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HACL∗ is a new verified cryptographic library that implements popular modern cryptographic primitives such as the
ChaCha20 and Salsa20 encryption algorithms, Poly1305 and HMAC authentication, SHA-256 and SHA-512 hash functions,
the Curve25519 elliptic curve Diffie-Hellman group, and Ed25519 signatures. Using these primitives, HACL∗ implements the
NaCl cryptographic API and can be used as a drop-in replacement for NaCl implementations like libsodium and TweetNaCl.
HACL∗ also provides the cryptographic components for one of the mandatory ciphersuites of TLS 1.3, and is already being
used within the miTLS verified implementation.

HACL∗ is written and verified in the F∗ programming language and then compiled to readable C code. The F∗ source
code is verified for side-channel mitigations, memory safety, and functional correctness with respect to succinct high-level
specifications derived from the standard specification for each cryptographic primitive. The translation to C preserves these
properties and the generated code can itself be compiled via the CompCert verified C compiler or mainstream compilers like
GCC or CLANG.

When compiled with GCC on 64-bit platforms, our implementations are as fast as the fastest C implementations in
OpenSSL and libsodium, significantly faster than the reference C code in TweetNaCl and SuperCop, and between 3x-5x of
hand-optimized assembly code. We show how to verify code that relies on low-level hardware features like 128-bit integers
and vector instructions. A distinctive feature of HACL∗ is that we aggressively try to share code and verification effort across
primitives, while preserving performance. Our results show that writing fast, verified, and self-contained C cryptographic
libraries is now practical.

1 THE NEED FOR VERIFIED CRYPTO
Cryptographic libraries lie at the heart of the trusted computing base of the Internet, and consequently, they are
held to a higher standard of correctness, robustness, and security than the applications that use them. Even minor
bugs in cryptographic code typically result in CVEs and software updates. For instance, since 2016, OpenSSL
has issued 11 CVEs for bugs in its core cryptographic primitives, including 6 memory safety errors, 3 side
channels leaks, and 2 incorrect bignum computations.1 Such flaws may seem difficult to exploit at first, but as
Brumley et al. [24] demonstrate, even an innocuous looking arithmetic bug hiding deep inside an elliptic curve
implementation may allow an attacker to efficiently retrieve a victim’s long-term private key.

Bugs in cryptographic code have historically been found by a combination of manual inspection, testing, and
fuzzing, on a best-effort basis. Rather than finding and fixing bugs one-by-one, we join Brumley et al. and a line
of recent work [7, 11, 25, 28, 36] to advocate the use of formal verification to mathematically prove the absence of
entire classes of potential bugs. In this paper, we will show how to implement a cryptographic library and prove
that it is memory safe and functionally correct with respect to its published specification. Our goal is to write
verified code that is as fast as state-of-the-art C implementations, while implementing standard countermeasures
to side-channel attacks.
AModern Cryptographic Library. A key design question for a high-assurance cryptographic library is which
primitives to include and what platforms to support. The more code we include, the more we have to verify,
and their proofs can take considerable time and effort. Mixing verified and unverified primitives in a single
1https://www.openssl.org/news/vulnerabilities.html
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library is dangerous, since simple memory-safety bugs in unverified code can completely break the correctness
guarantees of verified code. General-purpose libraries like OpenSSL implement a notoriously large number of
primitives, totaling hundreds of thousands of lines of code, making it infeasible to verify the full library. In
contrast, minimalist libraries such as NaCl [16] support a few carefully chosen primitives and hence are better
verification targets. For example, TweetNaCl [18], a portable C implementation of NaCl is fully implemented in
700 lines of code.

For our library, we choose to implement popular modern algorithms that are used both in NaCl and in protocols
like Transport Layer Security (TLS) 1.3: the ChaCha20 and Salsa20 stream ciphers [1, 14], the SHA-2 family of hash
functions [35], the Poly1305 [1, 12] and HMAC [26] message authentication codes, the Curve25519 elliptic curve
Diffie-Hellman group [2, 13], and the ED25519 elliptic curve signature scheme [3, 15]. By restricting ourselves
to these primitives, we obtain a compact verified library of about 7000 lines of C code. Our library provides
the full NaCl API that is designed for ease-of-use by application developers. It also provides a TLS-specific API
that can be used by libraries like OpenSSL and NSS. In particular, our library is being used as the basis for the
cryptographic proofs in miTLS, a verified TLS implementation [20].
Verification vs. Optimization. TweetNaCl sacrifices performance in order to be small and portable, and is
about 10 times slower than other NaCl libraries that include code that is optimized for specific architectures.
For example, Libsodium includes three versions of Curve25519, two C implementations—tailored for 32-bit and
64-bit platforms—and a vectorized assembly implementation for SIMD architectures. All three implementations
contain their own custom bignum libraries for field arithmetic. Libsodium also includes three C implementations
of Poly1305, again each with its own bignum code. In order to verify a library like Libsodium, we would need to
account for all these independent implementations. To make verification tractable, we focus on implementing and
verifying a single implementation for each primitive that is optimized for commonly-used 64-bit Intel platforms,
but also runs (more slowly) on all other 32-bit and 64-bit devices. Furthermore, we share verified bignum code
between Poly1305, Curve25519, and Ed25519.

Prior work on verifying cryptographic code has explored various strategies. Some authors verify hand-written
assembly code optimized for specific architectures [25]; others verify portable C code that can be run on any
platform [7, 11]; still others verify new implementations written in high-level languages [28, 36]. The trade-off is
that as we move to more generic, higher-level code, verification gets easier but at a significant cost to performance.
In this paper, we attempt to strike a balance between these approaches by verifying cryptographic algorithms in
a high-level language and then compiling it to efficient C code.
Our Approach. We take state-of-the-art optimized C implementations and we adapt and reimplement them in
F* [33] a dependently-typed programming language that supports semi-automated verification by relying on
an external SMT solver. Our code is compiled to C via the KreMLin tool [19]. The resulting C code can then
be compiled using the CompCert compiler [30] which results in verified machine code. Code compiled from
CompCert is still not as fast as CLANG or GCC, but this gap is narrowing as more optimizations are verified and
included in CompCert. In the meantime, for high-performance settings, we use GCC at optimization level -O3 to
compile our C code.

To minimize the code base and the verification effort, we share as much code as possible between different prim-
itives and different architectures. For example, we share bignum arithmetic code between Poly1305, Curve25519,
and Ed25519. We also provide F∗ libraries that expose (and formally specify) modern hardware features such
as 128-bit integer arithmetic and vector instructions, which are supported by mainstream C compilers through
builtins and intrinsics. Using these libraries, we can build and verify efficient cryptographic implementations that
rely on these features. On platforms that do not support these features, we provide custom implementations for
these libraries, so that our compiled C code is still portable, albeit at reduced performance.



Our Contributions. We present a verified, self-contained, portable, reference cryptographic library that is
written in F∗ and compiled to C. All our code is verified to be memory safe, functionally correct, and side-channel
resistant. Our library includes the first verified vectorized implementation of a cryptographic primitive (ChaCha20),
the first verified implementations of SHA-512, and Ed25519, and includes new verified implementations of
Salsa20, Poly1305, SHA-256, HMAC, and Curve25519. Our code is roughly as fast as state-of-the-art pure-C
implementations of these primitives and is within a small factor of assembly code.

Our library is the first verified implementation of the full NaCl API and can be used as a drop-in replacement for
any application that uses Libsodium or TweetNaCl. Our code is already being used to implement TLS ciphersuites
in the miTLS project [20] and we are in discussions with Mozilla on including our code within the NSS library.
Our hope is that cryptographic software developers will be able to reuse our libraries and our methodology to
write verified code for new primitives and new optimized implementations of existing primitives.

Throughout the paper, we try to be precise in stating what we have proved about our code, but an early word
of caution: although formal verification can significantly improve our confidence in a cryptographic library,
any such guarantees rely on a large trusted computing base. The semantics of F* has been formalized [5] and
our translation to C has been proven to be correct on paper [19], but we still rely on the correctness of the F*
typechecker, the KreMLin compiler, and the C compiler (that is, if we use GCC instead of CompCert.) We hope to
reduce these trust assumptions over time by moving to verified F∗ [32] and only using CompCert. For now, we
choose the pragmatic path of relying on a few carefully designed tools and ensuring that the generated C code is
readable, so that it can be manually audited and tested.
Related Work. Formal verification has been successfully used on large security-critical software systems like
the CompCert C compiler [30] and the sel4 operating system kernel [29]. It has been used to prove the security of
cryptographic constructions like RSA-OAEP [9] and MAC-Encode-Encrypt [6]. It has even been used to verify a
full implementation of the Transport Layer Security (TLS) protocol [21]. However, until recently, formal methods
had not been applied to the cryptographic primitives underlying these constructions and protocols.
Recently, several works have taken on this challenge. Hawblitzel et al. [28] wrote and verified new imple-

mentations of SHA, HMAC, and RSA in the Dafny programming language. Appel [7] verified OpenSSL’s C
implementation of SHA-256 in Coq, and Behringer et al. [11] followed up with a proof of OpenSSL’s HMAC code.
Chen et al. [25] used a combination of SMT solving and the Coq proof assistant to verify a qhasm implementation
of Curve25519. Zinzindohoue et al. [36] wrote and verified three elliptic curves P-256, Curve25519, and Curve448
in the F* programming language and compiled them to OCaml. Bond et al. [23] show how to verify assembly
implementations of SHA-256, Poly1305, and AES-CBC. Cryptol and SAW [34] have been used to verify C and Java
implementations of Chacha20, Salsa20, Poly1305, AES, and ECDSA. Compared to these works, we use a different
methodology, by verifying code in F∗ and compiling it to C. Furthermore, unlike these prior works, our goal is to
build a self-contained cryptographic library, so we focus on a complete set of primitives and we aggressively
share code between them. Throughout the paper, we will compare our results with these works where relevant.

2 VERIFIED C CODE VIA F∗ AND KREMLIN
F∗ [5] is a programming language with support for program verification. Superficially, the language resembles ML
(OCaml, F#), but its sophisticated dependent type system allows the programmer to prove arbitrary properties
about their programs. Proofs are typically carried using a mixture of automatic proofs, via automated SMT solvers,
and manual proofs.
Bhargavan et al. [19] describe how a low-level subset of F∗ (dubbed Low∗) can be efficiently compiled to C,

obviating the performance penalty of the general-purpose compilation scheme of F∗ to OCaml. We wrote our
HACL∗ library entirely in the Low∗ subset of F∗ and rely on their KreMLin tool to generate a C library.



