
Can We Access a Database Both Locally and Privately?

Elette Boyle∗

IDC Herzliya
Yuval Ishai†

Technion and UCLA
Rafael Pass‡

Cornell University
Mary Wootters§

Stanford University

Abstract

We consider the following strong variant of private information retrieval (PIR). There is a
large database x that we want to make publicly available. To this end, we post an encoding X
of x together with a short public key pk in a publicly accessible repository. The goal is to allow
any client who comes along to retrieve a chosen bit xi by reading a small number of bits from
X, whose positions may be randomly chosen based on i and pk, such that even an adversary
who can fully observe the access to X does not learn information about i.

Towards solving the above problem, we study a weaker secret key variant where the data
is encoded and accessed by the same party. This primitive, that we call an oblivious locally
decodable code (OLDC), is independently motivated by applications such as searchable sym-
metric encryption. We reduce the public-key variant of PIR to OLDC using an ideal form of
obfuscation that can be instantiated heuristically with existing indistinguishability obfuscation
candidates, or alternatively implemented with small and stateless tamper-proof hardware.

Finally, a central contribution of our work is the first proposal of an OLDC candidate. Our
candidate is based on a secretly permuted Reed-Muller code. We analyze the security of this
candidate against several natural attacks and leave its further study to future work.

∗Email: eboyle@alum.mit.edu
†Email: yuvali@cs.technion.ac.il
‡Email: rafael@cs.cornell.edu
§Email: marykw@stanford.edu

1 Introduction

A private information retrieval (PIR) protocol allows a client to retrieve an item from a remote
database while hiding which item is retrieved even from the servers storing the database. PIR has
been studied both in a multi-server setting, where security should only hold against non-colluding
servers [CKGS98, CG97], and in a single-server setting [KO97]. In both settings, the main focus of
the large body of work on PIR has been on minimizing the communication complexity.

Improving the computational complexity of PIR turned out to be much more challenging. If
no preprocessing of the database is allowed, the computational complexity of the servers must be
at least linear in the database size [BIM00]. While prerocessing was shown to be helpful in the
multi-server setting [BIM00], the existence of sublinear-time single-server PIR protocols has been
a longstanding open question, with no negative results or (even heuristic) candidate solutions.

In this work we consider the following strong variant of sublinear-time PIR that we call public-key
PIR (pk-PIR). Suppose we want to allow efficient and privacy-preserving access to a large database
x ∈ {0, 1}n. To this end, we encode x into a (possibly bigger) database X = (X1, . . . , XN) and
post X together with a short public key pk in a publicly accessible repository. We want to allow
any client who comes along to retrieve a chosen bit xi by reading a small number of bits from
X (sublinear in n), where the positions of these bits may be randomly chosen based on i and pk.
(Note that X can be over any alphabet, but the total number of bits read by the decoder should be
o(n).) More concretely, there is a randomized decoder that given i and pk picks a small set I ⊂ [N]
of positions to be read, and using XI , pk, and its secret randomness recovers xi.

We would like to achieve the following strong security guarantee: even an adversary who knows
pk and can fully observe the access to X, including both the positions I and the contents XI

of symbols being read, does not learn information about i. Since we are interested in efficient
solutions that transfer less than n bits of information, one should settle for computational (rather
than information-theoretic) security against computationally bounded observers [CKGS98].

Our notion of pk-PIR can be viewed as a variant of single-server PIR with preprocessing [BIM00]
(see Section 1.1 for a detailed discussion). It can also be viewed as a variant of oblivious RAM
(ORAM) [GO96] which is weaker in that it only supports “read” operations, but is qualitatively
stronger in that the same encrypted database can be repeatedly used without being updated. Unlike
the standard notion of ORAM, pk-PIR can support a virtually unlimited number of accesses by an
arbitrary number of stateless clients who do not trust each other. An efficient realization of pk-PIR
can be extremely useful for enabling privacy-preserving public access to a large static database.

Main tool: OLDC. We reduce pk-PIR to the design of a new primitive that we call an oblivious
locally decodable code (OLDC). Intuitively, OLDC can be thought of as a simpler secret-key variant
of pk-PIR. An OLDC encoder randomly maps the database x into an encoded database X by using
a short secret key sk. The decoder may use sk to determine the set I of symbols of X it reads
and also for recovering xi from XI , where the same key sk can be used for polynomially many
invocations of the decoder. As in pk-PIR (and standard LDC), we require the decoder to have
sublinear locality, namely to read o(n) bits of X. There are two significant differences in the notion
of security. First, the observer does not have access to the secret key sk used for decoding. Second,
it does not even have access to the contents of the symbols XI . All the observer can see is the
positions I of the symbols being read.

