
The proceedings version of this paper appears in CRYPTO 2017. This is the full version.

A New Distribution-Sensitive Secure Sketch and

Popularity-Proportional Hashing

Joanne Woodage1, Rahul Chatterjee2, Yevgeniy Dodis3,
Ari Juels2, Thomas Ristenpart2

1 Royal Holloway, University of London
2 Cornell Tech

3 New York University

Abstract. Motivated by typo correction in password authentication, we investigate cryp-
tographic error-correction of secrets in settings where the distribution of secrets is a priori
(approximately) known. We refer to this as the distribution-sensitive setting.

We design a new secure sketch called the layer-hiding hash (LHH) that offers the best
security to date. Roughly speaking, we show that LHH saves an additional logH0(W) bits
of entropy compared to the recent layered sketch construction due to Fuller, Reyzin, and
Smith (FRS). Here H0(W) is the size of the support of the distribution W . When supports
are large, as with passwords, our new construction offers a substantial security improvement.

We provide two new constructions of typo-tolerant password-based authentication
schemes. The first combines a LHH or FRS sketch with a standard slow-to-compute hash
function, and the second avoids secure sketches entirely, correcting typos instead by check-
ing all nearby passwords. Unlike the previous such brute-force-checking construction, due to
Chatterjee et al., our new construction uses a hash function whose runtime is proportional to
the popularity of the password (forcing a longer hashing time on more popular, lower entropy
passwords). We refer to this as popularity-proportional hashing (PPH). We then introduce
a framework for comparing different typo-tolerant authentication approaches. We show that
PPH always offers a better time / security trade-off than the LHH and FRS constructions,
and for certain distributions outperforms the Chatterjee et al. construction. Elsewhere, this
latter construction offers the best trade-off. In aggregate our results suggest that the best
known secure sketches are still inferior to simpler brute-force based approaches.

1 Introduction

In many settings, secrets needed for cryptography are measured in a noisy fashion. Biometrics such
as fingerprints [31, 35], keystroke dynamics [23, 24], voice [22], and iris scans [31] are examples —
each physical measurement produces slight variants of one another. A long line of work has built
ad hoc solutions for various cryptographic settings [17, 22–24], while another line of work starting
with Dodis, Ostrovsky, Reyzin and Smith [13] explored a general primitive, called a fuzzy extractor,
that can reproducibly derive secret keys given noisy measurements. The canonical fuzzy extractor
construction combines a traditional key-derivation function (KDF) with a secure sketch, the latter
serving as an error-correction code that additionally leaks a bounded amount of information about
the secret.

In this work, we explore error correction for noisy secrets in the distribution-sensitive setting, in
which one knows the distribution of secrets while designing cryptographic mechanisms. We ground
our investigations in an important running case study: typo-tolerant password checking [12, 20],
and ultimately offer a number of improvements, both theoretical and practical, on cryptographic
error-tolerance in general and the design of typo-tolerant password hardening systems in particular.

Typo-tolerant password checking. Recent work by Chatterjee et al. [12] revealed that users
suffer from a high rate of typographical errors (typos), with even a handful of simple-to-correct
typos (such as caps lock or other capitalization errors) occurring in 10% of all login attempts at

1

Dropbox. They offered a usability improvement called “brute-force checking”: enumerate probable
corrections of the submitted (incorrect) password, and check each of them using a previously stored
slow-to-compute cryptographic hash of the correct password (e.g., scrypt [26], argon2 [6], or the
PKCS#5 hashes [18,27]). They also show empirically that this relaxed checking approach does not
noticeably degrade security, assuming careful selection of the typos to correct.

To maintain performance, however, one must limit the runtime of password checking. One can
at most handle approximately b = RT/c errors given a runtime budget RT and cryptographic
hash function that takes time c to compute.1 Given that c should be slow — in order to prevent
brute-force attacks — the size b of the ball, or set of potential corrections around an incorrect
password, must be fairly small. Extending to larger numbers of errors — for example we would
like to handle the most frequent 64 typos, which would account for approximately 50% of all typos
seen in measurement studies — would appear to force c to be too low to ensure security in the
face of attackers that obtain the password hash and mount dictionary attacks.

An existing alternative approach to brute-force ball search is to store, along with the password
hash, a small bit of information to help in correcting errors. Because we want to maintain security
in the case of compromise of a password database, we must ensure that this helper information
does not unduly speed up brute-force cracking attacks. We therefore turn to secure sketches [13].

Secure sketches. Introduced by Dodis, Ostrovsky, Reyzin and Smith [13], sketches allow cor-
rection of errors together with bounds on the information leaked about the original secret to
an attacker. Traditionally, sketch security is measured by the conditional min-entropy H̃∞(W |s)
of the secret W given the sketch s against unbounded adversaries. Fuller, Reyzin, and Smith
(FRS) [15] show that the best one can hope for when achieving correction error at most δ is
H̃∞(W |s) ≥ Hfuzz

t,∞(W) − log(1 − δ), where Hfuzz
t,∞(W) is called the fuzzy min-entropy of the distri-

bution and captures the worst-case cumulative weight of all points in a ball.
FRS give a clever construction, called layered hashing, that almost achieves the optimal result.

They prove that

H̃∞(W |s) ≥ Hfuzz
t,∞(W)− log(1/δ)− log H0(W)− 1 .

Here H0(W) is the Hartley entropy, defined to be the logarithm of the size of the distribution’s
support. The FRS construction provides better bounds than any prior secure sketch construction
(and, by the usual construction, the best known fuzzy extractor [13]). The construction works by
splitting possible secrets into different layers according to their probability in the distribution W ,
and then applying a universal hash of a specific length based on a message’s layer. Both the layer
identifier and the resulting hash value are output. Intuitively, the idea is to tune hash lengths to
balance error correction with entropy loss: more probable points are grouped into layers that have
much shorter hash values, with less probable points grouped into layers with longer hashes.

The layered sketch works only in (what we call) the distribution-sensitive setting, meaning
that the distribution of messages must be known at the time one designs the sketching algorithm.
As another potential limitation, correcting an error using the sketch takes time linear in the size
of the ball around the point, meaning the construction is only computationally efficient should
balls be efficiently enumerable. That said, both conditions are satisfied in some settings, includ-
ing typo-tolerant password checking: password leaks allow accurate characterization of password
distributions [7, 19, 21, 33] when constructing sketches, and as mentioned above, the ball of errors
required to cover most observed typos is small and fast to enumerate.

Our contributions. In this work, we explore the open question above: How can we securely
correct more errors than Chatterjee et al. in [12]? We offer two new approaches. The first uses
secure sketching, and we give a new scheme, called the layer-hiding hash (LHH), and prove that
it leaks less information than prior constructions. Perhaps counter-intuitively, LHH does so by
actually lengthening, rather than shortening, the output of the sketch as compared to the FRS
construction. Our second approach is a new distribution-sensitive brute-force based technique called
popularity-proportional hashing (PPH), in which the time required to hash a password is tuned
based on its popularity: The more probable the password is, the longer the hashing should take.

1 This ignores parallelism, but the point remains should one consider it.

2

Finally, we offer a framework for comparing various approaches, and show that PPH offers a
better time / security trade-off than LHH and FRS. For certain error settings, PPH allows us to
correct more errors securely than Chatterjee et al.’s brute-force checking. Elsewhere their brute-
force checking offers a better trade-off still. In fact, we conjecture that for many distributions no
sketch will beat brute-force based approaches.

The layer-hiding hash sketch. Our first contribution is to provide a new sketch that we call
the layer-hiding hash (LHH) sketch. We prove that LHH enjoys an upper bound of H̃∞(W |s) ≥
Hfuzz
t,∞(W)− log(1/δ)− 1, yielding a substantial saving of log H0(W) bits of entropy over FRS. The

LHH starts with the same general approach as FRS, that of putting passwords into layers based on
their probability. The key insight is that one can, as the name implies, hide the layer of the password
underlying a sketch. To do so, the construction takes the output of applying a layer-specific strongly
universal hash to the password and pads it to a carefully chosen maximum length with random
bits. During recovery, one looks for a matching prefix of the sketch value when applying (differing
length) strongly universal hashes. Hiding the level intuitively avoids leaking additional information
to the adversary, but, counterintuitively, the proof of security does not require any properties of
the hash functions used. Rather, the proof only uses that the length of hash outputs is bounded
plus the fact that (unlike in the FRS construction) sketches from different layers can collide. The
proof of correctness relies on the strong universality of the underlying hashes.

LHH’s bound improves over FRS (and, consequently, all other known constructions) because
it removes the log H0(W) term. The improvement in the bound can be significant. Assuming W
places non-zero probability on all passwords from the RockYou password leak [29] already makes
log H0(W) ≥ 3. The min-entropy (let alone fuzzy min-entropy) of common password distributions
is commonly measured to be only about 7 bits, making a loss of 3 bits significant. Of course, as
pointed out by FRS, the loss due to log(1/δ) — which LHH also suffers — is likely to be even more
problematic since we’d like δ to be small. An important question left open by our work is whether
one can build a sketch that replaces log(1/δ) with the optimal log(1− δ).

Sketch-based typo-tolerant checking. A seemingly attractive way of building a typo-tolerant
password-based authentication scheme is to store a sketch of the password along with a slow-to-
compute hash of the password. To later authenticate a submitted string, one first checks it with
the slow hash and, if that fails, uses the sketch to error correct, and checks the result with the slow
hash. In terms of security, we are primarily concerned about attackers that obtain (e.g., by system
compromise) the sketch and slow hash value and mount offline brute-force dictionary attacks. The
sketch will leak some information useful to the attacker.

The first challenge that arises in security analysis is that the traditional sketch security measure,
conditional min-entropy H̃∞(W |s), does not provide good bounds when adversaries can make many
guesses. The reason is that it measures the worst-case probability of guessing the message given
the sketch in a single attempt, and for non-flat distributions the success probability of subsequent
guesses after the first will be much lower. We therefore introduce a more general conditional q-
min-entropy notion, denoted H̃q

∞(W |s). It is the worst-case aggregate probability of a message
being any of q values, conditioned on the sketch. We revisit secure sketches in this new regime and
analyze the q-min-entropy for the FRS and LHH constructions. These results are actually strictly
more general since they cover the q = 1 bounds as well, and so in the body we start with the more
general treatment and show the q = 1 results mentioned above as corollaries.

Popularity-proportional hashing. We also offer a new distribution-sensitive variant of brute-
force checking called popularity-proportional hashing. Recall that brute-force checking uses the
same slow hash function for all passwords. In popularity-proportional hashing, we use knowledge
of the distribution of passwords to tune the time required to hash each password. The more popular
a password, equivalently the more probable, the longer the hash computation.

In typo-tolerant hashing this has a nice effect for certain distributions: the ball of possible
passwords around a submitted string will consist of a mix of lower- and higher-probability points,
making the aggregate time required to check all of them lower than in brute-force checking. Tim-
ing side-channels can be avoided by fixing an upper bound on this aggregate time, and setting
the hashing costs of the scheme such that every password can be checked within this time. The
checking algorithm is then implemented to process each password for this maximum time, and ac-

3

cordingly its run time reveals nothing about the password being checked. This serves to “smooth”
the distribution from the point of view of a brute-force attacker, who must choose between check-
ing a popular password versus lower-cost checks of less probable passwords. We shall ultimately
see that PPH offers a better time / security trade-off than sketch-based checking using both FRS
and LHH. We note that the benefits of population-proportional hashing appear to be specific to
the typo-tolerant setting; in exact checking schemes one would want to hash passwords with the
maximum cost allowed by the runtime of the scheme, regardless of their weight.

Comparing the approaches. We use the following methodology to compare the time / secu-
rity trade-offs of the various approaches to error-tolerant authentication. First, one fixes an error
setting, such as choosing a set of 64 frequently made typos, as well as a runtime budget RT for
authentication. Then, one compares the brute-force attack security of various constructions that
operate in time at most RT and correct the specified errors. So for brute-force checking, for exam-
ple, one must pick a slow hash function that takes RT/64 time to compute, and for secure sketches
one can use a slow hash of time RT/2 (where for simplicity we ignore the sketch cost, which is in
practice negligible relative to RT). For popularity-proportional hashing one picks hash speeds so
that the ball whose passwords have the highest aggregate probability can be checked in time RT.

With this framework in place, we prove that PPH provides a better time / security trade-off
than both FRS-assisted and LHH-assisted checking. The proofs require lower-bounding the security
of the FRS and LHH constructions in the face of a computationally efficient attacker whose runtime
constraint affords him q slow hash queries (equivalently q guesses at the underlying password). The
attack is simple: enumerate probable passwords, check which match the sketch, and output the
heaviest q that match. It may not be obvious that this is efficient; we will argue so in the body.

To analyze the attacker’s success, we use a proof strategy which at a high level proceeds as
follows. We first model the hash underlying the sketch as a random oracle. This is conservative
as it can only make the adversary’s task harder. We then transform the analysis of the attacker’s
success probability to a type of balls-in-bins analysis that differs slightly based on the construction.
For the FRS case, which is simpler, balls of differing sizes represent passwords of differing weights,
and bins represent individual sketch values within a layer. The random oracle ‘throws’ the balls
into the bins; the compromise of a sketch and subsequent guessing attack is captured by sampling
a bin and allowing the attacker to choose q balls from it. As such computing a lower bound on the
q-conditional min-entropy is reduced to computing the expected (over the random oracle coins)
aggregate weight of the q heaviest balls across all bins.

Instead of tackling analysis of this expectation directly, we instead form direct comparison with
PPH by showing that with overwhelming probability the set of points queried by an optimal brute-
force adversary running in the same time against PPH will be included in the set of points that
the adversary against FRS chooses. As such a brute-force attacker against FRS-assisted checking
will always either match or (more often) beat attacks against PPH. We derive a similar result for
LHH-assisted checking via a modified balls-in-bins experiment.

With the improvement of PPH over sketch-assisted checking established, we next compare
PPH and brute-force checking. We quantify precisely the conditions which determine whether
PPH or brute-force checking represents the better trade-off for a given error setting, and show
that for certain error settings PPH allows us to correct many more errors securely than brute-force
checking.

While PPH can be shown to improve on sketch-assisted checking for any distribution, the same
is not true for brute-force checking — indeed there exist settings in which brute-force checking will
lead to a dramatic reduction in security — and in general comparing the brute-force and sketch-
assisted approaches directly appears technically challenging. However by combining the above
results, we show that for certain error settings (including passwords) the seemingly simplest brute-
force checking approach provides the best trade-off of all — first by invoking the result showing
PPH outperforms sketch-assisted checking, and then by showing that brute-force checking offers
an even better trade-off than PPH. As such for any given error setting, our results can be used to
determine how many errors can be tolerated, and whether PPH or brute-force checking offers the
better approach to typo-tolerance.