2.1 Embedding C into F∗

F∗ enjoys a vast array of libraries and data structures, supporting a proof style that relies on high-level invariants
and a strong type system. In contrast, C programs tend to rely on low-level invariants, as the type system is not
strong enough to prove properties such as memory safety.
Our methodology blends the performance and control of C with the strong invariants and powerful proof

system of F∗. To this end, we model several, carefully-chosen low-level C concepts in F∗, and augment them with
pre- and post-conditions that allow the user to verify safety or security properties such as memory safety. Proofs
typically go beyond memory safety to cover functional correctness and side-channel resistance. After verification,
proofs are erased so that only the low-level code remains. In short, the code is low-level, but the verification is not.
We illustrate this style with the index function. Its three parameters are annotated with their types and

separated by arrows. The function is polymorphic over type a and takes b (of type buffer a) and n (of type
UInt32.t). The function returns the element of type a found at index n in b. Once translated to C, index b n
becomes b[n]. Modeling C array access in F∗ relies on several low-level concepts.

val index: #a:Type→ b:buffer a→ n:UInt32.t{v n < length b}→
Stack a (requires (λ h→ live h b)) (ensures (...))

First, we model the C memory layout in F∗: Stack is an effect annotation that enforces, using our model, that
the function preserves the layout of the stack and does not allocate on the heap. That is, index does not grow
any of its callers’ frames, and leaves the stack layout unchanged after it returns. A function that exhibits such
behavior can be safely compiled to C.
Second, we model C arrays as buffers, a data structure whose length does not exist at runtime, but which we

track using the proof system. As such, the refinement on n (curly braces) states that n shall be within the bounds of
b. Furthermore, we track where buffers live. We use a pre-condition (requires) to make sure all callers prove that
the buffer b is live in the current memory h before index’ing it. If the programmer can prove that all memory
accesses are within the bounds of live buffers, their program enjoys memory safety; otherwise, their program is
rejected by F∗.
Third, we model machine integers of fixed widths, and require that all casts across integer types be explicit.

This eliminates a common source of bugs, and forces the programmer to reason about overflow.
In short, we offer a curated subset of C tailored for our cryptographic code. By eliminating the need to reason

about: arbitrary pointer arithmetic, address-taking, preservation of type abstraction in the face of casts to char ∗,
we provide invariants for free, leaving the programmer to only focus on essential properties and proofs.

2.2 Reasoning about low-level code
Modeling machine integers. Our specifications and proofs may use mathematical, unbounded integers. Low-level

code, however, needs to reason about machine integers. We expose 8, 16, 32, 64 and 128-bit integers, and for each
operation, we offer overflow (wraparound) semantics as well as non-overflowing arithmetic. The former may
incur extra C casts to unsigned types (which the C standard guarantees to wraparound), while the latter requires
the programmer to prove that no overflow may occur.

Secure integers. Of particular interest are proofs of side-channel resistance by typing. HACL∗ is entirely verified
against a library of secure integers. These differ from regular integers in that their type is abstract, meaning the
programmer may only use our carefully chosen set of primitives to work with secure integers.
Specifically, we allow casts from integers to secure integers (but not the converse), and all arithmetic and

bitwise operations, except for division (/) and modulus (%) which are known not to be constant-time on most
modern platforms. We do allow multiplication, even though on some ARM and i386 platforms it is not guaranteed
to be constant-time. We leave it to future work to rule out multiplication and rewrite the algorithms using other



(slower) primitives. Finally, we do not expose an equality operator =, but instead expose the following secure
equality comparison.

val eq_mask: x:UInt32.t→ y:UInt32.t→
Tot (z:UInt32.t{ if v x = v y then v z = 0xffffffff else v z = 0x0 })

The refinement on the return value z provides information usable within a proof, allowing the programmer to
show that their use of eq_mask indeed leads to a correct computation. However, the proofs are all removed at
compilation-time, meaning that the resulting C code contains no = operator.
Bhargavan et al. [19] model traces of F∗ programs by tracking branching and memory accesses, and assume

that the (trusted) few functions that operate on secret types produce traces that do not depend on the actual
secret values. Under these assumptions, Bhargavan et al. [19] show that if two programs differ only in their secret
values, then they execute while producing identical traces.

Our secret type is that of secure integers; we rule out non constant-time operations, meaning that we satisfy
the hypothesis above. By virtue of type abstraction, the programmer cannot branch on a secure integer, and
cannot use a secure integer as the index of an array access. It then follows that our methodology rules out this
class of side-channels.

Ghost code. The v function that appeared in eq_mask and index above has type UInt32.t→GTot nat. It allows
mapping a secure integer to its mathematical counterpart of type nat, that is, unbounded natural numbers. The
GTot (“ghost”) indicates that such a function may only be used for proofs, not in executable code.

This is an instance of a more general pattern, wherein we reflect stateful, low-level concepts at the proof level
using their pure, functional counterparts. For instance, we reflect buffers using sequences that model the values
pointed to by the buffer. Consider the upd function below, which modifies buffer b to store value z at index n. It
relates the buffer in its input state h0 to the buffer in its output state h1 using a combination of Seq.upd (which
returns a fresh, updated sequence) and as_seq (the ghost view of a buffer as a sequence).

val upd: #a:Type→ b:buffer a→ n:UInt32.t→ z:a→ Stack unit
(requires (λ h→ live h b ∧ v n < length b))
(ensures (λ h0 _h1→ ...
∧ as_seq h1 b == Seq.upd (as_seq h0 b) (v n) z))

Relating pure specifications to low-level code. We generalize this pattern when showing the functional correctness
of our algorithms. In HACL∗, each primitive is equipped with a reference specification written in a concise,
high-level functional style. The specification typically operates on sequences, that is, garbage-collected, pure data
structures that come with no memory safety obligations. As such, the code does not compile to C, but is much
leaner and can be manually checked against the RFC standard. For maximal assurance, we also extract these
reference specifications to OCaml and run them against the RFC test vectors. Then, no matter how convoluted
the actual low-level implementation is, its post-condition ensures that it computes the same result as the concise
high-level specification. For example, our Chacha20 implementation is verified against the following type:

val chacha20: output:buffer UInt8.t→
plain:buffer UInt8.t→ key:buffer UInt8.t→ ...→
Stack unit (ensures (λ h0 _h1→
as_seq h1 output = RFC.chacha20 (as_seq h0 plain) (as_seq h0 key) ...))



2.3 Extracting to C
If a program verifies against the low-level memory model and libraries; if, after erasing all the proofs, it only
contains low-level code (i.e. no closures, recursive data types, or implicit allocations); then it fits in the Low∗
subset and may be translated to C.

The translation scheme [19] preserves semantics. This means that if a program is proven to compute the right
result in F∗, then the resulting C library enjoys the same guarantees. Furthermore, the translation also preserves
event traces all the way to CompCert’s Clight; this means our side-channel resistance properties granted by our
secure integer type also carry all the way down to C.
For maximal assurance, one may want to use enhanced versions of CompCert [8] to check that the resulting

assembly does not introduce side-channels; for maximal performance, one can always rely on commercial
compilers.
The extraction to C is handled by a separate tool, dubbed KreMLin [19]. It rewrites the F∗ program from an

expression language to a statement language, performing numerous optimizations and rewritings in passing.
In particular, KreMLin can recombine modular proofs spread out across several F∗ modules and functions into
a single C translation unit and a single C function, to enable many intra-translation unit and intra-procedural
analyses.
KreMLin puts a strong emphasis on readability, preserving names, and generating idiomatic, pretty-printed

code, meaning that the end result is a readable C library that can be audited before being integrated into an
existing codebase.

3 CONFORMANCE WITH EXECUTABLE STANDARDS-BASED SPECIFICATIONS
To aid interoperability between different implementations, popular cryptographic algorithms are precisely
documented in public standards, such as NIST publications and IETF Request for Comments (RFCs). For example,
the SHA-2 family of hash algorithms was standardized by NIST in FIPS 180-4 [35], which specifies four algorithms
of different digest lengths: SHA-224, SHA-256, SHA-384, and SHA-512. For each variant, the standard describes,
using text and pseudocode, the shuffle computations that must be performed on each block of input, and how to
chain them into the final hash.

For hash functions such as SHA-256 and encryption functions like ChaCha20 and AES, our verification goal is
to show that our implementation conforms to the computational specification in the standard. This section shows
how we structure these conformance proofs. In later sections, we will see how to go further; for polynomial
constructions like Poly1305, and elliptic curve operations like Curve25519 and Ed25519, we will show how to
link the field arithmetic to a high-level mathematical specification.

3.1 An F∗ specification of SHA256
Based on the 25-page textual specification in NIST FIPS 180-4, we derive a 70 line F∗ specification for SHA-256.
(The spec for SHA-512 is very similar.) The specification is a series of pure, total functions, that do not require
reasoning about memory or state. They are thus concise and readable. The specification culminates in the top-level
hash function that takes a input bytearray (of type seq byte) of length < 261 bytes and computes its 32-byte
SHA-256 hash. This function breaks the input byte array into 64-byte blocks and shuffles each block before
mixing it into the global hash. The F∗ specification for this core shuffle function is shown in Figure 1.

Each block processed by shuffle is represented as a sequence of 16 32-bit integers (uint32x16), and the interme-
diate hash value is represented as a sequence of 8 32-bit integers (uint32x8). The functions _Ch, _Maj, _Sigma0,
_Sigma1, _sigma0, and _sigma1 represent specific operations on 32-bit integers taken directly from the FIPS spec.
The constants k and h_0 are sequences of 32-bit integers. The function ws is the message scheduler, it takes a
block and an index and returns the next 32-bit integer to be scheduled. The shuffle_core function performs one



let uint32x8 = b:seq UInt32.t{length b = 8}
let uint32x16 = b:seq UInt32.t{length b = 16}
let uint32x64 = b:seq UInt32.t{length b = 64}

let _Ch x y z = (x &^ y) ^^ ((lognot x) &^ z)
let _Maj x y z = (x &^ y) ^^ ((x &^ z) ^^ (y &^ z))
let _Sigma0 x = (x >>>^ 2ul) ^^ ((x >>>^ 13ul) ^^ (x >>>^ 22ul))
let _Sigma1 x = (x >>>^ 6ul) ^^ ((x >>>^ 11ul) ^^ (x >>>^ 25ul))
let _sigma0 x = (x >>>^ 7ul) ^^ ((x >>>^ 18ul) ^^ (x >>^ 3ul))
let _sigma1 x = (x >>>^ 17ul) ^^ ((x >>>^ 19ul) ^^ (x >>^ 10ul))

let k : uint32x64 = createL [0x428a2f98ul; 0x71374491ul; ...] // Constants
let h_0 : uint32x8 = createL [0x6a09e667ul; 0xbb67ae85ul; ...] // Constants

let rec ws (b:uint32x16) (t:nat{t < 64}) =
if t < 16 then b.[t]
else
let t16 = ws b (t − 16) in
let t15 = ws b (t − 15) in
let t7 = ws b (t − 7) in
let t2 = ws b (t − 2) in
let s1 = _sigma1 t2 in
let s0 = _sigma0 t15 in
(s1 +%^ (t7 +%^ (s0 +%^ t16)))

let shuffle_core (block:uint32x16) (hash:uint32x8) (t:nat{t < 64}) : Tot uint32x8 =
let a = hash.[0] in let b = hash.[1] in
let c = hash.[2] in let d = hash.[3] in
let e = hash.[4] in let f = hash.[5] in
let g = hash.[6] in let h = hash.[7] in
let t1 = h +%^ (_Sigma1 e) +%^ (_Ch e f g) +%^ k.[t] +%^ ws block t in
let t2 = (_Sigma0 a) +%^ (_Maj a b c) in
create_8 (t1 +%^ t2) a b c (d +%^ t1) e f g

let shuffle (hash:uint32x8) (block:uint32x16) =
repeat_range_spec 0 64 (shuffle_core block) hash

