SMT solving and the Coq proof assistant to verify a ghasm implementation
of Curve25519. Zinzindohoue et al. [36] wrote and verified three elliptic curves P-256, Curve25519, and Curve448
in the F* programming language and compiled them to OCaml. Bond et al. [23] show how to verify assembly
implementations of SHA-256, Poly1305, and AES-CBC. Cryptol and SAW [34] have been used to verify C and Java
implementations of Chacha20, Salsa20, Poly1305, AES, and ECDSA. Compared to these works, we use a different
methodology, by verifying code in F* and compiling it to C. Furthermore, unlike these prior works, our goal is to
build a self-contained cryptographic library, so we focus on a complete set of primitives and we aggressively
share code between them. Throughout the paper, we will compare our results with these works where relevant.

2 VERIFIED C CODE VIA F* AND KREMLIN

F* [5] is a programming language with support for program verification. Superficially, the language resembles ML
(OCaml, F#), but its sophisticated dependent type system allows the programmer to prove arbitrary properties
about their programs. Proofs are typically carried using a mixture of automatic proofs, via automated SMT solvers,
and manual proofs.

Bhargavan et al. [19] describe how a low-level subset of F* (dubbed Low®) can be efficiently compiled to C,
obviating the performance penalty of the general-purpose compilation scheme of F* to OCaml. We wrote our
HACL* library entirely in the Low™ subset of F* and rely on their KreMLin tool to generate a C library.

2.1 Embedding C into F*

F* enjoys a vast array of libraries and data structures, supporting a proof style that relies on high-level invariants
and a strong type system. In contrast, C programs tend to rely on low-level invariants, as the type system is not
strong enough to prove properties such as memory safety.

Our methodology blends the performance and control of C with the strong invariants and powerful proof
system of F*. To this end, we model several, carefully-chosen low-level C concepts in F*, and augment them with
pre- and post-conditions that allow the user to verify safety or security properties such as memory safety. Proofs
typically go beyond memory safety to cover functional correctness and side-channel resistance. After verification,
proofs are erased so that only the low-level code remains. In short, the code is low-level, but the verification is not.

We illustrate this style with the index function. Its three parameters are annotated with their types and
separated by arrows. The function is polymorphic over type a and takes b (of type buffer a) and n (of type
UInt32.t). The function returns the element of type a found at index n in b. Once translated to C, index b n
becomes b[n]. Modeling C array access in F* relies on several low-level concepts.

val index: #a:Type — b:buffer a — n:UInt32.t{v n < length b} —
Stack a (requires (A h — live h b)) (ensures (...))

First, we model the C memory layout in F*: Stack is an effect annotation that enforces, using our model, that
the function preserves the layout of the stack and does not allocate on the heap. That is, index does not grow
any of its callers’ frames, and leaves the stack layout unchanged after it returns. A function that exhibits such
behavior can be safely compiled to C.

Second, we model C arrays as buffers, a data structure whose length does not exist at runtime, but which we
track using the proof system. As such, the refinement on n (curly braces) states that n shall be within the bounds of
b. Furthermore, we track where buffers live. We use a pre-condition (requires) to make sure all callers prove that
the buffer b is live in the current memory h before index’ing it. If the programmer can prove that all memory
accesses are within the bounds of live buffers, their program enjoys memory safety; otherwise, their program is
rejected by F*.

Third, we model machine integers of fixed widths, and require that all casts across integer types be explicit.
This eliminates a common source of bugs, and forces the programmer to reason about overflow.

In short, we offer a curated subset of C tailored for our cryptographic code. By eliminating the need to reason
about: arbitrary pointer arithmetic, address-taking, preservation of type abstraction in the face of casts to char »,
we provide invariants for free, leaving the programmer to only focus on essential properties and proofs.

