
Fast Secure Two-Party ECDSA Signing

Yehuda Lindell?

Dept. of Computer Science
Bar-Ilan University, Israel

lindell@biu.ac.il

Abstract. ECDSA is a standard digital signature schemes that is widely
used in TLS, Bitcoin and elsewhere. Unlike other schemes like RSA,
Schnorr signatures and more, it is particularly hard to construct efficient
threshold signature protocols for ECDSA (and DSA). As a result, the
best-known protocols today for secure distributed ECDSA require run-
ning heavy zero-knowledge proofs and computing many large-modulus
exponentiations for every signing operation. In this paper, we consider
the specific case of two parties (and thus no honest majority) and con-
struct a protocol that is approximately two orders of magnitude faster
than the previous best. Concretely, our protocol achieves good perfor-
mance, with a single signing operation for curve P-256 taking approx-
imately 37ms between two standard machine types in Azure (utilizing
a single core only). Our protocol is proven secure under standard as-
sumptions using a game-based definition. In addition, we prove security
by simulation under a plausible yet non-standard assumption regarding
Paillier.

1 Introduction

1.1 Background

In the late 1980s and the 1990s, a large body of research emerged around the
problem of threshold cryptography ; cf. [3,7,9,10,13,25,24,21]. In its most general
form, this problem considers the setting of a private key shared between n parties
with the property that any subset of t parties may be able to decrypt or sign,
but any set of less than t parties can do nothing. This is a specific example
of secure multiparty computation, where the functionality being computed is
either decryption or signing. Note that trivial solutions like secret sharing the
private key and reconstructing to decrypt or sign do not work since after the
first operation the key is reconstructed, and any single party can decrypt or sign
by itself from that point on. Rather, the requirement is that a subset of t parties
is needed for every private-key operation.

Threshold cryptography can be used in applications where multiple signators
are needed to generate a signature, and likewise where highly confidential docu-
ments should only be decrypted and viewed by a quorum. Furthermore, thresh-
old cryptography can be used to provide a high level of key protection. This is
achieved by sharing the key on multiple devices (or between multiple users) and

? Much of this work was done for Dyadic Security Ltd.

1



carrying out private-key operations via a secure protocol that reveals nothing
but the output. This provides key protection since an adversary needs to breach
multiple devices in order to obtain the key. After intensive research on the topic
in the 1990s and early 2000s, threshold cryptography received considerably less
interest in the past decade. However, interest has recently been renewed. This
can be seen by the fact that a number of startup companies are now deploying
threshold cryptography for the purpose of key protection [26,27,28]. Another
reason is due to the fact that ECDSA signing is used in bitcoin, and the theft of
a signing key can immediately be translated into concrete financial loss. Bitcoin
has a multisignature solution built in, which is based on using multiple distinct
signing keys rather than a threshold signing scheme. Nevertheless, a more gen-
eral solution may be obtained via threshold cryptography (for the more general
t-out-of-n threshold case).

Fast threshold cryptography protocols exist for a wide variety of problems,
including RSA signing and decryption, ElGamal and ECIES encryption, Schnorr
signatures, Cramer-Shoup, and more. Despite the above successes, and despite
the fact that DSA/ECDSA is a widely-used standard, DSA/ECDSA has resisted
attempts at constructing efficient protocols for threshold signing. This seems to
be due to the need to compute k and k−1 without knowing k. We explain this
by comparing ECDSA signing to EC-Schnorr signing. In both cases, the public
verification key is an elliptic curve point Q and the private signing key is x such
that Q = x ·G, where G is the generator point of an EC group of order q.

EC-Schnorr signing ECDSA signing
Choose a random k ← Zq Choose a random k ← Zq

Compute R = k ·G Compute R = k ·G
Compute e = H(m‖R) Compute r = rx mod q where R = (rx, ry)

Compute s = k − x · e mod q Compute s = k−1 · (H(m) + r · x) mod q
Output (s, e) Output (r, s)

Observe that Schnorr signing can be easily distributed since the private key x
and the value k are both used in a linear equation. Thus, two parties with
shares x1, x2 such that Q = (x1 + x2) · G can each locally choose k1, k2, and
set R = k1 · G + k2 · G = (k1 + k2) · G. Then, each can locally compute e
and si = ki − xi · e mod q and send to each other, and each party can sum
s = s1 + s2 mod q and output a valid signature (s, e). In the case of malicious
adversaries, some zero knowledge proofs are needed to ensure that R is uniformly
distributed, but these are highly efficient proofs of knowledge of discrete log. In
contrast, in ECDSA signing, the equation for computing s includes k−1. Now,
given shares k1, k2 such that k1 + k2 = k mod q it is very difficult to compute
k′1, k

′
2 such that k′1 + k′2 = k−1 mod q.

As a result, beginning with [21] and more lately in [14], two-party proto-
cols for ECDSA signing use multiplicative sharing of x and of k. That is, the
parties hold x1, x2 such that x1 · x2 = x mod q, and in each signing operation
they generate k1, k2 such that k1 · k2 = k mod q. This enables them to easily
compute k−1 since each party can locally compute k′i = k−1i mod q, and then

2



k′1, k
′
2 are multiplicative shares of k−1. The parties can then use additively homo-

morphic encryption – specifically Paillier encryption [22] – in order to combine
their equations. For example, P1 can compute c1 = Encpk((k1)−1 · H(m)) and
c2 = Encpk(k−11 · x1 · r). Then, using scalar multiplication (denoted �) and ho-
momorphic addition (denoted ⊕), P2 can compute (k−12 � c1)⊕ [(k−12 · x2)� c2]
which will be an encryption of

k−12 · (k
−1
1 ·H(m)) + k−12 · x2 · (k

−1
1 · x1 · r) = k−1 · (H(m) + r · x),

as required. However, proving that each party worked correctly is extremely
difficult. For example, the first party must prove that the Paillier encryption
includes k−11 when the second party only has R1 = k1 ·G, it must prove that the
Paillier encryptions are to values in the expected range, and more. This can be
done, but it results in a protocol that is very expensive.

1.2 Our Results

As in previous protocols, we use Paillier homomorphic encryption (with a key
generated by P1), and multiplicative sharing of both the private key x and the
random value k. However, we make the novel observation that if P2 already
holds a Paillier encryption ckey of P1’s share of the private key x1, then P1 need
not do anything except participate in the generation of R = k · G. Specifically,
assume that the parties P1 and P2 begin by generating R = k1 · k2 · G (this
is essentially accomplished by just running a Diffie-Hellman key exchange with
basic knowledge-of-discrete-log proofs which are highly efficient). Then, given
ckey = Encpk(x1), R and k2, x2, party P2 can singlehandedly compute an en-
cryption of k−12 · H(m) + k−12 · r · x2 · x1 using the homomorphic properties of
Paillier encryption. This ciphertext can be sent to P1 who decrypts and multi-
plies the result by k−11 . If P2 is honest, then the result is a valid signature.

The crucial issue that must be dealt with is what happens when P1 or P2

is corrupted. If P1 is corrupted, it cannot do anything since the only message
that it sends P2 is in the generation of R which is protected by an efficient zero-
knowledge proof. Thus, no expensive proofs are needed. Furthermore, if P2 is
corrupted, then the only way it can cheat is by encrypting something incorrect
and sending it to P1. However, here we can utilize the fact that we are specifically
computing a digital signature that can be publicly verified. That is, since all P1

does is locally decrypt the ciphertext received from P2 and multiply by k−11 , it
can locally check if the signature obtained is valid. If yes, it outputs it, and if
not it detects P2 cheating. Thus, no zero-knowledge proofs are required for P2

either (again, beyond the zero-knowledge proof in the generation of R).
As a result, we obtain a signing protocol that is extremely simple and effi-

cient. As we show, our protocol is approximately two orders of magnitude faster
than the previous best. Before proceeding, we remark that there are additional
elements needed in the protocol (like P2 adding random noise in the ciphertext
it sends), but these have little effect on the efficiency.

We remark that since the security of the signing protocol rests upon the
assumption that P2 holds an encryption of x1, which is P1’s share of the key,

3



this must be proven in the key generation phase. Thus, the key generation phase
of our protocol is more complicated than the signing phase, and includes a proof
that P1 generated the Paillier key correctly and that ckey is an encryption of x1,
given R1 = x1 ·G. This latter proof is of interest since it connects between Paillier
encryption and discrete log, and we present a novel efficient proof in the paper.
We remark that since key generation is run only once, having a more expensive
key-generation phase is a worthwhile tradeoff. This is especially the case since
it is still quite reasonable (concretely taking about 5 seconds between standard
single-core machines in Azure, which is much faster than the key-generation
phase of [14]). Furthermore, it can easily be parallelized to further bring down
the cost.

DSA vs ECDSA. In this paper, we refer to ECDSA throughout and we use
Elliptic curve (additive group) notation. However, our entire protocol translates
easily to the DSA case, since we do nothing but standard group operations.

Caveat. The only caveat of our work is that it focuses specifically on the two-
party case, whereas prior works considered general thresholds as well. The two-
party case is in some ways the most difficult case (since there is no honest
majority), and we therefore believe that our techniques may be useful for the
general case as well. We leave this for future research.

1.3 Related Work and a Comparison of Efficiency

The first specific protocol for threshold DSA signing with proven security was
presented in [13]. Their protocol works as long as more than 1/3 of the parties are
honest. The two party case (where there is no honest majority) was later dealt
with by [21]. The most recent protocol by [14] contains efficiency improvements
for the two-party case, and improvements regarding the thresholds for the case
of an honest majority.

Efficiency comparison with [14]. The previous best DSA/ECDSA threshold sign-
ing protocol is due to [14]. Their signing protocol requires the following opera-
tions by each party: 1 Paillier encryption, 5 Paillier homomorphic scalar multi-
plications, 5 Paillier homomorphic additions, and 46 exponentiations (the vast
majority of these modulo N or N2 for the Paillier modulus). Furthermore, they
require the Paillier modulus to be greater than q8 where q is the group order.
Now, for P-256, this makes no difference since anyway a 2048-bit modulus is
minimal. However, for P-384 and P-521 respectively, this requires a modulus
of size 3072 and 4168 respectively, which severely slows down the computation.
Regarding the key generation phase, [14] need to run a protocol for distributed
key generation for Paillier. This outweighs all other computations and is very
expensive for the case of malicious adversaries. (They did not implement this
phase in their prototype, but the method they refer to [18] has a reported time
of 15 minutes for generating a 2048-bit modulus for the semi-honest case alone.)

In contrast, the cost of our key-generation protocol is dominated by approx-
imately 350 Paillier encryptions/exponentiations by each party; see Section 3.3

4



for an exact count. Furthermore, as described in Section 3.3, in the signing proto-
col, party P1 computes 7 Elliptic curve multiplications and 1 Paillier decryption,
and party P2 computes 5 Elliptic curve multiplications and 1 Paillier encryption,
1 homomorphic scalar multiplication and 1 Paillier homomorphic addition. Fur-
thermore, the Paillier modulus needs only to be greater than 2q4 +q3, where q is
the ECDSA group order. Thus, a 2048-bit modulus can be taken for P-256 and
P-384, and a 2086-bit modulus only is needed for P-521. We therefore conclude
that the cost of our signing protocol is approximately two orders of magnitude
faster than their protocol.1 This theoretical estimate is validated by our experi-
mental results.

Experimental results and comparison. The running-time reported for the pro-
tocol of [14] for curve P-256 is approximately 12 seconds per signing operation
between a mobile and PC. An improved optimized implementation using paral-
lelism and 4 cores on a 2.4GHz machine achieves approximately 1 second per
signing operation (these measurements are only for the computation time and do
not include communication). In contrast, as we describe in Section 3.3, for curve
P-256 our signing protocol takes approximately 37ms, using a single core (mea-
suring the actual full running time, including communication). This validates the
theoretical analysis of approximately two orders of magnitude difference, when
taking into account the use of multiple cores. Specifically, on 4 cores, we can
achieve a throughput of over 100 signatures per second, in contrast to a single
signing operation for [14]. Full details of our experiments, for curves P-256, P-384
and P-521 appear in Section 3.3.