On the non-triviality of OLDC. The relaxed security goal makes OLDC conceivably easier
to realize than pk-PIR. However, whether such OLDC exists is still far from obvious. In fact, one
might be tempted to try to prove that OLDC is just too strong to exist. In Appendix A we argue

1

that ruling out the existence of OLDC is unlikely, as it would require proving strong data structure
lower bounds that seem beyond the reach of current techniques.

On the other hand, there is also no hope to prove the existence of OLDC unconditionally; in
fact, we prove that any OLDC implies a one-way function. Another source of non-triviality comes
from the following general property of OLDC. With overwhelming probability over the choice of
sk, the encoder and (probabilistic) decoder defined by sk should satisfy the following requirement:
the probability that a given codeword symbol is read by the decoder is essentially independent of
the query index i. Using known results, this means that any OLDC can be easily converted into a
closely related “smooth code”1 [KT00], or even into a standard LDC that allows for local decoding
in the presence of a constant fraction of errors [KMRS16]. Since there is only a handful of known
smooth code and LDC constructions, this severely limits the pool of potential OLDC candidates.

On the usefulness of OLDC. Unlike standard notions of PIR (but similarly to ORAM), OLDC
does not apply to the case of publicly accessible data, in the sense that a client who has the key
to access the encoded data can learn the queries i of others who access the same encoded data.
However, OLDC can still be useful in many application scenarios. For instance, it can be used
to implement general forms of searchable symmetric encryption [SWP00, CGKO11], avoiding the
access pattern leakage of current practical approaches without the need to update the encoded data
as in an ORAM-based approach.

From OLDC to pk-PIR. Before describing our candidate OLDC construction, we explain
the transformation from OLDC to pk-PIR. Conceptually, the transformation is similar to an
obfuscation-based construction of public-key encryption from secret-key encryption. The idea is to
have the pk-PIR encoder produce an encrypted and authenticated version of the symbols of the
OLDC encoding X, and emulate the OLDC decoder by obfuscating the code for generating I from
i and pk together with the code for recovering xi from XI . An additional authentication mechanism
is needed to ensure that the decoder is indeed fed with XI for the same I it generated.

Unlike the simpler case of encryption [SW14], here we cannot instantiate the construction
using indistinguishability obfuscation (iO). Instead, we need to rely on an ideal “virtual black-box”
obfuscation primitive [BGI+12]. This primitive can be heuristically instantiated using existing iO
candidates (e.g., the ones from [GGH+13, GMM+16]) or provably instantiated by relying on ideal
multi-linear maps [BGK+14]. Alternatively, the decoder can be implemented directly by using small
and stateless tamper-proof hardware or a secure co-processor. The latter setting does not seem to
trivialize the problem, and can potentially provide an implementable variant of our construction
that is not curbed by the inefficiency of current software-based obfuscation methods.

An OLDC candidate. A central contribution of our work is the first proposal of an OLDC
candidate, which we describe below. The encoding is just a secretly permuted version of a standard
locally decodable code obtained from Reed-Muller codes (cf. [KT00]): the secret key defines a
(pseudo-)random permutation, and the encoder applies a Reed-Muller encoding to x and then
permutes the result according to the permutation defined by the secret key. The parameters are
chosen such that decoding is done by probing O(λ · nε) (permuted) points along a degree-λ curve,
where λ is a security parameter and ε > 0 can be an arbitrarily small constant that determines
the (polynomial) storage overhead. Decoding is done via interpolation, where it is crucial that the
interpolation points be kept secret to defeat a simple linearization attack we describe.

1A smooth code supports a local decoding procedure in which each codeword symbol is read with roughly the
same probability.

2

Assuming the security of this OLDC candidate, we get pk-PIR based on ideal obfuscation and
one-way functions, where the client reads poly(λ) · nε bits for an arbitrarily small constant ε > 0.
As noted above, ideal obfuscation can be heuristically replaced by existing iO candidates, leading
to an explicit candidate construction of pk-PIR. Alternatively, it can be implemented by small and
stateless tamper-proof hardware.