Fig. 1. F∗ specification of the SHA-256 block shuffle.
Operators suffixed by ^ are over 32-bit unsigned integers: >>>^ is right-rotate; >>^ is right-shift; &^ is bitwise AND; ˆˆ is
bitwise XOR; lognot is bitwise NOT; +%^ is modular addition. Unsuffixed operators (<,−, +) are over mathematical integers.

iteration of the SHA-256 block shuffle: it takes a block, an intermediate hash, and loop counter, and returns the
next intermediate hash. Finally, the shuffle function takes an input hash value and iterates shuffle_core 64 times
over a block to produce a new hash value. This function is chained over a sequence of blocks to produce the full
SHA-256 hash.
Our F∗ specification for SHA-256 serves several purposes. It is a precise and concise documentation of the

SHA-256 function that is meant to be readable and auditable by experts; arguably, it is easier to understand
for programmers than the NIST standard. Furthermore, it is an executable specification: we can compile it to
an OCaml program and run it on various test vectors to further validate that we got the specification right.
Most importantly, it serves as the functional specification for our stateful SHA-256 implementation. Note that
during the development of this specification we noticed that the usual test vectors can lack specific input sizes
(e.g. 55bytes) that would help in catching certain padding mistakes for example. Consequently, it is important



let uint32_p = buffer Hacl.UInt32.t
val shuffle:
hash_w :uint32_p {length hash_w = 8}→
block_w:uint32_p {length block_w = 16}→
ws_w :uint32_p {length ws_w = 64}→
k_w :uint32_p {length k_w = 64}→
Stack unit
(requires (λ h→ live h hash_w ∧ live h ws_w ∧ live h k_w ∧ live h block_w ∧

h.[k_w] == Spec.k ∧
(∀ (i:nat). i < 64 =⇒ Seq.index h.[ws_w] i == Spec.ws h.[block_w] i)) )

(ensures (λ h0 r h1→modifies_1 hash_w h0 h1 ∧
h1.[hash_w] == Spec.shuffle h0.[hash_w] h0.[block_w]))

Fig. 2. Low∗ type of the SHA-256 shuffle function

for the specification to be carefully audited; any mistake in the specification will irremediably appear in the
implementation. The F∗ pure specification is itself only verified for totality and internal consistency; that is, every
function must terminate and must respect the preconditions of the F∗ libraries (e.g. all bytearrays accesses must
be within bounds).

3.2 A Low∗ reference implementation
We write a stateful implementation of SHA-256 in Low∗by essentially adapting the F∗ specification function by
function, and providing memory safety proofs wherever needed. Blocks are treated as read-only buffers (arrays)
of 16 32-bit unsigned integers, whereas the intermediate hash value is a mutable buffer that is modified in-place
by shuffle. Other than this standard transformation from a functional state-passing specification to a stateful
imperative programming style, the implementation incorporates two new features.
First, we precompute the scheduling function ws for each block and store its results in a block-sized buffer.

This yields a far more efficient implementation than the naive recursive function in the high-level specification.
Second, in addition to the one-shot hash function hash, which is suitable for scenarios where the full input is
given in a single buffer, we implement an incremental interface where the application can provide the input
in several chunks. Such incremental APIs are commonly provided by cryptographic libraries like OpenSSL but
are not specified in the NIST standard. Our correctness specification of this API requires the implementation to
maintain ghost (proof-only, see §2.2) state that remembers the input that has already been hashed. This extra
state is erased during compilation and is only used for verifying the correctness of our source code.
Figure 2 displays the type of our Low∗ implementation of the shuffle function. This type represents the

verification goal (or theorem) for our code. The function takes as its arguments four buffers: hash_w contains
the intermediate hash, block_w contains the current block, ws_w contains the precomputed schedule, k_w
contains the k-constant from the SHA-256 specification. The expected length of each of these buffers is stated as
a pre-condition. The function is given the Stack effect we mentioned earlier (§2.2).
The first line of the requires clause states as a pre-condition that all the input buffers must be live, that is,

they must be valid initialized pointers in the current memory. The second line states that, when the function is
called, the ks_w buffer must contain exactly the integer sequence specified in Spec.k. The third line states that
the contents of the ws_w buffer must be exactly equal to the results of the Spec.ws function for the current block;
that is, it contains the precomputed schedule.

The first line of the ensures clause states as a post-condition that the function only modifies the intermediate
hash value hash_w; all other buffers remain unchanged. The second line states that the new contents of the



static void
SHA2_256_shuffle(uint32_t ∗hash, uint32_t ∗block, uint32_t ∗ws, uint32_t ∗k)
{
for (uint32_t i = (uint32_t )0; i < (uint32_t )64; i = i + (uint32_t )1)
{
uint32_t a = hash[0]; uint32_t b = hash[1];
uint32_t c = hash[2]; uint32_t d = hash[3];
uint32_t e = hash[4]; uint32_t f1 = hash[5];
uint32_t g = hash[6]; uint32_t h = hash[7];
uint32_t tmp1 = k[i]; uint32_t tmp3 = ws[i];
uint32_t tmp2 = h + ((e >> (uint32_t )6 | e << (uint32_t )32 − (uint32_t )6)

^ (e >> (uint32_t )11 | e << (uint32_t )32 − (uint32_t )11)
^ (e >> (uint32_t )25 | e << (uint32_t )32 − (uint32_t )25))

+ (e & f1 ^ ¬e & g) + tmp1;
uint32_t t1 = tmp2 + tmp3;
uint32_t t2 = ((a >> (uint32_t )2 | a << (uint32_t )32 − (uint32_t )2)

^ (a >> (uint32_t )13 | a << (uint32_t )32 − (uint32_t )13)
^ (a >> (uint32_t )22 | a << (uint32_t )32 − (uint32_t )22))

+ (a & b ^ a & c ^ b & c);
uint32_t x1 = t1 + t2;
uint32_t x5 = d + t1;
uint32_t ∗p1 = hash;
uint32_t ∗p2 = hash + (uint32_t )4;
p1[0] = x1; p1[1] = a; p1[2] = b; p1[3] = c;
p2[0] = x5; p2[1] = e; p2[2] = f1; p2[3] = g;

}
}

Fig. 3. Extracted C shuffle function

hash_w buffer must be exactly the result of the Spec.shuffle function applied to the old hash_w and the current
block_w, hence tying the specification to the implementation.

Verifying (typechecking) our code against this type in F∗ establishes our main verification guarantees for the
shuffle function:

Memory Safety F∗ checks that the function can safely read from the input buffers since they are live. It
checks that the function at most modifies hash_w, and that it only reads and writes buffers within their
declared bounds.

Functional Correctness F∗ verifies that if shuffle is given the right constants k_w and the right precom-
puted schedule ws_w, it will compute the right Spec.shuffle function.

Side-channel Resistance The blocks read by the implementation consist of abstract HACL integers
(Hacl.UInt32.t), so that F∗ ensures that shuffle cannot inspect their concrete values, branch on them, or
use them as indexes into memory.

3.3 Generating correct, auditable C code
After verification, we generate C code from our Low∗ implementation. Figure 3 depicts the compiled code for
shuffle. Our Low∗ source code is broken into many small functions, in order to improve readability, enable
modularity and code sharing, and to reduce the complexity of each proof. Consequently, the default translation of
this code into C would result in a series of small C functions, which can be overly verbose and may hurt runtime
performance with some compilers like CompCert.



To allow better control over the generated code, the KreMLin compiler can be directed (via program annotations)
to inline certain functions and unroll certain loops, in order to obtain C code that is idiomatic and readable.
The shuffle function illustrates this mechanism: the _Ch, _Maj, _Sigma0, _Sigma1, and shuffle_core functions
are inlined into shuffle, yielding a compact C function that we believe is readable and auditable. Furthermore,
as we show in Section 8, the performance of our generated C code for SHA-256 (and SHA-512) are as fast as
state-of-the-art C implementations in OpenSSL and libsodium.

3.4 Comparison with prior work
Implementations of SHA-256 have been previously verified using a variety of tools and techniques. The approach
most closely-related to ours is that of Appel [7], who verified a C implementation adapted from OpenSSL using
the VST toolkit. We do not operate pre-existing C code directly but instead generate the C code from our own
high-level proofs and implementations. Appel wrote a high-level specification in Coq and an executable functional
specification (similar to ours) in Coq; we only needed a single specification. He then manually proved memory
safety and functional correctness (but not side-channel resistance) for his code using the Coq interactive theorem
prover. His proof takes about 9000 lines of Coq. Our total specs + code + proofs for SHA-256 amount to 708 lines
of F∗ code, and our proofs are partially automated by F∗ and the Z3 SMT solver.

Other prior work includes SAW [34], which uses symbolic equivalence checking to verify C code for HMAC-
SHA-256 against a compact spec written in Cryptol. The proof is highly-automated. Vale [23] has been used to
verify X86 assembly code for SHA-256 using Dafny. The verification effort of our approach is comparable to
these works, but these efforts have the advantage of being able to tackle legacy hand-optimized code, whereas
we focus on synthesizing efficient C code from our own implementations.

4 VERIFYING HIGH-PERFORMANCE VECTORIZED IMPLEMENTATIONS
In the previous section, we saw howwe can implement cryptographic primitives in Low∗by closely following their
high-level F∗ specification. By including a few straight-forward optimizations, we can already generate C code
that is as fast as hand-written C reference implementations for these primitives. However, the record-breaking
state-of-the-art assembly implementations for these primitives can be several times faster than such naive C
implementations, primarily because they rely on modern hardware features that are not available on all platforms
and are hence not part of standard portable C. In particular, the fastest implementations of all the primitives
considered in this paper make use of vector instructions that are available on modern Intel and ARM platforms.
Intel architectures have supported 128-bit registers since 1999, and, through a series of instruction sets (SSE,

SSE2, SSSE3, AVX, AVX2, AVX512), have provided more and more sophisticated instructions to perform on 128,
256, and now 512-bit registers, treated as vectors of 8, 16, 32, or 64-bit integers. ARM recently introduced the
NEON instruction set in 2009 that provides 128-bit vector operations. So, on platforms that support 128-bit
vectors, a single vector instruction can add 4 32-bit integers using a special vector processing unit. This does not
strictly translate to a 4x speedup, since vector units have their own overheads, but can significantly boost the
speed of programs that exhibit single-instruction multiple-data (SIMD) parallelism.