Finally, the key generation phase of our protocol for curve P-256 takes ap-
proximately 5 seconds, using a single core. In contrast, [14] requires distributed
Paillier key generation which is extremely expensive, as described above.

2 Preliminaries

The ECDSA signing algorithm. The ECDSA signing algorithm is defined as
follows. Let G be an Elliptic curve group of order q with base point (generator)
G. The private key is a random value x← Zq and the public key is Q = x ·G.

The ECDSA signing operation on a message m ∈ {0, 1}∗ is defined as follows:

1. Compute m′ to be the |q| leftmost bits of SHA256(m), where |q| is the
bit-length of q

2. Choose a random k ← Z∗q
3. Compute R← k ·G. Let R = (rx, ry).

1 We base this estimate on an OpenSSL speed test that puts the speed of the entire
ECDSA signing operation for P-256 (which consists of one EC multiplication and
more) at more than 10 times faster than a single RSA2048 private-key exponen-
tiation. Note that for P-521 and RSA4096 the gap is even larger with the entire
ECDSA signing operation being more than 30 times faster than a single RSA4096
private-key exponentiation.

5



4. Compute r = rx mod q. If r = 0, go back to Step 2.

5. Compute s← k−1 · (m′ + r · x) mod q.

6. Output (r, s)

It is a well-known fact that for every valid signature (r, s), the pair (r,−s) is also
a valid signature. In order to make (r, s) unique (which will help in formalizing
security), we mandate that the “smaller” of s,−s is always output (where the
smaller is the value between 0 and q−1

2 .)

The ideal commitment functionality Fcom. In one of our subprotocols, we assume
an ideal commitment functionality Fcom, formally defined in Functionality 2.1.
Any UC-secure commitment scheme fulfills Fcom; e.g., [19,1,12]. In the random-
oracle model, Fcom can be trivially realized with static security by simply defining
Com(x) = H(x, r) where r ← {0, 1}n is random.

FIGURE 2.1 (The Commitment Functionality Fcom)

Functionality Fcom works with parties P1 and P2, as follows:

– Upon receiving (commit, sid, x) from party Pi (for i ∈ {1, 2}), record
(sid, i, x) and send (receipt, sid) to party P3−i. If some (commit, sid, ∗)
is already stored, then ignore the message.

– Upon receiving (decommit, sid) from party Pi, if (sid, i, x) is recorded then
send (decommit, sid, x) to party P3−i.

The ideal zero knowledge functionality Fzk. We use the standard ideal zero-
knowledge functionality defined by ((x,w), λ) → (λ, (x,R(x,w))), where λ de-
notes the empty string. For a relation R, the functionality is denoted by FRzk. Note
that any zero-knowledge proof of knowledge fulfills the Fzk functionality [17, Sec-
tion 6.5.3]; non-interactive versions can be achieved in the random-oracle model
via the Fiat-Shamir paradigm; see Functionality 2.2 for the formal definition.

FIGURE 2.2 (The Zero-Knowledge Functionality FRzk for Relation R)

Upon receiving (prove, sid, x, w) from a party Pi (for i ∈ {1, 2}): if (x,w) /∈ R
or sid has been previously used then ignore the message. Otherwise, send
(proof, sid, x) to party P3−i.

The committed non-interactive zero knowledge functionality Fcom-zk. In our pro-
tocol, we will have parties send commitments to non-interactive zero-knowledge
proofs. We model this formally via a commit-zk functionality, denoted Fcom-zk,
defined in Functionality 2.3. Given non-interactive zero-knowledge proofs of
knowledge, this functionality is securely realized by just having the prover com-
mit to such a proof using the ideal commitment functionality Fcom.

6



FIGURE 2.3 (The Committed NIZK Functionality FRcom-zk for R)

Functionality Fzk works with parties P1 and P2, as follows:

– Upon receiving (com-prove, sid, x, w) from a party Pi (for i ∈ {1, 2}):
if (x,w) /∈ R or sid has been previously used then ignore the message.
Otherwise, store (sid, i, x) and send (proof-receipt, sid) to P3−i.

– Upon receiving (decom-proof, sid) from a party Pi (for i ∈ {1, 2}): if
(sid, i, x) has been stored then send (decom-proof, sid, x) to P3−i.

Paillier encryption. Denote the public/private key pair by (pk, sk), and denote
encryption and decryption under these keys by Encpk(·) and Decsk(·), respec-
tively. We denote by c1 ⊕ c2 the “addition” of the plaintexts in c1, c2, and by
a� c the multiplication of the plaintext in c by scalar a.

Security, the hybrid model and composition. We prove the security of our pro-
tocol under a game-based definition with standard assumptions (in Section 4),
and under the simulation-based ideal/real model definition with a non-standard
ad-hoc assumption (in Section 5). In all cases, we prove our protocols secure in a
hybrid model with ideal functionalities that securely compute Fcom,Fzk,Fcom-zk.
The soundness of working in this model is justified in [5] (for stand-alone secu-
rity) and in [6] (for security under composition). Specifically, as long as subpro-
tocols that securely compute the functionalities are used (under the definition
of [5] or [6], respectively), it is guaranteed that the output of the honest and cor-
rupted parties when using real subprotocols is computationally indistinguishable
to when calling a trusted party that computes the ideal functionalities.

3 Two-Party ECDSA

In this section, we present our protocol for distributed ECDSA signing. We
separately describe the key generation phase (which is run once) and the signing
phase (which is run multiple times).

Our protocol is presented in the Fzk and Fcom-zk hybrid model. We use the

zero-knowledge functionalities FRP

zk , FRDL

zk and FRPDL

zk based on the following
three different relations:

1. Proof that a Paillier public-key was generated correctly: define the relation

RP = {(N, (p1, p2)) | N = p1 · p2 and p1, p2 are prime}

of valid Paillier public keys. We use the protocol described in Section 3.3 in
the full version of [18]. The cost of this protocol is 3t Paillier exponentiations
by each of the prover and verifier for statistical error 2−t, as well as 3t GCD
computations by the prover.

2. Proof of knowledge of the discrete log of an Elliptic-curve point: define the
relation

RDL = {(G, G, q, P, w) | P = w ·G}

7



of discrete log values (relative to the given group). We use the standard
Schnorr proof for this [23].

3. Proof of encryption of a discrete log in a Paillier ciphertext: define

RPDL = {((c, pk,Q1,G, G, q), (x1, sk)) |
x1 = Decsk(c) and Q1 = x1 ·G and x1 ∈ Zq},

where pk is a given Paillier public key and sk is its associated private key.
(We will actually prove a slightly relaxed variant which is that completeness
holds for x1 ∈ Zq/3. This suffices for our needs.)

A novel contribution of our result is a highly efficient proof for relation RPDL;
this is of interest since it bridges between two completely different worlds (Paillier
encryption and Elliptic curve groups). This proof appears in Section 6.

For the sake of clarity of notation, we omit the group description (G, G, q)
within calls to the Fzk functionalities, since this is implicit. In addition, through-
out, we assume that all values (Elliptic curve points) received are not equal to 0,
and if zero is received then the party receiving the value aborts immediately.

3.1 Distributed Key Generation

The idea behind the distributed key generation protocol is as follows. The parties
run a type of “simulatable coin tossing” in order to generate a random group
element Q. This coin tossing protocol works by P1 choosing a random x1 and
computing Q1 = x1 ·G, and then committing to Q1 along with a zero-knowledge
proof of knowledge of x1, the discrete log of Q1 (for technical reasons that will
become apparent in Section 6, P1 actually chooses x ∈ Zq/3, but this makes no
difference). Then, P2 chooses a random x2 and sends Q2 = x2 ·G along with a
zero-knowledge proof of knowledge to P1. Finally, P1 decommits and P2 verifies
the proof. The output is the point Q = x1 ·Q2 = x2 ·Q1. This is fully simulatable
due to the extractability and equivocality of the proof and commitment. In
particular, assume that P1 is corrupted. Then, a simulator receiving Q from the
trusted party can cause the output of the coin-toss to equal Q. This is because it
receives Q1, x1 from P1 (who sends these values to the proof functionality) and
can define the value sent by P2 to be Q2 = (x1)−1 ·Q. Noting that x1 ·Q2 = Q,
we have the desired property. Likewise, if P2 is corrupted, then the simulator
can commit to anything and then after seeing (Q2, x2) as sent to the proof
functionality, it can define Q1 = (x2)−1 · Q. The fact that the P1 is supposed
to already be committed is solved by using an equivocal commitment scheme
(modeled here via the Fcom-zk ideal functionality). Beyond generating Q, the
protocol concludes with P2 holding a Paillier encryption of x1, where Q1 = x1 ·G.
As described, this is used to obtain higher efficiency in the signing protocol, and
is guaranteed via a zero-knowledge proof. See Protocol 3.1 for a full description.

8



PROTOCOL 3.1 (Key Generation Subprotocol KeyGen(G, g, q))

Upon joint input (G, G, q) and security parameter 1n, the parties work as
follows:

1. P1’s first message:
(a) P1 chooses a random x1 ← Zq/3, and computes Q1 = x1 ·G.

(b) P1 sends (com-prove, 1, Q1, x1) to FRDL
com-zk (i.e., P1 sends a commitment

to Q1 and a proof of knowledge of its discrete log).
2. P2’s first message:

(a) P2 receives (proof-receipt, 1) from FRDL
com-zk.

(b) P2 chooses a random x2 ← Zq and computes Q2 = x2 ·G.
(c) P2 sends (prove, 2, Q2, x2) to FRDL

zk .
3. P1’s second message:

(a) P1 receives (proof, 2, Q2) from FRDL
zk . If not, it aborts.

(b) P1 sends (decom-proof, 1) to FRDL
com-zk.

(c) P1 generates a Paillier key-pair (pk, sk) of length min(4 log |q| + 2, n)
and computes ckey = Encpk(x1).

(d) P1 sends (prove, 1, N, (p1, p2)) to FRP
zk , where pk = N = p1 · p2.

(e) P1 sends (prove, 1, (ckey, pk,Q1), (x1, sk)) to FRPDL
zk .

4. P2’s final check: P2 receives (decom-proof, 1, Q1) from FRDL
zk , (proof, 1, N)

from FRP
zk , and (proof, 1, (ckey, pk,Q1)) from FRPDL

zk ; if not it aborts. P2

also checks that pk = N is of length at least min(4 log |q|+ 2, n) and aborts
if not.

5. Output:
(a) P1 computes Q = x1 ·Q2 and stores (x1, Q).
(b) P2 computes Q = x2 ·Q1 and stores (x2, Q, ckey).

3.2 Distributed Signing

The idea behind the signing protocol is as follows. First, the parties run a similar
“coin tossing protocol” as in the key generation phase in order to obtain a
random point R that will be used in generating the signature; after this, the
parties P1 and P2 hold k1 and k2, respectively, where R = k1 · k2 · G. Then,
since P2 already holds a Paillier encryption of x1 (under a key known only to
P1), it is possible for P1 to singlehandedly compute r from R = (rx, ry) and an
encryption of s′ = (k2)−1 ·m′ + (k2)−1 · r · x2 · x1; this can be carried out by P2

since it knows all the values involved directly except for x1 which is encrypted
under Paillier. Observe that this is “almost” a valid signature since in a valid
signature s = k−1 ·m′+k−1 · r ·x (and here x = x1 ·x2). Indeed, P2 can send the
encryption of this value to P1, who can then decrypt and just multiply by (k1)−1.
Since k = k1 · k2 we have that the result is a valid ECDSA signature. The only
problem with this method is that the encryption of (k2)−1 ·m′+(k2)−1 ·r ·x2 ·x1
may reveal information to P1 since no reduction modulo q is carried out on the
values (because Paillier works over a different modulus). In order to prevent
this, we have P2 add ρ · q to the value inside the encryption, where ρ is random
and “large enough”; in the proof, we show that if ρ ← Zq2 , then this value is
statistically close to k1 · s, where s is the final signature. Thus, P1 can learn

9



nothing more than the result (and in fact its view can be simulated). Note that
since s = k−11 · s′, it holds that s′ = k1 · s and so s′ reveals no more information
to P1 than the signature s itself (this is is due to the fact that P1 can compute
s′ from the signature s and from its share k1).