Roughly speaking, the security of our OLDC candidate reduces to an intractability assumption
defined by a“randomized puzzle” obtained by first sampling polynomially many random low-degree
curves (where each curve has a different color), and then randomly shuffling the pieces of the
puzzle, i.e., the colored points of the space. The assumption is that it is hard to distinguish the
shuffled pieces of the puzzle from pieces of a similar puzzle where the low-degree curves are replaced
by high-degree curves, or even by totally random functions. Note that unlike standard physical
puzzles, or computational puzzles that are motivated by problems such as DNA sequencing, the
local independence property of random low-degree curves ensures that there is no local information
to help determine whether two pieces are likely to fit next to each other.

Being unable to reduce the security of our OLDC candidate to any well studied assumption,
we establish its plausible security by showing that it defeats several relevant types of attacks. This
may be an inevitable state of affairs, as it is often the case in cryptography that ambitious new
goals call for new assumptions. On the other hand, we show that several weaker variants of the
construction can be broken by linearization attacks. This includes variants in which the global
permutation is replaced by one that randomly permutes only one of the coordinates in the space.

Finally, it is useful to note that other ad-hoc pseudorandomness assumptions related to specific
classes of efficiently decodable codes have successfully withstood the test of time. This includes
the conjectured pseudorandomness of noisy Reed-Solomon codes [NP06] (despite early attacks on a
specialized variant [BN00, Bon02]) and assumptions related to unbroken instances of the McEliece
cryptosystem [McE78] (despite some broken variants [SS09]). In contrast, several attempts to base
single-server PIR or public-key encryption on noisy Reed-Muller or Reed-Solomon codes have been
irreparably broken [CS03, BKY03, Cor04, KY04]. Our OLDC candidate does not fit in the latter
category, since neither the OLDC primitive nor our concrete intractability assumption seem to
imply single-server PIR or even public-key encryption.

Future directions. The problem considered in this work is a rare remaining example for a major
“feasibility” goal in cryptography that is not clearly impossible to achieve, and yet is not readily
solved by using an ideal form of obfuscation and standard cryptographic assumptions. The main
question we leave open is that of further evaluating the security of our OLDC candidate, either
by showing it insecure or by reducing its security (or the security of another candidate) to a well
studied assumption. A second natural open question is to obtain a construction of pk-PIR from
OLDC via iO. Some evidence against this is given by the fact that single-server PIR cannot be
based on iO and one-way functions using standard proof techniques [AS15]. Finally, it would be
very interesting to come up with a direct candidate construction of pk-PIR that does not rely on
any form of general-purpose obfuscation.

1.1 Related Work

Sublinear-time PIR. The question of PIR with sublinear server computation was first studied
in [BIM00]. The main model considered in [BIM00] is that of PIR with polynomial-time prepro-
cessing. This model allows each server to apply a one-time, polynomial-time preprocessing to the
database in order to enable faster processing of queries.

3

Our notion of pk-PIR can be seen as a variant of the single-server model from [BIM00] (Defi-
nition 2) with the following differences. Our model is more restrictive in that it does not allow the
client to send a query which is answered by the server. In fact, our model does not even require the
data to be stored on a single computer — the encoded database can be dispersed over the network,
or written “up in the sky,” or on the pages of a book, and can be accessed by clients directly. By
default, we also restrict the decoder to be non-adaptive (given the public key), whereas the general
version of the model from [BIM00] can use multiple rounds of interaction. On the other hand,
our model is more liberal in that it allows the encoding of the database to be randomized. This
randomization is essential for our solutions, even in the secret-key case of OLDC.

The results of [BIM00] on PIR with preprocessing include a weak lower bound on the tradeoff
between storage and server computation, positive results in the multi-server model, and a barrier to
proving strong negative results for single-server solutions with adaptive queries (see Appendix A).
They also obtain positive results for sublinear-time PIR in alternative models, including the case
of amortizing the computational work required for processing multiple queries simultaneously and
protocols with single-use preprocessing. The question of reducing the amortized computational
cost of multi-query PIR was subsequently studied in [IKOS04, IKOS06].

Other notions of keyed LDC. A very different notion of LDC with (private or public) keys
was considered in [OPS07, HO08]. The goal of these works is to make use of the keys towards
improving the efficiency of LDCs, rather than hide the access pattern.

Independent work. The problem we consider has been independently studied by Canetti, Holm-
gren, and Richelson [CHR17], who (among other results) propose a similar candidate OLDC con-
struction.

2 Preliminaries

Notation. The security parameter is denoted by λ. A function ν : N → N is said to be negligible
if for every positive polynomial p(·) and all sufficiently large λ it holds that ν(λ) < 1/p(λ). We
use [n] to denote the set {1, . . . , n}. We use d ← D to denote the process of sampling d from the
distribution D or, if D is a set, a uniform choice from it. We denote by SN the symmetric group
on N elements.