Many modern cryptographic primitives are specifically designed to take advantage of vectorization. However,
making good use of vector instructions often requires restructuring the sequential implementation to expose the
inherent parallelism and to avoid operations that are unavailable or expensive on specific vector architectures.
Consequently, the vectorized code is no longer a straightforward adaptation of the high-level specification and
needs new verification. In this section, we develop a verified vectorized implementation of ChaCha20 in Low∗.
Notably, we show how to verify vectorized C code by relying on vector libraries provided as compiler builtins and
intrinsics. We do not need to rely on or verify assembly code. We believe this is the first verified vectorized code
for any cryptographic primitive and shows the way forward for verifying other record-breaking cryptographic
implementations.



val uint32x4: Type0
val v: uint32x4→GTot (s:seq UInt32.t){length s = 4}
val load32x4: x0:UInt32.t→ x1:UInt32.t→ x2:UInt32.t→ x3:UInt32.t→

Tot (r:uint32x4{v r = createL [x0;x1;x2;x3]})
val (+%^): x:uint32x4→ y:uint32x4→

Tot (r:uint32x4{v r = map2 UInt32.((+%^)) (v x) (v y)}
let (^^) : x:uint32x4→ y:uint32x4→

Tot (r:uint32x4{v r = map2 UInt32.((^^)) (v x) (v y)}
let (<<<): s:uint32x4→ n:UInt32.t{UInt32.v n < 32}→

Tot (r:uint32x4{v r = map (λ x→ x UInt32.((<<<)) n) (v s)})
val shuffle_right: s:uint32x4→ n:UInt32.{v r < 4}→

Tot (r:uint32x4{if v n == 1 then createL [s.[3];s.[0];s.[1];s.[2]]
else if v n == 2 then ...})

Fig. 4. (Partial) F∗ Interface for 128-bit vectors interpreted as 4 32-bit unsigned integers.
Operations written UInt32.(op) refer to the op operation over UInt32.t. The higher-order map function applies a unary
function to every element of a sequence and returns the resulting sequence; map2 applies a binary function point-wise to
two sequences.

typedef unsigned int uint32x4 __attribute__ ((vector_size (16)));
uint32x4 load32x4(uint32_t x1, uint32_t x2, uint32_t x3, uint32_t x4){
return ((uint32x4) _mm_set_epi32(x4,x3,x2,x1));

}
uint32x4 shuffle_right(uint32x4 x, unsigned int n) {
return ((uint32x4) _mm_shuffle_epi32((__m128i)x,

_MM_SHUFFLE((3+n)%4,(2+n)%4,(1+n)%4,n%4)));
}
uint32x4 uint32x4_addmod(uint32x4 x, uint32x4 y) {
return ((uint32x4) _mm_add_epi32((__m128i)x,(__m128i)y);

}

Fig. 5. (Partial) GCC library for 128-bit vectors using Intel SSE3 intrinsics: (https://software.intel.com/sites/landingpage/
IntrinsicsGuide/)

4.1 Modeling Vectors in F∗

In F∗, the underlying machine model is represented by a set of trusted library interfaces that are given precise
specifications, but which are implemented at runtime by hardware or system libraries. For example, machine
integers are represented by a standard library interface that formally interprets integer types like UInt32.t and
primitive operations on them to the corresponding operations on mathematical integers int. When compiling to
C, KreMLin translates these operations to native integer operations in C. However, F∗ programmers are free to
add new libraries or modify existing libraries to better reflect their assumptions on the underlying hardware. For
C compilation to succeed, they must then provide a Low∗or C implementation that meets this interface.
We follow the same approach to model vectors in HACL∗ as a new kind of machine integer interface. Like

integers, vectors are pure values. Their natural representation is a sequence of integers. For example, Figure 4
shows a fragment of our F∗ interface for 128-bit vectors, represented as an abstract type uint32x4. Each vector
can be interpreted, via the v function, as a sequence of four 32-bit unsigned integers. (More generally, such
vectors can be also interpreted as eight 16-bit or sixteen 8-bit integers, and we can make these representations
interconvertible.) Many classic integer operations (+,−, ∗,&,, <<, >>) are lifted to uint32x4, and interpreted as

https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/


type state = m:seq UInt32.t{length m = 16}
type idx = n:nat{n < 16}

let line (a:idx) (b:idx) (d:idx) (s:t{v s < 32}) (m:state) =
let m = m.[a]← (m.[a] +%^ m.[b]) in
let m = m.[d]← ((m.[d] ^^ m.[a]) <<< s) in m

let quarter_round a b c d =
line a b d 16ul @
line c d b 12ul @
line a b d 8ul @
line c d b 7ul

let column_round =
quarter_round 0 4 8 12 @
quarter_round 1 5 9 13 @
quarter_round 2 6 10 14 @
quarter_round 3 7 11 15

Fig. 6. RFC-based ChaCha20 specification in F∗. The @ operator is serial function composition: (f @ g)(x) = g(f(x))

type state = m:seq uint32x4 {length m = 4}
type idx = n:nat{n < 4}

let line (a:idx) (b:idx) (d:idx) (s:UInt32.t{v s < 32}) (m:state) =
let ma = m.[a] in let mb = m.[b] in let md = m.[d] in
let ma = ma +%^ mb in
let md = (md ^^ ma) <<< s in
let m = m.[a]←ma in
let m = m.[d]←md in m

let column_round =
line 0 1 3 16ul @
line 2 3 1 12ul @
line 0 1 3 8ul @
line 2 3 1 7ul

Fig. 7. F∗ specification for 128-bit vectorized ChaCha20

the corresponding point-wise operations over sequences of integers. In addition, the interface declares vector-
specific operations like load32x4 to load vectors, and shuffle_right, which allows the order of integers in a vector
to be switched.
We provide C implementations of this interface for Intel SSE3 and ARM NEON platforms. Figure 5 shows a

fragment of the Intel library relying on GCC compiler intrinsics. This C code is not verified, it is trusted. Hence,
it is important to minimize the code in such libraries, and to carefully review them to make sure that their
implementation matches their assumed specification in F∗. However, once we have this F∗ interface and its C
implementation for some platform, we can build and verify vectorized cryptographic implementations in Low∗.

4.2 Verified Vectorized ChaCha20
The ChaCha20 stream cipher was designed by D. Bernstein [14] and standardized as an IETF RFC [1]. It is widely
recommended as an alternative to AES in Internet protocols. For example, ChaCha20 is one of the two encryption



algorithms (other than AES) included in TLS 1.3 [4]. The NaCl API includes Salsa20, which differs a little from
ChaCha20 [14] but for the purposes of verification, these differences are irrelevant; we implemented both in
HACL∗.
Figure 6 depicts a fragment of our RFC-based F∗ specification of ChaCha20. ChaCha20 maintains an internal

state that consists of 16 32-bit integers interpreted as a 4x4 matrix. This state is initialized using the encryption
key, nonce, and the initial counter (typically 0). Starting from this initial state, ChaCha20 generates a sequence
of states, one for each counter value. Each state is serialized as a key block and XORed with the corresponding
plaintext (or ciphertext) block to obtain the ciphertext (or plaintext). To generate a key block, ChaCha20 shuffles
the input state 20 times, with 10 column rounds and 10 diagonal rounds. Figure 6 shows the computation for
each column round.

As we did for SHA-256, we wrote a reference stateful implementation for ChaCha20 and proved that it conforms
to the RFC-based specification. The generated code takes 6.26 cycles/byte to encrypt data on 64-bit Intel platforms;
this is as fast as the C implementations in popular libraries like OpenSSL and libsodium, but is far slower than
vectorized implementations. Indeed, previous work (see [17, 27]) has identified two inherent forms of parallelism
in ChaCha20 that lend themselves to efficient vector implementations:

Line-level Parallelism: The computations in each column and diagonal round can be reorganized to
perform 4 line shufflings in parallel.

Block-level Parallelism: Since each block is independent, multiple blocks can be computed in parallel.

We are inspired by a 128-bit vector implementation in SUPERCOP due to Ted Krovetz, which is written in C
using compiler intrinsics for ARM and Intel platforms, and reimplement it in HACL∗. Krovetz exploits line-level
parallelism by storing the state in 4 vectors, resulting in 4 vector operations per column-round, compared to 16
integer operations in unvectorized code. Diagonal rounds are a little more expensive (9 vector operations), since
the state vectors have to be reorganized before and after the 3 line operations. Next, Krovetz exploits block-level
parallelism and the fact that modern processors have multiple vector units (typically 3 on Intel platforms and 2
on ARM) to process multiple interleaving block computations at the same time. Finally, Krovetz vectorizes the
XOR step for encryption/decryption by loading and processing 128 bits of plaintext/ciphertext at once. All these
strategies requires significant refactoring of the source code, so it becomes important to verify that the code is
still correct with respect to the ChaCha20 RFC.
We write a second F∗ specification for vectorized ChaCha20 that incorporates these changes to the core

algorithm. The portion of this spec up to the column round is shown in Figure 7. We modify the state to store
four vectors, and rearrange the line and column_round using vector operations. We then prove that the new
column_round function has the same functional behavior as the RFC-based column_round function from Figure 6.
Building up from this proof, we show that the vectorized specification for full ChaCha20 computes the same
function as the original spec.

Finally, we implement a stateful implementation of vectorized ChaCha20 in Low∗and prove that it conforms to
our vectorized specification. (As usual, we also prove that our code is memory safe and side-channel resistant.) This
completes the proof for our vectorized ChaCha20, which we believe is the first verified vectorized implementation
for any cryptographic primitive.
When compiled to C and linked with our C library for uint32x4, our vectorized ChaCha20 implementation

has the same performance as Krovetz’s implementation on both Intel and ARM platforms. This makes our
implementation the 8th fastest in the SuperCop benchmark on Intel processors, and the 2nd fastest on ARM. As we
did with Krovetz, we believe we can adapt and verify the implementation techniques of faster C implementations
and match their performance.



(∗ Field types and parameters ∗)
let prime = pow2 130 − 5
type elem = e:int{e ≥ 0 ∧ e < prime}
let fadd (e1:elem) (e2:elem) = (e1 + e2) % prime
let fmul (e1:elem) (e2:elem) = (e1 ∗ e2) % prime
let zero : elem = 0
let one : elem = 1
let ( +@ ) = fadd // Infix operator definition
let ( ∗@ ) = fmul // Infix operator definition

Fig. 8. F∗ specification of the prime field for Poly1305

5 VERIFYING SIDE-CHANNEL RESISTANT MODULAR BIGNUM ARITHMETIC
Asymmetric cryptographic algorithms commonly rely on prime-field arithmetic, that is, addition and multipli-
cation modulo a prime p in Zp . In HACL∗, the Poly1305, Curve25519, and Ed25519 algorithms all compute on
various prime fields. The mathematical specification for these field operations is very simple; Figure 8 depicts the
F∗ spec for the Poly1305 field.