2.2 Reasoning about low-level code

Modeling machine integers. Our specifications and proofs may use mathematical, unbounded integers. Low-level
code, however, needs to reason about machine integers. We expose 8, 16, 32, 64 and 128-bit integers, and for each
operation, we offer overflow (wraparound) semantics as well as non-overflowing arithmetic. The former may
incur extra C casts to unsigned types (which the C standard guarantees to wraparound), while the latter requires
the programmer to prove that no overflow may occur.

Secure integers. Of particular interest are proofs of side-channel resistance by typing. HACL* is entirely verified
against a library of secure integers. These differ from regular integers in that their type is abstract, meaning the
programmer may only use our carefully chosen set of primitives to work with secure integers.

Specifically, we allow casts from integers to secure integers (but not the converse), and all arithmetic and
bitwise operations, except for division (/) and modulus (%) which are known not to be constant-time on most
modern platforms. We do allow multiplication, even though on some ARM and i386 platforms it is not guaranteed
to be constant-time. We leave it to future work to rule out multiplication and rewrite the algorithms using other

(slower) primitives. Finally, we do not expose an equality operator =, but instead expose the following secure
equality comparison.

val eq_mask: x:UInt32.t — y:UInt32.t —
Tot (z:UInt32.t{ if v x = v y then v z = Oxffffffff else vz = 0x0 })

The refinement on the return value z provides information usable within a proof, allowing the programmer to
show that their use of eq_mask indeed leads to a correct computation. However, the proofs are all removed at
compilation-time, meaning that the resulting C code contains no = operator.

Bhargavan et al. [19] model traces of F* programs by tracking branching and memory accesses, and assume
that the (trusted) few functions that operate on secret types produce traces that do not depend on the actual
secret values. Under these assumptions, Bhargavan et al. [19] show that if two programs differ only in their secret
values, then they execute while producing identical traces.

Our secret type is that of secure integers; we rule out non constant-time operations, meaning that we satisfy
the hypothesis above. By virtue of type abstraction, the programmer cannot branch on a secure integer, and
cannot use a secure integer as the index of an array access. It then follows that our methodology rules out this
class of side-channels.

Ghost code. The v function that appeared in eq_mask and index above has type UInt32.t — GTot nat. It allows
mapping a secure integer to its mathematical counterpart of type nat, that is, unbounded natural numbers. The
GTot (“ghost”) indicates that such a function may only be used for proofs, not in executable code.

This is an instance of a more general pattern, wherein we reflect stateful, low-level concepts at the proof level
using their pure, functional counterparts. For instance, we reflect buffers using sequences that model the values
pointed to by the buffer. Consider the upd function below, which modifies buffer b to store value z at index n. It
relates the buffer in its input state h0 to the buffer in its output state h1 using a combination of Seq.upd (which
returns a fresh, updated sequence) and as_seq (the ghost view of a buffer as a sequence).

val upd: #a:Type — b:buffer a — n:UInt32.t — z:a — Stack unit
(requires (A h — live h b A v n < length b))
(ensures (A h0 _h1 — ...
A as_seq h1b == Seq.upd (as_seq h0 b) (v n) z))

Relating pure specifications to low-level code. We generalize this pattern when showing the functional correctness
of our algorithms. In HACL*, each primitive is equipped with a reference specification written in a concise,
high-level functional style. The specification typically operates on sequences, that is, garbage-collected, pure data
structures that come with no memory safety obligations. As such, the code does not compile to C, but is much
leaner and can be manually checked against the RFC standard. For maximal assurance, we also extract these
reference specifications to OCaml and run them against the RFC test vectors. Then, no matter how convoluted
the actual low-level implementation is, its post-condition ensures that it computes the same result as the concise
high-level specification. For example, our Chacha20 implementation is verified against the following type:

val chacha20: output:buffer UInt8.t —
plain:buffer UInt8.t — key:buffer Ulnt8.t — ... —
Stack unit (ensures (A h0 _h1 —
as_seq h1 output = RFC.chacha20 (as_seq h0 plain) (as_seq ho key) ...))