2.1 Standard Cryptographic Tools

We refer the reader to, e.g. [Gol01] for treatment of standard cryptographic primitives, including
pseudorandom function (PRF) families (Gen,Eval), pseudorandom permutations PRP, semanti-
cally secure symmetric-key encryption schemes (Gen,Enc,Dec), and message authentication codes
(Gen,Tag,Verify).

2.2 Virtual Black-Box Obfuscation

Intuitively, a program obfuscator serves to “scramble” a program, hiding implementation details,
while preserving its input/output functionality. The notion of Virtual Black-Box (VBB) obfuscation
was first formally studied by [BGI+12]. We consider a notion with auxiliary input.

Definition 2.1 (VBB Obfuscator [BGI+12]). Let C = {Cn}n∈N be a family of polynomial-size
circuits, where Cn is a set of boolean circuits operating on inputs of length n. And let O be a PPT

4

algorithm, which takes as input an input length n ∈ N, a circuit C ∈ Cn, a security parameter
1λ, and outputs a boolean circuit O(C) (not necessarily in C). O is a virtual black-box (VBB)
obfuscator for the circuit family C if there exists a negligible function ν such that:

1. (Preserving Functionality): For every n ∈ N, and every C ∈ Cn, and every x ∈ {0, 1}n, with
all but ν(λ) probability over the coins of O, we have (O(C, 1n, 1λ))(x) = C(x).

2. (Polynomial Slowdown): There exists a polynomial p(·) such that for every n, λ ∈ N and
C ∈ C, the circuit O(C, 1n, 1λ) is of size at most p(|C|, n, λ).

3. (Virtual Black-Box): For every (non-uniform) polynomial-size adversary A, there exists a
(non-uniform) polynomial-size simulator S such that, for every n ∈ N every C ∈ Cn and every
auxiliary input z,∣∣∣Pr[C̃ ← O(C, 1λ, 1n); b← A(C̃, z) : b = 1]− Pr[b← SC(1|C|, 1n, 1λ, z) : b = 1]

∣∣∣ ≤ ν(λ).

3 Oblivious LDC and Public-Key PIR

In this section, we formally introduce the notions of oblivious locally decodable codes and public-key
private information retrieval. For simplicity, we consider a database x consisting of n bits.

3.1 Oblivious LDC

Intuitively, an oblivious locally decodable code (LDC) is a coding scheme with a local decoding
algorithm, with the additional property that the sets of symbols being read computationally do not
reveal the respective queried indices i. Unlike the standard goal of locally decodable codes, we do
not require any error correction capability.

Note that Oblivious LDC is a “secret-key” notion of public-key PIR, where to generate valid
queries one must hold the secret key sk that was used within the encoding procedure.

Definition 3.1 (Oblivious LDC). An Oblivious LDC is a tuple of PPT algorithms (G,E,Q,D) with
the following syntax:

G(1λ) is a probabilistic key generation algorithm, which takes as input a security parameter 1λ

and outputs a secret sampling key sk.

E(1λ, sk, x) is a probabilistic encoder, which takes as input a security parameter 1λ, secret key
sk, and database x = (x1, . . . , xn) with xi ∈ {0, 1}, and outputs X = (X1, ..., XN) with
Xi ∈ {0, 1}L.

Q(1λ, 1n, i, sk; r) is a probabilistic query sampler which takes as input: a security parameter 1λ,
database size 1n, an index i ∈ [n] and randomness r used within the query generation, and
outputs a list of q indices I ∈ [N]q.

D(1λ, 1n, i,XI , sk, r) is a deterministic decoder. It takes as input: a security parameter 1λ, database
size 1n, an index i ∈ [n], a vector of q queried database symbols XI ∈ ({0, 1}L)q, secret key
sk, and secret randomness r used within the corresponding execution of Q. The output of D
is a decoded database symbol (presumably xi).

The algorithms (G,E,Q,D) should satisfy the following correctness, non-triviality and security
guarantees:

5

Correctness: Honest execution of G,E,Q,D, successfully returns the requested data items. That
is, for every x = (x1, . . . , xn) and every i ∈ [n],

Pr
[
sk← G(1λ);X ← E(1λ, sk, x); I ← Q(1λ, 1n, i, sk; r);x′i = D

(
1λ, 1n, i,XI , sk, r

)
: x′i = xi

]
= 1.

Non-triviality: There exists ε > 0 such that for every λ, and all sufficiently large n, the number
of queried bits satisfies Lq < n1−ε.