The only problem that remains is that P2 may send an incorrect s′ value
to P1. However, since we are dealing specifically with digital signatures, P1 can
verify that the result is correct before outputting it. Thus, a corrupt P2 cannot
cause P1 to output incorrect values. However, it is conceivable that P2 may
be able to learn something from the fact that P1 output a value or aborted.
Consider, hypothetically, that P2 could generate an encryption of a value s′ so
that (k1)−1 · s′ is a valid signature if LSB(x1) = 0 and (k1)−1 · s′ is not a valid
signature if LSB(x1) = 1. In such a case, the mere fact that P1 aborts or not can
leak a single bit about P1’s private share of the key. In the proof(s) of security
below, we show how we deal with this issue. See the formal definition of the
signing phase in Protocol 3.2 (and a graphical representation in Figure 1).

Offline/Online. Observe that the message to be signed is only used in P2’s second
message and by P1 to verify that the signature is valid. Thus, it is possible to
run the first three steps in an offline phase. Then, when m is received, all that
is required to generate a signature is for P2 to send a single message to P1.

Output to both parties. Observe that since the validity of the signature can be
checked by P2, it is possible for P1 to send P2 the signature if it verifies it and
it’s valid. This will not affect security at all.

P1 P2

m,x1, Q m, x2, Q, ckey

Choose random k1

Compute R1 ← k1 ·G
Compute DLOG proof π1

Compute commit to R1, π1

commit -
Choose random k2

Compute R2 ← k2 ·G
Compute DLOG proof π2

R2, π2�
Verify proof π2

Decommit to R1, π1-
Verify proof π1

Compute R← k2 · R1

Compute r from R

c3 ← Enc
(
(k2)

−1 · r · x2 · x1 + (k2)
−1 ·m′ + ρ · q

)
c3�

Compute R← k2 · R1

Compute r from R

Decrypt c3 to get s′

Compute s← (k1)
−1 · s′ mod q

Verify signature

Fig. 1. The 2-Party ECDSA Signing Protocol

10



PROTOCOL 3.2 (Signing Subprotocol Sign(sid,m))

A graphical representation of the protocol appears in Figure 1.

Inputs:

1. Party P1 has (x1, Q) as output from Protocol 3.1, the message m, and a
unique session id sid.

2. Party P2 has (x2, Q, ckey) as output from Protocol 3.1, the message m and
the session id sid.

3. P1 and P2 both locally compute m′ ← Hq(m) and verify that sid has not
been used before (if it has been, the protocol is not executed).

The Protocol:

1. P1’s first message:
(a) P1 chooses a random k1 ← Zq and computes R1 = k1 ·G.
(b) P1 sends (com-prove, sid‖1, R1, k1) to FRDL

com-zk.
2. P2’s first message:

(a) P2 receives (proof-receipt, sid‖1) from FRDL
com-zk.

(b) P2 chooses a random k2 ← Zq and computes R2 = k2 ·G.
(c) P2 sends (prove, sid‖2, R2, k2) to FRDL

zk .
3. P1’s second message:

(a) P1 receives (proof, sid‖2, R2) from FRDL
zk ; if not, it aborts.

(b) P1 sends (decom-proof, sid‖1) to Fcom-zk.
4. P2’s second message:

(a) P2 receives (decom-proof, sid‖1, R1) from FRDL
com-zk; if not, it aborts.

(b) P2 computes R = k2 · R1. Denote R = (rx, ry). Then, P2 computes
r = rx mod q.

(c) P2 chooses a random ρ ← Zq2 and computes c1 =
Encpk

(
ρ · q +

[
(k2)−1 ·m′ mod q

])
. Then, P2 computes v =

(k2)−1 · r · x2 mod q, c2 = v � ckey and c3 = c1 ⊕ c2.
(d) P2 sends c3 to P1.

5. P1 generates output:
(a) P1 computes R = k1 · R2. Denote R = (rx, ry). Then, P1 computes

r = rx mod q.
(b) P1 computes s′ = Decsk(c3) and s′′ = (k1)−1 · s′ mod q. P1 sets s =

min{s′′, q − s′′} (this ensures that the signature is always the smaller
of the two possible values).

(c) P1 verifies that (r, s) is a valid signature with public key Q. If yes it
outputs the signature (r, s); otherwise, it aborts.

If a party aborts at any point, then it does not participate in any future Sign(sid,m)
executions.

11



Correctness. Denoting k = k1 ·k2 and x = x1 ·x2, we have that c3 is an encryption
of s′ = ρ ·q+(k2)−1 ·m′+(k2)−1 ·r ·x2 ·x1 = ρ ·q+(k2)−1 · (m′+r ·x) (assuming
that all is done correctly). Thus, s = (k1)−1 · s′ = k−1 · (m′ + rx) mod q.

3.3 Efficiency and Experimental Results

We now analyze the theoretical complexity of our protocol, and describe its
concrete running time based on our implementation.

Theoretical complexity – key-distribution protocol. Leaving aside the ZK proofs
for now, P1 carries out 2 Elliptic curve multiplications, 1 Paillier public-key
generation and 1 Paillier encryption, and P2 carries out two Elliptic curve mul-
tiplications. In addition, the parties run two discrete log proofs (each playing as
prover once and as verifier once), and P1 proves that N is a valid Paillier public
key and runs the PDL proof described in Section 3.1. The cost of these proofs
is as follows:

– Discrete log: the standard Schnorr zero-knowledge proof of knowledge for dis-
crete log requires a single multiplication by the prover and two by the verifier.

– Paillier public-key validity [18]: For a statistical error of 2−40 this costs 120
Paillier exponentiations by each of the prover and the verifier (but 40 of these
are “short”). In addition, the prover P1 carries out 120 GCD computations.

– PDL proof (Section 6): This proof in Protocol 6.1 also involves running two
executions of a range proof, and one execution of the zero-knowledge proof of
Section 6.2. The cost is computed as follows:
• The instructions within Protocol 6.1 for the prover P1 cost 1 Paillier

encryption, 1 Paillier (40-bit) scalar multiplication and 1 Elliptic curve
multiplication. The cost for the verifier P2 is 1 Paillier (40-bit) scalar
multiplication and 2 Elliptic curve multiplications.

• As described in the beginning of Section 6, each range proof is dominated
by 2t Paillier encryptions for a statistical soundness error of 2−t. Setting
t = 40, we have 80 Paillier encryptions each.

• The instructions within Section 6.2 require the prover P1 to carry out 40
Paillier encryptions, and 40 Paillier exponentiations. The verifier P2 com-
putes on average 20 Paillier encryptions and 80 Paillier exponentiations.

Theoretical complexity – signing protocol. We now count the complexity of the
signing protocol. We count the number of Elliptic curve multiplications and
Paillier operations since this dominates the computation. As above, the zero-
knowledge proof of knowledge for discrete log requires a single multiplication by
the prover and two by the verifier, and ECDSA signature verification requires two
multiplications. Thus, P1 computes 7 Elliptic curve multiplications and a single
Paillier decryption. In contrast, P2 computes 5 Elliptic curve multiplications,
1 Paillier encryptions, 1 Paillier homomorphic scalar multiplication (which is a
single “short” exponentiation) and one Paillier homomorphic addition (which is
a single multiplication). Observe that unlike previous work, the length of the
Paillier key need only be 5 times the length of the order of the Elliptic curve

12



group (and not 8 times). Regarding rounds of communication, the protocol has
only four rounds of communication (two in each direction). Thus, the protocol
is very fast even on a slow network.

Implementation and running times. We implemented our protocol in C++ and
ran it on Azure between two Standard_DS3_v2 instances. Although these in-
stances have 4 cores each, we utilized a single core only with a single-thread
implementation (note that key generation can be easily parallelized, if desired).

We ran our implementation on the standard NIST curves P-256, P-384 and
P-521; the times for key generation and signing appear in Tables 1 and 2.

Curve Mean time Standard deviation

P-256 4888ms 142
P-384 4849ms 124
P-521 7842ms 166

Table 1. Running times for key generation (average over 20 executions)

Curve Mean time Standard deviation

P-256 36.8ms 7.30
P-384 47.11ms 1.96
P-521 78.19ms 1.45

Table 2. Running times for signing (average over 1,000 executions)

We remark that the size of the Paillier key has a great influence on the running
time. We know this since in our initial manuscripts, our analysis required N > q5

(instead of N > 2q4 + q3). This seemingly small difference meant that for P-521,
the Paillier key needed to be of size 2560 (instead of 2086). For this mildly larger
key, the running time was 110ms for signing and 15,776ms for key generation.
This is explained by the fact that Paillier operations have cubic cost, and thus
the cost doubles when the key size increases by just 25%.

4 Proof of Security – Game-Based Definition

4.1 Definition of Security

We begin by presenting a game-based definition for the security of a digital
signature scheme π = (Gen,Sign,Verify). This will be used when proving the
security of our protocol and thus is presented for the sake of completeness and
a concrete reference.

EXPERIMENT 4.1 (Expt-SignA,π(1n))

1. (vk, sk)← Gen(1n).
2. (m∗, σ∗)← ASignsk(·)(1n, vk).
3. Let Q be the set of all m queried by A to its oracle. Then, the output of

the experiment equals 1 if and only if m∗ /∈ Q and Verifyvk(m∗, σ∗) = 1.

Standard security of digital signatures

13



Definition 4.2. A signature scheme π is existentially unforgeable under chosen-
message attacks if for every probabilistic polynomial-time oracle machine A there
exists a negligible function µ such that for every n,

Pr[Expt-SignA,π(1n) = 1] ≤ µ(n).

We now proceed to define security for a distributed signing protocol. In the
experiment Expt-DistSignbA,Π , we consider A controlling party Pb in protocol Π
for two-party signature generation. Let Πb(·, ·) be a stateful oracle that runs the
instructions of honest party P3−b in protocol Π. The adversary A can choose
which messages will be signed, and can interact with multiple instances of party
P3−b to concurrently generate signatures. Note that the oracle is defined so that
distributed key generation is first run once, and then multiple signing protocols
can be executed concurrently.

Formally, A receives access to an oracle that receives two inputs: the first
input is a session identifier and the second is either an input or a next incoming
message. The oracle works as follows:

– Upon receiving a query of the form (0, 0) for the first time, the oracle initial-
izes a machine M running the instructions of party P3−b in the distributed
key generation part of protocol Π. If party P3−b sends the first message in
the key generation protocol, then this message is the oracle reply.

– Upon receiving a query of the form (0,m), if the key generation phase has
not been completed, then the oracle hands the machine M the message m
as its next incoming message and returns M ’s reply. (If the key generation
phase has completed, then the oracle returns ⊥.)

– If a query of the form (sid,m) is received where sid 6= 0, but the key gener-
ation phase with M has not completed, then the oracle returns ⊥.

– If a query (sid,m) is received and the key generation phase has completed
and this is the first oracle query with this identifier sid, then the oracle in-
vokes a new machine Msid running the instructions of party P3−b in protocol
Π with session identifier sid and input message m to be signed. The machine
Msid is initialized with the key share and any state stored by M at the end
of the key generation phase. If party P3−b sends the first message in the
signing protocol, then this message is the oracle reply.

– If a query (sid,m) is received and the key generation phase has completed
and this is not the first oracle query with this identifier sid, then the oracle
hands Msid the incoming message m and returns the next message sent
by Msid. If Msid concludes, then the output obtained by Msid is returned.

The experiment for defining security is formalized by simply providing A who
controls party Pb with oracle access to Πb. Adversary A “wins” if it can forge
a signature on a message not queried in the oracle queries. Observe that A can
run multiple executions of the signing protocol concurrently. We remark that
we have considered only a single signing key; the extension to multiple different
signing keys is straightforward and we therefore omit it. (This is due to the fact
since signing keys are independent, one case easily simulate all executions with
other keys.)