Extensions and open problems. We frame our results in the context of typo-tolerant pass-
word hashing and (reflecting the majority of in-use password hashing functions) primarily measure

4

hashing cost in terms of time. We will in Section 7 briefly discuss how our results may be extended
to incorporate memory-hard functions [1–3, 6, 26] and indicate other cryptographic applications,
such as authenticated encryption and fuzzy extraction, in which they are applicable. Finally we
will discuss the key open problem — can any distribution-sensitive secure sketch offer a better
time / security trade-off than brute-force based approaches? We conjecture that for a large class
of error settings no sketch can perform better. We offer some intuition to this end, and highlight
it as an interesting direction for future research.

2 Definitions and Preliminaries

Notation. The set of binary strings of length n is denoted by {0, 1}n. We use ⊥ to represent
the null symbol. We write x||y to denote the concatenation of two binary strings x and y, and
[y]j1 to denote the binary string y truncated to the lowest order j bits. We let [j] denote the set
of integers from 1 to j inclusive, and [j1, j2] the set of integers between j1 and j2 inclusive. The

notation x
$← X denotes sampling an element uniformly at random from the set X , and we let

x
W← X denote sampling an element from the set X according to the distribution W . All logs are

to base 2, and e denotes Euler’s constant. For a given distribution W where M = supp(W), we
let w1, . . . , w|M| denote the points in the support of W in order of descending probability, with
associated probabilities p1, . . . , p|M|.

Hash Functions. Here we recall the definitions of universal and strongly universal hash function
families.

Definition 1. A family of hash functions F : S × {0, 1}` → {0, 1}d is said to be universal if for
all w 6= w′ ∈ S, it holds that

Pr
[
F(w; sa) = F(w′; sa) : sa

$← {0, 1}`
]

= 2−d .

Definition 2. A family of hash functions F : S×{0, 1}` → {0, 1}d is said to be strongly universal
if for all w 6= w′ ∈ S, and y, y′ ∈ {0, 1}d, it holds that

Pr
[
F(w; sa) = y : sa

$← {0, 1}`
]

= 2−d , and

Pr
[
F(w; sa) = y ∧ F(w′; sa) = y′ : sa

$← {0, 1}`
]
≤ 2−2d .

Error settings and typos. Let S be a set with associated distance function dist : S ×S → R≥0.
If dist is a metric over S — that is to say that dist is non-negative, symmetric, and for all x, y, z ∈ S,
it holds that dist(x, z) ≤ dist(x, y) + dist(y, z) — then we say that the pair (S, dist) is a metric
space. We can assign to S a distribution W , and let M denote the set of possible messages,
M = supp(W). We set an error threshold t, denoting the maximum distance between points w, w̃
for which will consider w̃ an error of w. Together these components, (S,W, dist, t) define an error
setting.

For an error setting E = (S,W, dist, t), the (closed) ball of size t around w̃ ∈ S is the set of all
points w′ ∈ supp(W) such that dist(w′, w̃) ≤ t, that is Bt(w̃) = {w′ ∈ supp(W) | dist(w′, w̃) ≤
t}. We let βmax denote the size of the largest ball in the error setting; that is to say βmax =
maxw̃|Bt(w̃)|. In this work, we shall be especially interested in error settings for which balls are
efficiently enumerable, a property which we formalize below.

Definition 3. Let E = (S,W, dist, t) be an error setting with maximum ball size βmax. We say
E has efficiently enumerable balls, if there exists an algorithm Enum which takes as input a point
w̃ ∈ S, and outputs a set of points L such that for all w̃ ∈ S it holds that

Pr
[
L = Bt(w̃) : L $← Enum(w̃)

]
= 1 ,

and Enum runs in time polynomial in βmax.

5

Entropy. We now discuss several notions of entropy which capture the maximum success proba-
bility of an attacker who attempts to guess a point sampled from a given distribution. Traditionally
these notions only consider the case in which the adversary gets one guess. However in subsequent
work, when we wish to capture the success rate of an adversary attempting to perform a brute-
force attack, it will be useful to generalize these entropy notions to capture the maximum success
probability of an adversary who may output a vector of q guesses. We define these notions below
generalized to the multi-guess setting; one can easily extract the familiar definitions by setting
q = 1.

Definition 4. Let W and Z be distributions. We define the q-min-entropy of W , denoted Hq
∞(W)

to be,

Hq
∞(W) = − log

(
max

w1,...,wq

q∑
i=1

Pr [W = wi]

)
,

where w1, . . . , wq are distinct elements of S. The conditional q-min-entropy of W conditioned on

Z, denoted H̃q
∞(W |Z), is defined to be,

H̃q
∞(W |Z) = − log

(∑
z

max
w1,...,wq

q∑
i=1

Pr [W = wi | Z = z] · Pr [Z = z]

)
;

and the q-min-entropy of W joint with Z, denoted Hq
∞(W,Z), is defined,

Hq
∞(W,Z) = − log

(
max

w1,...,wq
z1,...,zq

q∑
i=1

Pr [W = wi ∧ Z = zi]

)
,

where the w1, . . . , wq and z1, . . . , zq are distinct elements of the supports of W and Z respectively.
The Hartley entropy of W , denoted H0(W), is defined to be,

H0(W) = log |supp(W)| .

For an example which surfaces the usefulness of extending min-entropy definitions beyond one
guess, consider a pair of distributions W1 and W2, such that W1 is flat with 2−H∞(W) = 2−µ

and W2 consists of one point of probability 2−µ and 22µ − 2µ points of probability 2−2µ. While
H1
∞(W1) = H1

∞(W2) = µ, the two distributions are clearly very different, and in particular an
attacker given some q > 1 guesses to predict a value sampled from each of the distributions is
going to have a much easier time with W1. This difference is highlighted when considering the
q-min-entropy, with Hq

∞(W1) = q · 2−µ, whereas Hq
∞(W2) = 2−µ + (q − 1) · 2−2µ.

In the q = 1 case, the conditional min-entropy and Hartley entropy are linked via the chain
rule for conditional min-entropy [13]. It is straightforward to see that this result extends to the
multi-guess setting; for completeness we include a proof in Appendix B.

Lemma 1. Let W,Z be distributions. Then

H̃q
∞(W |Z) ≥ Hq

∞(W,Z)−H0(Z) .

Secure sketches. Let E = (S,W, dist, t) be an error setting. Secure sketches, introduced by Dodis
et al. in [13], allow reconstruction of a message which may be input with noise, while preserving
as much of the min-entropy of the original message as possible.

In this work we focus on sketches in the distribution-sensitive setting, in which the distribution
of secrets is precisely known at the time of designing the sketch. While distribution-sensitivity may
not always be feasible, in the case of passwords there is a long line of work on accurately modeling
the distribution of human-chosen passwords. Primarily motivated by password cracking, model-
ing techniques such as hidden Markov models (HMM) [11], probabilistic context free grammars
(PCFG) [32,33], or neural networks [21] use the plethora of real password leaks (e.g., [9]) to learn
good estimates of W . See [19] for a detailed discussion of these approaches. Of course, estimates
may be wrong. A discussion on the effect of transferring our results to a setting in which the
distribution is only approximately known is given in Appendix A. We recall the formal definition
of secure sketches below.

6

Definition 5. Let E = (S,W, dist, t) be an error setting. A secure sketch for E is a pair of algo-
rithms S = (SS,Rec) defined as follows:

– SS is a randomized algorithm which takes as input w ∈ S, and outputs a bit string s ∈ {0, 1}∗.
– Rec is an algorithm, possibly randomized, which takes as input w̃ ∈ S and s ∈ {0, 1}∗, and

outputs w′ ∈ Bt(w̃) ∪ {⊥}.

We note that we slightly modify the definition of [15] so that Rec on input w̃ always outputs
w′ ∈ Bt(w̃) ∪ {⊥}, as opposed to w′ ∈ S ∪ {⊥}. As we shall see in the following definition, we
only require Rec to return the correct point if that point lies in Bt(w̃). As such this is mainly a
syntactic change, and all pre-existing sketch constructions discussed in this work already adhere to
the condition. In the following definition, we generalize the security requirement to the multi-guess
setting in the natural way; the usual definition (e.g. [13, 15]) is obtained by setting q = 1.

Definition 6. A sketch S = (SS,Rec) is an ((S,W, dist, t), µ̄q, δ)-secure sketch if:

1. (Correctness) For all w, w̃ ∈ S for which dist(w, w̃) ≤ t, it holds that

Pr [w = w′ : w′ ← Rec(w̃,SS(w))] ≥ 1− δ ,
where the probability is taken over the coins used by SS and Rec.

2. (Security) The q-min-entropy of W conditioned on SS(W) is such that,

H̃q
∞(W |SS(W)) ≥ µ̄q .

Since the help string s is public any party — including the adversary — can query Rec(·, s) on
w̃ ∈ S. In an ideal secure sketch, knowledge of s would offer no greater advantage than that gained
via oracle access to Rec(·, s). In this case, an adversary challenged to guess the original value w ∈ S
is forced to guess some w̃ such that dist(w, w̃) ≤ t. To capture this notion of ideal secure sketch
security, Fuller et al. [15] introduce the notion of fuzzy min-entropy, which we generalize to the
multi-guess setting in the natural way.

Definition 7. Let E = (S,W, dist, t) be an error setting. The q-fuzzy min-entropy of W is defined
to be,

Hq,fuzz
t,∞ (W) = − log

(
max

w̃1,...,w̃q

∑
w′∈∪qi=1Bt(w̃i)

Pr [W = w′]

)
,

where w̃1, . . . , w̃q are distinct elements of S.

3 New Bounds for FRS Sketches

In this section we describe and analyze two constructions of secure sketches due to Fuller, Reyzin,
and Smith [15]. The FRS sketches have a number of attractive properties. The first is that these are
the only secure sketches (to our knowledge) that can be utilized with any choice of distance function
dist. We would like this flexibility so that ultimately we can tailor the distance function used to
the context of correcting password typos for which, being non-symmetric, traditional metrics such
as edit distance are not best suited [12].

Even if edit distance were appropriate, we know of no constructions which provide sufficient
security when used with parameters typical to password distributions. Constructions in [13, 14]
either embed the edit metric into the Hamming or set distance metrics using a low distortion
embedding of Ostrovsky and Rabani [25], or use a novel c-shingling technique.

As pointed out in [12], when applied to typical password distributions which have a large
alphabet of 96 ASCII characters, then even if we only attempt to correct edit distance one errors,
these constructions incur entropy loss ≈ 91 bits and ≈ 31 bits respectively. Given that password
distributions typically have at most 8 bits of min-entropy [8], it is clear these constructions are
unsuitable for our purposes.

Most importantly, the FRS constructions achieve almost optimal security in the q = 1 case. It
was shown in [15] that high fuzzy min-entropy is a necessary condition for the existence of a good

7

FRS1-SS(w) :

sa
$← {0, 1}`

y ← F(w; sa)
s← (y, sa)
Ret s

FRS1-Rec(w̃, s) :

(y, sa)← s

for w′ ∈ Bt(w̃)

if F(w′; sa) = y

Ret w′

Ret ⊥

Fig. 1: Construction of a secure sketch FRS1 = (FRS1-SS,FRS1-Rec) for an error setting E =
(S,W, dist, t) from a universal hash function family F : S × {0, 1}` → {0, 1}log(βmax)+log (1/δ). Here
βmax denotes the size of the largest ball in the error setting.

secure sketch or fuzzy extractor for a given error setting, surfacing a lower bound on the security of
such schemes. We recall the result in the lemma below, which we extend to the multi-guess setting.
The proof is given in Appendix C.

Lemma 2.Let E = (S,W, dist, t) be an error setting, and let S = (SS,Rec) be an

((S,W, dist, t), µ̄q, δ), µ̄q, δ)-secure-sketch. Then µ̄q ≤ Hq,fuzz
t,∞ (W)− log(1− δ).

FRS showed that in the distribution-sensitive setting, in which the precise distribution is known
at the time of building the sketch, high fuzzy min-entropy also implies the existence of a good secure
sketch for that distribution. We recall their constructions, and prove new results about them.

3.1 Secure Sketches for Flat Distributions

FRS describe a secure sketch which is nearly optimal for error settings
E = (S,W, dist, t) such that W is flat, which we recall in Figure 1. We refer to this construc-
tion as FRS1 = (FRS1-SS,FRS1-Rec).

The construction is built from a universal hash function family with output length log(βmax) +
log(1/δ) bits, where βmax denotes the size of the largest ball in the error setting. FRS1-SS chooses

a salt sa
$← {0, 1}`, computes y = F(w; sa), and outputs s = (y, sa). On input w̃ ∈ S and s, Rec

searches in Bt(w̃) for a point w′ such that F(w′; sa) = y, returning the first match which it finds.
The authors note that the construction is not novel, with universal hash functions representing a
commonly used tool for information reconciliation (e.g., [5], [28], [30]). Correctness follows from a
straightforward application of Markov’s Inequality. In the following lemma we extend analysis to
cover the q-conditional min-entropy. The proof is given in Appendix C.

Lemma 3. Let E = (S,W, dist, t) be an error setting for which W is flat, and let βmax denote
the size of the largest ball. Let FRS1 = (FRS1-SS,FRS1-Rec) be as described in Figure 1, and let
F : S × {0, 1}` → {0, 1}log(βmax)+log(1/δ) be a family of universal hash functions where 0 < δ < 1.
Then FRS1 is a ((S,W, dist, t), µ̄q, δ), µ̄q, δ)-secure sketch, where

µ̄q ≥ Hfuzz
t,∞(W)− log(q)− log(1/δ) .

3.2 Layered Hashing for Non-flat Distributions

The above construction may be significantly less secure in settings where the distribution in ques-
tion is non-flat. In this case, having high fuzzy min-entropy does not exclude the possibility that
the distribution contains a dense ball consisting of many low probability points. Disambiguating
between points in this dense ball forces a hash function with a large range to be used, which leaks
more information to adversaries.

The key idea is to split the support of the distribution into nearly flat layers; the layer in which
a point lies is determined by its probability, and the layers are defined such that the probabilities
of points in any given layer differ by at most a factor of two. We include the index of the layer in
which a point lies as part of its sketch, and then apply the secure sketch for flat distributions of
Lemma 3 tuned to the parameters of the appropriate layer. Revealing the layer in which a point
lies degrades security; in an attempt to limit the damage, the number of layers is restricted so the
extra loss amounts to log H0(W) + 1 bits; for full details of the proof see [15].

8

FRS2-SS(w) :

j ← L(w)

if j = λ

s← (w,⊥, λ)

else

sa
$← {0, 1}`j

y ← Fj(w; sa)
s← (y, sa, j)

Ret s

FRS2-Rec(w̃, s) :

(y, sa, j)← s

If j = λ

Ret y

for w′ ∈ Bt(w̃) ∩ Lj
if Fj(w

′; sa) = y

Ret w′

Ret ⊥

FRS2-Layer(W) :

λ← H∞(W) + bH0(W)− 1c
for j = µ, . . . , λ− 1

Lj ← (2−(j+1), 2−j]

Lλ ← (0, 2−λ]

Ret {Lj : j ∈ [µ, λ]}

Fig. 2: Secure sketch FRS2 = (FRS2-SS,FRS2-Rec) for an error setting E = (S,W, dist, t) from a set of

universal hash function families Fj : S × {0, 1}`j → {0, 1}j−Hfuzz
t,∞(W)+log(1/δ)+1 for j ∈ [µ, λ], utilizing

layering FRS2-Layer.