Security: No efficient adversary can distinguish the memory accesses dictated by Q on input query
index i0 and i1, for a randomly sampled sk. Namely, for every non-uniform PPT adversary
A, there exists a negligible function ν such that the distinguishing advantage of A in the
following game is bounded by ν(λ):

1. sk← G(1λ): The challenger samples a secret key sk.

2. (i0, i1, aux) ← AQsk(·)(1λ): A selects a challenge index pair i0 6= i1 ∈ [n], and auxiliary
information aux, given oracle access to the randomized functionality Qsk(·), which on
input i ∈ [n] outputs a list of indices I ∈ [N]q sampled as I ← Q(1λ, 1n, i, sk).

3. b ← {0, 1}; I∗ ← Q(1λ, 1n, ib, sk): The challenger selects a random bit and generates a
sample query for the chosen index ib.

4. b′ ← AQsk(·)(aux, I∗): A outputs a guess for b, given the challenge I∗, and continued
oracle access to Qsk(·) as defined above.

5. A’s advantage in the challenge game is defined as Pr[b′ = b]− 1/2, over the randomness
of the challenger (and A).

Remark 3.2. The above security definition is specified for a single challenge query. However, since
security holds also given access to the query (“encrypt”) oracle, then by a straightforward hybrid
argument, this definition directly implies computational indistinguishability for any polynomial
number of queries, analogous to semantic security of symmetric-key encryption.

Remark 3.3 (Relation to LDC). Analogous to PIR, OLDCs are a close relative to (standard) locally
decodable codes (LDCs) [KT00], whose focus is on local recoverability of data given symbol errors or
erasures. Indeed, the OLDC security requirement implies that with overwhelming probability over
the choice of sk, the encoder and (probabilistic) decoder defined by sk must read any given codewode
symbol with probability essentially independent of the queried index i. This property holds directly
for information theoretic PIR; for OLDC, the security guarantees are only computational, but such
a probability disparity would constitute an efficient distinguisher (and thus cannot exist). Thus,
in a similar fashion to the PIR-implies-LDC construction, a simple modification to the OLDC (by
dropping “low-weight” symbols and duplicating “high-weight” ones) then yields a related smooth
code (i.e., with a local decoding procedure where each codeword symbol is read with roughly equal
probability) [KT00]. This in turn directly yields an LDC correctable against erasures, or against
errors in a low but nontrivial error regime, and can further be transformed into a standard LDC
that allows for local decoding in the presence of a constant fraction of errors [KMRS16]. This
means that future OLDC candidates inherently must come out of LDC techniques.

We prove that within the nontrivial regime of parameters, OLDC necessarily implies the exis-
tence of one-way functions. Interestingly, many straightforward approaches toward this assertion
are not valid, such as directly using the OLDC to devise a symmetric-key encryption scheme, since
correctness of OLDC decoding is only guaranteed given the randomness used to generate the query

6

indices, and indistinguishability of OLDC query index sets is only guaranteed when the correspond-
ing codeword symbols themselves are unknown. The proof considers two distributions: One with
a list of query sets Iri for random query indices ri together with the real indices ri, and the second
with a similar list of query sets Iri together with uncorrelated random indices r′i. Note that we must
necessarily make use of the fact that the OLDC decoder can make many queries, as bounded-query
OLDC exists unconditionally (e.g., using a k-wise independent functions).

Proposition 3.4 (OLDC Implies OWF). Suppose OLDC exists. Then one-way functions must
exist.

Proof. Let (G,E,Q,D) be an OLDC with parameters as above. We demonstrate two distributions
which are (by OLDC security) computationally indistinguishable, but are (by OLDC correctness)
statistically far [Gol90]. Consider the following pair of distributions, for a parameter ` ∈ N:

D1(1
λ, `) :=

((Ir1 , r1), . . . , (Ir` , r`)) :
sk← G(1λ);

r1, . . . , r` ← [n]`;
∀i ∈ [`], Iri ← Q(1λ, 1n, ri, sk)


D2(1

λ, `) :=


(
(Ir1 , r

′
1), . . . , (Ir` , r

′
`)
)

:

sk← G(1λ);
r1, . . . , r` ← [n]`;
r′1, . . . , r

′
` ← [n]`;

∀i ∈ [`], Iri ← Q(1λ, 1n, ri, sk)

 .

OLDC security directly dictates that D1(1
λ), D2(1

λ) are computationally indistinguishable for any
polynomial ` = `(λ). We now argue that for appropriate choice of ` they must be statistically far.