2.3 Extracting to C

If a program verifies against the low-level memory model and libraries; if, after erasing all the proofs, it only
contains low-level code (i.e. no closures, recursive data types, or implicit allocations); then it fits in the Low*
subset and may be translated to C.

The translation scheme [19] preserves semantics. This means that if a program is proven to compute the right
result in F*, then the resulting C library enjoys the same guarantees. Furthermore, the translation also preserves
event traces all the way to CompCert’s Clight; this means our side-channel resistance properties granted by our
secure integer type also carry all the way down to C.

For maximal assurance, one may want to use enhanced versions of CompCert [8] to check that the resulting
assembly does not introduce side-channels; for maximal performance, one can always rely on commercial
compilers.

The extraction to C is handled by a separate tool, dubbed KreMLin [19]. It rewrites the F* program from an
expression language to a statement language, performing numerous optimizations and rewritings in passing.
In particular, KreMLin can recombine modular proofs spread out across several F* modules and functions into
a single C translation unit and a single C function, to enable many intra-translation unit and intra-procedural
analyses.

KreMLin puts a strong emphasis on readability, preserving names, and generating idiomatic, pretty-printed
code, meaning that the end result is a readable C library that can be audited before being integrated into an
existing codebase.

3 CONFORMANCE WITH EXECUTABLE STANDARDS-BASED SPECIFICATIONS

To aid interoperability between different implementations, popular cryptographic algorithms are precisely
documented in public standards, such as NIST publications and IETF Request for Comments (RFCs). For example,
the SHA-2 family of hash algorithms was standardized by NIST in FIPS 180-4 [35], which specifies four algorithms
of different digest lengths: SHA-224, SHA-256, SHA-384, and SHA-512. For each variant, the standard describes,
using text and pseudocode, the shuffle computations that must be performed on each block of input, and how to
chain them into the final hash.

For hash functions such as SHA-256 and encryption functions like ChaCha20 and AES, our verification goal is
to show that our implementation conforms to the computational specification in the standard. This section shows
how we structure these conformance proofs. In later sections, we will see how to go further; for polynomial
constructions like Poly1305, and elliptic curve operations like Curve25519 and Ed25519, we will show how to
link the field arithmetic to a high-level mathematical specification.

3.1 An F* specification of SHA256

Based on the 25-page textual specification in NIST FIPS 180-4, we derive a 70 line F* specification for SHA-256.
(The spec for SHA-512 is very similar.) The specification is a series of pure, total functions, that do not require
reasoning about memory or state. They are thus concise and readable. The specification culminates in the top-level
hash function that takes a input bytearray (of type seq byte) of length < 2°! bytes and computes its 32-byte
SHA-256 hash. This function breaks the input byte array into 64-byte blocks and shuffles each block before
mixing it into the global hash. The F* specification for this core shuffle function is shown in Figure 1.

Each block processed by shuffle is represented as a sequence of 16 32-bit integers (uint32x16), and the interme-
diate hash value is represented as a sequence of 8 32-bit integers (uint32x8). The functions _Ch, _Maj, _Sigma0,
_Sigmal, _sigma0, and _sigmal represent specific operations on 32-bit integers taken directly from the FIPS spec.
The constants k and h_0 are sequences of 32-bit integers. The function ws is the message scheduler, it takes a
block and an index and returns the next 32-bit integer to be scheduled. The shuffle_core function performs one

let uint32x8 = b:seq UlInt32.t{length b = 8}
let uint32x16 = b:seq UInt32.t{length b = 16}
let uint32x64 = b:seq UInt32.t{length b = 64}

let _Chxyz=(x&"y)"" ((lognot x) &" z)
let_Majxyz=(x&"y) " (x&" z) "* (y &" z))

let _Sigma0 x = (x >>>" 2ul) ** ((x >>>" 13ul) ** (x >>>" 22ul))
let _Sigmal x = (x >>>" 6ul) "* ((x >>>" 11ul) " (x >>>" 25ul))
let _sigma0 x = (x >>>" 7ul) ** ((x >>>" 18ul) "* (x >>" 3ul))
let _sigmalx = (x >>>" 17ul) ** ((x >>>" 19ul) "* (x >>" 10ul))