14



EXPERIMENT 4.3 (Expt-DistSignbA,Π(1n))

Let π = (Gen, Sign,Verify) be a digital signature scheme.

1. (m∗, σ∗)← AΠb(·,·)(1n).
2. Let Q be the set of all inputs m such that (sid,m) was queried by A to

its oracle as the first query with identifier sid. Then, the output of the
experiment equals 1 if and only if m∗ /∈ Q and Verifyvk(m∗, σ∗) = 1, where
vk is the verification key output by P3−b from the key generation phase,
and Verify is as specified in π.

Security experiment for secure digital signature protocol

Definition 4.4. A protocol Π is a secure two-party protocol for distributed sig-
nature generation for π if for every probabilistic polynomial-time oracle machine
A and every b ∈ {1, 2}, there exists a negligible function µ such that for every n,
Pr[Expt-DistSignbA,Π(1n) = 1] ≤ µ(n).

4.2 Proof of Security

In this section, we prove that Π comprised of Protocols 3.1 and 3.2 for key
generation and signing, respectively, constitutes a secure two-party protocol for
distributed signature generation of ECDSA.

Theorem 4.5. Assume that the Paillier encryption scheme is indistinguishable
under chosen-plaintext attacks, and that ECDSA is existentially-unforgeable un-
der a chosen message attack. Then, Protocols 3.1 and 3.2 constitute a secure
two-party protocol for distributed signature generation of ECDSA.

Proof. We prove the security of the protocol in the Fcom-zk,Fzk hybrid model.
Note that if the commitment and zero-knowledge protocols are UC-secure, then
this means that the output in the hybrid and real protocols is computationally
indistinguishable. In particular, if A can break the protocol with some probabil-
ity ε in the hybrid model, then it can break the protocol with probability ε±µ(n)
for some negligible function µ. Thus, this suffices.

We separately prove security for the case of a corrupted P1 and a cor-
rupted P2. Our proof works by showing that, for any adversary A attacking
the protocol, we construct an adversary S who forges an ECDSA signature in
Experiment 4.1 with probability that is negligibly close to the probability that A
forges a signature in Experiment 4.3. Formally, we prove that if Paillier has in-
distinguishable encryptions under chosen-plaintext attacks, then for every PPT
algorithm A and every b ∈ {1, 2} there exists a PPT algorithm S and a negligible
function µ such that for every n,∣∣∣Pr[Expt-SignS,π(1n) = 1]− Pr[Expt-DistSignbA,Π(1n) = 1]

∣∣∣ ≤ µ(n), (1)

where Π denotes Protocols 3.1 and 3.2, and π denotes the ECDSA signature
scheme. Proving Eq. (1) suffices, since by the assumption in the theorem that

15



ECDSA is secure, we have that there exists a negligible function µ′ such that
for every n, Pr[Expt-SignS,π(1n) = 1] ≤ µ′(n). Combining this with Eq. (1), we

conclude that Pr[Expt-DistSignbA,Π(1n) = 1] ≤ µ(n)+µ′(n) and thus Π is secure
by Definition 4.4. We prove Eq. (1) separately for b = 1 and b = 2.

Proof of Eq. (1) for b = 1 – corrupted P1: Let A be a probabilistic polynomial-
time adversary in Expt-DistSign1A,Π(n); we construct a probabilistic polynomial-
time adversary S for Expt-SignS,π(n). The adversary S essentially simulates the
execution for A, as described in the intuition behind the security of the protocol.
Formally:

1. In Expt-Sign, adversary S receives (1n, Q), where Q is the public verification
key for ECDSA.

2. S invokes A on input 1n and simulates oracle Π for A in Expt-DistSignm,
answering as described in the following steps:
(a) S replies ⊥ to all queries (sid, ·) to Π by A before the key-generation

subprotocol is concluded. S replies ⊥ to all queries from A before it
queries (0, 0).

(b) After A sends (0, 0) to Π, adversary S receives (0,m1) which is P1’s first
message in the key generation subprotocol (any other query is ignored).
S computes the oracle reply as follows:

i. S parses m1 into the form (com-prove, 1, Q1, x1) that P1 sends to
FRDL

com-zk in the hybrid model.
ii. S verifies that Q1 = x1 ·G. If yes, then it computes Q2 = (x1)−1 ·Q

(using the value Q received as the verification key in experiment
Expt-Sign and the value x1 from A’s prove message); if no, then S
just chooses a random Q2.

iii. S sets the oracle reply of Π to be (proof, 2, Q2) and internally hands
this to A (as if sent by FRDL

zk ).
(c) The next message of the form (0,m2) received by S (any other query is

ignored) is processed as follows:
i. S parsesm2 into the following three messages: (1) (decom-proof, sid‖1)

asA intends to send to FRDL

com-zk; (2) (proof, 1, N, (p1, p2)) asA intends

to send to FRP

zk ; and (3) (proof, 1, (ckey, pk,Q1), (x1, r)) as A intends

to send to FRPDL

zk .
ii. S verifies that pk = N = p1 · p2 and that the length of pk = N is

as specified, and generates the oracle response to be P2 aborting if
they are not correct.

iii. Likewise, S generates the oracle response to be P2 aborting if Q1 6=
x1 ·G or ckey 6= Encpk(x1; r) or x1 /∈ Zq.

iv. If S simulates an abort, then the experiment concludes (since the
honest P2 no longer participates in the protocol and so all calls to
Πb are ignored). S does not output anything in this case since no
verification key vk is output by P2 in this case.
Otherwise, S stores (x1, Q, ckey) and the distributed key generation
phase is completed.

16



(d) Upon receiving a query of the form (sid,m) where sid is a new session
identifier, S queries its signing oracle in experiment Expt-Sign with m
and receives back a signature (r, s). Using the ECDSA verification pro-
cedure, S computes the Elliptic curve point R. (Observe that the ECDSA
verification works by constructing a point R and then verifying that this
defines the same r as in the signature.) Then, queries received by S from
A with identifier sid are processed as follows:

i. The first message (sid,m1) is processed by first parsing the message
m1 as (com-prove, sid‖1, R1, k1). If R1 = k1 · G then S sets R2 =
(k1)−1 ·R; else it chooses R2 at random. S sets the oracle reply to A
to be the message (proof, sid‖2, R2) that A expects to receive. (Note
that the value R2 is computed using R from the ECDSA signature
and k1 as sent by A.)

ii. The second message (sid,m2) is processed by parsing the message
m2 as (decom-proof, sid‖1) from A. If R1 6= k1 ·G then S simulates
P2 aborting and the experiment concludes (since the honest P2 no
longer participates in any executions of the protocol and so all calls
to Πb are ignored).
Otherwise, S chooses a random ρ ← Zq2 , computes the ciphertext
c3 ← Encpk([k1 · s mod q] + ρ · q), where s is the value from the
signature received from Fecdsa, and sets the oracle reply to A to
be c3.

3. Whenever A halts and outputs a pair (m∗, σ∗), adversary S outputs (m∗, σ∗)
and halts.

We proceed to prove that Eq. (1) holds. First, observe that the public-key gen-
erated by S in the simulation with A equals the public-key Q that it received
in experiment Expt-Sign. This is due to the fact that S defines Q2 = (x1)−1 ·Q
when A is committed to Q1 = x1 · G. Thus, the public key is defined to be
x1 ·Q2 = x1 · (x1)−1 ·Q = Q, as required. We now proceed to show that A’s view
in the simulation by S is identical to its view in a real execution of Protocols 3.1
and 3.2. (Note that the view is identical when taking Fzk and Fcom-zk as ideal
functionalities; the real protocol is computationally indistinguishable.) This suf-
fices since it implies that A outputs a pair (m∗, σ∗) that is a valid signature with
the same probability in the simulation and in Expt-DistSign (otherwise, the views
can be distinguished by just verifying if the output signature is correct relative
to the public key). Since the public key in the simulation is the same public
key that S receives in Expt-Sign, a valid forgery generated by A in Expt-DistSign
constitutes a valid forgery by S in Expt-Sign. Thus, Eq. (1) follows.

In order to see that the view ofA in the simulation of the key generation phase
is identical to its view in a real execution of Protocol 3.1 (as in Expt-DistSign),
note that the only difference between the simulation by A and a real execution
with an honest P2 is the way that Q2 is generated: P2 chooses a random x2 and
computes Q2 ← x2 · G, whereas S computes Q2 ← (x1)−1 · Q, where Q is the
public verification key received by S in Expt-Sign. We stress that in all other mes-
sages and checks, S behaves exactly as P2 (note that the zero-knowledge proof

17



of knowledge of the discrete log of Q2 is simulated by S, but in the Fzk,Fcom-zk-
hybrid model this is identical). Now, since Q is chosen randomly, it follows that
the distributions over x2 ·G and (x1)−1 ·Q are identical. Observe finally that if
P2 does not abort then the public-key defined in both a real execution and the
simulation by S equals x1 · Q2 = Q. Thus, the view of A is identical and the
output public key is Q.

In order to see that the view of A in the simulation of the signing phase is
computationally indistinguishable to its view in a real execution of Protocol 3.2
(as in Expt-DistSign), note that the only difference between the view of A in a
real execution and in the simulation is the way that c3 is chosen. Specifically,
R2 is distributed identically in both cases due to the fact that R is randomly
generated by Fecdsa in the signature generation and thus (k1)−1 · R has the
same distribution as k2 · G (this is exactly the same as in the key generation
phase with Q). The zero-knowledge proofs and verifications are also identically
distributed in the Fzk,Fcom-zk-hybrid model. Thus, the only difference is c3: in
the simulation it is an encryption of [k1 · s mod q] + ρ · q, whereas in a real
execution it is an encryption of s′ = (k2)−1 · (m′ + rx) + ρ · q, where ρ ∈ Zq2 is
random (we stress that all additions here are over the integers and not mod q,
except for where it is explicitly stated in the protocol description).

We therefore prove that A’s view is indistinguishable by showing that despite
this difference, the values are actually statistically close. In order to see this, first
observe that by the definition of ECDSA signing, s = k−1 · (m′ + rx) = (k1)−1 ·
(k2)−1·(m+rx) mod q. Thus, (k2)−1·(m′+rx) = k1·s mod q, implying that there
exists some ` ∈ N with 0 ≤ ` < q such that (k2)−1 · (m′+ rx) = k1 · s+ ` · q. The
reason that ` is bound between 0 and q is that in the protocol the only operations
without a modular reduction are the multiplication of [(k2)−1 ·r·x2 mod q] by x1,
and the addition of [(k2)−1 ·m′ mod q]. This cannot increase the result by more
than q2. Therefore, the difference between the real execution and simulation with
S is:

1. Real: the ciphertext c3 encrypts [k1 · s mod q] + ` · q + ρ · q
2. Simulated: the ciphertext c3 encrypts [k1 · s mod q] + ρ · q

We show that for all k1, s, ` with k1, s, ` ∈ Zq, the above values are statistically
close (for a random choice of ρ ∈ Zq2). In order to see this, fix k1, s, `, and let
v be a value. If v 6= [k1 · s mod q] + ζ · q for some ζ, then neither the real or
simulated values can equal v. Else, if v = [k1 · s mod q] + ζ · q for some ζ, then
there are three cases:

1. Case ζ < `: in this case, v can be obtained in the simulated execution for
ρ < `, but can never be obtained in a real execution.

2. Case ζ > q2 − 1): in this case, v can be obtained in the real execution for
ρ ≥ q2 − 1− `, but can never be obtained in a simulated execution.

3. Case ` ≤ ζ < q2 − 1: in this case, v can be obtained in both the real and
simulated executions, with identical probability (observe that in both the
real and simulated executions, ρ is chosen uniformly in Zq2).

18



Recall that the statistical distance between two distributions X and Y over a
domain D is defined to be:

∆(X,Y ) = max
T⊆D

∣∣∣Pr[X ∈ T ]− Pr[Y ∈ T ]
∣∣∣

Let X be the values generated in a real execution of the protocol and let Y be the
values generated in the simulation with S. Then, taking T to be set of values v
for which ζ < `, we have that Pr[X ∈ T ] = 0 whereas Pr[Y ∈ T ] ≤ q

q2 = 1
q (this

holds since 0 ≤ ` < q and ρ ∈ Zq2). Thus, ∆(X,Y ) = 1
q , which is negligible.