To do so, we first consider an intermediate step, roughly corresponding to the above distri-
butions together with the secret key sk. Given sk, the OLDC decoding correctness will require
the distributions to be statistically far (by the impossibility of information theoretic PIR). This
does not yet suffice for our final goal, as given sk the distributions are no longer computationally
close. However, with some amplification this will enable us to prove that the distributions remain
statistically far even when sk is removed.

For any sk in the support of G(1sk), consider a related pair of distributions Dsk
1 , D

sk
2 sampled as

Dsk
1 :=

{
(sk, (Ir, r)) :

r ← [n];
Ir ← Q(1λ, 1n, r, sk)

}
.

Dsk
2 :=

{
(sk, (Ir, r

′)) :
r, r′ ← [n];

Ir ← Q(1λ, 1n, r, sk)

}
.

For any ensemble of keys {skλ}λ in the support of G, the statistical distance between Dskλ
1 and

Dskλ
2 must be non-negligible, as the contrary would imply the existence of information theoretically

secure 1-server PIR with server-to-client communication sublinear in n:

• To query index i ∈ [n], the client samples (sk, (Ir, r))← Dskλ
1 (where the execution of Q takes

randomness rand) and sends the tuple (sk, (Ir, r − i)) to the server.

• On input (sk, (I, r′)), the server responds by OLDC-encoding the r′-shifted database (i.e., x′

where x′j = xj+r′ (mod n) ∀j ∈ [n]) as X ← E(1λ, sk, x′), and sending the codeword symbols XI .

• To decode, the client executes xi = D(1λ, 1n, i,XI , sk, rand).

7

Correctness and communication complexity follow from OLDC decoding and non-triviality. Note
that the desired xi will be be mapped to position r via the (r − i) shift. Statistical privacy of
the PIR holds by the statistical indistinguishability of D′1 and D′2 (by implying an index-i query
(sk, (Ir, r+ i)) is statistically close to (sk, (Ir, r

′ + i)), which is the query distribution for a random
index).

As the final step, we show that if we consider several such (Ir, r) query pairs, then non-negligible
statistical distance must be maintained even when we remove sk from the distribution (at which
point we can no longer use OLDC correctness arguments directly). Intuitively, this must hold, oth-
erwise omitting sk would yield a secret-key encryption scheme with information theoretic security.

More formally, since the sampling of (Ir, r) and (Ir, r
′) are independent conditioned on a given

value of sk, we may directly amplify the (non-negligible) statistical distance of Dskλ
1 and Dskλ

2 to
be 1 − ν(λ) for negligible function ν by including a sufficiently large polynomial number `1(λ) of
sample pairs (Iri , ri) or (Iri , r

′
i), respectively (as in D1(1

λ) and D2(1
λ) above), together with sk.

In particular, for any choice of {skλ}λ, one can reliably transmit a bit (with possibly inefficient
decoding) b ∈ {0, 1} by sending a sample(

skλ, (Ir1 , r1), . . . , (Ir`1(λ) , r`1(λ))
)

if b = 0, or(
skλ, (Ir1 , r

′
1), . . . , (Ir`1(λ) , r

′
`1(λ)

)
)

if b = 1,

(where this notation is shorthand for the distributions described above). This is preserved for
the larger value `∗(λ) = 2|skλ|`1(λ), enabling reliable transmission of 2|skλ| bits of information.
Further, it is maintined over a random choice of skλ ← G(1λ).

Now, suppose that for this choice of `∗ the original pair of distributionsD1(1
λ, `∗(λ)), D2(1

λ, `∗(λ))
are statistically close. These distributions correspond directly to the `∗(λ)-sample distributions
above (which enable transmission of 2|skλ| bits) but with sk omitted. That is, we have just demon-
strated an information theoretically secure symmetric-key encryption scheme for messages of length
greater than twice the key size |skλ|, a contradiction to Shannon’s impossibility. Thus, assuming
OLDC it must be that D1(1

λ, `∗(λ)), D2(1
λ, `∗(λ)) are computationally indistinguishable but sta-

tistically far.

3.2 Public-Key PIR

Definition 3.5 (pk-PIR). A Public-Key PIR (with preprocessing) is a tuple of PPT algorithms
(Gen,Encode,Query,Decode) acting on a size-n database with the following syntax:

Gen(1λ): On input the security parameter, Gen outputs a secret encoding key sk and a public
sampling key pk.

Encode(1λ, sk, x): On input a secret encoding key and database x ∈ {0, 1}n, Encode outputs a
compiled database X ∈ ({0, 1}L)N .