let k : uint32x64 = createL [0x428a2f98ul; 0x71374491ul; ...] // Constants
let h_0 : uint32x8 = createl [0x6a09e667ul; 0xbb67ae85ul; ...] // Constants

let rec ws (b:uint32x16) (t:natft < 64}) =
if t < 16 then b.[t]
else
let t16 = ws b (t — 16) in
let t15 =ws b (t — 15) in
lett7=wsb (t—7)in
lett2=wsb (t—2)in
let s1=_sigmalt2in
let sO = _sigma0 t15 in
(s1+%" (t7 +%" (sO +%" t16)))

let shuffle_core (block:uint32x16) (hash:uint32x8) (t:nat{t < 64}) : Tot uint32x8 =
let a = hash.[0] in let b = hash.[1] in
let ¢ = hash.[2] in let d = hash.[3] in
let e = hash.[4] in let f = hash.[5] in
let g = hash.[6] in let h = hash.[7] in
let t1=h +%" (_Sigmale) +%" (_Chefg) +%" k.[t] +%" ws block t in
let t2 = (_Sigma0 a) +%" (_Majab c) in
create_8 (t1+%" t2)abc(d +%" tl)efg

let shuffle (hash:uint32x8) (block:uint32x16) =
repeat_range_spec 0 64 (shuffle_core block) hash

Fig. 1. F* specification of the SHA-256 block shuffle.
Operators suffixed by * are over 32-bit unsigned integers: >>>" is right-rotate; >>" is right-shift; &" is bitwise AND; *" is
bitwise XOR; lognot is bitwise NOT; +%" is modular addition. Unsuffixed operators (<,—, +) are over mathematical integers.

iteration of the SHA-256 block shuffle: it takes a block, an intermediate hash, and loop counter, and returns the
next intermediate hash. Finally, the shuffle function takes an input hash value and iterates shuffle_core 64 times
over a block to produce a new hash value. This function is chained over a sequence of blocks to produce the full
SHA-256 hash.

Our F* specification for SHA-256 serves several purposes. It is a precise and concise documentation of the
SHA-256 function that is meant to be readable and auditable by experts; arguably, it is easier to understand
for programmers than the NIST standard. Furthermore, it is an executable specification: we can compile it to
an OCaml program and run it on various test vectors to further validate that we got the specification right.
Most importantly, it serves as the functional specification for our stateful SHA-256 implementation. Note that
during the development of this specification we noticed that the usual test vectors can lack specific input sizes
(e.g. 55bytes) that would help in catching certain padding mistakes for example. Consequently, it is important

let uint32_p = buffer Hacl.UInt32.t
val shulffle:
hash_w :uint32_p {length hash_w = 8} —
block_w:uint32_p {length block_w = 16} —
ws_w :uint32_p {length ws_w = 64} —
k_w :uint32_p {length k_w = 64} —
Stack unit
(requires (A h — live h hash_w A live h ws_w A live h k_w A live h block_w A
h.[k_w] == Spec.k A
(V (i:nat). i < 64 = Seq.index h.[ws_w] i == Spec.ws h.[block_w] i)))
(ensures (A h0 r h1 — modifies_1 hash_w h0 h1 A
h1.[hash_w] == Spec.shuffle h0.[hash_w] ho.[block_w]))

Fig. 2. Low™type of the SHA-256 shuffle function

for the specification to be carefully audited; any mistake in the specification will irremediably appear in the
implementation. The F* pure specification is itself only verified for totality and internal consistency; that is, every
function must terminate and must respect the preconditions of the F* libraries (e.g. all bytearrays accesses must
be within bounds).