(Taking T to be the set of values v for which ζ > q2 − 1 would give the same
result and are both the maximum since any other values add no difference.)
We therefore conclude that the distributions over c3 in the real and simulated
executions are statistically close. This proves that Eq. (1) holds for the case
that b = 1.

Proof of Eq. (1) for b = 2 – corrupted P2: We follow the same strategy as for
the case that P1 is corrupted, which is to construct a simulator S that simulates
the view of A while interacting in experiment Expt-Sign. This simulation is easy
to construct and similar to the case that P1 is corrupted, with one difference.
Recall that the last message from P2 to P1 is an encryption c3. This ciphertext
may be maliciously constructed by A, and the simulator cannot detect this.
(Formally, there is no problem for S to decrypt, since as will be apparent below, it
generates the Paillier public key. However, this strategy will fail since in order to
prove computational indistinguishability it is necessary to carry out a reduction
to the security of Paillier, meaning that the simulation must be designed to
work without knowing the corresponding private key.) We solve this problem
by simply having S simulate P1 aborting at some random point. That is, S
chooses a random i ∈ {1, . . . , p(n) + 1} where p(n) is an upper bound on the
number of queries made by A to Π. If S chose correctly, then the simulation
is fine. Now, since S’s choice of i is correct with probability 1

p(n)+1 , this means

that S simulates A’s view with probability 1
p(n)+1 (note that S can also choose

i = p(n) + 1, which is correct if c3 is always constructed correctly). Thus, S
can forge a signature in Expt-Sign with probability at least 1

p(n)+1 times the

probability that A forges a signature in Expt-DistSign.
Let A be a probabilistic polynomial-time adversary; S proceeds as follows:

1. In Expt-Sign, adversary S receives (1n, Q), where Q is the public verification
key for ECDSA.

2. Let p(·) denote an upper bound on the number of queries that A makes to Π
in experiment Expt-DistSign. Then, S chooses a random i ∈ {1, . . . , p(n)+1}.

3. S invokes A on input 1n and simulates oracle Π for A in Expt-DistSign,
answering as described in the following steps:

(a) S replies ⊥ to all queries (sid, ·) to Π by A before the key-generation
subprotocol is concluded. S replies ⊥ to all queries from A before it
queries (0, 0).

19



(b) After A sends (0, 0) to Π, adversary S computes the oracle reply to be
(proof-receipt, 1) as A expects to receive.

(c) The next message of the form (0,m1) received by S (any other query is
ignored) is processed as follows:

i. S parses m1 into the form (prove, 2, Q2, x2) that P2 sends to FRDL

com-zk

in the hybrid model.
ii. S verifies that Q2 is a non-zero point on the curve and that Q2 =

x2 · G; if not, it simulates P1 aborting, and halts (there is no point
outputting anything since no verification key is output by P1 in this
case and so the output of Expt-DistSign is always 0).

iii. S generates a valid Paillier key-pair (pk, sk), computes ckey = Encpk(x̃1)
for a random x̃1 ∈ Zq/3.

iv. S sets the oracle response toA to be the messages (decom-proof, 1, Q1),
(proof, 1, N) and (proof, 1, (ckey, N,Q1)), where Q1 = (x2)−1 ·Q with
Q as received by S initially.

S stores (x2, Q, ckey) and the key distribution phase is completed.
(d) Upon receiving a query of the form (sid,m) where sid is a new session

identifier, S computes the oracle reply to be (proof-receipt, sid‖1) as A
expects to receive, and hands it to A.
Next, S queries its signing oracle in experiment Expt-Sign with m and
receives back a signature (r, s). Using the ECDSA verification procedure,
S computes the Elliptic curve point R. Then, queries received by S from
A with identifier sid are processed as follows:

i. The first message (sid,m1) is processed by first parsing the message
m1 as (prove, sid‖2, R2, k2) that A sends to FRDL

zk . S verifies that
R2 = k2 ·G and that R2 is a non-zero point on the curve; otherwise,
it simulates P1 aborting. S computes R1 = (k2)−1 · R and sets the
oracle reply to be (decom-proof, sid‖, R1) as if coming from FRDL

com-zk.
ii. The second message (sid,m2) is processed by parsing m2 as c3. If

this is the ith call by A to the oracle Π, then S simulates P1 aborting
(and not answering any further oracle calls). Otherwise, it continues.

4. Whenever A halts and outputs a pair (m∗, σ∗), adversary S outputs (m∗, σ∗)
and halts.

As in the case that P1 is corrupted, the public-key generated by S in the simu-
lation with A equals the public-key Q that it received in experiment Expt-Sign.
Now, let j be the first call to oracle Π with (sid, c3) where c3 is such that P1

does not obtain a valid signature (r, s) with respect to Q. Then, we argue that
if j = i, then the only difference between the distribution over A’s view in a real
execution and in the simulated execution by S is the ciphertext ckey. Specifi-
cally, in a real execution ckey = Encpk(x1) where Q1 = x1 · G, whereas in the
simulation ckey = Encpk(x̃1) for a random x̃1 and is independent of Q1 = x1 ·G.2

Observe, however, that S does not use the private-key for Paillier at all in the

2 As before, this is true in the Fzk,Fcom-zk-hybrid model; by using UC-secure protocols
for Fzk,Fcom-zk the result is computationally indistinguishable.

20



simulation. Thus, indistinguishability of this simulation follows from a straight-
forward reduction to the indistinguishability of the encryption scheme, under
chosen-plaintext attacks.

This proves that∣∣Pr[Expt-SignS,π(1n) = 1 | i = j]− Pr[Expt-DistSign2A,Π(1n) = 1]
∣∣ ≤ µ(n),

and so

Pr[Expt-DistSign2A,Π(1n) = 1] ≤
Pr[Expt-SignS,π(1n) = 1 ∧ i = j]

Pr[i = j]
+ µ(n)

≤
Pr[Expt-SignS,π(1n) = 1]

1/(p(n) + 1)
+ µ(n)

and so

Pr[Expt-SignS,π(1n) = 1] ≥
Pr[Expt-DistSign2A,Π(1n) = 1]

p(n) + 1
− µ(n).

This implies that if A forges a signature in Expt-DistSign2A,Π with non-negligible
probability, then S forges a signature in Expt-SignS,π with non-negligible prob-
ability, in contradiction to the assumed security of ECDSA.

5 Simulation Proof of Security (With a New Assumption)

There are advantages to full simulation based proofs of security (via the real/ideal
paradigm). Observe that we proved the security of our protocol in Section 4 by
simulating the view of A in a real execution. In fact, our simulation can be used
to prove the security of our protocol under the real/ideal world paradigm except
for exactly one place. Recall that when P2 is corrupted, S cannot determine if
c3 is correctly constructed or not. Thus, S simply chooses a random point and
“hopes” that the jth value c3 generated is the first badly constructed c3. This
suffices for a game-based definition, but it does not suffice for simulation-based
security definitions. Thus, in order to be able to prove our protocol using simula-
tion, we need to be able to determine if c3 was constructed correctly. Of course,
we could add zero-knowledge proofs to the protocol, but these would be very
expensive. Alternatively, we consider a rather ad-hoc but plausible assumption
that suffices. The assumption is formalized in Appendix A, along with a full
proof of security under this assumption.

6 Zero-Knowledge Proof for Relation RPDL

6.1 The Main Zero-Knowledge Proof

In this section, we present an efficient construction of a zero-knowledge proof for
the relation RPDL, defined by:

RPDL = {((c, pk,Q1,G, G, q), (x1, r)) | c = Encpk(x1; r) and Q1 = x1·G and x1 ∈ Zq}.

21



Intuitively, this relation means that c is a valid Paillier encryption of the discrete
log of Q1.

Our proof contains a new zero-knowledge protocol for proving that c =
Encpk(x1) and Q1 = x1 · G, while calling an existing zero-knowledge protocol
for proving that x1 ∈ Zq. It is possible to prove that x1 ∈ Zq by using the proof
of non-negativity of [20] on the ciphertext c′ = c 	 Encpk(q). This works, but
such proofs are quite expensive. In contrast, there exist much more simple and
efficient proofs if x1 ∈ Zq/3 [4]. This suffices for our use since a random x1 would
be in this range anyway with probability 1/3, and so this cannot adversely affect
the security. We therefore prove that x1 ∈ Zq/3 using the proof of [4]. Formally,
this proof guarantees completeness when x ∈ Zq/3 and soundness for x ∈ Zq.
This means that an honest prover will succeed in proving as long as x ∈ Zq/3
and a cheating prover will fail if x /∈ Zq, except with negligible probability. We
use the version of the proof as described in [2, Section 1.2.2]. With statistical
soundness error of 2−t, the cost of this proof is dominated by computing 2t
Paillier encryptions.

The idea behind the proof that c = Encpk(x1) and Q1 = x1 ·G is as follows.
The prover chooses a random r, and sends the verifier r ·G along with a Paillier
encryption cr of r. Then, for a random challenge e, the prover sends z = r+e·x1,
and proves the cr ⊕ (e � c) encrypts the value z. The verifier checks this proof
and also checks that z ·G = R+e ·Q1. Now, if c 6= Encpk(x1) then the probability
that z will fulfill both that z · G = R + e · Q1 and Encpk(z) = cr ⊕ (e � c) is
negligible, due to the random choice of e. Intuitively, this holds since the check
that cr⊕(e�c) encrypts z together with the check that z ·G = R+e ·Q1 ensures
that the same x1 is used to compute Q1 and is encrypted in c. This is shown
formally in the proof.

We remark that the above is not enough since z = r+ e · x1 may potentially
reveal information about x1 (note that there is no modular reduction carried
out here and the computation is over the integers; this is necessary since there is
no mod q inside Paillier). The prover therefore also adds to z the value ρ · q for
a large-enough random ρ, and proves that Encpk(z) − cr ⊕ (e � c) is a multiple
of q. Observe that the addition of ρ · q makes no difference to the check of
z · G = R + e · Q1 since this is all modulo q and so ρ · q disappears. The proof
contains additional checks regarding the size of z and more; this is needed to
ensure that values are in the appropriate range so that no modulo N operations
happen inside Paillier.

Theorem 6.2. If Paillier encryption is indistinguishable under chosen-plaintext
attacks and N > 2q4 + q3, then Protocol 6.1 is a zero-knowledge proof of knowl-
edge of the relation FRPDL

zk in the Fcom-hybrid model with soundness error 2−t.

Proof. We prove completeness, soundness and zero knowledge, and that the proof
is a proof of knowledge. Regarding completeness, it is easy to see that if both
parties follow the protocol then q2 < z < q3+q2. In addition, cq is an encryption
of z − r − e · x1 = ρ · q and thus V accepts the proof in the final step.

22



PROTOCOL 6.1 (Zero-Knowledge Proof for Relation RPDL)

Inputs: The joint statement is (c, pk,Q1,G, G, q), and the prover has a witness
(x1, sk) with x1 ∈ Zq/3. (Recall that the proof is that x1 = Decsk(c) and
Q1 = x1 ·G and x1 ∈ Zq.)

The Protocol:

1. V ’s first message: V chooses a random e ← Z2t and sends
(commit, sid, e) to Fcom.

2. P ’s first message: Upon receiving (receipt, sid) from Fcom, the prover P
chooses a random r ← Zq/3 and computes cr = Encpk(r) and R = r · G.
Then, P sends (cr, R) to V .

3. V ’s second message: V sends (decommit, sid) to Fcom.
4. P ’s second message: Upon receiving (decommit, sid, e) from Fcom,

prover P chooses a random ρ ← Zq2 and computes z = r + e · x1 + ρ · q.
Then, P sends z to V .

5. Range-ZK phase: P provides a zero-knowledge proof of knowledge that
r ∈ Zq and x1 ∈ Zq, using the proof described above from [2, Section
1.2.2].