Query(pk, i): On input the public key and index i ∈ [n], the algorithm Query outputs a sample-
specific decoding key ski and a list of indices I ∈ [N]q for some q.

Decode(ski, XI): On input a query-specific decoding key ski (as generated by Query) and values
XI ∈ ({0, 1}L)q, the algorithm outputs a decoded value x′ ∈ {0, 1}.

The algorithms (Gen,Encode,Query,Decode) should satisfy the following correctness and security
guarantees:

8

Correctness: Honest execution of Gen,Encode,Query, and Decode successfully recovers requested
data items. That is, for every i ∈ [n],

Pr
[
(sk, pk)← Gen(1λ);X ← Encode(1λ, sk, x);

(ski, I)← Query(pk, i);x′i = Decode
(
ski, XI

)
: x′i = xi

]
= 1.

Non-triviality: There exists ε > 0 such that for every λ, and all sufficiently large n, the number
of queried bits satisfies Lq < n1−ε.

Security: No efficient adversary, given access to a public key and encoded database, can distinguish
the memory accesses dictated by Query on input query index i0 and i1. Namely, for every non-
uniform PPT adversary A, there exists a negligible function ν such that the distinguishing
advantage of A in the following game is bounded by ν(λ):

1. (x, aux)← A(1λ): A selects a database x ∈ {0, 1}n and auxiliary information aux.

2. (sk, pk) ← Gen(1λ); X ← Encode(1λ, sk, x): The challenger samples a key pair and
encodes the database x.

3. (i0, i1, aux
′)← A(pk, X, aux): A selects a challenge index pair i0 6= i1 ∈ [n].

4. b← {0, 1}; (ski, I
∗)← Query(pk, ib): The challenger selects a random bit and generates

a sample query for the chosen index ib.

5. b′ ← A(aux′, I∗): A outputs a guess for b, given the challenge index list I∗.

6. A’s advantage in the challenge game is defined as Pr[b′ = b]− 1/2, over the randomness
of the challenger (and A).

Remark 3.6. As with OLDCs, the pk-PIR security definition is specified for a single challenge
query, but extends via a straightforward hybrid argument for any polynomial number of queries
(this time analogous to semantic security of public-key encryption).

4 Oblivious LDC Candidate

We propose an approach for constructing Oblivious LDCs via Reed-Muller codes. At a high level,
we use the standard LDC based on Reed-Muller codes (with a constant number of variables m
and query complexity Õ(n1/m)), except that we randomly permute the codeword symbols. A more
explicit description follows.

Let F be a finite field and let d,m ∈ N with dλ + 1 < |F|. We consider an (m, d)-Reed-Muller
code over F, namely the code defined by m-variate polynomials of degree ≤ d over F. The codeword
corresponding to a polynomial p consists of the values of p on all points in Fm. We use a secret
(pseudo-random) permutation over Fm to order the codeword symbols (e.g., [MRS09]). To decode
the value of the polynomial p at a target point α ∈ Fm, the decoder picks a random degree-
λ parameterized curve beginning at α, and recovers p(α) by reading the values of p on a random
sequence of dλ+1 distinct parameter values along the curve (excluding the initial parameter value).

We formally describe the construction below, viewing the number of variables m and degree
bound d as parameters that determine the database size n.

Construction 4.1 ((m, d) RM-Based Oblivious LDC Candidate). Let n =
(
m+d
d

)
. Fix a canonical

set of n points in Fm in general position, denoted by ~αi for i ∈ [n]. Let N = |F|m, and fix a
correspondence between ~a ∈ Fm and j~a ∈ [N]. Consider the following tuple of PPT algorithms.

9

G(1λ): Sample a key describing a pseudorandom permutation π ∈ SN , via π ← PRP(1λ). Output
sk = π.

E(1λ, sk, x):

1. For message x = (x1, . . . , xn) ∈ Fn, define the corresponding m-variable d-degree poly-
nomial Px ∈ F[Z1, . . . , Zm] as the low-degree interpolation of evaluations Px(~αi) = xi.
Denote the resulting codeword by X ′ ∈ FN indexed by points ~a ∈ Fm (recall N = |F|m),
given componentwise as the evaluations of Px at every point in Fm: i.e., ∀~a ∈ Fm, take
X ′[~a] := Px(~a).