3.2 A Low*reference implementation

We write a stateful implementation of SHA-256 in Low” by essentially adapting the F* specification function by
function, and providing memory safety proofs wherever needed. Blocks are treated as read-only buffers (arrays)
of 16 32-bit unsigned integers, whereas the intermediate hash value is a mutable buffer that is modified in-place
by shuffle. Other than this standard transformation from a functional state-passing specification to a stateful
imperative programming style, the implementation incorporates two new features.

First, we precompute the scheduling function ws for each block and store its results in a block-sized buffer.
This yields a far more efficient implementation than the naive recursive function in the high-level specification.
Second, in addition to the one-shot hash function hash, which is suitable for scenarios where the full input is
given in a single buffer, we implement an incremental interface where the application can provide the input
in several chunks. Such incremental APIs are commonly provided by cryptographic libraries like OpenSSL but
are not specified in the NIST standard. Our correctness specification of this API requires the implementation to
maintain ghost (proof-only, see §2.2) state that remembers the input that has already been hashed. This extra
state is erased during compilation and is only used for verifying the correctness of our source code.

Figure 2 displays the type of our Low™ implementation of the shuffle function. This type represents the
verification goal (or theorem) for our code. The function takes as its arguments four buffers: hash_w contains
the intermediate hash, block_w contains the current block, ws_w contains the precomputed schedule, k_w
contains the k-constant from the SHA-256 specification. The expected length of each of these buffers is stated as
a pre-condition. The function is given the Stack effect we mentioned earlier (§2.2).

The first line of the requires clause states as a pre-condition that all the input buffers must be live, that is,
they must be valid initialized pointers in the current memory. The second line states that, when the function is
called, the ks_w buffer must contain exactly the integer sequence specified in Spec.k. The third line states that
the contents of the ws_w buffer must be exactly equal to the results of the Spec.ws function for the current block;
that is, it contains the precomputed schedule.

The first line of the ensures clause states as a post-condition that the function only modifies the intermediate
hash value hash_w; all other buffers remain unchanged. The second line states that the new contents of the

static void
SHA2_256_shuffle(uint32_t «hash, uint32_t «block, uint32_t =ws, uint32_t k)
{
for (uint32_t i = (uint32_t)0; i < (uint32_t)64; i = i + (uint32_t)1)
{
uint32_t a = hash[0]; uint32_t b = hash[1];
uint32_t ¢ = hash[2]; uint32_t d = hash[3];
uint32_t e = hash[4]; uint32_t f1 = hash[5];
uint32_t g = hash[6]; uint32_t h = hash[7];
uint32_t tmp1 = k[i]; uint32_t tmp3 = ws[i];
uint32_t tmp2 = h + ((e >> (uint32_t)6 | e << (uint32_t)32 — (uint32_t)6)
* (e >> (uint32_t)11 | e << (uint32_t)32 — (uint32_t)11)
* (e >> (uint32_t)25 | e << (uint32_t)32 — (uint32_t)25))
+(e&f1" —e&g)+tmpl;
uint32_t t1=tmp2 + tmp3;
uint32_t t2 = ((a >> (uint32_t)2 | a << (uint32_t)32 — (uint32_t)2)
* (a >> (uint32_t)13 | a << (uint32_t)32 — (uint32_t)13)
* (a >> (uint32_t)22 | a << (uint32_t)32 — (uint32_t)22))
+(@&bra&c*b&c)
uint32_t x1 =11+ t2;
uint32_tx5=d + t1;
uint32_t »p1 = hash;
uint32_t «p2 = hash + (uint32_t)4;
p1[0] = x1; p1[1] = a; p1[2] = b; p1[3] = ¢c;
p2[0] = x5; p2[1] = e; p2[2] = f1; p2[3] = g;

Fig. 3. Extracted C shuffle function

hash_w buffer must be exactly the result of the Spec.shuffle function applied to the old hash_w and the current
block_w, hence tying the specification to the implementation.

Verifying (typechecking) our code against this type in F* establishes our main verification guarantees for the
shuffle function:

Memory Safety F* checks that the function can safely read from the input buffers since they are live. It
checks that the function at most modifies hash_w, and that it only reads and writes buffers within their
declared bounds.