6. Ciphertext-ZK phase: V checks that q2 < z < q3 +q2; if not, it aborts.
Otherwise, both parties independently compute cq = Encpk(z)	cr	(e�c).
Then, P provides a zero-knowledge proof that cq is an encryption of a
multiple of q under key pk under the guarantee that it is an encryption of
a value between 0 and q3 + q2, as shown in Section 6.2.

7. V ’s output: V computes z′ = z mod q and verifies that z′ ·G = R+e·Q1.
V outputs 1 if and only if this holds and it accepted the zero-knowledge
proofs of the previous steps.

We now proceed to prove soundness. First, if x1 /∈ Zq then V rejects due to the
range-ZK phase. It thus remains to prove that V rejects unless c = Encpk(x1; r)
and Q1 = x1 ·G. Let c = Encpk(x1; r) and assume that Q1 6= x1 ·G.

First, consider the subcase that P sends (cr, R) such that cr = Encpk(r)
and R = r · G. It then follows that cq as computed by V is an encryption of
v = z−r−e ·x1. If v is not a multiple of q then V outputs 0 in the ciphertext-ZK
phase.3 However, if v is a multiple of q then this implies that z = r+ e ·x1 +ρ · q
for some integer ρ. Thus, z′ = r + e · x1 mod q and z′ ·G = r ·G+ e · x1 ·G. By
the assumption that R = r ·G we have that z′ ·G = R+ e · (x1 ·G) 6= R+ e ·Q1

since Q1 6= x1 ·G. Thus, V outputs 0.

Next, consider the subcase that cr = Encpk(r) but R 6= r ·G. As before, if v is
not a multiple of q then V outputs 0 and so we have that z = r+ e ·x1 + ρ · q for
some integer ρ. Now, V outputs 0 unless z′ ·G = R+ e ·Q1. Thus, V outputs 0
unless (r+e·x1)·G = R+e·Q1, which holds if and only if r·G+e·(x1·G) = R+e·Q1

which in turn holds if and only if r ·G−R = e · (Q1−x1 ·G). By the assumption,

3 This only holds as long as the value encrypted is between 0 and q3 + q2. Now, since
x1, r ∈ Zq as guaranteed in the range-ZK phase, and V checks that q2 < z < q3 +q2,
it follows that z − r − e · x1 is in the range between 0 and q3 + q2, as required.

23



R 6= r · G and Q1 6= x1 · G. Thus, both r · G − R and Q1 − x1 · G are non-zero
points on the curve. Since the curve is of prime order, Q1−x1 ·G is a generator of
the group and thus there exists a single w such that w · (Q1−x1 ·G) = r ·G−R.
However, e ∈ Z2t is chosen uniformly at random and so the probability that
equality holds is at most 2−t, as required.

The fact that the proof is a proof of knowledge follows from the proof of
knowledge in the range-ZK phase. In particular, it is possible to extract the
value x1 from the proof that c is an encryption of a value in Zq. This suffices
since the fact that the extracted x1 fulfills the conditions of the relation follows
from the proof of soundness above.

Finally, we prove that the protocol is zero knowledge by constructing a sim-
ulator S. Intuitively, S can work since it can know the value of e before sending
R to V ∗ (by extracting e from Fcom). Let V ∗ be an adversarial verifier. Upon
input (c, pk,Q1,G, G, q), simulator S works as follows:

1. S receives (commit, sid, e) from V ∗ as it intends to send to Fcom.
2. S chooses a random z ∈ Zq2 , computes z′ = z mod q, and computes R =
z′ ·G− e ·Q1. In addition, S computes cr = Encpk(0).

3. S internally hands V ∗ the pair (cr, R) and receives back its decommitment.
If it does not decommit, then S simulates P aborting.

4. S internally hands V ∗ the value z it chose above.
5. S simulates the zero-knowledge proofs of the range-ZK and ciphertext-ZK

phases.

We prove that the simulation is computationally indistinguishable from a real
zero-knowledge proof of knowledge by constructing a hybrid simulator S ′ who
is given the witness (x1, r). Then, S ′ works in exactly the same way as S except
that it computes z as the real prover does. Clearly, the only difference between
the output of S and S ′ is in the distribution over z: S chooses z randomly in
Zq2 and S ′ sets z = r + e · x1 + ρ · q where ρ ∈ Zq2 is random. We argue
that these distributions over z are statistically close. In order to see this, fix
r ∈ Zq, e ∈ Z2t , x1 ∈ Zq and let z ∈ Zq2 be a value. We have the following cases:

1. Case 1 – z < r+e·x1: In this case, z cannot be generated in a real execution,
but can be generated in the simulation.

2. Case 2 – z > q2 − 1: In this case, z cannot be generated in the simulation,
but can be generated in a real execution (note that the maximum value of
z in a real execution is r + e · x1 + q2 − 1).

3. Case 3 – r + e · x1 ≤ z ≤ q2 − 1: In this case, the probability that z is
obtained in the simulation is exactly 1/(q2 − 1) since z is randomly chosen
in Zq2 . Likewise, the probability that z is obtained in a real execution is also
exactly 1/(q2 − 1) since this is obtained if and only if ρ = r+e·x1

q and ρ is
randomly chosen in Zq2 .

Recall that the statistical distance between two distributions X and Y over a
domain D is defined to be:

∆(X,Y ) = max
T⊆D

∣∣∣Pr[X ∈ T ]− Pr[Y ∈ T ]
∣∣∣

24



Let X be the real execution values and let Y be the simulation values. Then,
taking T to be set of values z for which z < r+e·x1, we have that Pr[X ∈ T ] = 0

whereas Pr[Y ∈ T ] < q+2t·q
q2 < 1√

q (this holds since 0 ≤ r, x1 < q and e ∈ Z2t

where 2t <
√
q). (Taking T to be the set of values z for which z > q2 − 1 would

give the same result and are both the maximum since any other values add no
difference.) We therefore conclude that ∆(X,Y ) < 1√

q , and so the distributions

over z in the real execution and simulation are statistically close. Since the only
difference between S and S ′ is that S is the simulation and S ′ generates z as in
a real execution, we have that the outputs of S and S ′ are statistically close.

Now, the only difference between S ′ and a real execution is that the proofs
in the range-ZK and ciphertext-ZK phases are simulated by S ′ and are not real
proofs. However, note that the statement is correct in both cases and this is the
only difference. Thus, computational indistinguishability follows from the zero
knowledge property of the proofs used in these phases.

We conclude by remarking that the requirement that N > 2q4 + q3 is needed
for the zero knowledge proof that cq encrypts a multiple of q. This is because
z = r + ex1 + ρq and it is crucial that no modulo N operation takes place.
Since ρ < q2 we have that ρq < q3. However, in Section 6.2, the proof further
multiplies this be q and so it can be up to q4 (as we will see below, the guarantee
is that it is less than 2q4 +q3 and thus we need N to be greater than this value).
This completes the proof.

It has been proven formally in [17] that any proof of knowledge securely
computes the ideal zero-knowledge functionality. We therefore conclude:

Corollary 6.3. If Paillier encryption is indistinguishable under chosen-plaintext
attacks and N > 2q4 + q3, then Protocol 6.1 securely computes the functionality
FRPDL

zk in the Fcom-hybrid model, in the presence of malicious, static adversaries.

6.2 A Proof that c Encrypts a Multiple of q

In this section, we present a zero-knowledge proof of knowledge of the following
relation R:

Rq = {((pk, c, q), (sk, L)) | ∃w : c = Encsk(L · q;w))}

In actuality, our proof will only be sound and zero knowledge for the case that
0 ≤ L ≤ q2 + q. We do not include this in the relation definition for simplicity.
However, formally, this is a promise problem and the guarantee that the promise
holds is due to the fact that V checks that q2 < z < q3 + q2 inside Protocol 6.1.
Now, since in Protocol 6.1 we also prove that x1 ∈ Zq and r ∈ Zq and we know
that e << q, we have that r + e · x1 < q2. Thus, L = z − r − e · x1 > 0 and
no modulo N operations happens inside the Paillier subtraction. We therefore
conclude that the input L to this proof is such that 0 ≤ L · q < q3 + q2, as
required.

25



PROTOCOL 6.4 (Zero-Knowledge Proof for Relation Rq)

Inputs: The joint statement is (pk, c, q), and the prover has a witness (sk, L)
and wishes to prove that c encrypts L · q.
The parties have a joint soundness parameter t (ensuring soundness error 2−t).

The Protocol:

1. P ’s first message: P chooses random r1, . . . , rt ← Zq3 and s1, . . . , st ∈
{0, 1}n and computes ci = Encpk(ri · q; si) for every i. P sends (c1, . . . , ct)
to V .

2. V ’s first message: V chooses a random e← Z2t and sends e to P .
3. P ’s second message: Upon receiving e from V , prover P works as fol-

lows:
(a) For every i such that ei = 0, prover P sends ri, si to V .
(b) For every i such that ei = 1, prover P sends Mi = (L+ ri) · q to V .

4. Final proof: P proves to V that for every i such that ei = 1 it holds that
c ⊕ ci 	 Encpk(Mi) is an encryption of 0, using the zero-knowledge proof
of [8].

5. V ’s output: V outputs 1 if and only if:
(a) V accepts all zero-knowledge proofs at the end, and
(b) For every i s.t. ei = 0, it holds that ri < q3 and ci = Encpk(ri · q; si),

and
(c) For every i s.t. ei = 1, it holds that qi |Mi and q2 < Mi < 2q4 + q3.

Security. We prove that if N > 2q4 + q3 and we have a promise that L < q2 + q,
then the protocol is a zero-knowledge proof. Completeness is straightforward
(note that since L < q2 + q it holds that (L+ ri) · q < (q3 + q2 + q3) · q = 2q4 + q3

and so Mi is in the appropriate range). We informally argue security.
We begin by proving soundness with error 2−t; assume that c = Encpk(x) for

some x that is not a multiple of q. Denote x = L · q + v for 1 < v < q.
First, assume that there exists an i such that ei = 1 and ci = Encpk(ri · q)

for some ri ∈ Zq3 . In such a case, C = c ⊕ ci 	 Encpk(Mi) is an encryption of
L · q + v + ri · q −Mi. Now, V accepts only if L · q + v + ri · q −Mi = 0 mod N ,
by the soundness of the zero-knowledge proof at the end (this computation is
modulo N since it happens inside the Paillier encryption). Clearly, it cannot
hold that L ·q+v+ri ·q−Mi = 0 (over the integers) since this would imply that
Mi = L · q + ri · q + v, but Mi is divisible by q (since otherwise V rejects) and
0 < v < q. Furthermore, it cannot hold that L ·q+v+ri ·q−Mi = −N since this
implies that Mi = L · q+ v+ ri · q+N , but V checks that Mi < 2q4 + q3 and N
is greater than this value. Finally, it cannot hold that L · q+ v+ ri · q−Mi = N .
In order to see this, note that V checks that ri < q3 and that Mi > q2. Thus,
N = L · q + v + ri · q −Mi would imply that N < L · q + q + q4 − q2 and so
L · q > N − q4 + q2 − q. However, the promise is that L · q < q3 + q2; since
N > 2q4 + q3, this is a contradiction. The same arguments hold for any multiple
of N and −N .

Thus, if the statement is incorrect, then V will reject unless for every i such
that ei = 1 it holds that ci does not encrypt a value that is a multiple of q. Since

26



V checks that ci does encrypt a value that is a multiple of q for every i such that
ei = 0, it follows that a cheating prover can only succeed if it guesses the exact
e before it sends c1, . . . , ct (observe that there is exactly one e that will enable
it to cheat). However, this occurs with probability 2−t only.

Regarding zero knowledge, a simulator S follows the honest P ’s instructions
up to the final proof, and runs the zero-knowledge simulator for that proof. Since
P doesn’t use the witness until the final proof, the simulator can work in this
way. Computational indistinguishability thereby follows from a straightforward
reduction to the zero knowledge property of the final proof.

Acknowledgements

We would like to than Valery Osheter from Dyadic Security for the implemen-
tation of ECDSA protocol and for running the experiments.