For security, the primes used by cryptographic algorithms need to be quite large, which means that elements of
the field cannot be represented by machine integers, and instead need to be encoded as bignums, that is, arrays of
integers. Consequently, bignum arithmetic becomes a performance bottleneck for these algorithms. Furthermore,
well known bignum implementation tricks that work well for numerical computations are not really suitable for
cryptographic code since they may leak secrets. For example, when multiplying two bignums, a generic bignum
library may shortcut the computation and return zero if one of the arguments is zero. In a crypto algorithm,
however, the time taken by such optimizations may leak the value of a key. Implementing an efficient and secure
generic modulus function is particularly hard. Consequently, cryptographic implementations are often faced
with a trade-off between efficient field arithmetic and side-channel resistance.

5.1 Efficient Bignum Libraries for Poly1305, Curve25519, and Ed25519
For algorithms like RSA that use large and unpredictable primes, implementations often choose to forego side-
channel resistance. However, for modern fixed-prime primitives like Poly1305 and Curve25519, it is possible to
choose the shape of the prime carefully so that field arithmetic can be both efficient and side-channel resistant.
For instance, given a fixed Mersenne prime of the form 2n − 1, the modulo operation is easy to implement: all the
bits beyond n-th bit can be repeatedly lopped off and added to the low n bits, until the result is an n bit value.
Computing the modulo for the Poly1305 prime 2130 − 5 or Curve25519 2255 − 19 in constant time is similar.

Once a suitable prime is picked, the main implementation choice is whether to represent the field elements as
packed bignums, where each array element (called a limb) is completely filled, or to use an unpacked representation,
where the limbs are only partially filled. For example, in the Poly1305 field, elements are 130-bit values and can
be stored in 3 64-bit integers. The little-endian packed layout of these elements would be 64bits |64bits |2bits ,
whereas a more evenly distributed unpacked layout is 44bits |44bits |42bits . The main advantage of the unpacked
layout is that when performing several additions in a sequence, we can delay the carry propagation, since the
limbs will not overflow. In the packed representation, we must propagate carries after each addition. Optimizing
carry propagation by making it conditional on overflow would not be safe, since it would expose a timing side-
channel. Indeed, most efficient 64-bit implementations of Poly1305 and Curve25519 use unpacked representations;
Poly1305 uses the 44-44-42 layout on 64-bit platforms and 5 26-bit limbs on 32-bit platforms; Curve25519 and
Ed25519 use 5 limbs of 51-bits each or 10 limbs of 25.5 bits each.



In summary, efficient implementations of Poly1305, Curve25519, and Ed25519 use prime-specific computations
and different unpacked bignum representations for different platforms. Consequently, each of their implemen-
tations contains its own bignum library which must be independently verified. In particular, previous proofs
of bignum arithmetic in Poly1305 [23] and Curve25519 [25] are implementation-specific and cannot be reused
for other platforms or other implementations. In contrast, Zinzindohoue et al. [36] develop a generic verified
bignum library in OCaml that can be used in multiple cryptographic algorithms. The cost of this genericity is
significantly reduced performance. In the rest of this section, we present a novel approach that allows us to share
verified bignum code across primitives and platforms, at no cost to performance.

5.2 Verifying a Generic Bignum Library
In HACL∗, we uniformly adopt unpacked representations for our bignums. We define an evaluation function eval
that maps a bignum to the mathematical integer it represents. This function is parametric over the base of the
unpacked layout: for example, our Poly1305 elements are in base 244, which means that a bignum b represents
the integer eval (b) = b[0] + 244 ∗ b[1] + 288 ∗ b[2].
We observe that, except for modulo, all the bignum operations needed by our primitives are independent of

the prime. Furthermore, generic bignum operations, such as addition, do not themselves depend on the specific
unpacked representation; they only rely on having enough remaining space so that limbs do not overflow. Using
these observations, we implement and verify a generic bignum library that includes modular addition, subtraction,
multiplication, and inverse, and whose proofs do not depend on the prime or the unpacked representation. Each
generic operation is parametric over the number of limbs in the bignum and requires as a pre-condition that each
limb has enough spare room to avoid overflow. To satisfy these preconditions in a cryptographic primitive like
Poly1305, the implementation must carefully interleave carry propagation steps and modular reduction with
generic operations.
The only part of the bignum library that depends on the prime is the modular reduction, and this must be

implemented and verified anew for each new prime. All other functions in the bignum library are written and
verified just once. When compiling the code to C, the prime-specific code and the representation constants (e.g.
the number of limbs, the evaluation base etc.) are inlined into the generic bignum code, yielding an automatically
specialized bignum library in C for each primitive. As a result, our generated field arithmetic code is as efficient
as the custom bignum libraries for each primitive. Hence, we are able to find a balance between generic code for
verification and specialized code for efficiency. We are able to reuse more than half of the field arithmetic code
between Poly1305, Curve25519, and Ed25519. We could share even more of the code if we specialized our bignum
library for pseudo-Mersenne primes. For primes which shapes do not enable optimized modulo computations, we
also implement and verify a generic modulo function based on Barrett reduction, which we use in the Ed25519
signature algorithm.

5.3 Preventing Bugs, Enabling Optimizations
When programming with unpacked bignums, carry propagation and modular reduction are the most expensive
operations. Consequently, this style encourages programmers to find clever ways of delaying these expensive
operation until they become necessary. Some implementations break long carry chains into shorter sequences
that can be executed in parallel and then merged. These low-level optimizations are error-prone and require
careful analysis. In particular, carry propagation bugs are the leading functional correctness flaws in OpenSSL
crypto, with two recent bugs in Poly1305 [10, 22], and two others in Montgomery multiplication (CVE-2017-3732,
CVE-2016-7055). A carry propagation bug was also found in TweetNaCl [18].
Our Curve25519 implementation is closely inspired by Adam Langley’s donna_c64 64-bit implementation,

which is widely used and considered the state-of-the-art C implementation. In 2014, Langley reported a bug in



let prime = pow2 255 − 19
type elem = e:int{0 ≤ e ∧ e < prime}
type serialized_point = b:bytes{length b = 32}
type proj_point = | Proj: x:elem→ z:elem→ proj_point

let decodePoint (u:serialized_point) =
(little_endian u % pow2 255) % prime

let encodePoint (p:proj_point) =
let x = p.x ∗@ (p.z ∗∗ (prime − 2)) in
little_bytes 32ul x

Fig. 9. F∗ specification of Curve25519 point format

this implementation 2: the implementation incorrectly skipped a necessary modular reduction step. In response,
Langley explored the use of formal methods to prove the absence of such bugs, but gave up after failing to prove
even modular addition using existing tools. This paper presents the first complete proof of a C implementation of
Curve25519, including all its field arithmetic. In particular, our proofs guarantee the absence of carry propagation
bugs in Poly1305, Curve25519, and Ed25519.

A surprising benefit of formal verification is that it sometimes identifies potential optimizations. When verifying
Curve25519, we observed that donna_c64 was too conservative in certain cases. Each multiplication and squaring
operation had an unnecessary extra carry step, which over the whole Curve25519 scalar multiplication totaled to
about 3400 extra cycles on 64-bit Intel processors. We removed these redundant carries in our code and proved
that it was still correct. Consequently, the Curve25519 C code generated from HACL∗ is slightly (about 2.2%)
faster than donna_c64 making it the fastest C implementation that we know of.

6 VERIFYING ELLIPTIC CURVE OPERATIONS

6.1 Curve25519
Curve25519 [2, 13] a Montgomery elliptic curve designed for use in a Diffie-Hellman (ECDH) key exchange. The
key operation over this curve is the multiplication nP of a public curve point P by a secret scalar n. A distinctive
property of this family of curves is only the x-coordinate of P is needed to compute the x-coordinate of nP . This
leads to both efficient computations and small keys.

The simplicity of the algorithm and its adoption in protocols like TLS and Signal havemade it a popular candidate
for formal verification. Several other works have been tackling Curve25519. However, our implementation is, to
the best of our knowledge, the first implementation to verify the full byte-level scalar multiplication operation.
Chen et al. [25] verified one step of the Montgomery ladder for a qhasm implementation, but did not verify
the ladder algorithm or point encodings; Zinzindohoue et al. [36] implemented and verified the Montgomery
ladder for Curve25519 and two other curves, but they did not verify the point encodings. Our Curve25519
implementation is verified to be fully RFC-compliant.
Figure 9 shows the F∗ specification for the point encoding and decoding functions that translate between

curve points and byte arrays. Implementing and verifying these functions is not just a proof detail. Compliance
with encodePoint avoids the missing reduction bug that Adam Langley described in donna_c64. The first line
of encodePoint computes x as a result of the modular multiplication operation ∗@ (see Figure 8). Hence, the
result of encodePoint is a little-endian encoding of a number strictly less than 2255 − 19. Consequently, a Low∗

2https://www.imperialviolet.org/2014/09/07/provers.html



implementation of Curve25519 that forgets to perform a modular reduction before the little-endian encoding
does not meet this specification and so will fail F∗ verification.

Ed25519. The Ed25519 signature scheme [3, 15] is an EdDSA algorithm based on the twisted Edwards curve
birationally equivalent to Curve25519. Despite their close relation, the implementation of Ed25519 involves
many more components than Curve25519. It uses a different coordinate system and different point addition
and doubling formulas. The signature input is first hashed using the SHA-512 hash function, which we verify
separately. The signature operation itself involves prime-field arithmetic over two primes: the Curve25519 prime
2255 − 19 and a second non-Mersenne prime 2252 + 27742317777372353535851937790883648493. This second prime
does not enjoy an efficient modulo operation, so we implement and verify a slower but generic modulo function
using the Barrett reduction. We thus obtain the first verified implementation of Ed25519 in any language. In
terms of size and proof complexity, Ed25519 was the most challenging primitive in HACL∗; implementing and
verifying the full construct took about 3 person-weeks, despite our reuse of the Curve25519 and SHA-512 proofs.

Our implementation is conservative and closely follows the RFC specification. It is faster than the naive Ed25519
reference implementation (ref) in TweetNaCl, but about 2.5x slower than the optimized ref10 implementation,
which relies on a precomputed table containing multiples of the curve base point. Our code does not currently
use precomputation. Using precomputed tables in a provably side-channel resistant way is non-trivial; for
example, [31] demonstrate side-channel attacks on Ed25519 precomputations on certain platforms. We leave the
implementation and verification of secure precomputation for Ed25519 as future work.