For simplicity of exposition, we assume the existence of an efficient algorithm L which takes
as input a point w ∈ S and outputs the index j ∈ J of the layer in which it lies. We note that
the parameters required to compute the cut-off points between layers are readily obtained from
the password model, so computing the partitions is straightforward in practice; provided we can
efficiently look up the weights of points in the password model, the algorithm L will be efficient
also. The full construction is given in Figure 2.

Theorem 1. [15] Let E = (S,W, dist, t) be an error setting. Let Fj : S × {0, 1}`j →
{0, 1}j−Hfuzz

t,∞(W)+log(1/δ)+1 be a family of universal hash functions, where 0 < δ ≤ 1
2 . Consider

FRS2 = (FRS2-SS,FRS2-Rec) with layering FRS2-Layer as defined in Figure 2. Then FRS2 is a
((S,W, dist, t), µ̄1, δ)-secure sketch where

µ̄1 = Hfuzz
t,∞(W)− log H0(W)− log (1/δ)− 1.

In the following theorem, we provide an analysis for FRS2 in the q-min-entropy setting. Our
analysis also provides a tighter bound in the case that q = 1. The full proof is given in Appendix C.

Theorem 2. Let E = (S,W, dist, t) be an error setting, where Hfuzz
t,∞(W) = µ̃. Let Fj : S ×

{0, 1}`j → {0, 1}j−Hfuzz
t,∞(W)+log(1/δ)+1 be a family of universal hash functions, where 0 < δ ≤ 1

2 .
Consider FRS2 = (FRS2-SS,FRS2-Rec) with layering FRS2-Layer as defined in Figure 2. Then FRS2
is a ((S,W, dist, t), µ̄q, δ)-secure sketch for,

2−µ̄q ≤ Pr [W ∈ Lλ] +

λ−1∑
j=µ

Pr [W ∈ Lj(q · |Rj |)] .

Here Lj(q
′) denotes the set of the min{q′, |Lj |} heaviest points in layer Lj. We let Rj = range(Fj)

and let Lλ = {w ∈W : Pr [W = w] < 2−λ} where λ = H∞(W) + bH0(W)− 1c.

We note that the additional tightness in the bound is especially beneficial when considering
distributions with many sparsely populated or empty layers. To give a concrete example of a dis-
tribution for which the tightness in the bound makes a significant difference, consider an error
setting for which W contains 299 points of weight 2−100, and 2199 points of weight 2−200, and the
case that q = 1. Since H0(W) ≈ 199, the bound of Theorem 1 implies that H̃∞(W |FRS2-SS(W)) ≥
Hfuzz
t,∞(W) − log(1/δ) − 8.64. In contrast applying the new bound of Theorem 2 implies that

H̃∞(W |FRS2-SS(W)) ≥ Hfuzz
t,∞(W)− log(1/δ)− 2, (since Pr [W ∈ Lj(|Rj |)] ≤ 2−Hfuzz

t,∞(W)+log(1/δ)+1

for j = 100, 200, and 0 otherwise). This results in a saving of over 6.6 bits of entropy.

4 A New Construction: Layer Hiding Hash

In this section we present a new construction which yields a substantial increase in security over
FRS2, while enjoying the same degree of correctness. The construction, which we call layer hiding
hash and denote LHH = (LHH-SS, LHH-Rec) is similar to FRS2, but crucially does not explicitly
reveal the layer in which a point lies as part of the sketch.

First we split the distribution into layers as shown in Figure 3. Note that this layering is slightly
different to that used in FRS2. We now require a family of strongly universal hash functions, which

9

we use to hash points w ∈ M to a fixed length which is a parameter of the scheme, and then
truncate this hash to various lengths depending on the layer in which the point lies (in turn
creating a family of strongly universal hash functions for each layer). The strong universality of
the hash is required for the proof of correctness in which we bound the probability that the hash
of a point w collides with a given string; this represents a recovery error and the lengths of the
truncated hashes are chosen such that the probability this event occurs is at most δ.

The twist that enables the security savings is that rather than outputting this truncated hash
as is and revealing the layer in which a point lies, we now view this hash as a prefix. The sketch
is then computed by choosing a string at random from the set of all strings of a given length
(a parameter of the scheme) which share that prefix. This is done efficiently by padding the
hash with the appropriate number of random bits. The effect of this is to nearly flatten the joint
distribution of W and SS(W) such that for all w ∈ M and s ∈ supp(SS(W)), it holds that
Pr [W = w ∧ SS(W) = s] ≤ 2−(γ+`) (where γ indexes the layer of least probable points, and `
denotes the length of the salt) regardless of the layer in which the point lies. During recovery, the
sketch searches in the ball of the input for a point whose truncated hash matches the prefix of the
sketch value, and outputs the first match it finds. The full construction is shown in Figure 3.

LHH-SS(w) :

sa
$← {0, 1}`

j ← L(w)

y1 ← [F(w; sa)]
j−µ̃+log(1

δ
)+1

1

y2
$← {0, 1}γ−j

y ← y1||y2
s← (y, sa)
Ret s

LHH-Rec(w̃, s) :

(y, sa)← s

for w′ ∈ Bt(w̃)

j′ ← L(w′)

y′ ← [F(w′; sa)]
j′−µ̃+log(1

δ
)+1

1

if y′ = [y]
j′−µ̃+log(1

δ
)+1

1

Ret w′

Ret ⊥

LHH-Layer(W) :

γ ←
⌊
− log

(
min
w∈W

Pr [W = w]

)⌋
for j = µ, . . . , γ

Lj ← (2−(j+1), 2−j]

Ret {Lj : j ∈ [µ, γ]}

Fig. 3: Construction of secure sketch LHH = (LHH-SS, LHH-Rec) for an error setting E = (S,W, dist, t) with

µ̃ = Hfuzz
t,∞(W), from a family of strongly universal hash functions F : S × {0, 1}` → {0, 1}γ−µ̃+log(1

δ
)+1,

utilizing layering LHH-Layer.

In the following theorem we analyze the correctness and security of LHH, and emphasize the
substantial entropy saving in the q = 1 case of log H0(W) bits in comparison to FRS2. The proof
is given in Appendix C.

Theorem 3. Let E = (S,W, dist, t) be an error setting. Let F : S×{0, 1}` → {0, 1}γ−Hfuzz
t,∞(W)+log (1/δ)+1

be a family of strongly universal hash functions where 0 < δ < 1. Let LHH = (LHH-SS, LHH-Rec)
be as shown in Figure 3 with layering LHH-Layer. Then LHH is a ((S,W, dist, t), µ̄q, δ), µ̄q, δ)-secure
sketch, where,

µ̄q = Hq·η
∞ (W ′) .

Here η = 2γ−Hfuzz
t,∞(W)+log(1/δ)+1, and W ′ is the distribution constructed by taking each point w ∈M

and replacing it with 2(γ−j) points, each of weight Pr [W = w]·2−(γ−j), where w ∈ Lj. In particular
in the case where q = 1, this gives,

µ̄1 ≥ Hfuzz
t,∞(W)− log (1/δ)− 1 .

5 Typo-Tolerant Password-Based Key Derivation

In this section we consider the application of secure sketches to typo-tolerant password-based
key-derivation functions (PBKDF). PBKDFs are used in a number of settings, for example in
password-based authentication during login and password-based encryption. PBKDFs are designed
to slow attackers that mount brute-force attacks, by incorporating a computationally slow and /
or memory-consuming task.

We begin by treating password-based authentication schemes (PBAS). We discuss how to ex-
tend to other PBKDF settings in Section 7. Roughly speaking, our results will apply in any

10

MRAPBAS,E

w
W← S

h
$← Reg(w)

w′←$AH(h)

Ret (w′ = w)

Fig. 4: Security game for password recovery in an offline brute-force cracking attack for a PBAS PBAS =
(Reg,Chk) and error setting E = (S,W, dist, t).

situation in which the PBKDF-derived key is used in a cryptographically strong authentication
setting, including notably password-based authenticated encryption. We will use an oracle model
to capture computational slowness, analogous to prior treatments of PBKDFs in the random oracle
model (ROM) [4, 34]. We will denote by H the oracle, and assume it behaves as a random oracle
mapping arbitrary length strings to randomly chosen strings of a fixed length `H . We let H take
an additional input c representing the unit cost of querying H. We formalize such schemes below,
following [12].

Definition 8. A PBAS is a pair of algorithms PBAS = (Reg,Chk) defined as follows:

– RegH is a randomized algorithm which takes as input a password w ∈M and returns a string
h.

– ChkH is a (possibly randomized) algorithm which takes as input w̃ ∈ S and string h, and
returns either true or false.

Both algorithms have access to oracle H(·; ·, c) : {0, 1}∗ × {0, 1}`sa → {0, 1}`H where c denotes the
unit cost of calling H.

The canonical scheme PBAS = (Reg,Chk), used widely in practice, has RegH choose a random
salt sa and output (sa,H(w; sa, c)). Then, ChkH(w̃, (sa, h)) computes h′ = H(w̃; sa, c) and outputs

h′
?
=h. The runtime is c, the cost of one query to H. Typically PBKDF H will be the c-fold iteration

H(·; ·, c) = Hc(·; ·) of some cryptographic hash function H : {0, 1}∗ × {0, 1}`sa → {0, 1}`H which
we model as a random oracle. We will, in general, ignore the cost of other operations (e.g., the
comparison h = h′) as they will be dominated by c. For example if H consists of 10,000 iterations
of a hash function such as SHA-256 then c would be the cost of 10,000 computations of SHA-256.

We do not yet consider memory-hardness, and leave a proper treatment of it to future work
(see Section 7).

Security against cracking attacks. We will focus primarily on security against offline cracking
attacks. Should an adversary obtain access to the output of Reg, we want that it should be
computationally difficult — in terms of the number of oracle calls to H — to recover the password
w. We formalize this in game MR shown in Figure 4, a close relative of existing security notions
capturing brute-force attacks against passwords (e.g. [4,16]). For an error setting E = (S,W, dist, t),
we define the advantage of an adversary A against a scheme PBAS by

Advmr
PBAS,E(A) = Pr

[
MRAPBAS,E ⇒ true

]
.

The probability is over the coins used in the game and those of the adversary. We assume that the
adversary A has exact knowledge of the error setting E. The number of queries A may make to
oracle H is determined by its run time T and the cost c of querying H, and for simplicity all other
computations are assumed to be free. For example if H has cost c, then an adversary A running
in time T may make q = T/c queries to H.

5.1 Brute-force checkers

To improve the usability of a given PBAS = (Reg,Chk) for some error setting E = (S,W, dist, t),
Chatterjee et al. [12] advocate retaining the original Reg algorithm but modify the Chk algorithm
to a ‘relaxed checker’ that loosens the requirement that a password be entered exactly. They define
the (what we will call) brute-force error correction scheme PBAS-BF = (Reg,Chk-BF) as follows.

11

Definition 9. Let PBAS = (Reg,Chk), and let E = (S,W, dist, t) be an error-setting. Let H(·; ·, cbf)
be a random oracle. Then the brute-force error-correction scheme PBAS-BF = (Reg,Chk-BF) is
defined as follows,

– Reg(w) chooses a salt sa at random, and outputs (sa,H(w; sa, cbf)).
– Chk-BF(w̃, (sa, h)) checks whether h = H(w̃; sa, cbf) or h = H(w′; sa, cbf) for each w′ ∈ Bt(w̃).

If it finds a match, it returns true, and otherwise returns false.

Since cbf denotes the unit cost of running H, it follows that the runtime RT of this algorithm is
the unit cost of H times the worst case ball size, i.e., RT = cbf ·βmax, where βmax = maxw̃|Bt(w̃)|.
To avoid potential side-channels, one may want to always compute H the same number of times,
making the run time always RT.

An adversary A running in time at most T in game MR can make at most qbf = T/cbf queries
to H. It is straightforward to see that A’s optimal strategy is to query the qbf most probable points
in W to H, and so Advmr

PBAS-BF,E(A) ≤ 2−H
qbf
∞ (W). This value is precisely the q-success rate of

Boztas [10], and is a standard measure of the predictability of a password distribution.
Empirical analysis in [12] finds that when we only attempt to correct a very small number of

errors per password (e.g. balls of size at most four) then the brute-force checker yields a noticeable
increase in usability for a small reduction in security. However the above security bound highlights
a potential limitation of the brute-force checker; if we wish to correct balls with larger numbers of
points, we either need to accept an impractically long run time, or reduce cbf to a level which for
some error settings may result in significant security loss. This is an important consideration in
the context of password typos where the large alphabet (of up to 96 ASCII characters depending
on the password creation policy) means that the set of points within edit distance one of a six
character string w̃ ∈ S contains well over 1000 points. This raises the question of whether secure
sketches can be employed to achieve a better time / security trade-off.

5.2 Typo-Tolerant PBAS using Secure Sketches

The error-correcting properties of secure sketches (see Section 2) make them a natural candidate
to build typo-tolerant PBAS schemes. We now describe how to compose a secure sketch with
any existing PBAS scheme to create a typo-tolerant PBAS. The construction is so simple it is
essentially folklore. See also a discussion by Dodis et al. [13]. Our contribution here is merely to
formalize it so that we can provide a full security analysis in our computational setting.

Definition 10. Let S = (SS,Rec) be an secure-sketch for error setting E = (S,W, dist, t). Let
H(·; ·, css) be a random oracle. Then we define the scheme PBAS-SS[S] = (Reg-SS,Chk-SS) as
follows:

• Reg-SS(w) runs SS(w) to obtain a sketch s. It additionally chooses a salt sa at random, and
outputs (s, sa,H(w; sa, css)).

• Chk-SS(w̃, (s, sa, h)) first runs w′←$ Rec(s, w̃). It then checks whether h = H(w̃; sa, css) or
h = H(w′; sa, css). If either matches, it returns true, and otherwise returns false.

As written the run time of checking is always two calls2 to H with unit cost css; it follows that
RT = 2 · css. One could short-circuit checking by first checking w̃ and only computing the secure
sketch if authentication fails, however side-channels would now reveal when a user makes a typo.
We would not want to short-circuit the calculations of H on the sketch outputs, as this could reveal
even more information about w to a side-channel adversary.

An adversary B running in time at most T in game MR can make at most qss = T/css

queries to H. It is clear that B’s optimal strategy on input (s, sa,H(w; sa, css)) is to query the
qss heaviest points when ordered in terms of Pr [W = w | SS(W) = s] to H(·; sa, css). As such for
a given S = (SS,Rec) and error setting E, the definition of q-conditional min-entropy implies that

Advmr
PBAS-SS[S],E(B) ≤ 2−H̃qss∞ (W |SS(W)).