Functional Correctness F* verifies that if shuffle is given the right constants k_w and the right precom-
puted schedule ws_w, it will compute the right Spec.shuffle function.

Side-channel Resistance The blocks read by the implementation consist of abstract HACL integers
(Hacl.UInt32.t), so that F* ensures that shuffle cannot inspect their concrete values, branch on them, or
use them as indexes into memory.

3.3 Generating correct, auditable C code

After verification, we generate C code from our Low* implementation. Figure 3 depicts the compiled code for
shuffle. Our Low™ source code is broken into many small functions, in order to improve readability, enable
modularity and code sharing, and to reduce the complexity of each proof. Consequently, the default translation of
this code into C would result in a series of small C functions, which can be overly verbose and may hurt runtime
performance with some compilers like CompCert.

To allow better control over the generated code, the KreMLin compiler can be directed (via program annotations)
to inline certain functions and unroll certain loops, in order to obtain C code that is idiomatic and readable.
The shuffle function illustrates this mechanism: the _Ch, _Maj, _Sigma0, _Sigma1, and shuffle_core functions
are inlined into shuffle, yielding a compact C function that we believe is readable and auditable. Furthermore,
as we show in Section 8, the performance of our generated C code for SHA-256 (and SHA-512) are as fast as
state-of-the-art C implementations in OpenSSL and libsodium.

3.4 Comparison with prior work

Implementations of SHA-256 have been previously verified using a variety of tools and techniques. The approach
most closely-related to ours is that of Appel [7], who verified a C implementation adapted from OpenSSL using
the VST toolkit. We do not operate pre-existing C code directly but instead generate the C code from our own
high-level proofs and implementations. Appel wrote a high-level specification in Coq and an executable functional
specification (similar to ours) in Coq; we only needed a single specification. He then manually proved memory
safety and functional correctness (but not side-channel resistance) for his code using the Coq interactive theorem
prover. His proof takes about 9000 lines of Coq. Our total specs + code + proofs for SHA-256 amount to 708 lines
of F* code, and our proofs are partially automated by F* and the Z3 SMT solver.

Other prior work includes SAW [34], which uses symbolic equivalence checking to verify C code for HMAC-
SHA-256 against a compact spec written in Cryptol. The proof is highly-automated. Vale [23] has been used to
verify X86 assembly code for SHA-256 using Dafny. The verification effort of our approach is comparable to
these works, but these efforts have the advantage of being able to tackle legacy hand-optimized code, whereas
we focus on synthesizing efficient C code from our own implementations.

4 VERIFYING HIGH-PERFORMANCE VECTORIZED IMPLEMENTATIONS

In the previous section, we saw how we can implement cryptographic primitives in Low*by closely following their
high-level F* specification. By including a few straight-forward optimizations, we can already generate C code
that is as fast as hand-written C reference implementations for these primitives. However, the record-breaking
state-of-the-art assembly implementations for these primitives can be several times faster than such naive C
implementations, primarily because they rely on modern hardware features that are not available on all platforms
and are hence not part of standard portable C. In particular, the fastest implementations of all the primitives
considered in this paper make use of vector instructions that are available on modern Intel and ARM platforms.

Intel architectures have supported 128-bit registers since 1999, and, through a series of instruction sets (SSE,
SSE2, SSSE3, AVX, AVX2, AVX512), have provided more and more sophisticated instructions to perform on 128,
256, and now 512-bit registers, treated as vectors of 8, 16, 32, or 64-bit integers. ARM recently introduced the
NEON instruction set in 2009 that provides 128-bit vector operations. So, on platforms that support 128-bit
vectors, a single vector instruction can add 4 32-bit integers using a special vector processing unit. This does not
strictly translate to a 4x speedup, since vector units have their own overheads, but can significantly boost the
speed of programs that exhibit single-instruction multiple-data (SIMD) parallelism.