7 MEETING HIGH-LEVEL CRYPTO APIS
HACL∗ offers all the essential building blocks for real-world cryptographic application: authenticated encryption,
(EC)DH key exchange, hash functions, and signatures. The C code for each of our primitives is self-contained and
easy to include in C applications. For example, we are currently engaged in active discussion with the Mozilla
security team with the aim of including some HACL∗ C implementations within the NSS cryptographic library.
In the rest of this section, we describe three more advanced ways of integrating our verified library in larger

software developments.
NaCl. The APIs provided by mainstream cryptographic libraries like OpenSSL are too complex and error-prone
for use by non-experts. The NaCl cryptographic API [16] seeks to address this concern by including a carefully
curated set of primitives and only allowing them to be used through simple secure-by-default constructions, like
box/box_open (for public-key authenticated encryption/decryption). By restricting the usage of cryptography to
well-understood safe patterns, users of the library are less likely to fall into common crypto mistakes.

The NaCl API has several implementations including TweetNaCl, a minimal, compact, portable library, and
libsodium, an up-to-date optimized implementation. HACL∗ implements the full NaCl API and hence can be
used as a drop-in replacement for any application that relies on TweetNaCl or libsodium. Our code is as fast as
libsodium’s C code on 64-bit Intel platforms, and is many times faster than TweetNaCl on all platforms. Hence,
we offer the first high-performance verified C implementation of NaCl.
TLS 1.3. TLS 1.3 [4] will soon become the new standard for secure communications over the internet. HACL∗ im-
plements all the primitives needed for one TLS 1.3 ciphersuite: IETF Chacha20Poly1305 authenticated encryption
with associated data (AEAD), SHA256 and HMAC-SHA256, Curve25519 key exchange, and Ed25519 signatures.
We do not yet implement RSA or ECDSA signatures which are needed for X.509 certificates.

OpenSSL implements the current TLS 1.3 draft and hence uses many of these primitives; OpenSSL does not yet
implement Ed25519. OpenSSL allows other libraries to provide cryptographic implementations via an engine
interface. We package HACL∗ as an OpenSSL engine so that our primitives can be used within OpenSSL and by
any applications built on top of OpenSSL. We use this engine to compare the speed of our code with the native



Algorithm Spec Code+Proofs C Code Verification
(F∗ loc) (Low∗ loc) (C loc) (s)

Salsa20 70 651 372 280
Chacha20 70 691 243 336
Chacha20-Vec 100 1656 355 614
SHA-256 96 622 313 798
SHA-512 120 737 357 1565
HMAC 38 215 28 512
Bignum-lib - 1508 - 264
Poly1305 45 3208 451 915
X25519-lib - 3849 - 768
Curve25519 73 1901 798 246
Ed25519 148 7219 2479 2118
AEAD 41 309 100 606
SecretBox - 171 132 62
Box - 188 270 43
Total 801 22,926 7,225 9127

Table 1. HACL∗ code size and verification times

implementations in OpenSSL. Our Curve25519 implementation is significantly faster than OpenSSL, and our
other implementations are as fast as OpenSSL’s C code, but slower than its assembly implementations.
miTLS. A key advantage of developing HACL∗ in F∗ is that it can be integrated into larger verification projects
in F∗. For example, the miTLS project is developing a cryptographically secure implementation of the TLS 1.3
protocol in F∗. Previous versions of miTLS relied on an unverified (OpenSSL-based) cryptographic library, but the
new version now uses HACL∗ as its primary cryptographic provider. The functional correctness proofs of HACL∗
form a key component in the cryptographic proofs of miTLS. For example, our proofs of ChaCha20 and Poly1305
are composed with cryptographic assumptions about these primitives to build a proof of the TLS record layer
protocol [20]. In the future, we plan to build simpler verified F∗ applications, that rely on HACL∗’s NaCl API.

8 EVALUATION AND DISCUSSION
In this section, we assess the coding and verification effort that went into the HACL∗ library, and evaluate its
performance relative to state-of-the-art cryptographic libraries.
Coding and Verification Effort. Taking an RFC and writing a specification for it in F∗ is straightforward;
similarly, taking inspiration from existing C algorithms and injecting them into the Low∗subset is a mundane task.
Proving that the Low∗ code is memory safe, side-channel resistant, and that it implements the RFC specification
is the bulk of the work. Table 1 lists, for each algorithm, the size of the RFC-like specification and the size of
the Low∗ implementation, in lines of code. Specifications are intended to be read by experts and are the source
of “truth” for our library: the smaller, the better. The size of the Low∗ implementation captures both the cost of
going into a low-level subset (meaning code is more imperative and verbose) and the cost of verification (these
include lines of proof). We also list the size of the resulting C program, in lines of code. Since the (erased) Low∗
code and the C code are in close correspondence, the ratio of C code to Low∗ code provides a good estimate of
code-to-proof ratio.
One should note that a large chunk of the bignum verified code is shared across Poly1305, Curve25519 and

Ed25519, meaning that this code is verified once but used in three different ways. The sharing has no impact on the
quality of the generated code, as we rely on KreMLin to inline the generic code and specialize it for one particular



set of bignum parameters. The net result is that Poly1305 and Curve25519 contain separate, specialized versions
of the original Low∗bignum library. Chacha20 and Salsa20, just like SHA-256 and SHA-512, are very similar to
each other, but the common code has not yet been factored out. We intend to leverage recent improvements in F∗
to implement more aggressive code sharing, allowing us to write, say, a generic SHA-2 algorithm that can be
specialized and compiled twice, for SHA-256 and SHA-512.
Our estimates for the human effort are as follows. Symmetric algorithms like Chacha20 and SHA2 do not

involve sophisticated math, and were in comparison relatively easy to prove. The proof-to-code ratio hovers
around 2, and each primitive took around one person-week. Code that involves bignums requires more advanced
reasoning. While the cost of proving the shared bignum code is constant, each new primitive requires a fresh
verification effort. The proof-to-code ratio is up to 6, and verifying Poly1305, X25519 and Ed25519 took several
person-months. High-level APIs like AEAD and SecretBox have comparably little proof substance, and took on
the order of a few person-days.

Finally, we provide timings, in seconds, of the time it takes to verify a given algorithm. These are measured on
an Intel Xeon workstation without relying on parallelism. The total cost of one-time HACL∗ verification is a few
hours; when extending the library, the programmer writes and proves code interactively, and may wait for up to
a minute to verify a fragment depending on its complexity.

The HACL∗ library is open source and is being actively developed on GitHub. Expert users can download and
verify the F∗ code, and generate the C library themselves. Casual users can directly downloaded the generated C
code. The full C library is about 7Kloc and compresses to a 42KB zip file. Restricting the library to just the NaCl
API yields 5Kloc, which compresses to a 25KB file. For comparison, the TweetNaCl library is 700 lines of C code
and compresses to 6Kb, whereas libsodium is 95Kloc (including 24K lines of pure C code) and compresses to a
1.8MB distributable. We believe our library is quite compact, auditable, and easy to use.
Measuring Performance. We focus our performance measurements on the popular 64-bit Intel platforms found
on modern laptops and desktops. These machines support 128-bit integers as well as vector instructions with up
to 256-bit registers. We also measured the performance of our library on a 64-bit ARM device (Raspberry Pi 3)
running both a 64-bit and a 32-bit operating system.

On each platform, we measured the performance of the HACL* library in several ways. First, for each primitive,
we uses the CPU performance counter to measure the average number of cycles needed to perform a typical
operation. (Using the median instead of the average yielded similar results.) Second, we used the SuperCop
benchmarking suite to compare HACL∗ with state-of-the-art assembly and C implementations. Third, we used
the OpenSSL speed benchmarking tool to compare the speed of the HACL∗ OpenSSL engine with the builtin
OpenSSL engine. In the rest of this section, we describe and interpret these measurements.
Performance on 64-bit Platforms. Table 2 shows our cycle measurements on a Xeon workstation; we also
measured performance on other Intel processors, and the results were quite similar. We compare the results
from HACL∗, OpenSSL, and two implementations of the NaCl API: libsodium and TweetNaCl. OpenSSL and
libsodium include multiple C and assembly implementations for each primitive. We are primarily interested in
comparing like-for-like C implementations, but for reference, we also show the speed of the fastest assembly
code in OpenSSL. In the Appendix, Table 4 ranks the top performing SuperCop implementations on our test
machine, and Table 8 displays the OpenSSL speed measurements.

For most primitives, our HACL∗ implementations are as fast as (and sometimes faster than) state-of-the-art C
implementations in OpenSSL, libsodium, and SuperCop. Notably, all our code is significantly faster than the naive
reference implementations included in TweetNaCl and SuperCop. However, some assembly implementations and
vectorized C implementations are faster than HACL∗. Our vectorized Chacha20 implementation was inspired
by Krovetz’s 128-bit vectorized implementation, and hence is as fast as that implementation, but slower than
implementations that use 256-bit vectors. Our Poly1305 and Curve25519 implementations rely on 64x64 bit



Algorithm HACL* OpenSSL libsodium TweetNaCl OpenSSL (asm)
SHA-256 13.43 16.11 12.00 - 7.77
SHA-512 8.09 10.34 8.06 12.46 5.28
Salsa20 6.26 - 8.41 15.28 -

ChaCha20 6.37 (ref) 7.84 6.96 - 1.24
2.87 (vec)

Poly1305 2.19 2.16 2.48 32.65 0.67
Curve25519 154,580 358,764 162,184 2,108,716 -
Ed25519 sign 63.80 - 24.88 286.25 -
Ed25519 verify 57.42 - 32.27 536.27 -

AEAD 8.56 (ref) 8.55 9.60 - 2.00
5.05 (vec)

SecretBox 8.23 - 11.03 47.75 -
Box 21.24 - 21.04 148.79 -

Table 2. Intel64-GCC: Performance Comparison in cycles/byte on an Intel(R) Xeon(R) CPU E5-1630 v4 @ 3.70GHz running
64-bit Debian Linux 4.8.15. All measurements (except Curve25519) are for processing a 16KB message; for Curve25519 we
report the number of cycles for a single ECDH shared-secret computation. All code was compiled with GCC 6.3. OpenSSL
version is 1.1.1-dev (compiled with no-asm); Libsodium version is 1.0.12-stable (compiled with –disable-asm), and TweetNaCl
version is 20140427.

multiplication; they are faster than all other C implementations, but slower than vectorized assembly code. Our
Ed25519 code is not optimized (it does not precompute fixed-base scalar multiplication) and hence is significantly
slower than the fast C implementation in libsodium, but still is much faster than the reference implementation in
TweetNaCl.

Table 5 measures performance on a cheap ARM device (Raspberry Pi 3) running a 64-bit operating system.
The cycle counts were estimated based on the running time, since the processor does not expose a convenient
cycle counter. The performance of all implementations is worse on this low-end platform, but on the whole,
our HACL∗ implementations remain comparable in speed with libsodium, and remains significantly faster than
TweetNaCl. OpenSSL Poly1305 and SHA-512 perform much better than HACL∗ on this device.
Performance on 32-bit Platforms. Our HACL∗ code is tailored for 64-bit platforms that support 128-bit integer
arithmetic, but our code can still be run on 32-bit platforms using our custom library for 128-bit integers. However,
we expect our code to be slower on such platforms than code that is optimized to use only 32-bit instructions.
Table 6 shows the performance of our code on an ARM device (Raspberry Pi 3) running a 32-bit OS. In the
Appendix, Table 7 ranks the top SuperCop implementations on this device.