2 If S is perfectly correct, it would be sufficient to simply run w′ ← Rec(s, w̃) and check if h = H(w′; sa, css),
reducing the number of calls to H to one.

12

5.3 Popularity-Proportional Hashing

We now describe a new distribution-sensitive variant of brute-force checking —
popularity-proportional hashing (PPH). We shall see in Section 6 that for certain error settings and
cracking attack run times, PPH allows us to correct more password errors securely than brute-force
checking. For all other error settings, it serves as a useful stepping stone to show that brute-force
checking provides a superior time / security trade-off than sketch-based typo-tolerant PBAS based
on FRS and LHH.

The key idea is to partition the points in the error setting into layers based upon their probability
(as done in LHH), then have the hashing cost vary across the layers. This is accomplished by having
the PBKDF H take as input a different iteration count for each layer. Formally, for a distribution
W with Hfuzz

t,∞(W) = µ̃, if a password w is such that Pr [W = w] ∈ (2−(j+1), 2−j], then hashing w

incurs a cost of cjPPH = cPPH·2µ̃−(j+1), where cPPH is a parameter of the scheme. By making it more
computationally intensive for an attacker to hash popular passwords, the boost to an attacker’s
success probability resulting from querying a likely password is offset by the greater cost incurred
to compute the relevant PBKDF output. We provide full details of the scheme in Figure 5. In the
following lemma, we show how to set the parameter cPPH to achieve a desired checking run time
RT.

Lemma 4. Let E = (S,W, dist, t) be an error setting. Let PBAS-PPH be as shown in Figure 5
using random oracle H. Then setting cPPH = RT implies that

RT(Chk-PPH, cPPH) ≤ RT ,

where RT(Chk-PPH, cPPH) denotes the maximum run time of Chk-PPH with cost parameter cPPH

on any input w̃ ∈ S.

Proof: Fix any point w̃ ∈ S. Then if W is such that Hfuzz
t,∞(W) = µ̃, and recalling that w ∈ Lj

implies that Pr [W = w] > 2−(j+1) it follows that

2−µ̃ ≥ Pr [W ∈ Bt(w̃)] >

γ∑
j=µ

|Bt(w̃) ∩ Lj |2−(j+1) .

Multiplying both sides by cPPH ·2µ̃ and recalling that cPPH = RT and cjPPH = cPPH ·2µ̃−(j+1) gives

RT >

γ∑
j=µ

|Bt(w̃) ∩ Lj |cPPH · 2µ̃−(j+1) =

γ∑
j=µ

|Bt(w̃) ∩ Lj |cjPPH ,

where the right hand side is precisely the run time of Chk-PPH on input w̃. Since the choice of w̃
was arbitrary, it follows that the run time of Chk-PPH on any input w̃ ∈ S is at most RT, proving
the claim.

Reg-PPH(w) :

sa
$← {0, 1}`sa

j ← L(w)

h← H(w; sa, cjPPH)

Ret (sa, h)

Chk-PPH(w̃, (sa, h)) :

for w′ ∈ Bt(w̃)

j′ ← L(w′)

if H(w′; sa, cj
′

PPH) = y

Ret true
Ret false

PPH-Layer(W) :

γ ←
⌊
− log

(
min
w∈M

Pr [W = w]

)⌋
for j = µ, . . . , γ

Lj ← (2−(j+1), 2−j]

Ret {Lj : j ∈ [µ, γ]}

Fig. 5: The popularity-proportional hashing PBAS scheme PBAS-PPH = (Reg-PPH,Chk-PPH), from a
PBKDF H such that H(·; ·, cjPPH) costs cjPPH = cPPH · 2µ̃−(j+1) to compute where cPPH is a parameter of
the scheme, and Hfuzz

t,∞(W) = µ̃. The scheme uses layering PPH-Layer.

6 Comparing the PBAS Approaches

In the last section we saw three different ways to provide typo-tolerant password-based authenti-
cation. Now we dig deeper into the trade-offs incurred by the different schemes, in an attempt to

13

determine which provides the best time / security trade-off. We are most interested in the following
question:

When balls are efficiently enumerable, can PBAS-SS ever provide a better time / security
trade-off compared to PBAS-BF/PBAS-PPH?

We will answer this question, in the negative, for the cases of using FRS or LHH. To do so, we will
fix an error setting E with computationally enumerable balls (Definition 3), fix the time allotted
to authentication, and show that for any error setting the popularity-proportional hashing PBAS
PBAS-PPH provably provides better security than both PBAS-SS[FRS2] or PBAS-SS[LHH]. We will
then discuss the conditions on error settings and attacker run time under which PBAS-BF offers a
better trade-off still.

An incorrect interpretation of our results would be that sketches are useless. This would be
the wrong takeaway for several reasons. First, our analysis will only be for specific sketches, not
all sketches in general, and so answering our question in full generality remains an interesting
open question (see Section 7). Second, even if the answer to our main question is negative, it only
considers computationally enumerable balls, and many of the error correction settings motivating
secure sketches have balls too large to be efficiently enumerated. Potential examples include high-
entropy biometrics such as iris scans and fingerprints. Another reason is that we only consider
settings where one can check that a correction is in fact correct, which allows the brute-force ball
search. Finally, and most broadly, we do not consider information theoretic security — the original
setting of most sketch constructions.

With these caveats in place, we turn to setting up a framework by which we can make apples-
to-apples comparisons between the different PBAS schemes.

Qualities of typo-tolerant PBAS. There are three key axes upon which we compare efficacy
of typo-tolerant PBAS schemes; correctness, security and run time. Correctness is readily assessed
— it is straightforward to see that for any error setting E and δ-correct sketch S = (SS,Rec),
PBAS-SS[S] inherits the δ-correctness of underlying sketch. On the other hand, the two brute-force
correction schemes, PBAS-BF and PBAS-PPH are perfectly correct. This highlights a bonus of the
brute-force approach — if the correct password lies in the ball around a typo, these schemes will
always recover the correct point.

The comparison between the time / security trade-offs incurred by the different approaches
is less immediate. For a given PBAS, this trade-off is primarily dictated by the computational
cost c we assign to H (corresponding, in practice, to picking larger security parameters for the
slow hashing scheme). In order to compare different approaches, we fix a runtime budget RT for
checking passwords, set each of the schemes’ parameters to achieve maximal security subject to
the run time constraint RT, and compare the security as measured by the message recovery game
of Figure 4.

6.1 PBAS-BF versus FRS1 for Flat Distributions

As a warm up, we discuss the trade-off between PBAS-BF and PBAS[FRS1] where
FRS1 = (FRS1-SS,FRS1-Rec) (Lemma 3).

Let E = (S,W, dist, t) be an error setting, such that W is flat with H∞(W) = µ and maximum
ball size βmax. For a given run time budget RT, setting css = RT/2 and cbf = css · 2

βmax
ensures

both schemes have equal run times. Let A be an adversary in game MR running in time at most
T . Letting qss = T/css, it follows that,

Advmr
PBAS-BF,E(A) =

(
qss ·

βmax

2

)
2−µ ; and

Advmr
PBAS-SS[FRS1],E(A) ≤

(
qss ·

βmax

δ

)
2−µ .

The first statement arises since A can query at most T/cbf = qss · βmax

2 points in time T , each
of which contributes weight 2−µ to its success probability. The latter follows since B can query at
most qss = T/css points in time T ; substituting this into the bound on q-conditional min-entropy

14

given in Lemma 3 yields the claim. Since 0 < δ < 1 (and since δ represents the error probability of
the sketch, in practice we would like δ to be small), this clearly illustrates that in terms of existing
upper bounds PBAS-BF offers a significantly better time / security trade-off than PBAS-SS[FRS1].
However, this does not rule out tighter upper bounds being found. To conclusively show that
PBAS-BF offers the best performance, we would like to reverse the inequality sign in the above
statement, and prove a lower bound on security for PBAS-SS[FRS1] that is larger than the upper
bound on security for PBAS-BF.

Let’s unpick what this means. Let B be the optimal attacker in game MR against PBAS-SS[FRS1].
We model the universal hash function family F : S × {0, 1}` → {0, 1}log(βmax)+log(1/δ) utilized by

FRS1 as a family of random oracles H = {h}; rather than including sa
$← {0, 1}` as part of the

sketch, we now give access to the chosen random oracle h
$← {H}. We note that this modeling is con-

servative, since it can only make the attacker’s job harder. With this in place, we may lower bound
Advmr

PBAS-SS[FRS1],E(A) via a balls-in-bins experiment. We represent each point w ∈M = supp(W)

by a ball of weight 2−µ, and associate each of the 2log(βmax)+log(1/δ) = βmax

δ points y ∈ range(H)

with a bin. The choice of oracle h
$← H fixes a ‘throwing’ of the balls into the bins, and the adver-

sary’s success probability is equal to the expected weight accrued when they are allowed to choose
up to qss balls from each bin where qss = T/css. The advantage is then calculated by taking the
expectation of this total over the coins of the random oracle.

With this in place, all we must do is show that with overwhelming probability when we are
allowed to choose at most qss balls from each bin, the resulting set contains at least qss · βmax

2 balls.

Intuitively this must be the case. We would expect each bin to contain δ·|supp(W)|
βmax

balls, and this
value must be much larger than qss or the attack would be trivial. As such to not hit our total, a
very high proportion of the bins must contain a number of balls which has diverged wildly from the
mean. However, formalizing this intuition is non-trivial. A theorem statement to this end can be
easily derived as a special case of those of Theorem 4; we defer the formal statement and analysis
to Appendix D.

6.2 PPH versus FRS2 and LHH

In this section, we show that PBAS-PPH offers a better time / security trade-off than PBAS-SS
implemented with the FRS and LHH sketch constructions of Section 3.

To facilitate the comparison, we first set the hashing cost parameter cPPH such that PBAS-PPH
achieves the same runtime as PBAS-SS with associated hashing cost css. With this parameter
setting, PBAS-SS has checking run time RT = 2 ·css, so Lemma 4 implies that setting cPPH = 2 ·css

ensures PBAS-PPH achieves run time RT also. With this in place, we now upper-bound the success
probability of an optimal attacker against PBAS-PPH with these parameters; the proof is given in
Appendix D.2.

Lemma 5. Let E = (S,W, dist, t) be an error setting, where Hfuzz
t,∞(W) = µ̃. Let PBAS-PPH be the

population-proportional hashing scheme where random oracle H has associated cost cPPH = 2 · css.
Let A be an adversary in game MRAPBAS-PPH,E running in time at most T . Then,

Advmr
PBAS-PPH,E(A) ≤ qss · 2−µ̃ .

where qss = T/css.

To give the above term some context, consider the equivalent upper bounds on success proba-
bility for sketch-based schemes PBAS-SS[FRS2], and PBAS-SS[LHH] (which are derived by substi-
tuting the parameters of the error setting into Theorem 1 and Theorem 3 respectively).3 For any
adversary B running in time at most T it holds that,

Advmr
PBAS-SS[FRS2],E(B) ≤ qss ·

H0(W) · 2−(µ̃−1)

δ
, and

3 Since they are stated in terms of µ̃, we use the (looser) upper bounds here for ease of comparison. It is
straightforward to derive similar statements showing the tighter bound are poorer too; see the proof of
Theorem 4.

15

Advmr
PBAS-SS[LHH],E(B) ≤ qss ·

2−(µ̃−1)

δ
.

By comparison with Lemma 5, it is immediately clear that PBAS-PPH enjoys better security upper
bounds than either construction. Of course it could be that the upper bounds on the sketches can
be improved.

We therefore, in the following theorem, lower bound the success probability of an optimal
attack against PBAS-SS[FRS2] and PBAS-SS[LHH] in terms of the advantage of any adversary
against PBAS-PPH. This rules out improving the upper bounds enough to make the sketch-based
schemes better than PBAS-PPH. We first state the theorem, then discuss its significance.

Theorem 4. Let E = (S,W, dist, t) be an error setting with Hfuzz
t,∞(W) = µ̃. Let Π-S = (Π-SS,Π-Rec)

be the secure sketch for the same error setting where Π ∈ {FRS2, LHH}, achieving 1 − δ cor-
rectness for some 0 < δ < 1. We model the (strongly) universal hash functions used by the
sketch as random oracles. Let PBAS-SS[Π-S] be the sketch-assisted PBAS built from Π-S, using
random oracle H with associated cost css. Let PBAS-PPH be the popularity-proportional hash-
ing PBAS for this error setting, with random oracle H′ with associated cost cPPH set such that
RT(Chk-SS, css) ≥ RT(Chk-PPH, cPPH). Then for any adversary A against PBAS-PPH running in
time at most T , there exists an adversary B against PBAS-SS[Π-S] such that

Advmr
PBAS-PPH,E(A) ≤ Advmr

PBAS-SS[Π-S],E(B) +

(
e · δ

2

)qss
and, moreover, B runs in time T and so can make at most qss = T/css queries.

We have stated the theorem in the form of a reduction to highlight that PBAS-PPH provides at
least as good a time / security trade-off as the seemingly more sophisticated sketch-based scheme.
Given that qss will be large (this is the number of hash computations an attacker can make), then,
provided that δ < 2/e ≈ 0.736 the second term in the bound is infinitesimally far from zero. Since
δ represents the error rate of the sketch, in practice any useable sketch will require δ much smaller
than .736.

The proof of the theorem proceeds by specifying a concrete adversary B against PBAS-SS[Π-SS]
for Π ∈ {FRS2, LHH}, where the underlying (strongly) universal hash function family is modeled
as a family of random oracles H = {h}. It works as one would expect: the adversary is given some
sketch s and access to the oracle h used in the computation of the sketch. The attack queries the
qss heaviest points in the preimage set

Xs = {w ∈ supp(W) : Pr
[
W = w ∧Π-SSh(W) = s

]
> 0}

to the PBKDF H, where qss = T/css. This is the optimal attack.
We note that B need not compute the entire preimage set before submitting his guesses to the

oracle H — rather his most efficient strategy is to compute the hashes of candidate points under h
in descending order of weight, looking for points which lie in the preimage set. Intuitively this will
be efficient because, assuming the sketch behaves uniformly, we would expect to find preimage set
points at fairly regular intervals. For example, if (for simplicity) the sketch was simply h(w) = y,
then the expected run time for B to find qss matches (over the coins of h) is qss · |y| computations
of h.

The proof then must show a lower bound on the success of B. This analysis turns out to be
quite tricky, involving a nuanced balls-in-bins argument. We make things easier by targeting only
a rather loose lower bound that suffices to show the desired relationship with PBAS-PPH. We
believe that better lower bounds can be found. Better lower bounds would signify an even bigger
gap between the security of PBAS-PPH and PBAS-SS, making PBAS-PPH look even better in
comparison.