References

1. O. Blazy, C. Chevalier, D. Pointcheval and D. Vergnaud. Analysis and Improve-
ment of Lindell’s UC-Secure Commitment Schemes. In ACNS 2013, Springer
(LNCS 7954), pages 534–551, 2013.

2. F. Boudot: Efficient Proofs that a Committed Number Lies in an Interval. In
EUROCRYPT 2000, Springer (LNCS 1807), pages 431–444, 2000.

3. C. Boyd. Digital Multisignatures. In Cryptography and Coding, pages 241–246,
1986.

4. E. Brickell, D. Chaum, I. Damg̊ard,J. Van de Graaf. Gradual and Verifiable
Release of a Secret. In CRYPTO87, Springer (LNCS 293), pages 156-166, 1988.

5. R. Canetti. Security and Composition of Multiparty Cryptographic Protocols.
Journal of Cryptology, 13(1):143–202, 2000.

6. R. Canetti. Universally Composable Security: A New Paradigm for Crypto-
graphic Protocols. In 42nd FOCS, pages 136–145, 2001. Full version available
at http://eprint.iacr.org/2000/067.

7. R.A. Croft and S.P. Harris. Public-Key Cryptography and Reusable Shared
Secrets. In Cryptography and Coding, pages 189–201, 1989.

8. I. Damg̊ard and M. Jurik. A Generalisation, a Simplification and Some Applica-
tions of Paillier’s Probabilistic Public-Key System. In Public Key Cryptography
2001, Springer (LNCS 1992), pages 119–136, 2001.

9. Y. Desmedt. Society and Group Oriented Cryptography: A New Concept. In
CRYPTO’87, Springer (LNCS 293), pages 120–127, 1988.

10. Y. Desmedt and Y. Frankel. Threshold Cryptosystems. In CRYPTO’89,
Springer (LNCS 435), pages 307–315, 1990.

11. A. Fiat and A. Shamir: How to Prove Yourself: Practical Solutions to Identifi-
cation and Signature Problems. In CRYPTO 1986, Springer (LNCS 263), pages
186–194, 1986.

12. E. Fujisaki. Improving Practical UC-Secure Commitments Based on the DDH
Assumption. In SCN 2016, Springer (LNCS 9841), pages 257–272, 2016.

13. R. Gennaro, S. Jarecki, H. Krawczyk and T. Rabin. Robust Threshold DSS
Signatures. In EUROCRYPT96, Springer (LNCS 1070), pages 354-371, 1996.

27



14. R. Gennaro, S. Goldfeder and A. Narayanan: Threshold-Optimal DSA/ECDSA
Signatures and an Application to Bitcoin Wallet Security. In ACNS 2016, pages
156–174, 2016.

15. S. Goldfeder. Personal communication, December 2016.

16. O. Goldreich. Foundations of Cryptography: Volume 2 – Basic Applications.
Cambridge University Press, 2004.

17. C. Hazay and Y. Lindell. Efficient Secure Two-Party Protocols: Techniques and
Constructions. Springer, November 2010.

18. C. Hazay, G.L. Mikkelsen, T. Rabin and T. Toft. Efficient RSA Key Generation
and Threshold Paillier in the Two-Party Setting. In CT-RSA 2012, Springer
(LNCS 7178), pages 313–331, 2012. See http://eprint.iacr.org/2011/494 for
the full version.

19. Y. Lindell: Highly-Efficient Universally-Composable Commitments Based on the
DDH Assumption. In EUROCRYPT 2011, Springer (LNCS 6632), pages 446–
466, 2011.

20. H. Lipmaa. On Diophantine Complexity and Statistical Zero-Knowledge Argu-
ments. In ASIACRYPT 2003, Springer (LNCS 2894), pages 398–415, 2003.

21. P.D. MacKenzie and M.K. Reiter. Two-party generation of DSA signatures. In-
ternational Journal of Information Security, 2(3-4):218–239, 2004. An extended
abstract appeared at CRYPTO 2001.

22. P. Paillier. Cryptosystems Based on Composite Degree Residuosity Classes. In
EUROCRYPT99, Springer (LNCS 1592), pages 223–238, 1999.

23. C.P. Schnorr. Efficient Identification and Signatures for Smart Cards. In
CRYPTO 1989, Springer (LNCS 435), pages 239–252, 1990.

24. V. Shoup. Practical Threshold Signatures. In EUROCRYPT 2000, Springer
(LNCS 1807), pages 207–220, 2000.

25. V. Shoup and R. Gennaro. Securing Threshold Cryptosystems against Chosen
Ciphertext Attack. In EUROCRYPT 1998, Springer (LNCS 1403), pages 1–16,
1998.

26. Porticor, www.porticor.com.

27. Dyadic Security, www.dyadicsec.com.

28. Sepior, www.sepior.com.

A Simulation-Based Proof of Security (Using a New
Assumption)

A.1 Definition of Security

We show how to securely compute the functionality Fecdsa. The functionality
is defined with two functions: key generation and signing. The key generation is
called once, and then any arbitrary number of signing operations can be carried
out with the generated key. The functionality is defined in Figure A.1.

28

www.porticor.com
www.dyadicsec.com
www.sepior.com


FIGURE A.1 (The ECDSA Functionality Fecdsa)

Functionality Fecdsa works with parties P1 and P2, as follows:

– Upon receiving KeyGen(G, G, q) from both P1 and P2, where G is an
Elliptic-curve group of order q with generator G:
1. Generate an ECDSA key pair (Q, x) by choosing a random x ← Z∗q

and computing Q = x · G. Choose a hash function Hq : {0, 1}∗ →
{0, 1}blog |q|c, and store (G, g, q,Hq, x).

2. Send Q (and Hq) to both P1 and P2.
3. Ignore future calls to KeyGen.

– Upon receiving Sign(sid,m) from both P1 and P2, if KeyGen was already
called and sid has not been previously used, compute an ECDSA signature
(r, s) on m, and send it to both P1 and P2. (Specifically, choose a random
k ← Z∗q , compute (rx, ry) = k · G and r = rx mod q. Finally, compute
s← k−1(Hq(m) + rx) and output (r, s).)

We defined Fecdsa using Elliptic curve (additive) group notation, although
all of our protocols work for any prime-order group.

Security in the presence of malicious adversaries. We prove security according
to the standard simulation paradigm with the real/ideal model [5,16]. We prove
security in the presence of malicious adversaries and static corruptions. As is
standard for the case of no honest majority, we consider security with abort
meaning that a corrupted party can learn output while the honest party does
not. In our definition of functionalities, we describe the instructions of the trusted
party. Since we consider security with abort, the corrupted party receives output
first and then sends either continue or abort to the trusted party to determine
whether or not the honest party also receives output.

We remark that when all of the zero-knowledge proofs are UC secure [6],
then our protocol can also be proven secure in this framework.

A.2 Background and New Assumption

In Section 4 , we proved the security of our protocol under a game-based defini-
tion. In some sense, proving security via simulation-based definitions (following
the ideal/real model paradigm) is preferable. In particular, it guarantees security
under composition. Following our proof in Section 4.2 closely, one may observe
that S is essentially a simulator for an ideal functionality that securely com-
putes ECDSA. Indeed, S is invoked with a public-key, and can use its oracle in
Expt-Sign to obtain a signature on any value it wishes. This is very similar to
an ideal functionality that generates a public key and can be used to generate
signatures. The only problem with the simulation strategy used in Section 4.2
is that in the case that P2 is corrupted, S just guesses if c3 is correctly con-
structed. Needless to say, this is not allowed in a simulation-based proof. One

29



may be tempted to solve this problem by saying that since S generates the Pail-
lier key-pair (pk, sk) when playing P1, it can decrypt c3 and check if the value is
generated as expected. However, when trying to formally prove this, one needs
to show a reduction to the indistinguishability of the encryption scheme (since
the simulator does not know x1 and so cannot provide ckey = Encpk(x1)). In
this reduction, the simulator is given pk externally and does not know sk (see
the proof of the key generation subprotocol in Section 4.2). Thus, in this reduc-
tion, it is not possible to decrypt c3 and the appropriate distributions cannot be
generated.

In this section, we introduce a new assumption under which it is possible
to prove the full simulation-based security of Protocol 3.2 without any modifi-
cations. The assumption is non-standard, but very plausible. Consider an ad-
versary who is given a Paillier encryption of a (high-entropy) secret value w;
denote c = Encpk(w). Then, the adversary can always randomize c to generate
an encryption c′ of the same w, but without anyone but itself and the secret-key
owner knowing whether c and c′ encrypt the same value. In addition, the ad-
versary can always generate an encryption c′ of a plaintext value that it knows
but without knowing whether c and c′ encrypt the same value. Now, consider a
setting where an adversary is given an oracle Oc(c′) that outputs 1 if and only
if Decsk(c′) = Decsk(c), where c = Encpk(w) is the challenge ciphertext, and
the adversary’s task is to learn w. Clearly, the adversary can use this oracle to
try and guess the value encrypted in c one at a time (just guess x′, compute
c′ = Encpk(x′) and query Oc(c′)). However, since w has high entropy, this seems
to be futile. Furthermore, it seems that the oracle Oc cannot help in any other
way.

Extending the above a further step, the adversary can generate any affine
function of w by choosing scalars α and β and computing c′ = α�(Encpk(β)⊕c)
= Encpk(α+β·x). Then, as before,A tries to output w given an oracleOc(c′, α, β)
that outputs 1 if and only if Decsk(c′) = α+β ·Decsk(c). The adversary can use
this oracle to try to guess w one value at a time, but it does not seem that it
can help beyond this.

In order to formally define a security experiment including such an oracle, one
must consider the task of the adversary. Since w must be a high-entropy random
value one cannot consider the standard indistinguishability game. Rather, one
could formalize a simple task where some w is randomly chosen and the adversary
is given (pk,Encpk(w)) and oracle access to O above, and its task is to output w
(in entirety). This is very plausible since without the oracle it is clearly hard, and
the oracle only answers queries (c′, α, β) by determining if “c′ encrypts α+β ·x”,
which essentially gives a single guess on the value of w. However, requiring that
the adversary output the entire w turns out to not be very helpful for us. This
is due to the fact that w must maintain some property of secrecy. We therefore
extend this experiment by giving the adversary either (pk, f(w0),Encpk(w0)) or
(pk, f(w0),Encpk(w1)), where w0, w1 are random and f is a one-way function.
The adversary’s task is to guess which input type it received (with the input to
the one-way function equal to what is encrypted or independent of it), and it is

30



given the oracle O above to help it. Note that f may reveal some information
about w0 (since it is only a one-way function), but if f is somehow unrelated of
the encryption scheme, then it still seems that this should not help very much.

For our actual experiment, we will define the one-way function to be the
computation w0 ·G in a group where the discrete log is hard. Observe that here
the one-way function is related to the discrete log problem over Elliptic curve
groups, whereas the encryption is Paillier and thus seems completely unrelated.
Thus, we conjecture that this problem is hard. Since we consider a group, the
equality that is actually checked by the oracle is modulo q, where q is the order
of the group.

Formal assumption definition. The above description leads to the following ex-
periment. Let G be a generator of a group G of order q. Consider the following
experiment with an adversary A, denoted ExptA(1n):

1. Generate a Paillier key pair (pk, sk).
2. Choose random w0, w1 ∈ Zq and compute Q = w0 ·G.
3. Choose a random bit b ∈ {0, 1} and compute c = Encpk(wb).
4. Let b′ = AOc(·,·,·)(pk, c,Q), where Oc(c′, α, β) = 1 if and only if Decsk(c′) =
α+ β · wb mod q.

5. The output of the experiment is 1 if and only if b′ = b.

We define the following:

Definition A.2. We say that the Paillier-EC assumption is hard if for every
probabilistic polynomial-time adversary A there exists a negligible function µ
such that Pr[ExptA(1n) = 1] ≤ 1

2 + µ(n).

The assumption in Definition A.2 is rather ad-hoc and tailored to the problem
at hand. However, it is very plausible and enables us prove full simulation without
modifying the protocol.