For symmetric primitives, HACL∗ continues to be as fast as (or faster than) the fastest C implementations
of these primitives. In fact, our vectorized Chacha20 implementation is the second fastest implementation in
SuperCop. However, the algorithms that rely on Bignum operations, such as Poly1305, Curve25519, and Ed25519,
suffer a serious loss in performance on 32-bit platforms. This is because we represent 128-bit integers as a
pair of 64-bit integers, and we encode 128-bit operations in terms of 32-bit instructions. Using a generic 64-bit
implementation in this way results in a 3x penalty. If performance on 32-bit machines is desired, we recommend
writing custom 32-bit implementations for these algorithms. As an experiment, we wrote (but did not fully verify)
32-bit implementations and found that their performance was close to that of libsodium. We again note that even
with the performance penalty, our code is faster than TweetNaCl.
CompCert Performance. Finally, we evaluate the performance of our code when compiled with the new 64-bit
CompCert compiler (version 3.0) for Intel platforms. Although CompCert supports 64-bit instructions, it still



Algorithm HACL* libsodium TweetNaCl
SHA-256 25.71 30.87 -
SHA-512 16.15 26.08 97.80
Salsa20 13.63 43.75 99.07

ChaCha20 (ref) 10.28 17.69 -
Poly1305 13.89 10.79 111.42

Curve25519 980,692 458,561 4,866,233
Ed25519 276.66 70.71 736.07
Ed25519 272.39 58.37 1153.42

Chacha20Poly1305 23.28 28.21 -
NaCl SecretBox 27.51 54.31 206.36

NaCl Box 94.63 83.64 527.07
Table 3. Intel64-CompCert: Performance Comparison in cycles/byte on an Intel(R) Xeon(R) CPU E5-1630 v4 @ 3.70GHz
running 64-bit Debian Linux 4.8.15. Code was compiled with CompCert 3.0.1 with a custom library for 128-bit integers.

does not provide 128-bit integers. Consequently, our code again needs to encode 128-bit integers as pairs of
64-bit integers. Furthermore, CompCert only includes verified optimizations and hence does not compile code
that is as fast as GCC. Table 3 depicts the performance of HACL∗, libsodium, and TweetNaCl, all compiled with
CompCert. As with 32-bit platforms, HACL∗ performs well for symmetric algorithms, and suffers a penalty for
algorithms that rely on 128-bit integers. If CompCert supports 128-bit integers in the future, we expect this
penalty to disappear.

9 CONCLUSION
We presented the design, implementation, and evaluation of HACL∗, an open-source verified cryptographic
library that implements the full NaCl API and many of the core primitives used in TLS 1.3. All our code is verified
to be memory safe, side-channel resistant, and functionally correct with respect to high-level, concise RFC-based
specifications. We deliver verified C code that can be readily integrated into existing software. Our code is already
being used in larger verification projects like miTLS. We are in discussions with Mozilla to include some parts of
HACL∗ within the NSS cryptographic library that used by the Firefox web browser.
HACL∗ continues to evolve as we add more primitives and faster implementations. The performance of our

library is already comparable to state-of-the-art C implementations and is within a small factor of hand-optimized
assembly code. Our results indicates that security researchers should expect far more than auditability from
modern cryptographic libraries; with some effort, their full formal verification is now well within reach.

REFERENCES
[1] 2015. ChaCha20 and Poly1305 for IETF Protocols. IETF RFC 7539. (2015).
[2] 2016. Elliptic Curves for Security. IETF RFC 7748. (2016).
[3] 2017. Edwards-Curve Digital Signature Algorithm (EdDSA) . IETF RFC 8032. (2017).
[4] 2017. The Transport Layer Security (TLS) Protocol Version 1.3. IETF Internet Draft 20. (2017).
[5] Danel Ahman, Cătălin Hriţcu, Kenji Maillard, Guido Martínez, Gordon Plotkin, Jonathan Protzenko, Aseem Rastogi, and Nikhil Swamy.

2017. Dijkstra Monads for Free. In 44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL). ACM, 515–529.
https://doi.org/10.1145/3009837.3009878

[6] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, and François Dupressoir. 2015. Verifiable side-channel security of cryptographic
implementations: constant-time MEE-CBC. IACR Cryptology ePrint Archive 2015 (2015), 1241. http://eprint.iacr.org/2015/1241

[7] Andrew W Appel. 2015. Verification of a cryptographic primitive: SHA-256. ACM Transactions on Programming Languages and Systems
(TOPLAS) 37, 2 (2015), 7.

https://doi.org/10.1145/3009837.3009878
http://eprint.iacr.org/2015/1241


[8] Gilles Barthe, Gustavo Betarte, Juan Campo, Carlos Luna, and David Pichardie. 2014. System-level non-interference for constant-time
cryptography. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security. ACM, 1267–1279.

[9] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella Béguelin. 2011. Computer-aided security proofs for the working
cryptographer. In Annual Cryptology Conference. 71–90.

[10] David Benjamin. 2016. poly1305-x86.pl produces incorrect output. https://mta.openssl.org/pipermail/openssl-dev/2016-March/006161.
(2016).

[11] Lennart Beringer, Adam Petcher, Katherine Q. Ye, and Andrew W. Appel. 2015. Verified Correctness and Security of OpenSSL HMAC. In
USENIX Security Symposium. 207–221.

[12] Daniel J. Bernstein. 2005. The Poly1305-AES Message-Authentication Code. In Fast Software Encryption (FSE). 32–49.
[13] Daniel J Bernstein. 2006. Curve25519: new Diffie-Hellman speed records. In Public Key Cryptography-PKC 2006. Springer, 207–228.
[14] Daniel J Bernstein. 2008. ChaCha, a variant of Salsa20.
[15] Daniel J Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. High-speed high-security signatures. Journal of

Cryptographic Engineering (????), 1–13.
[16] Daniel J Bernstein, Tanja Lange, and Peter Schwabe. 2012. The security impact of a new cryptographic library. In International Conference

on Cryptology and Information Security in Latin America (LATINCRYPT). Springer, 159–176.
[17] Daniel J Bernstein and Peter Schwabe. 2012. NEON crypto. In International Workshop on Cryptographic Hardware and Embedded Systems.

Springer, 320–339.
[18] Daniel J Bernstein, Bernard Van Gastel, Wesley Janssen, Tanja Lange, Peter Schwabe, and Sjaak Smetsers. 2014. TweetNaCl: A crypto

library in 100 tweets. In International Conference on Cryptology and Information Security in Latin America (LATINCRYPT). Springer,
64–83.

[19] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Catalin Hritcu, Jonathan Protzenko, Tahina Ramananandro, Aseem
Rastogi, Nikhil Swamy, Peng Wang, Santiago Zanella-Béguelin, and Jean-Karim Zinzindohoué. 2017. Verified Low-Level Programming
Embedded in F*. arXiv:1703.00053, to appear at ICFP 2017. (2017). http://arxiv.org/abs/1703.00053

[20] Karthikeyan Bhargavan, Antoine Delignat-Lavaud Cédric Fournet, Markulf Kohlweiss, Jianyang Pan, Jonathan Protzenko, Aseem
Rastogi, Nikhil Swamy, and Santiago Zanella-Béguelin andJean Karim Zinzindohoué. 2016. Implementing and Proving the TLS 1.3
Record Layer. Cryptology ePrint Archive, Report 2016/1178, to appear at IEEE S&P 2017. (2016). https://eprint.iacr.org/2016/1178

[21] Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti, and Pierre-Yves Strub. 2013. Implementing TLS with
Verified Cryptographic Security. In IEEE Symposium on Security & Privacy (Oakland). 445–462.

[22] Hanno Böck. 2016. Wrong results with Poly1305 functions. https://mta.openssl.org/pipermail/openssl-dev/2016-March/006413. (2016).
[23] Barry Bond, Chris Hawblitzel, Manos Kapritsos, K. Rustan M. Leino, Jacob R. Lorch, Bryan Parno, Ashay Rane, Srinath Setty, and Laure

Thompson. 2017. Vale: Verifying High-Performance Cryptographic Assembly Code. In Proceedings of the USENIX Security Symposium.
[24] Billy B Brumley, Manuel Barbosa, Dan Page, and Frederik Vercauteren. 2012. Practical realisation and elimination of an ECC-related

software bug attack. In Topics in Cryptology–CT-RSA 2012. Springer, 171–186.
[25] Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin, Peter Schwabe, Ming-Hsien Tsai, Bow-Yaw Wang, Bo-Yin Yang, and Shang-Yi Yang.

2014. Verifying Curve25519 Software. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security.
ACM, 299–309.

[26] Quynh H Dang. 2008. The Keyed-Hash Message Authentication Code (HMAC). NIST FIPS-198-1. (2008).
[27] Martin Goll and Shay Gueron. 2014. Vectorization on ChaCha stream cipher. In Information Technology: New Generations (ITNG).

612–615.
[28] Chris Hawblitzel, Jon Howell, Jacob R Lorch, Arjun Narayan, Bryan Parno, Danfeng Zhang, and Brian Zill. 2014. Ironclad apps:

End-to-end security via automated full-system verification. In 11th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 14). 165–181.

[29] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, et al. 2009. seL4: Formal verification of an OS kernel. In Proceedings of the ACM SIGOPS 22nd symposium
on Operating systems principles. ACM, 207–220.

[30] Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun. ACM 52, 7 (2009), 107–115.
[31] Erick Nascimento, Łukasz Chmielewski, David Oswald, and Peter Schwabe. 2016. Attacking embedded ECC implementations through

cmov side channels. In Selected Areas in Cryptology – SAC 2016 (Lecture Notes in Computer Science).
[32] Pierre-Yves Strub, Nikhil Swamy, Cedric Fournet, and Juan Chen. 2012. Self-Certification: Bootstrapping Certified Typecheckers in F*

with Coq. In ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL). 571–584.
[33] Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric

Fournet, Pierre-Yves Strub, Markulf Kohlweiss, Jean-Karim Zinzindohoue, and Santiago Zanella-Béguelin. Dependent Types and
Multi-Monadic Effects in F*. In ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL). 256–270.

[34] A. Tomb. 2016. Automated Verification of Real-World Cryptographic Implementations. IEEE Security Privacy 14, 6 (2016), 26–33.

https://mta.openssl.org/pipermail/openssl-dev/2016-March/006161
http://arxiv.org/abs/1703.00053
https://eprint.iacr.org/2016/1178
https://mta.openssl.org/pipermail/openssl-dev/2016-March/006413


[35] National Institute of Standards US Department of Commerce and Technology (NIST). 2012. Federal Information Processing Standards
Publication 180-4: Secure hash standard (SHS). (2012).