We note that while the above result shows that PBAS-PPH always offers a better time / security
trade-off than sketch-based schemes using FRS or LHH, the same cannot be shown to hold for
PBAS-BF. For example, consider an error setting such that W consists of 249 points of weight 2−50

and 299 points of weight 2−100, for which all balls contain a single point, except for one large ball
containing 220 of the lower weight points. As such Hfuzz

t,∞(W) = 50, and so by Theorems 2 and 3
it is easy to see that the security of the sketch-based schemes will degrade linearly and gracefully
as T grows. On the other hand, the huge ball of 220 points means that for matching run-times we

16

must set cbf = 2−19 · css — so low that security for PBAS-BF (at least initially; see Section 6.3)
degrades dramatically compared to PBAS-SS.

This counterexample may be contrived, but for more realistic distributions there remains a
technical challenge in comparing PBAS-BF and PBAS-SS for FRS and LHH directly. The fact that
the latter schemes are parameterized by µ̃ = Hfuzz

t,∞(W) means that the natural derived security
bounds are in terms of µ̃ also, whereas for PBAS-BF, security is dictated by the sum of the weights
of the points at the head of the distribution. Therefore any balls-in-bins analysis of the form
described above involves a complicated comparison between two somewhat orthogonal terms. To
overcome this, we can use PPH (whose success probability is also a function of µ̃) as a bridge,
first invoking Theorem 4 to show that PBAS-PPH offers a better time / security trade-off than
the sketch-based PBAS and then assessing, using results in Section 6.3, whether PBAS-BF offers a
better trade-off still.

6.3 Brute-force Checking versus PPH

In the following theorem, we quantify precisely the conditions on an error setting E under which
PBAS-PPH represents a better time / security trade-off than PBAS-BF. We fix a run time RT for
the checking algorithms of both schemes, and set the associated hashing cost cbf and hashing cost
parameter cPPH in a way that ensures both schemes work within this run time. We then consider
the success probabilities of optimal adversaries attacking the schemes, both running in some time
T .

The following theorem formally captures our comparison of the two schemes. Roughly speaking,
the result indicates that there exists a crossover point: for T smaller than this point, PBAS-PPH
provides better security than PBAS-BF, and for T larger than this point, the inverse is true. The
crossover point is dictated by the error setting. As we discuss in more detail below, the crossover
point for typical error distributions seen with human-chosen passwords is actually pretty small,
meaning that PBAS-BF would appear to dominate for distributions of practical interest. Whether
PBAS-PPH can be improved is an open question.

Theorem 5. Let E = (S,W, dist, t) be an error setting, where Hfuzz
t,∞(W) = µ̃ and the largest ball is

of size βmax. Let PBAS-BF = (Reg,Chk-BF) be the brute-force PBAS for this error setting, using
oracle H with associated cost cbf and run time budget RT. Let PBAS-PPH = (Reg-PPH,Chk-PPH)
be the popularity-proportional hashing PBAS for this error setting using an oracle H′ with asso-
ciated cost parameter cPPH set such that RT(Chk-BF, cbf) ≥ RT(Chk-PPH, cPPH). Let A and B
be optimal attackers in games MRAPBAS-PPH,E and MRBPBAS-BF,E respectively running in time T . Let
qbf = T/cbf = T · βmax/RT. Then if T is such that

T ≤
(

2−H
qbf
∞ (W) · 2(µ̃−1)

)
· RT ,

it holds that Advmr
PBAS-PPH,E(A) ≤ Advmr

PBAS-BF,E(B). For all error settings such that,

T ≥
(

2−H
qbf
∞ (W) · 2µ̃ + 1

)
· RT ,

it holds that Advmr
PBAS-BF,E(B) ≤ Advmr

PBAS-PPH,E(A).

The proof works by upper and lower bounding the success probability of an optimal attacker
against PPH, and comparing this to the success probability of an optimal attacker against the
brute-force checker. The proof is given in Appendix D.2.

At a high level, the first bound in the theorem shows that PBAS-PPH favors error settings for
which the weight of points decreases slowly (relative to the attack run time) as we move down
through the distribution starting from the heaviest point. In such error settings PBAS-PPH allows
us to securely correct larger balls — and accordingly more errors — than brute-force checking,
provided balls are constructed such that the fuzzy min-entropy is high. This latter requirement
is not much of a restriction, since a well designed error setting will seek to maximize the utility
for a given level of security by defining balls to have many points but low aggregate mass. For
most such error settings, while there will be a point after which PBAS-BF offers the better time
/ security trade-off, this will be for an attack run time too large to be of concern. This class

17

of distributions includes those described in Section 6.2 for which brute-force checking degrades
security dramatically.

On the other hand, the second bound shows that if the weight of points decreases quickly as
we move down through the distribution, then PBAS-BF offers the better time / security trade-off.
Intuitively this is because, as the weight of points decreases, the gap between the (higher) hashing
cost under PPH decreases until it is, in fact, lower than the hashing cost used with PBAS-BF. As
such the crossover point after which brute-force checking offers the better trade-off falls within the
attack run times of concern. Since password distributions are typically very ‘top-heavy’, with the
weights of points decreasing rapidly to leave a long tail, they fall into the class for which brute-force
checking offers the better time / security trade-off.

The theorem gives both upper and lower bounds on T , with a small gap between them, meaning
the crossover point is not precisely pinned down. This is due to a small amount of slack in upper
and lower bounding the success probability of an optimal attacker against PBAS-PPH for general
error settings. For specific error settings, one can sharpen the analysis.

7 Conclusion

In this work we investigated error correction for cryptographic secrets in the known-distribution
setting. Using typo-tolerant password checking as a guiding case study, we provided several im-
provements on both theory and practice. On the theory side, we introduced a new information-
theoretic security goal for secure sketches that better matches the needs of applications that may
allow an attacker to make multiple guesses about the secret. While for high-entropy settings the
distinction is moot, for passwords it is critical. We then provided analysis of the best known schemes
in this setting, due to Fuller et al. [15].

Our first main contribution was the design and analysis of a new secure sketch construction, the
layer-hiding hash (LHH). We proved that it provides better security than prior schemes. We then
introduced a new distribution-sensitive brute-force based technique called property-proportional
hashing (PPH) that, unlike the prior brute-force checking approach of Chatterjee et al. [12], varies
the run time of the hash function according to the popularity of the password being hashed.

We gave a framework for comparing different approaches to typo-tolerant authentication, and
used it to show that PPH outperforms sketch-based solutions to typo-tolerance, even when using
the layer-hiding hash sketch. We determine the conditions under which PPH improves on the
brute-force checking approach of Chatterjee et al. [12], along with the conditions under which their
simpler brute-force checking offers a better trade-off. Put all together, our results indicate that
brute-force based approaches perform better than the best known secure sketches. We now finish
with a few important points and open questions.

Complexity beyond time. Most in-use slow hashes only target extending the time required for a
single hash computation. Increasingly, however, practitioners are transitioning to slow hashing that
targets memory-hardness [1–3,6,26], meaning that computing a hash requires that the space-time
complexity (the product of memory and time utilized) is lower bounded. Our constructions work
with memory-hard hash functions as well, though our comparisons of different approaches currently
only considers time complexity. Future work may also consider parallel computation models, which
could be useful when a password checking system can use multiple cores to simultaneously check
multiple possible corrections.

Additional applications. While we motivated and used as a running example the setting of
password-based authentication, our constructions are generic. They hold for any distribution-
sensitive setting in which one has efficiently enumerable balls (the same general setting consid-
ered by FRS). The FRS, LHH, and PPH approaches will not work for error settings with large
balls, such as attempting to correct large Hamming or edit distances. In these contexts, existing
secure sketch constructions [13, 14] seem to be the only solution. We note that their entropy loss
is significantly worse than the FRS or LHH constructions, and so they would not seem useful for
passwords.

We have focused on authentication, but our results and comparisons are applicable to any
cryptographic application in which noisy secrets are used to derive a key for which one can efficiently

18

test correctness. This includes at least all authentication primitives, such as message authentication
codes and authenticated encryption. Similarly, our new sketch constructions can also be used to
build a fuzzy extractor using the construction from [13], which inherits the security improvement
over the fuzzy extractor from FRS.

Secure sketches in the multi-guess setting. In the previous section, we proved that PBAS-SS
never offers a better time / security trade-off than PBAS-PPH/PBAS-BF when implemented with
the FRS sketches, and the new — and nearly optimal, in the single-guess setting — LHH sketch.
The key open question is whether any distribution-sensitive secure sketch can perform better in
this context. The challenge is to design a sketch which preserves much of the min-entropy of the
underlying distribution in the face of an attacker who can make q guesses for varying and large
values of q. This is an important requirement in many practical settings, yet has been overlooked
in existing literature.

Intuitively, the correctness requirement means that the sketch must include sufficient informa-
tion to disambiguate between points in the heaviest ball(s). As such any efficiently-computable
sketch — (we disregard those which, for example, solve an NP-hard problem to create an optimal
arrangement of points into sketch preimage sets) — is likely to leak more information than is
strictly necessary for correctness in less heavy balls. This additional leakage can then be exploited
by an attacker. More generally we would expect that the larger q is, the wider the gap between the
security of a sketch S = (SS,Rec) for that error setting H̃q

∞(W |SS(W)), and the theoretical best

case security bound Hq,fuzz
t,∞ (W)− log(1− δ).

We conjecture that for a significant class of error settings — especially those such as passwords,
which inherently contain large balls — no efficient distribution sensitive secure sketch can offer a
better time / security trade-off than brute-force based approaches. Indeed it seems likely that any
intuition leading to an improvement in secure sketch performance over LHH may also be utilized
to create a brute-force approach which improves on PBAS-PPH (similar to the way in which the
same layered approach is used by both LHH and PPH, with better performance in the latter).
Refining and improving upon the brute-force based approaches described here is an interesting
open problem.

Acknowledgements

This work was supported in part by NSF grants 1619158, 1319051, 1314568, 1514163, United
States Army Research Office (ARO) grant W911NF-16-1-0145, EPSRC and UK government grant
EP/K035584/1, and gifts from VMware Labs, Google, and Microsoft.

References

1. Alwen, J., Blocki, J.: Efficiently computing data-independent memory-hard functions. In: Advances in
Cryptology – CRYPTO (2016)

2. Alwen, J., Chen, B., Kamath, C., Kolmogorov, V., Pietrzak, K., Tessaro, S.: On the complexity of scrypt
and proofs of space in the parallel random oracle model. In: Advances in Cryptology –EUROCRYPT
(2016)

3. Alwen, J., Chen, B., Pietrzak, K., Reyzin, L., Tessaro, S.: On the complexity of scrypt and proofs of
space in the parallel random oracle model. In: Advances in Cryptology –EUROCRYPT (2017)

4. Bellare, M., Ristenpart, T., Tessaro, S.: Multi-instance security and its application to password-based
cryptography. In: Advances in Cryptology – CRYPTO 2012, pp. 312–329. Springer Berlin Heidelberg
(2012)

5. Bennett, C.H., Brassard, G., Robert, J.M.: Privacy amplification by public discussion. SIAM journal
on Computing 17(2), 210–229 (1988)

6. Biryukov, A., Dinu, D., Khovratovich, D.: Argon and argon2: password hashing scheme. Tech. rep.,
Technical report (2015)

7. Bonneau, J.: Guessing human-chosen secrets. Ph.D. thesis, University of Cambridge (May 2012), http:
//www.cl.cam.ac.uk/~jcb82/doc/2012-jbonneau-phd_thesis.pdf

8. Bonneau, J.: The science of guessing: analyzing an anonymized corpus of 70 million passwords. In:
IEEE Symposium on Security and Privacy (SP). pp. 538–552. IEEE (2012)

9. Bowes, R.: Skull Security, Passwords, https://wiki.skullsecurity.org/Passwords

19

http://www.cl.cam.ac.uk/~jcb82/doc/2012-jbonneau-phd_thesis.pdf
http://www.cl.cam.ac.uk/~jcb82/doc/2012-jbonneau-phd_thesis.pdf
https://wiki.skullsecurity.org/Passwords

10. Boztas, S.: Entropies, guessing, and cryptography. Department of Mathematics, Royal Melbourne
Institute of Technology, Tech. Rep 6, 2–3 (1999)

11. Castelluccia, C., Dürmuth, M., Perito, D.: Adaptive password-strength meters from markov models.
In: NDSS (2012)

12. Chatterjee, R., Athalye, A., Akhawe, D., Juels, A., Ristenpart, T.: In: pASSWORD tYPOS and How
to Correct Them Securely. Security and Privacy (SP), 2015 IEEE Symposium on (2016)

13. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy Extractors: How to Generate Strong Keys from Biometrics and
Other Noisy Data. In: Cachin, C., Camenisch, J. (eds.) Eurocrypt 2004. pp. 523–540. Springer-Verlag
(2004), lNCS no. 3027

14. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors. In: Security with Noisy Data, pp. 79–99. Springer
(2007)

15. Fuller, B., Reyzin, L., Smith, A.: When are fuzzy extractors possible? In: Advances in Cryptology –
ASIACRYPT. pp. 277–306. Springer (2016)

16. Juels, A., Ristenpart, T.: Honey Encryption: Beyond the Brute-force Barrier. In: Advances in Cryp-
tology – EUROCRYPT. pp. 523–540. Springer (2014)

17. Juels, A., Wattenberg, M.: A fuzzy commitment scheme. In: Tsudik, G. (ed.) Sixth ACM Conference
on Computer and Communications Security. pp. 28–36. ACM Press (1999)

18. Kaliski, B.: PKCS #5: Password-Based Cryptography Specification Version 2.0 (2000), rFC 2289
19. Ma, J., Yang, W., Luo, M., Li, N.: A study of probabilistic password models. In: Security and Privacy

(SP), 2014 IEEE Symposium on. pp. 689–704. IEEE (2014)
20. Mehler, A., Skiena, S.: Improving usability through password-corrective hashing. In: String Processing

and Information Retrieval. pp. 193–204. Springer (2006)
21. Melicher, W., Ur, B., Segreti, S.M., Komanduri, S., Bauer, L., Christin, N., Cranor, L.F.: Fast, lean and

accurate: Modeling password guessability using neural networks. In: Proceedings of USENIX Security
(2016)

22. Monrose, F., Reiter, M.K., Li, Q., Wetzel, S.: Cryptographic key generation from voice. In: Security
and Privacy, 2001. S&P 2001. Proceedings. 2001 IEEE Symposium on. pp. 202–213. IEEE (2001)

23. Monrose, F., Rubin, A.: Authentication via keystroke dynamics. In: Proceedings of the 4th ACM
conference on Computer and communications security. pp. 48–56. ACM (1997)

24. Monrose, F., Rubin, A.D.: Keystroke dynamics as a biometric for authentication. Future Generation
computer systems 16(4), 351–359 (2000)