A.3 Proof of Security

Under the above assumption, we are able to prove full simulation-based security
of our protocol. We show this now. We assume only that the Paillier-EC as-
sumption is hard, since this trivially implies that the Paillier encryption scheme
is indistinguishable under chosen-plaintext attacks.

Theorem A.3. Assume that the Paillier-EC assumption is hard. Then, Pro-
tocol 3.2 securely computes Fecdsa in the (Fzk,Fcom-zk)-hybrid model in the
presence of a malicious static adversary (under the full ideal/real definition).

Proof. We separately prove security for the case of a corrupted P1 and a cor-
rupted P2. Let A be an adversary who has corrupted P1; we construct a simu-
lator S. We separately show how to simulate the key generation and sign sub-
protocols.

31



Simulating key generation – corrupted P1: The intuition behind the simulation
of the key generation was already provided above; we therefore proceed directly
to the details.

1. Upon input KeyGen(G, G, q), simulator S sends KeyGen(G, G, q) to Fecdsa
and receives back Q.

2. S invokes A upon input KeyGen(G, G, q) and receives (com-prove, 1, Q1, x1)
as A intends to send to FRDL

zk .
3. S verifies that Q1 = x1 ·G. If yes, then it computes Q2 = (x1)−1 ·Q (using

the value Q received from Fecdsa and x1 from A’s prove message); if no,
then S just chooses a random Q2.

4. S internally hands (proof, 2, Q2) to A as if sent by FRDL

zk .

5. S receives (decom-proof, sid‖1) as A intends to send to FRDL

com-zk, receives

(proof, 1, N, (p1, p2)) as A intends to send to FRP

zk , and receives the message

(proof, 1, (ckey, pk,Q1), (x1, r)) as A intends to send to FRPDL

zk .
6. S verifies that pk = N = p1 · p2 and the length of pk = N , and simulates P2

aborting if they are not correct.
7. S simulates P2 aborting if Q1 6= x1 ·G or ckey 6= Encpk(x1; r) or x1 /∈ Zq.
8. S sends continue to Fecdsa for P2 to receive output, and stores x1, Q, ckey.

We prove that the joint distribution of A’s view and P2’s output in the ideal
simulation is identically distributed to in a real protocol execution. The only
difference between the simulation by A and a real execution with an honest
P2 is the way that Q2 is generated: P2 chooses a random x2 and computes
Q2 ← x2 ·G, whereas S computes Q2 ← (x1)−1 ·Q. We stress that in all other
messages and checks, S behaves exactly as P2 (note that the zero-knowledge
proofs of Q2 is simulated by S, but in the Fzk,Fcom-zk-hybrid model these is
identical). Now, since Q is chosen randomly, it follows that the distributions over
x2 ·G and (x1)−1 ·Q are identical. Observe finally that if P2 does not abort then
the public-key defined in both the ideal and real executions equals x1 ·Q2 = Q.
Thus, the joint distribution over A’s view and P2’s output is identical.

We remark that ckey is guaranteed to be an encryption of x1 where Q1 =
x1 · G. This is guaranteed by the zero-knowledge proof for relation RPDL; we
will use this fact below.

Simulating signing – corrupted P1: The idea behind the security of the sign-
ing subprotocol is that a corrupted P1 cannot do anything since all it does is
participate in a “coin tossing” protocol to generate R and receives a ciphertext
c3 from P2. Since the coin-tossing subprotocol is simulatable, a simulator can
make the result equal the R using in a signature received from the trusted party
computing Fecdsa. Thus, the main challenge is in proving that a simulator can
generate the corrupted P1’s view of the decryption of c3, given only the signature
(r, s) from Fecdsa.

1. Upon input Sign(sid,m), simulator S sends Sign(sid,m) to Fecdsa and
receives back a signature (r, s).

2. Using the ECDSA verification procedure, S computes the point R.

32



3. S invokes A with input Sign(sid,m) and simulates the first three messages so
that the result is R. This follows the exact strategy as used in the simulation
of the key generation phase, as follows (in brief):
(a) S receives (com-prove, sid‖1, R1, k1) from A.
(b) If R1 = k1 ·G then S sets R2 = (k1)−1 ·R; else it chooses R2 at random.
S hands A the message (proof, sid‖2, R2).

(c) S receives (decom-proof, sid‖1) from A. If R1 6= k1 ·G then A simulates
P2 aborting and sends abort to the trusted party computing Fecdsa.
Otherwise, it continues.

4. S chooses a random ρ ← Zq2 , computes c3 ← Encpk([k1 · s mod q] + ρ · q),
where s is the value from the signature received from Fecdsa, and internally
hands c3 to A.

The only difference between the view of A in a real execution and in the sim-
ulation is the way that c3 is chosen. Specifically, R2 is distributed identically
in both cases due to the fact that R is randomly generated by Fecdsa in the
signature generation and thus (k1)−1 · R has the same distribution as k2 · G.
The zero-knowledge proofs and verifications are also identically distributed in
the Fzk,Fcom-zk-hybrid model. Thus, the only difference is c3: in the simulation
it is an encryption of [k1 · s mod q] + ρ · q, whereas in a real execution it is an
encryption of s′ = (k2)−1 · (m′ + rx) + ρ · q, where ρ ∈ Zq2 is random (we stress
that all additions here are over the integers and not modq, except for where it
is explicitly stated in the protocol description). The fact that this is statistically
close has already been shown in the proof of Theorem 4.5. This completes the
proof of this simulation case.

Simulating key generation – corrupted P2: We now consider the case of a mali-
cious S2.

1. Upon input KeyGen(G, G, q), simulator S sends KeyGen(G, G, q) to Fecdsa
and receives back Q.

2. S generates a valid Paillier key-pair (pk, sk), computes ckey = Encpk(x̃1) for
a random x̃1 ∈ Zq, and internally hands A the message (proof-receipt, 1) as

if sent by FRDL

com-zk, and the pair (pk, ckey) as if sent by P1.
3. S receives Q2 as A intends to send to P1, and (prove, 2, Q2, x2) as A intends

to send to FRDL

zk .
4. S verifies that Q2 is a non-zero point on the curve and that Q2 = x2 ·G; if

not, it simulates P1 aborting and halts.
5. S computes Q1 = (x2)−1 ·Q and hands A the message (decom-proof, 1, Q1)

as if sent by FRDL

com-zk.

6. When A sends (verify, 1, (ckey, pk,Q1)) to FRPDL

zk , then S hands it back

(verify, 1, (ckey, pk,Q1), 1) as if coming from FRPDL

zk .
7. S sends continue to Fecdsa for P1 to receive output, and stores Q.

It is immediate that the distributions of A’s view in a real and ideal execution
are identical, except for ckey which equals Encpk(x1) where Q1 = x1 ·G in a real
execution but equals Encpk(x̃1) for a random x̃1 in the ideal simulation. Observe,

33



however, that S does not use the private-key at all. Thus, indistinguishability of
this simulation follows from a straightforward reduction to the indistinguisha-
bility of the encryption scheme, under chosen-plaintext attacks. The fact that
the joint view of the adversary A and the honest party P1 is indistinguishable
follows from the fact that the honest party always outputs Q = x1 ·Q2 = x2 ·Q1

in a real protocol execution, where Q1 = x1 ·G. In the simulation, we have that
Q1 = (x2)−1 · Q and thus x2 · Q1 = x2 · (x2)−1 · Q = Q, exactly as in the real
protocol execution.

Simulating signing – corrupted P2: The simulator for the signing phase works
as follows:

1. Upon input Sign(sid,m), simulator S sends Sign(sid,m) to Fecdsa and
receives back a signature (r, s).

2. Using the ECDSA verification procedure, S computes the point R.
3. S invokes A with input Sign(sid,m) and internally hands A the message

(proof-receipt, sid‖1) as if sent by FRDL

com-zk.
4. S receives R2 as A intends to send to P1, and (prove, sid||2, R2, k2) as A

intends to send to FRDL

zk .
5. S verifies that R2 = k2 · G and that R2 is a non-zero point on the curve;

otherwise, it simulates P1 aborting.
6. S computes R1 ← (k2)−1 · R and internally hands (decom-proof, sid‖1, R1)

to A as if coming from FRDL

com-zk.
7. S receives c3 from P1, decrypts it using sk and reduces the result modulo q.
S checks if the result equals

(
(k2)−1 ·m′

)
+
(
(k2)−1 · r · x2

)
· x̃1 mod q, where

ckey = Encpk(x̃1) was as generated by P1 in the key-generation simulation.
If the result is equal, then S instructs the trusted party to provide the output
to the honest party (by sending continue). Otherwise, it instructs it to abort
(by sending abort).

It is clear that the distribution over the messages seen by P2 is identical, except
for the encryption of ckey which is computationally indistinguishable. Further-
more, there is exactly one value modulo q that P2 can use to generate c3, and
this is validated by S.4 Formally, we need to show that the output distributions
in the ideal model of both the key generation and signing phases are computa-
tionally indistinguishable from a real execution. In order to do this, we need to
reduce the security to that of Paillier encryption since this is the only difference.
However, in the simulation, S must have the private key sk in order to decrypt
c3 and verify that A (controlling P2) computed the correct value. Thus, it is not
possible to prove this via a standard reduction to the indistinguishability of the
encryption scheme. We therefore prove this under the Paillier-EC assumption.

We modify S to a simulator S ′ who is given an oracle Oc(c′, α, β) that out-
puts 1 if and only if Decsk(c′, α, β) = α + β · x̃1 mod q. Observe that S ′ can
complete the simulation exactly as S as follows:
4 Note that for every valid ECDSA signature (r, s), the pair (r,−s) is also a valid sig-

nature. Nevertheless, since the “smaller” of s,−s is always taken, the value is unique.

34



1. Compute α = (k2)−1 ·m′ mod q.
2. Compute β = (k2)−1 · r · x2 mod q.
3. Query Oc(c3, α, β) and denote the response by b.
4. If b = 1 then S ′ continues like S when Decsk(c3) =

(
(k2)−1 ·m′

)
+
(
(k2)−1 · r · x2

)
·

x̃1 mod q.

It is immediate that these checks by S and S ′ are equivalent. In order to see this,
observe that Decsk(c3) =

(
(k2)−1 ·m′

)
+
(
(k2)−1 · r · x2

)
· x̃1 mod q is equivalent

to Decsk(c3) = α+ β · x̃1 mod q which is equivalent to Oc(c3, α, β) = 1. Thus, S
accepts if and only if S ′ accepts.

We now construct a distinguisher D for the Paillier-EC experiment ExptD,
such that if b = 0 then the distribution generated by D is exactly that generated
in a real execution whereas if b = 1 then the distribution is that generated by S ′.
D receives (pk, c,Q) and runs the simulation of the key generation (as described
above) with the given pk and Q. In addition, D sets ckey = c as received. Recall
that the simulation of this phase doesn’t require sk and so this works. Next,
D proceeds to simulate the signing phase, following the instructions of S ′. In
particular, it uses its oracle O in order to determine whether to send continue
or abort for P1 to receive output.

Observe that if b = 0 in the experiment then ckey = Encpk(w0) andQ = w0·G.
Setting x1 = w0, these values are distributed exactly as in a real execution.
Furthermore, P1 outputs a signature if and only if c3 encrypts s′ = (k2)−1 ·
(m′ + r · x1) mod q which is equivalent to (r, s) being a valid signature where
s = (k1)−1 · s′ mod q. Thus, this is exactly a real execution. In contrast, if b = 1
in the experiment then ckey = Encpk(w1) and Q = w0 ·G. Setting x1 = w0 and
x̃1 = w1, we have that this is exactly the distribution generated by S ′. Thus,
by the Paillier-EC assumption, we have that the output distribution generated
by S ′ in the ideal model is computationally indistinguishable from the output
distribution in a real execution.

Since the output distributions of S and S ′ in the ideal model are identical,
as described, we conclude that the output distribution generated by S in the
ideal model is computationally indistinguishable from the output distribution in
a real execution, thus concluding the proof.

35


	Fast Secure Two-Party ECDSA Signing
	Yehuda Lindell