[36] Jean Karim Zinzindohoue, Evmorfia-Iro Bartzia, and Karthikeyan Bhargavan. 2016. A Verified Extensible Library of Elliptic Curves. In
IEEE Computer Security Foundations Symposium (CSF). 296–309.



ONLINE MATERIALS
The HACL∗ library is being actively developed as an open source project at https://github.com/mitls/hacl-star/.

Docker image. The curious reader may want to try out our Docker image with hacl-star built-in, via docker
pull projecteverest/everest.

Cleaned up sources. As supplementary material for this paper, we provide a groomed version of the GitHub
repository at:

https://www.dropbox.com/s/m2uknd6dj8njkir/hacl-star.zip?dl=0
sha1sum = fcc5dcc751092c2ee807f6eafb636cf57db38079

The Dropbox page may ask for a login, but one can skip it by clicking “No Thanks” and then download the file
anonymously.

PERFORMANCE BENCHMARKS
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Fig. 10. OpenSSL speed comparison for the Chacha20 algorithm. The algorithm is run repeatedly for three seconds on
different input sizes, and we measure the number of operations via the openssl speed command. The experiment is performed
on an Intel Core i7 @ 2.2Ghz running OSX 10.12.4.

https://github.com/mitls/hacl-star/
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Algorithm Implementation Language Architecture Cycles
ChaCha20 moon/avx2/64 assembly AVX2 1908

dolbeau/amd64-avx2 C AVX2 2000
goll_guerin C AVX2 2224
krovetz/avx2 C AVX2 2500
moon/avx/64 assembly AVX 3584
moon/ssse3/64 assembly SSSE3 3644
krovetz/vec128 C SSSE3 4340

hacl-star/vec128 C SSSE3 4364
moon/sse2/64 assembly SSE2 4528
e/amd64-xmm6 assembly SSE 4896
e/x86-xmm6 assembly SSE 5656
hacl-star/ref C x86_64 9248
e/amd64-3 assembly x86_64 9280

e/ref C x86 9596
Poly1305 moon/avx2/64 assembly AVX2 2508

moon/avx/64 assembly AVX 4052
moon/sse2/64 assembly SSE2 4232
hacl-star C x86_64 5936
amd64 assembly x86_64 8128
x86 assembly x86 8160
53 C x86 11356
avx assembly AVX 13480
ref C x86 111212

Curve25519 amd-64-64 assembly x86_64 580132
sandy2x assembly AVX 595272
amd-64-51 assembly x86_64 617244
hacl-star C x86_64 632544
donna_c64 C x86_64 635620
donna assembly x86 1026040
ref10 C x86 1453308
athlon assembly x86 1645992
ref C x86 17169436

SHA-512 openssl assembly x86 9028
ref C x86 12620

sphlib C x86 13396
hacl-star C x86 15844

Ed25519 amd64-64-24k assembly x86_64 235932
ref10 C x86 580232

hacl-star C x86_64 1353932
ref C x86 5234724

Table 4. Intel64 SuperCop Benchmarks: ranked list of best performing implementations on an Intel(R) Xeon(R) CPU E5-1630
v4 @ 3.70GHz running 64-bit Debian Linux 4.8.15. All numbers are estimated CPU cycles. Curve25519 is measured for
two variable-base and two fixed-base scalar multiplications. All other primitives are measured for an input of 1536 bytes:
Chacha20 is measured for a single encryption; Poly1305 is measured for one MAC plus one verify; SHA-512 is measured for a
single hash computation; Ed25519 is measured for one sign plus one verify.



Algorithm Operation HACL* OpenSSL (C) libsodium (C) TweetNaCl OpenSSL (asm)
SHA-256 Hash 45.83 40.94 37.00 - 14.02
SHA-512 Hash 34.76 20.58 27.26 37.70 15.65
Salsa20 Encrypt 13.50 - 27.24 40.19 -

ChaCha20 Encrypt 17.85 (ref) 30.73 19.60 - 9.61
14.45 (vec)

Poly1305 MAC 11.09 7.05 10.47 310.84 3.00
Curve25519 ECDH 833,177 890,283 810,893 5,873,655 -
Ed25519 Sign 310.07 - 84.39 1157.73 -
Ed25519 Verify 283.86 - 105.27 2227.41 -

Chacha20Poly1305 AEAD 29.32 26.48 30.40 - 13.05
NaCl SecretBox Encrypt 24.56 - 38.23 349.96 -

NaCl Box Encrypt 85.62 - 97.80 779.91 -
Table 5. AARCH64-GCC: Performance Comparison in cycles/byte on an ARMv7 Cortex A53 Processor @ 1GHz running
64-bit OpenSuse Linux 4.4.62. All code was compiled with GCC 6.2.

Algorithm HACL* OpenSSL libsodium TweetNaCl OpenSSL (asm)
SHA-256 25.70 30.41 25.72 - 14.02
SHA-512 70.45 96.20 101.97 100.05 15.65
Salsa20 14.10 - 19.47 21.42 -

ChaCha20 15.21 (ref) 18.81 15.59 - 5.2
7.66 (vec)

Poly1305 42.7 17.41 7.41 140.26 1.65
Curve25519 5,191,847 1,812,780 1,766,122 11,181,384 -
Ed25519 1092.83 - 244.75 1393.16 -
Ed25519 1064.75 - 220.92 2493.59 -

Chacha20Poly1305 62.40 33.43 23.35 - 7.17
NaCl SecretBox 56.79 - 27.47 161.94 -

NaCl Box 371.67 - 135.80 862.58 -
Table 6. ARM32-GCC: Performance Comparison in cycles/byte on an ARMv7 Cortex A53 Processor @ 1GHz running 32-bit
Raspbian Linux 4.4.50. All code was compiled with GCC 6.3 with a custom library providing 128-bit integers.



Algorithm Implementation Language Architecture Cycles
ChaCha20 moon/neon/32 assembly NEON 9694

hacl-star/vec128 C NEON 12602
dolbeau/arm-neon C NEON 13345
hacl-star/ref C NEON 17691
moon/armv6/32 assembly ARM 18438

e/ref C ARM 22264
Poly1305 moon/neon/32 assembly NEON 10475

neon2 assembly NEON 11403
moon/armv6/32 assembly ARM 18676

53 C ARM 20346
hacl-star C ARM 127134

ref C ARM 395722
Curve25519 neon2 assembly NEON 1935283

ref10 C ARM 4969185
hacl-star C ARM 13352774

ref C ARM 60874070
SHA-512 sphlib C ARM 82589

ref C ARM 118118
hacl-star C ARM 121327

Ed25519 ref10 C ARM 2,093,238
ref C ARM 18,763,464

hacl-star C ARM 29,345,891
Table 7. ARM32 SuperCop Benchmarks: ranked list of best performing implementations on an ARMv7 Cortex A53 Processor
@ 1GHz running 32-bit Raspbian Linux 4.4.50.

Algorithm Implementation 16by 64by 256by 1024by 8192by 16384by
ChaCha20 HACL* 90381.10k 353297.74k 377317.29k 380701.70k 386591.17k 385418.53

HACL* vec 115770.29k 486701.81k 728594.24k 860998.38k 910695.60k 924024.72
OpenSSL C 204657.84k 318616.27k 342565.63k 346045.80k 371442.81k 370262.02

OpenSSL ASM 285974.37k 526845.47k 1165745.92k 2382449.36k 2452002.59k 2470173.90
ChachaPoly HACL* 39405.99k 143626.18k 238075.98k 277331.74k 292995.07k 302145.07

OpenSSL C 169799.71k 262761.53k 285738.89k 304376.49k 300509.41k 290193.41
OpenSSL ASM 217872.74k 399483.59k 848875.62k 1518847.66k 1632862.87k 1638246.57

SHA-256 HACL* 20331.67k 54075.54k 106500.44k 141369.19k 158401.50k 153695.16
OpenSSL C 18121.99k 49251.87k 104402.28k 144965.29k 161028.97k 166327.74

OpenSSL ASM 25321.67k 78481.92k 201910.03k 310514.47k 375845.67k 389046.03
SHA-512 HACL* 16513.59k 65673.72k 127720.99k 201159.46k 234087.09k 236592.63

OpenSSL C 17280.47k 68173.85k 135549.35k 213524.48k 263108.41k 264705.37
OpenSSL ASM 20556.52k 82447.35k 194595.05k 368933.21k 519731.71k 546442.02

Poly1305 HACL* 33945.66k 125367.98k 382090.15k 817432.47k 1204432.92k 1246641.57
OpenSSL C 35947.80k 134963.35k 421210.62k 928101.54k 1355694.08k 1418755.77

OpenSSL ASM 33354.96k 125854.18k 433647.19k 1383256.87k 3630256.03k 4032672.28
Curve25519 HACL* 144895

OpenSSL C 68107
Table 8. OpenSSL speed comparison for our algorithms. Each algorithm is run repeatedly for three seconds on different input
sizes, and we measure the number of bytes per second via the openssl speed command. The experiment is performed on an
Intel Core i7 @ 2.2Ghz running OSX 10.12.4. For Curve25519, we measure the number of ECDH computations per second.
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Fig. 11. OpenSSL speed comparison for the AEAD algorithm. The algorithm is run repeatedly for three seconds on different
input sizes, and we measure the number of operations via the openssl speed command. The experiment is performed on an
Intel Core i7 @ 2.2Ghz running OSX 10.12.4.



16 64 256 1024 8192 16384

0

50000

1 · 105

1.5 · 105

2 · 105

2.5 · 105

3 · 105

3.5 · 105

4 · 105

input bytes

10
00
so

fb
yt
es
/s
(h
ig
he
ri
sb

et
te
r)

HACL∗ OpenSSL OpenSSL ASM

Fig. 12. OpenSSL speed comparison for the SHA2-256 algorithm. The algorithm is run repeatedly for three seconds on
different input sizes, and we measure the number of operations via the openssl speed command. The experiment is performed
on an Intel Core i7 @ 2.2Ghz running OSX 10.12.4.
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Fig. 13. OpenSSL speed comparison for the SHA2-512 algorithm. The algorithm is run repeatedly for three seconds on
different input sizes, and we measure the number of operations via the openssl speed command. The experiment is performed
on an Intel Core i7 @ 2.2Ghz running OSX 10.12.4.
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Fig. 14. OpenSSL speed comparison for the Poly1305 algorithm. The algorithm is run repeatedly for three seconds on different
input sizes, and we measure the number of operations via the openssl speed command. The experiment is performed on an
Intel Core i7 @ 2.2Ghz running OSX 10.12.4.
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Fig. 15. OpenSSL speed comparison for the X25519 algorithm. The algorithm is run repeatedly for ten seconds, and we
measure the number of operations via the openssl speed command. The experiment is performed on an Intel Core i7 @
2.2Ghz running OSX 10.12.4.
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