25. Ostrovsky, R., Rabani, Y.: Low distortion embeddings for edit distance. Journal of the ACM (JACM)
54(5), 23 (2007)

26. Percival, C., Josefsson, S.: The scrypt password-based key derivation function. Tech. rep. (2016)
27. PKCS #5: Password-Based Cryptography Standard (RFC 2898). RSA Data Security, Inc. (Sep 2000),

version 2.0
28. Renner, R., Wolf, S.: The exact price for unconditionally secure asymmetric cryptography. In: Interna-

tional Conference on the Theory and Applications of Cryptographic Techniques. pp. 109–125. Springer
(2004)

29. Siegler, M.: One Of the 32 Million With A RockYou Account? You May Want To Change All Your
Passwords. Like Now. Tech Crunch (14 Dec 2009)

30. Škoric, B., Tuyls, P.: An efficient fuzzy extractor for limited noise. In: Symposium on Information
Theory in the Benelux. pp. 193–200 (2009)

31. Wadhwa, T.: Why Your Next Phone Will Include Fingerprint, Facial, and Voice Recognition. Forbes
(29 March 2013)

32. Weir, M., Aggarwal, S., de Medeiros, B., Glodek, B.: Password cracking using probabilistic context-free
grammars. In: IEEE Symposium on Security and Privacy (SP). pp. 162–175 (2009)

33. Wheeler, D.L.: zxcvbn: Low-budget password strength estimation. In: Proc. USENIX Security (2016)
34. Yao, F., Yin, Y.: Design and analysis of password-based key derivation functions. In: Topics in Cryp-

tology – CT-RSA 2005, pp. 245–261. Springer (2005)
35. Zhao, Q., Liu, F., Zhang, L., Zhang, D.: A comparative study on quality assessment of high resolution

fingerprint images. In: International Conference on Image Processing (ICIP). pp. 3089–3092 (2010)

A The Approximately Known Distribution Setting

Our constructions target the distribution-sensitive setting. An important question to ask is what
happens when the construction incorrectly estimates the distribution? In this case, the tuning used
by FRS, LLH, and PPH may be off and an adversary that knows the true distribution will get
some improvement in attacks. We show how to upper bound the effect of this using Lemma 5 as an
illustrative example — the technique may readily be extended to other results. Let PBAS-PPH, E

20

and A be as in Lemma 5, and recall that whatever set of queries Q∗ the adversary A makes in game
MR against PBAS-PPH, the restriction on A to run in time T coupled with the fact that hashing
a point in layer j incurs costs cjPPH = css · 2µ̃−j implies that

∑
w∈Q∗ css · 2µ̃−(L(w)) ≤ T , where

L denotes the algorithm which maps points to their estimated layers. Rearranging and setting
qss = T/css yields, ∑

w∈Q∗
2−L(w) ≤ qss · 2−µ̃ .

Now let L′ be the function (in the possession of an adversary) which maps a point to its true layer.
A can exploit points w ∈ S for which PPH underestimates the probability of w at the point of
registration — that is to say w for which L(w) > L′(w) — to query passwords for a lower cost than
they would incur in the true model. Let α = maxw∈M(L(w) − L′(w)). We can ensure that this
difference is finite by modifying the registration algorithm so that if a user registers a password w
which (due to a modeling error in L) is reported to have probability 0, it is hashed as if it lies in
the layer of least probable points Lγ . Then for all w ∈M

Pr [W = w] ≤ 2−L
′(w) ≤ 2−L(w) · 2α .

This immediately implies that whatever set of queries Q∗ the adversary A chooses to output,

Advmr
PBAS-PPH,E(A) =

∑
w∈Q∗

Pr [W = w]

≤
∑
w∈Q∗

2−L
′(w)

≤
∑
w′∈Q∗

2−L(w) · 2α

= qss · 2α−µ̃ ,

so we lose a factor of at most 2α in security. We emphasise that this upper bound is loose; more
accurately quantifying security loss in the case of approximately known distributions remains an
interesting open problem.

B Proofs from Section 2

B.1 Proof of Lemma 1

Proof:

2−H̃q∞(W |Z) =

(∑
z

max
w1,...,wq

q∑
i=1

Pr [W = wi | Z = z] Pr [Z = z]

)

=

(∑
z

max
w1,...,wq

q∑
i=1

Pr [W = wi ∧ Z = z]

)

≤
(∑

z

max
w1,...,wq
z1,...,zq

q∑
i=1

Pr [W = wi ∧ Z = zi]

)
≤ 2H0(Z) · 2−Hq∞(W,Z).

Taking negative logs of both sides implies the result.

C Proofs from Section 3

C.1 Proof of Lemma 2

Proof: Let A be an unbounded adversary who on input s proceeds as follows: A finds w̃1, . . . , w̃q
such that the weight of the union of their balls achieves the q-fuzzy min-entropy. A then computes

w′i
$← Rec(s, w̃i) for each i ∈ [q], and submits (w′1, . . . , w

′
q) as its vector of guesses. Then,

21

Pr [A wins] = Pr

[
q∨
i=1

W = w′i

]

=

q∑
i=1

Pr
[
W = w′i

∧
W /∈ {w′1, . . . , w′i−1}

]
≥

q∑
i=1

Pr
[
W = w′i

∧
W /∈ {∪i−1

i=1Bt(w̃i)}
]

≥
q∑
i=1

Pr
[
W = w′i

∧
W ∈ Bt(w̃i)/{∪i−1

i=1Bt(w̃i)}
]

≥
q∑
i=1

(1− δ) Pr
[
W ∈ Bt(w̃i)/{∪i−1

i=1Bt(w̃i)}
]

= (1− δ)
∑

w′∈∪qi=1Bt(w̃i)

Pr [W = w′]

= (1− δ) 2−Hq,fuzzt,∞ (W) .

The first inequality follows from the fact that each w′i ∈ Bt(w̃i), the next inequality from condi-
tioning on the event that W ∈ Bt(w̃i), the final inequality from the correctness of the sketch, and
the final equality from the definition of q-fuzzy min-entropy.

C.2 Proof of Lemma 3

In subsequent proofs, we let SS(· ; sa) denote the distribution of the output of SS in the event that
sa is the chosen salt.

Proof: Let R = {0, 1}log(βmax)+log(1/δ), and let X(y,sa) = {w ∈ W : F(w; sa) = y}. We wish to
upper bound:

2−H̃q∞(W |FRS1-SS(W)) =
∑
s

max
wi,...,wq

q∑
i=1

Pr [W = wi ∧ FRS1-SS(W) = s]

=
∑
sa

∑
y∈R

max
w1,...,wq

q∑
i=1

Pr [W = wi ∧ sa chosen ∧ FRS1-SS(W ; sa) = (y, sa)]

=
∑
sa

∑
y∈R

max
w1,...,wq

q∑
i=1

Pr [FRS1-SS(wi; sa) = (y, sa)] · Pr [W = wi] · 2−`

=
∑
sa

∑
y∈R

max
w1,...,wq
∈X(y,sa)

q∑
i=1

Pr [W = wi] · 2−` ,

where the second to last equality follows from an application of Bayes’ rule, and the final equality
is because Pr [FRS1-SS(w; sa) = y] = 1 if w ∈ X(y,sa), and Pr [FRS1-SS(w; sa) = y] = 0 otherwise.

Fix a salt sa, and notice that since W is flat with Pr [W = w] = 2−µ, we may rewrite the inner
sum ∑

y∈R
max

w1,...,wq
∈X(y,sa)

q∑
i=1

Pr [W = wi] ≤
∑
y∈R

q · 2−µ

= q · 2log(βmax)+log(1/δ) · 2−µ

= q · βmax · 2−µ

δ

22

= q · 2−Hfuzz
t,∞(W)

δ
.

where the final equality follows since 2−Hfuzz
t,∞(W) = βmax ·2−µ. Since this holds for each sa ∈ {0, 1}`,

taking the expectation of the choice of sa followed by logs of both sides implies the result.

C.3 Proof of Theorem 2

Proof: Let Rj = {0, 1}j−Hfuzz
t,∞(W)+log (1/δ)+1 for each j ∈ [µ, λ − 1]. Let

X(y,saj ,j) = {w ∈ Lj : Fj(w; saj) = y}. We wish to upper bound,

2−H̃q∞(W |FRS2-SS(W)) =

λ∑
j=µ

∑
saj

∑
y∈Rj

max
w1,...,wq

q∑
i=1

Pr [W = wi ∧ FRS2-SS(W) = (y, saj , j)]

=

λ∑
j=µ

∑
saj

∑
y∈Rj

max
w1,...,wq

q∑
i=1

Pr [W = wi ∧W ∈ Lj ∧ FRS2-SS(W ; saj) = (y, saj , j))] · 2−`j

=

λ∑
j=µ

∑
saj

∑
y∈Rj

max
w1,...,wq
wi∈Lj

q∑
i=1

Pr [FRS2-SS(wi; saj) = y] · Pr [W = w] · 2−`j

=

λ∑
j=µ

∑
saj

∑
y∈Rj

max
w1,...,wq

wi∈X(y,saj ,j)

q∑
i=1

Pr [W = wi] · 2−`j ; .

The second equality follows from conditioning on the event that saj is the chosen salt. The third
equality follows from an application of Bayes’ rule and the fact that Pr [W ∈ Lj | W = w] = 1 if
w ∈ Lj and 0 otherwise. The final equality follows from the fact that
Pr [FRS2-SS(W, saj , j) = (y, saj)] = 1 if w ∈ X(y,saj ,j) and 0 otherwise. Fix an index j ∈ [µ, λ− 1]
and salt saj , and consider the sum,∑

y∈Rj

max
w1,...,wq
wi∈X(y,saj ,j)

q∑
i=1

Pr [W = wi] .

Notice that since each w ∈ Lj lies in precisely one preimage set, this sum will be maximised when
each preimage set X(y,saj ,j) for y ∈ Rj contains precisely q of the points in Lj(q · |Rj |), (recall that
Lj(q · |Rj |) denotes the set of the min{q′, |Lj |} heaviest points in layer Lj). It follows that,

∑
y∈Rj

max
w1,...,wq

wi∈X(w,saj ,j)

q∑
i=1

Pr [W = wi]

≤ Pr [W ∈ Lj(q · |Rj |)] .

Furthermore, notice that since for each w ∈ Lλ FRS2-SS(w) = (w,⊥, λ) it holds that
X(w,⊥,λ) = {w}. Therefore the above equation becomes,

∑
w∈Lλ

max
w1,...,wq

wi∈X(w,⊥,λ)

q∑
i=1

Pr [W = wi]

=
∑
w∈Lλ

Pr [W = w]

= Pr [W ∈ Lλ] .

Finally averaging over choice of saj for each j ∈ [µ, λ− 1], and summing over the layers gives,

2−H̃q∞(W |FRS2-SS(W)) ≤ Pr [W ∈ Lλ] +

λ−1∑
j=µ

Pr [W ∈ Lj(q · |Rj |)] ;

23

taking logs of both sides implies the result. To illustrate how this bound is tighter in the case that
q = 1 than that given in Theorem 1, we show how to convert the above bound into that given
in [15], following their proof. Let H∞(W) = µ. Then,

2−H̃∞(W |FRS2-SS(W)) ≤ Pr [W ∈ Lλ] +

λ−1∑
j=µ

Pr [W ∈ Lj(|Rj |)]

≤ |Lλ|·2−λ +

λ−1∑
j=µ

|Rj |·2−j

≤ 2H0(W)−λ +

λ−1∑
j=µ

2−Hfuzz
t,∞(W)+log(1/δ)+1

< 22−µ + (λ− µ) · 2−Hfuzz
t,∞(W)+log(1/δ)+1

≤ (λ− µ+ 1) · 2−Hfuzz
t,∞(W)+log(1/δ)+1

≤ H0(W) · 2−Hfuzz
t,∞(W)+log(1/δ)+1 .

The second inequality follows from the fact that w ∈ Lj implies Pr [W = w] ≤ 2−j , and that
|Lj(|Rj |)|≤ |Rj |. The third inequality follows from the fact that

|Rλ|≤ 2H0(W), and |Rj |≤ 2j−Hfuzz
t,∞(W)+log(1/δ)+1 for j ∈ [µ, λ − 1]. The third inequality follows

since by definition λ− µ > H0(W)− 2, and the fourth since Hfuzz
t,∞(W) ≤ µ and log(1/δ) ≥ 1 imply

that 22−µ ≤ 2−Hfuzz
t,∞(W)+log(1/δ)+1. The final inequality follows since λ − µ + 1 ≤ H0(W). Taking

logs of both sides, we obtain the security bound of Theorem 1.

C.4 Proof of Theorem 3

Proof: We begin by proving that the sketch is δ-correct. Let Hfuzz
t,∞(W) = µ̃. We first observe that

for each j ∈ [µ, γ], the family of hash functions Fj : S × {0, 1}` → {0, 1}j−µ̃+log(1/δ)+1 defined by
the rule

Fj(w; sa) = [F(w; sa)]
j−µ̃+log(1/δ)+1
1 ,

is itself strongly universal. Indeed, the strong universality of F implies that for any w 6= w′ ∈ S,
and y1, y

′
1 ∈ {0, 1}j−µ̃+log(1/δ)+1

Pr [Fj(w; sa) = y1] =
∑

y2∈{0,1}γ−j
Pr [F(w; sa) = y1||y2]

= 2γ−j · 2−(γ−µ̃+log(1/δ)+1)

= 2−(j−µ̃+log(1/δ)+1) ,

and

Pr [Fj(w; sa) = y1 ∧ Fj(w
′; sa) = y′1]

=
∑

y2,y′2∈{0,1}γ−j
Pr [F(w; sa) = y1||y2 ∧ F(w′; sa) = y′1||y′2]

= 22·(γ−j) · 2−2·(γ−µ̃+log(1/δ)+1)

= 2−2·(j−µ̃+log(1/δ)+1) .

All probabilities are over sa
$← {0, 1}`. In both cases the second equality follows from the strong

universality of F, and the fact that |{0, 1}γ−j |= 2(γ−j). Together these properties show that Fj is
strongly universal as required. With this in place, fix w ∈M, w̃ ∈ S such that w ∈ Bt(w̃). Letting

24

µ̃ = Hfuzz
t,∞(W) it follows that

Pr [LHH-Rec(w̃, LHH-SS(w)) 6= w] (1)

= Pr
[
∃w′ ∈ Bt(w̃) : FL(w′)(w

′; sa) = [y]
(L(w′)−µ̃+log(1

δ)+1)
1

]
(2)

≤
∑

w′∈Bt(w̃)

Pr
[
FL(w′)(w

′; sa) = [y]
(L(w′)−µ̃+log(1

δ)+1)
1

]
(3)

≤
∑

w′∈Bt(w̃)

2−(L(w′)−µ̃+log(1
δ)+1) (4)

= δ
∑

w′∈Bt(w̃)

2−(L(w′)+1)

2−µ̃
(5)

< δ
∑

w′∈Bt(w̃)

Pr [W = w′]

2−µ̃
(6)

≤ δ . (7)

All probabilities are over the coins of LHH-SS. The inequality in line (3) follows from the application
of a union bound. Line (4) follows from the definition of a strongly universal hash function. The
inequality in line (6) follows from the fact that w ∈ Lj implies that 2−(j+1) < Pr [W = w] ≤ 2−j .
Finally, line (7) follows from the fact that for any w̃ ∈ S, Pr [W ∈ Bt(w̃)] ≤ 2−µ̃. Therefore,

Pr [LHH-Rec(w̃,SS(w)) = w] ≥ 1− δ ,
as required.