Many modern cryptographic primitives are specifically designed to take advantage of vectorization. However,
making good use of vector instructions often requires restructuring the sequential implementation to expose the
inherent parallelism and to avoid operations that are unavailable or expensive on specific vector architectures.
Consequently, the vectorized code is no longer a straightforward adaptation of the high-level specification and
needs new verification. In this section, we develop a verified vectorized implementation of ChaCha20 in Low™
Notably, we show how to verify vectorized C code by relying on vector libraries provided as compiler builtins and
intrinsics. We do not need to rely on or verify assembly code. We believe this is the first verified vectorized code
for any cryptographic primitive and shows the way forward for verifying other record-breaking cryptographic
implementations.

val uint32x4: Type0
val v: uint32x4 — GTot (s:seq Ulnt32.t){length s = 4}
val load32x4: x0:UInt32.t — x1:UInt32.t — x2:UInt32.t — x3:UInt32.t —
Tot (r:uint32x4{v r = createL [x0;x1;x2;x3]})
val (+%"): x:uint32x4 — y:uint32x4 —
Tot (r:uint32x4{v r = map2 UInt32.(+%")) (v x) (v y)}
let ("*) : x:uint32x4 — y:uint32x4 —
Tot (r:uint32x4{v r = map2 UInt32.(*")) (v x) (v y)}
let (<<<): s:uint32x4 — n:UInt32.t{UInt32.v n < 32} —
Tot (r:uint32x4{v r = map (A x — x UInt32.((<<<)) n) (v s)})
val shuffle_right: s:uint32x4 — n:UInt32{v r < 4} —
Tot (r:uint32x4{if v n == 1 then createL [s.[3];s.[0];s.[1];s.[2]]
else if vn == 2 then ...})

Fig. 4. (Partial) F* Interface for 128-bit vectors interpreted as 4 32-bit unsigned integers.

Operations written Ulnt32.(op) refer to the op operation over Ulnt32.t. The higher-order map function applies a unary
function to every element of a sequence and returns the resulting sequence; map2 applies a binary function point-wise to
two sequences.

typedef unsigned int uint32x4 __attribute__ ((vector_size (16)));
uint32x4 load32x4(uint32_t x1, uint32_t x2, uint32_t x3, uint32_t x4){
return ((uint32x4) _mm_set_epi32(x4,x3,x2,x1));
}
uint32x4 shuffle_right(uint32x4 x, unsigned int n) {
return ((uint32x4) _mm_shuffle_epi32((__m128i)x,
_MM_SHUFFLE((3+n)%4,(2+n)%4,(1+n)%4,n%4)));
}
uint32x4 uint32x4_addmod(uint32x4 x, uint32x4 y) {

return ((uint32x4) _mm_add_epi32((__m128i)x,(__m128i)y);

}

Fig. 5. (Partial) GCC library for 128-bit vectors using Intel SSE3 intrinsics: (https://software.intel.com/sites/landingpage/
IntrinsicsGuide/)

4.1 Modeling Vectors in F*

In F*, the underlying machine model is represented by a set of trusted library interfaces that are given precise
specifications, but which are implemented at runtime by hardware or system libraries. For example, machine
integers are represented by a standard library interface that formally interprets integer types like UInt32.t and
primitive operations on them to the corresponding operations on mathematical integers int. When compiling to
C, KreMLin translates these operations to native integer operations in C. However, F* programmers are free to
add new libraries or modify existing libraries to better reflect their assumptions on the underlying hardware. For
C compilation to succeed, they must then provide a Low™* or C implementation that meets this interface.

We follow the same approach to model vectors in HACL* as a new kind of machine integer interface. Like
integers, vectors are pure values. Their natural representation is a sequence of integers. For example, Figure 4
shows a fragment of our F* interface for 128-bit vectors, represented as an abstract type uint32x4. Each vector
can be interpreted, via the v function, as a sequence of four 32-bit unsigned integers. (More generally, such
vectors can be a