We now consider security. For each y ∈ {0, 1}γ−µ̃+log(1/δ)+1, let X(y,sa) = {w ∈W : FL(w)(w; sa) =

[y]
(L(w)−µ̃+log(1/δ)+1)
1 }. We wish to upper bound

2−H̃q∞(W |LHH-SS(W))

=
∑
sa

∑
y

max
w1,...,wq

q∑
i=1

Pr [W = wi ∧ LHH-SS(W) = (sa, y) ∧ sa is chosen]

=
∑
sa

∑
y

max
w1,...,wq

q∑
i=1

Pr [W = wi] · Pr [LHH-SS(w; sa) = y] · 2−`

=
∑
sa

∑
y

max
w1,...,wq :
wi∈X(y,sa)

q∑
i=1

Pr [W = wi] · 2−(γ−L(w)) · 2−` ,

where the second equality follows from Bayes’ rule, and the third since

Pr [LHH-SS(w; sa) = y] = 2−(γ−L(w)) if FL(w)(w; sa) = [y]
(L(w)−µ̃+log(1/δ)+1)
1 and 0 otherwise.

Fix sa ∈ {0, 1}`, and notice that each w ∈M lies in precisely 2(γ−L(w)) preimage sets. As such
as we sum over the y ∈ {0, 1}(γ−µ̃+log(1/δ)+1), picking at each step the q points in X(y,sa) which

maximise the RHS of the term, it follows that each w ∈ M may be selected for at most 2(γ−L(w))

of the y, and each time contributes weight Pr [W = w] · 2−(γ−L(w)) to the total. As such the
above total will be maximised when each preimage set X(y,sa) contains precisely q of the heaviest

q · 2γ−µ̃+log(1/δ)+1 points in W ′, where W ′ is the distribution constructed by taking each point
w ∈ M and replacing it with 2(γ−j) points, each of weight Pr [W = w] · 2−(γ−j), where w ∈ Lj .
Therefore for each fixed sa we may bound the inner sum,

∑
y

max
w1,...,wq :
wi∈X(y,sa)

q∑
i=1

Pr [W = w] · 2−(γ−L(w)) ≤ 2−Hq·2
γ−µ̃+log(1/δ)+1

∞ (W ′) .

Averaging over the salt and taking logs of both sides implies to result. In order to form a straight-
forward comparison with the security of FRS2, we upper bound this term via the following claim:

25

Claim. For any error setting E = (S,W, dist, t), it holds that,

2−Hq∞(W,LHH-SS(W)) ≤ q · 2−(γ+`) .

Proof:

2−Hq∞(W,LHH-SS(W)) = max
w1,...,wq

(y1,sa1),...,(yq,saq)

q∑
i=1

Pr [W = wi ∧ LHH-SS(W) = (yi, sai)]

= max
w1,...,wq

(y1,sa1),...,(yq,saq)

q∑
i=1

Pr [LHH-SS(wi; sai) = yi] Pr [W = wi] Pr [sai is chosen]

≤ max
w1,...,wq

(y1,sa1),...,(yq,saq)

q∑
i=1

2−γ · 2−`

≤ q · 2−(γ+`) .

The first equality follows from the definition of the min-entropy of a joint distribution. The second
equality is implied by Bayes’ rule. The third line follows since for any w ∈ M, it holds that
Pr [W = w] · Pr [LHH-SS(wi; sai) = yi] ≤ 2−L(w) · 2−(γ−L(w)) = 2−γ ; summing over q proves the
claim.

Finally, the chain rule (Lemma 1) implies that,

H̃q
∞(W |SS(W)) ≥ Hq

∞(W, SS(W))− log |supp(SS(W))|

= γ + `− log(q)−
(
γ −Hfuzz

t,∞(W) + log (1/δ) + 1 + `

)
= Hfuzz

t,∞(W)− log(q)− log (1/δ)− 1 .

In particular, in the case where q = 1, this gives,

µ̄1 ≥ Hfuzz
t,∞(W)− log (1/δ)− 1 .

D Proofs from Section 6

D.1 PBAS-BF versus FRS1 for Flat Distributions

Theorem 6. Let E = (S,W, dist, t) be an error setting where W is flat over S, and let βmax be the
maximal ball size. Let PBAS-BF be the brute-force scheme for this error setting using a random
oracle H with associated hashing cost cbf . Let FRS1 = (FRS1-SS,FRS1-Rec) be the FRS secure
sketch for flat distributions from Lemma 3, achieving 1 − δ error correction for some 0 < δ < 1.
We model the universal hash function used by the sketch as a random oracle. Let PBAS-SS[FRS1] be
the sketch-assisted PBAS scheme built from FRS1, and using random oracle H′ with associated cost
css set such that RT(Chk-SS, css) = RT(Chk-BF, cbf). Then for any adversary A against PBAS-BF
running in time at most T , there exists an adversary B against PBAS-SS[FRS1] such that

Advmr
PBAS-BF,E(A) ≤ Advmr

PBAS-SS[FRS1],E(B) +

(
δ · e

2

)qss
and, moreover, B runs in time T and so can make at most qss = T/css queries.

Proof: To ensure RT(Chk-SS, css) = RT(Chk-BF, cbf), set css = cbf · βmax

2 . Now let A and B be

adversaries in games MRAPBAS-BF,E and MRBPBAS-SS[FRS1],E respectively, both running in time T . Let
qbf , (resp. qss) denote the maximum number of distinct oracle queries A (resp. B) may make in
the given time. Then qbf = T/cbf = qss · βmax

2 . Since there are at most |M| distinct points in the
support of W , it follows that qbf ≤ |M|.

26

It is straightforward to see that since W is flat with H∞(W) = µ, it must be the case that,

Advmr
PBAS-BF,E(A) ≤ qbf · 2−µ = qss ·βmax ·2−(µ+1).

Now let B be the adversary in game MRBPBAS-SS[FRS1],E who on input sketch s = (y, h) computes the

preimage set of s, Xs = {w ∈ M : h(w) = y} and queries qss points from Xs to H where h
$← H.

Then,

Advmr
PBAS-SS[FRS1],E(B)

=
∑
h∈H

∑
y

max
w1,...,wqss

qss∑
i=1

Pr
[
W = wi ∧ FRS1-SSh(W) = y ∧ h chosen

]
=
∑
h∈H

∑
y

max
w1,...,wqss

qss∑
i=1

Pr [h(wi) = y] · Pr [W = wi] · 1

|H|

=
∑
h∈H

∑
y

max
w1,...,wqss :
wi∈Xs

qss∑
i=1

2−µ · 1

|H|

The second to last equality follows from the fact that Pr [h(w) = y] = 1 if and only if w ∈ Xs, and
the fact that W is flat.

Notice that we can lower bound the above sum via a balls-in-bins experiment. We view each
point in the support of W as a ball of equal weight, and each value in the range of the sketch as a
bin. Formally, the experiment takes a set of |M| ordered balls b1, . . . , b|M| and a set of βmax/δ bins,
B1, . . . , Bβmax/δ. Each ball bk is assigned weight 2−µ. The choice of the random oracle h fixes a

“throwing” of the balls into the bins, where Pr [bk falls in Bj] = δ
βmax

over the coins of the random

oracle. B is allowed to choose at most qss ball from each of the bins, (since it is of course possible
that a bin may receive less than qss balls), and the success probability for that particular h is equal
to the sum of the weights of those balls. Finally, B’s advantage is computed by taking the average
of this success probability over the coins of the random oracle.

Notice that if B chooses to select balls from each bin in the order in which they were thrown
(which makes no difference to the final sum, since all balls are of equal weight), then any ball bk
will be included in the success probability sum unless the chosen random oracle h places it in a bin
already holding ≥ qss balls. We show that with high probability, each of the first qss · βmax

2 points
thrown are among the first qss which land in their bin. Let Q denote the set of points which are
among the first qss in their bin as dictated by the coins of h. Let Xk be an indicator variable which
is set to 1 if and only if bk ∈ Q. Adding h to the subscript of these terms represents the same event
conditioned on h being the chosen random oracle. With this in place, we may rewrite our original
sum,

Advmr
PBAS-SS[FRS1],E(B) =

∑
h

∑
y

max
w1,...,wqss :
wi∈X(y,h)

qss∑
i=1

2−µ · 1

|H|

=
∑
h

(
|Qh| ·2−µ

)
1

|H|

=
∑
h

(|M|∑
k=1

Xk,h · 2−µ
)

1

|H|

= 2−µ ·
|M|∑
k=1

(∑
h∈H

Xk,h
1

|H|

)

= 2−µ ·
|M|∑
k=1

Pr [Xk = 1] .

27

It remains to bound Pr [Xk = 1]. Let Ek,j denote the event that ball bk falls in bin Bj , and notice
that

Pr [Xk = 1] = 1− Pr [bk falls in a bin containing ≥ qss balls]

= 1−

βmax
δ∑
j=1

Pr [Bj contains ≥ qss balls | Ek,j] Pr [Ek,j] ,

where all probabilities are over the coins of h. Notice that for b1, . . . , bqss , and eachBj , Pr [Xk = 1] =

1, since Pr [Bj contains ≥ qss balls] = 0 for k ∈ [qss]. Furthermore, for all k ≥ [qss + 1, qss · βmax

2],

Pr [Xk = 1] = 1−

βmax
δ∑
j=1

Pr [Bj contains ≥ qss balls | Ek,j]
δ

βmax

≥ 1−

βmax
δ∑
j=1

(
(k − 1)

qss

)
·
(

δ

βmax

)qss δ

βmax

≥ 1−
(
e · (k − 1)

qss

)qss(δ

βmax

)qss
≥ 1−

(
δ · e

2

)qss
,

where all probabilities are over the coins of choosing the salt. The first equality follows since
Pr [Ek,j] = δ

βmax
for all k, j. The first inequality follows from taking the probability that the bin

ball bk falls in contains precisely qss of the (k − 1) heavier points. The second inequality follows
from Stirling’s approximation, and cancelling the βmax

δ equal terms in the summation with the the

RHS δ
βmax

term. The final inequality follows since k − 1 < qss · βmax

2 . Putting this all together we
conclude that,

Advmr
PBAS-SS[FRS1],E(B) =

|M|∑
k=1

Pr [W = wi] · Pr [Xk = 1]

≥
qss· βmax

2∑
k=1

Pr [W = wi] ·
(

1−
(
δ · e

2

)qss)

= 2−µ
qss· βmax

2∑
k=1

·
(

1−
(
δ · e

2

)qss)
= 2−µ · qss ·

βmax

2
·
(

1−
(
δ · e

2

)qss)
≥ 2−µ · qss ·

βmax

2
−
(
δ · e

2

)qss
≥ Advmr

PBAS-BF,E(A)−
(
δ · e

2

)qss
.

The first inequality follows since |supp(W)|= |M|, so
∑|M|
j=1 Pr [W = wi] ≥

∑qss· βmax
2

j=1 Pr [W = wi];

also for k ∈ [qss · βmax

2] it holds that Pr [Xk = 1] ≥ 1 −
(
δ·e
2

)qss
. The next equality follows since

Pr [W = wi] = 2−µ for all wi ∈M. The second to last inequality follows since 2−µ · qss · βmax

2 ≤ 1.

The final inequality follows since Advmr
PBAS-BF,E(A) = 2−µ · qss · βmax

2 .

D.2 Proof of Lemma 5

Proof: Let A be an adversary in game MRAPBAS-PPH,E running in time T . We shall upper bound
A’s success probability. It is straightforward to see that A’s optimal strategy is to query the set of

28

points Q∗ to the relevant oracles, which maximizes∑
w′∈Q∗

Pr [W = w],

subject to the condition that ∑
w′∈Q∗

c
L(w′)
PPH ≤ T.

Since cjPPH = cPPH · 2µ̃−(j+1) we may rewrite the above expression

γ∑
j=µ

|Q∗ ∩ Lj |·cPPH · 2µ̃−(j+1) ≤ T

Dividing both sides by 1
2 · cPPH · 2µ̃ (and noting that css = 1

2 · cPPH, and qss = T/css) yields
γ∑
j=µ

|Q∗ ∩ Lj |·2−j ≤ qss · 2−µ̃

As w ∈ Lj implies Pr [W = w] ≤ 2−j , we conclude that

Advmr
PBAS-PPH,E(A) = Pr [W ∈ Q∗] ≤

γ∑
j=µ

|Q∗ ∩ Lj |·2−j ≤ qss · 2−µ̃ .

Notice that since Q∗ is the set of points which maximises the above sum, notice that each
set Q∗ ∩ Lj must either be empty, or contain precisely the |Q∗ ∩ Lj | most probable points in Lj .
Were this not the case, one could achieve a higher success probability for the same computational
cost by swapping any lower point in Q∗ ∩ Lj for one of the unused more probable points (which,
being from the same layer, will incur the same computational cost to test as the point it replaced),
violating the claim that Q∗ maximises Pr [W ∈ Q∗]. Since testing a point from level Lj takes time

cjPPH = css · 2µ̃−j , the constraint that A runs in time T implies that for each j ∈ [µ, γ], it must be
the case that |Q∗∩Lj |≤ T/css ·2(j−µ̃) = qss ·2(j−µ̃). We shall utilise this observation in subsequent
proofs.

D.3 Proof of Theorem 4 in the case that Π = FRS2

Proof: To ensure equal run times, we set parameters such that cbf = css · 2. Now let A and B
be adversaries in games MRAPBAS-PPH,E and MRBPBAS-SS[FRS2],E respectively, both running in time T .
Recall that we model the universal hash function family for each layer j as a family of random
oracles {Hj}. Let Q∗ denote the set of points which are queried to H by A.

Let qss denote the maximum number of oracle queries B may make in the given time, so
qss = T/css. On input sketch s = (y, hj , j), adversary B proceeds as follows: if j = λ, simply return
y. Otherwise compute the preimage set of (y, hj , j) under hj , defined Xs = {w ∈M : hj(w) = y},
and query the qss most probable points in Xs to H.

Let Rj = {0, 1}j−µ̃+log(1/δ)+1 for j ∈ [µ, λ − 1]; that is to say, the range of the hash functions
for layer j. Then,

Advmr
PBAS-SS[FRS2],E(B)− Pr [W ∈ Lλ]

=

λ−1∑
j=µ

∑
hj∈Hj

∑
y∈Rj

max
w1,...,wqss

qss∑
i=1

Pr
[
W = wi ∧ FRS2-SShj (W) = y

]
· 1

|Hj |

=

λ−1∑
j=µ

∑
hj∈Hj

∑
y∈Rj

max
w1,...,wqss

qss∑
i=1

Pr
[
FRS2-SShj (wi) = y

]
· Pr [W = wi] · 1

|Hj |

=

λ−1∑
j=µ

∑
hj∈Hj

∑
y∈Rj

max
w1,...,wqss :
wi∈Xs

qss∑
i=1

Pr [W = wi] · 1

|Hj |
.

29

The right hand side of the first equation follows from the fact that FRS2-SS reveals the points in

layer Lλ as part of the sketch, so Pr
[
W = w ∧ FRS2-SShj (W) = y

]
= Pr [W = w] for all w ∈ Lλ.

The second equality follows from Bayes’ rule, and the final line follows since

Pr
[
FRS2-SShj (wi) = y

]
= 1 if wi ∈ X(y,hj ,j), and 0 otherwise.

We lower bound the above sum via a balls-in-bins experiment. For each j ∈ [µ, λ−1], the choice
of random oracle hj “throws” the |Lj | balls in 2j+1−µ̃/δ bins; we then calculate the expected total
weight of the heaviest qss balls in each bin. The sum of these over the layers plus the weight of the
lowest layer amount to B’s expected success probability. Let bk,j denote the ball representing the
kth heaviest point in layer j, and let pk,j denote the weight of that ball.

Since within a given layer each ball is heavier than its successors, it follows that bk,j will be
included in the success probability sum unless it falls in a bin already holding qss or more (heavier)
balls. Consider the set of points Qj that are included from level j, and let Xk,j be an indicator
variable which is equal to 1 if and only if ball bk,j is among the qss heaviest in its bin. Adding h to
the subscript of these terms represents the same event conditioned on h being the chosen random
oracle. Then we can rewrite the above sum,

Advmr
PBAS-SS[FRS2],E(B)− Pr [W ∈ Lλ]

=

λ−1∑
j=µ

(∑
hj∈Hj

(
Pr
[
W ∈ Qj,hj

])
· 1

|H|

)

=

λ−1∑
j=µ

(∑
hj∈Hj

(|Lj |∑
k=1

pk,j ·Xk,j,hj

)
· 1

|H|

)

=

λ−1∑
j=µ

|Lj |∑
k=1

pk,j ·
(∑

hj∈Hj

Xk,j,hj ·
1

|H|

)

=

λ−1∑
j=µ

|Lj |∑
k=1

pk,j · Pr [Xk,j = 1] ,

where the probability in the final line is over the coins of the random oracle.
We show that with overwhelming probability this sum exceeds

Advmr
PBAS-PPH,E(A), by showing that with high probability each of the points in Q∗ — the set

of points output by the optimal attacker A in game MRAPBAS-PPH,E — is included in the computa-

tion of the sum. Notice that any points w ∈ Q∗ for which Pr [W = w] ≤ 2−λ will be guessed by B
with probability 1 and so are already counted in the above total.

We now consider the lower layers. Let wk,j denote the kth heaviest point in layer j, with weight
pk,j . Fix an index j ∈ [µ, λ − 1]. By the same argument as before, for all wk ∈ Q∗ such that
k ∈ [qss], Pr [Xk,j = 1] = 1 (since these points must land in a bin containing less than qss balls),
and for all wk.j ∈ Q∗ such that k > qss, it holds that,

Pr [Xk,j = 1] ≥ 1−
(
k − 1

qss

)(
δ

2j+1−µ̃

)qss
≥ 1−

(
e · (k − 1)

qss

)qss(δ

2j+1−µ̃

)qss
≥ 1−

(
δ · e

2

)qss
,

where all probabilities are over the coins of the random oracle. The first inequality follows from
a union bound. The second inequality is implied by Stirling’s approximation. The final inequality
follows from the discussion in Appendix D.2 showing that the restraint on attack run time implies
that for any layer j, |Q∗ ∩ Lj |qss · 2j−µ̃. For the optimal attacker, the points in Q∗ ∩ Lj must be
the |Q∗ ∩ Lj | heaviest in their layers; thus for A, Xk,j = 1 only if (k − 1) ≤ qss · 2j−µ̃.

30

Putting this altogether, we conclude that

Advmr
PBAS-SS[FRS2],E(B) = Pr [W ∈ Lλ] +

λ−1∑
j=µ

|Lj |∑
k=1

pk,j · Pr [Xk,j = 1]

≥ Pr [W ∈ Lλ] +

λ−1∑
j=µ

∑
k :

wj,k∈Q∗

pk,j ·
(

1−
(
δ · e

2

)qss)

≥ Pr [W ∈ Lλ] +

λ−1∑
j=µ

(∑
k :

wj,k∈Q∗

pk,j

)
−
(
δ · e

2

)qss

≥ Advmr
PBAS-PPH,E(A)−

(
δ · e

2

)qss
,

as required.

D.4 Proof of Theorem 4 in the case that Π = LHH

Proof: To ensure equal run times, we set parameters such that cbf = css · 2. Now let A and B be
adversaries in games MRAPBAS-PPH,E and MRBPBAS-SS[LHH],E respectively, both running in time T . Let
qss denote the maximum number of oracle queries B may make in the given time, so qss = T/css.
Lemma 5 immediately implies,

Advmr
PBAS-PPH,E(A) ≤ qss · 2−µ̃

Adversary B proceeds as follows on input sketch s = (y, h): first B computes the preimage set Xs

Xs =
{
w ∈M : [h(w)]

L(w)−µ̃+log(1
δ)+1

1 = [y]
L(w)−µ̃+log(1/δ)+1
1

}
.

For each w ∈ Xs, B computes 2−(γ−L(w)) ·Pr [W = w], and submits the qss points to H, for which

this value is greatest. Letting R = {0, 1}γ−µ̃+log(1
δ)+1, it follows that

Advmr
PBAS-SS[LHH],E(B)

=
∑

h∈{H}

∑
y∈R

max
w1,...,wqss

qss∑
i=1

Pr
[
LHH-SSh(wi) = y

]
· Pr [W = wi] · 1

|H|

=
∑

h∈{H}

∑
y∈R

max
w1,...,wqss :
w∈Xs

qss∑
i=1

2−(γ−L(w)) · Pr [W = w] · 1

|H|
,

where the first equality follows from Bayes’ rule, and the second equality follows from the fact that

Pr
[
LHH-SSh(w) = y

]
= 2−(γ−L(w)) if w ∈ Xs, and 0 otherwise.

We lower bound the above sum via a balls-in-bins experiment. For each j ∈ [µ, γ], the coins of the

random oracle h “throw” |Lj | balls into 2γ−µ̃+1/δ bins corresponding to each y ∈ {0, 1}γ−µ̃+log(1
δ)+1.

If a ball lands in a bin corresponding to some prefix y1 ∈ {0, 1}j−µ+log(1/δ)+1, it is then placed in all
of the 2(γ−j) preimage sets Xs which share that prefix, and is assigned weight 2−(γ−j) ·Pr [W = w]

in each (recall Pr
[
LHH-SSh(w) = y

]
= 2−(γ−L(w)) if w ∈ Xs and 0 otherwise). We then calculate

the expected total weight of the heaviest qss balls in each preimage set. The sum of these over
y ∈ {0, 1}γ−µ̃+log(1/δ)+1 is equal to B’s success probability. Let bk denote the ball representing the
kth heaviest point when ordered in terms of 2−(γ−L(w)) ·Pr [W = w]. For brevity, we let p̄k denote
this probability for the kth point in this ordering, and note that p̄k > 2−(γ+1) for all k.

To simplify subsequent analysis, we shall further lower bound this sum by considering a slightly
different experiment. For each j ∈ [µ, γ] we throw balls as before. However now when a ball
falls in some bin corresponding to a hash y, we only place that ball in the unique preimage
set corresponding to that y (as opposed to all of the 2γ−L(w) preimage sets sharing the prefix

31

[y]L(w)−µ̃+log(1
δ)+1 as before). However we still assign the ball weight 2−(γ−j) · Pr [W = w] as

before. We then calculate the expected total weight of the heaviest qss balls in each preimage set in
the modified experiment. This clearly represents a lower bound on the same value in the previous
experiment, since in the latter the set of balls from which we may choose from in each preimage
set is a subset of those in the previous experiment.

Consider the balls thrown in order of k. Since each ball is assigned a heavier weight in the
preimage sets than its successors, it follows that bk will be included in the success probability sum
unless it is placed it in a preimage set already holding qss or more (heavier) balls. For each k, let
Xk be an indicator variable which is equal to 1 if and only if ball bk is among the qss heaviest in
its preimage set. Let Q̄ denote the set of points which are among the qss heaviest in their preimage
sets. Adding h to the subscript of the terms represents the same event conditioned on h being the
chosen random oracle. Then we can rewrite the above sum,

Advmr
PBAS-SS[LHH],E(B) =

∑
h∈H

(∑
k : wk∈Q̄

p̄k

)
· 1

|H|

≥
∑
h∈H

(|M|∑
k=1

p̄k ·Xk,h

)
· 1

|H|

)

=

|M|∑
k=1

p̄k

(∑
h∈H

(
Xk,h

)
· 1

|H|

)

=

|M|∑
k=1

p̄k · Pr [Xk = 1] ,

where the third line follows from linearity of expectation, and the probability in the final line
is over the coins of the random oracle. We show that with high probability, each point wk for
k ∈ [qss · 2γ−µ̃+1] points is among the qss heaviest in their preimage set, and so included in this
total. Since p̄k > 2−(γ+1) for all k, this would imply that the total weight of the points is greater
than qss · 2γ−µ̃+1 · 2−(γ+1) = qss · 2−µ̃ and we are done. Notice that for k ∈ [qss],

Pr [Xk = 1] ,

and for any k ∈ [qss + 1, qss · 2γ−µ̃+1], it holds that,

Pr [Xk = 1] ≥ 1−
(
k − 1

qss

)(
δ

2γ+1−µ̃

)qss
≥ 1−

(
e · (k − 1)

qss

)qss(δ

2γ+1−µ̃

)qss
≥ 1−

(
δ · e

2

)qss
,

where the probabilities are over the coins of the random oracle. The first inequality follows from
a union bound and the fact that Pr [h(w) = y] = 2−(γ−µ̃+log(1

δ)+1). The second inequality follows
from Stirling’s approximation. The final inequality follows since k − 1 < qss · 2γ+1−µ̃. Putting this
altogether we conclude

Advmr
PBAS-SS[FRS2],E(B) ≥

|M|∑
k=1

p̄k · Pr [Xk = 1]

≥
qss·2γ−µ̃+1∑

k=1

p̄k · Pr [Xk = 1]

≥
qss·2γ−µ̃+1∑

k=1

p̄k ·
(

1−
(
δ · e

2

)qss)

32

≥
(qss·2γ−µ̃+1∑

k=1

p̄k

)
−
(
δ · e

2

)qss

>

(qss·2γ−µ̃+1∑
k=1

2−(γ+1)

)
−
(
δ · e

2

)qss
≥ qss · 2−µ̃ −

(
δ · e

2

)qss
≥ Advmr

PBAS-BF,W (A)−
(
δ · e

2

)qss
,

and we are done.

D.5 Proof of Theorem 5

Proof: Let E = (S,W, dist, t). We begin by setting cPPH such that Chk-PPH achieves the same
run time as Chk-BF with associated cost parameter cbf . Since the latter scheme achieves run time
RT = cbf · βmax, Lemma 4 implies that setting cPPH = RT ensures PBAS-PPH achieves run time
RT also.

Next we show that for an optimal adversary A in game MRAPBAS-PPH,E running in time at most
T , it holds that

Advmr
PBAS-PPH,E(A) ≤ T

RT
· 2−(µ̃−1) .

It is straightforward to see that A’s optimal strategy is to query to oracle H′ the set of points Q∗
which maximizes ∑

w′∈Q∗
Pr [W = w′] ,

subject to the condition that

T ≥
∑
w′∈Q∗

RT · 2µ̃−(L(w′)+1) .

The latter condition implies that

T ≥
γ∑
j=µ

|Q∗ ∩ Lj | RT · 2µ̃−(j+1) ,

and multiplying both sides by 2−(µ̃−1)

RT gives

T

RT
· 2−(µ̃−1) ≥

γ∑
j=µ

|Q∗ ∩ Lj | 2−j ≥ Pr [W ∈ Q∗] ,

where the final inequality follows since w ∈ Lj implies Pr [W = w] ≤ 2−j .
Furthermore, we claim that Advmr

PBAS-PPH,E(A) ≥ min{(TRT − 1) · 2−µ̃, 1}. Indeed, Lemma 4

implies that any set of points of weight at most 2−µ̃ can be hashed in time RT. As such, an
attacker A running in time T can hash points of weight up to T

RT · 2
−µ̃. If this term is greater than

one (the case if T is sufficiently large that A may hash every point in the distribution), then clearly
Advmr

PBAS-PPH,E(A) = 1 and brute-force checking can offer no worse a trade-off for this T . If this
is not the case, then finding a set of points which exactly equals this value boils down to solving
an optimization problem which is likely to be inefficient, and for which an exact solution may not
be possible for some T . However, A can efficiently get close to this advantage term by hashing

points w1, . . . , wk′ where k′ = max{k : 2−Hk∞(W) ≤ T
RT · 2

−µ̃}. Since any point w ∈ W is such

that Pr [W = w] ≤ 2−µ̃, it follows that Advmr
PBAS-PPH,E(A) ≥

∑k′

i=1 Pr [W = wi] ≥
(

T
RT −1

)
·2−µ̃

33

(otherwise, we would have
∑k′+1
i=1 Pr [W = wi] <

(
T
RT − 1

)
· 2−µ̃ + 2−µ̃ = T

RT · 2
−µ̃, contradicting

the maximality of k′), proving the claim.
With this in place, let B be the optimal adversary in game MRBPBAS-BF,E who queries the

qbf = T/cbf = T
RT · βmax heaviest points in W to oracle H. It is clear that B runs in time T , and

that

Advmr
PBAS-BF,E(B) = 2−H

qbf
∞ (W) .

Notice that while both the upper and lower bounds on Advmr
PBAS-PPH,E(A) grow linearly with T ,

Advmr
PBAS-BF,E(B) can only grow more slowly as T increases. As such, once we hit T such that the

former advantage term is larger than the latter, then they will remain this way for all greater T .
Therefore by comparing the upper and lower bounds it follows that if T is such that

T

RT
· 2−(µ̃−1) ≤ 2−H

qbf
∞ (W) ,

it holds that Advmr
PBAS-PPH,E(A) ≤ Advmr

PBAS-BF,E(B). For all error settings such that,(
T

RT
− 1

)
· 2−µ̃ ≥ 2−H

qbf
∞ (W) ,

it holds that Advmr
PBAS-BF,E(B) ≤ Advmr

PBAS-PPH,E(A). Rearranging these terms yields those given
in the theorem.

34