2. Permute the indices of X ′ via π. That is, let X = (X ′π(1), . . . , X
′
π(N)).

3. Output X.

Q(1λ, 1n, i, sk; r):

1. Parse sk = π ∈ SN .

2. Sample a random degree-λ parametric curve C = {(p1(t), . . . , pm(t)) : t ∈ F} ⊂ Fm that
intersects the ith distinguished point ~αi ∈ Fm, for queried index i ∈ [n]. Concretely,
C is defined by letting ph be a random univariate polynomial of degree ≤ λ such that
ph(0) = (αi)`.

3. Select a random sequence (t0, . . . , tdλ) ∈ Fdλ+1 of dλ+1 distinct nozero parameter values,
using the randomness r. For each ` = 0, . . . , dλ, let ~b` = (p1(t`), . . . , pm(t`)) ∈ Fm be
the corresponding point on C, and let j~b`

∈ [N] be the associated index.

4. Output I = (π(j~b0), . . . , π(j~bdλ
)) ∈ [N]dλ (i.e., the list of π-permuted indices) as the list

of query indices.

D(1λ, 1n, i,XI , sk, r):

1. Parse XI = (X0, . . . , Xdλ), sk = π the pseudorandom permutation, and r = (t0, . . . , tdλ).

2. The choice of parameter evaluation points t1, . . . , tdλ determines a corresponding list of
Lagrange polynomial interpolation coefficients c0, . . . , cdλ ∈ F.

3. Output the linear combination x′i =
∑dλ

`=0 c`X` ∈ F.

Choice of parameters. Viewing the number of variables m ≥ 2 as constant, the code dimension
is Θ(dm). We can therefore encode x ∈ {0, 1}n by letting d = O(n1/m) and |F| = O(dλ). The
code length is now |F|m = O(λm · n) and the number of queries used for local decoding is dλ+ 1 =
O(λ · n1/m).

Consider the Oblivious LDC security game for the candidate construction above. The challenger
samples a random secret permutation π of the points in Fm (corresponding to [N]). The adversary
is given oracle access to the query-generation algorithm Qsk. In this case, the index set I ← Qsk(i)
corresponds to a collection of π-permuted points in the space Fm which (before the permutation)
were an oversampling of a low-degree curve in Fm.

Security of the candidate would say that, given access to polynomial many samples of this type
for desired query indices i, an efficient adversary still cannot discern a fresh query index sample
for some i0 from i1. In particular, it must be the case that he cannot learn the secret permutation
given access to these samples.

We treat the security of the proposed scheme with respect to the following conjecture. Roughly,
it states that a permuted “puzzle” of colored low-degree curves in m-dimensional space Fm is

10

computationally indistinguishable from the same number of colored points selected at random
from Fm.

Conjecture 4.2 (Permuted Low-Degree Polynomials). Let m ∈ N be a dimension parameter and
d = dm(n) the minimal integer for which n ≥

(
m+d
d

)
. For every efficient non-uniform A = (A1,A2)

there exists a negligible ν such that

Pr

 (1n, 1|F|, aux)← A1(1
λ);

π ← S(Fm); b← {0, 1};
b′ ← ASampb(π,·)

2 (1n, aux)

: b′ = b

 ≤ 1/2 + ν(λ),

where F is a finite field satisfying |F| > dλ+ 1, and for any π ∈ S(Fm) and v ∈ Fm, the probabilistic
algorithm Sampb(π, v) does the following:

• If b = 0:

1. Select m random degree-λ polynomials p1, . . . , pm ← F[Z] where ∀i ∈ [m], pi(0) = v.
This determines a curve in Fm, given by the points {(p1(t), . . . , pm(t)) : t ∈ F}.

2. Sample dλ + 1 distinct random points on this curve, defined by nonzero parameters
t0, . . . , tdλ ← F.

3. Output these points (in order), but with each point permuted by π : Fm → Fm. That is,(
π
(
p1(ti), . . . , pm(ti)

))dλ
i=0
∈ (Fm)dλ+1.

• If b = 1: Output dλ+ 1 random points in Fm: (w0, . . . , wdλ)← (Fm)dλ+1.

Proposition 4.3. Suppose that Conjecture 4.2 holds for dimension m ≥ 2. Then Construction 4.1
is a secure Oblivious LDC with communication complexity λm · Õ(n1/m).

Proof. The complexity is derived in “Choice of parameters” above. For the security of the OLDC it
suffices to prove a version of Conjecture 4.2 with the following changes. In the first step A1 picks a
pair of points (v0, v1). After the second step, A2 is given a single instance of Samp0(π, vb). Finally,
the third step is modified so that Samp0 is used instead of Sampb. Conjecture 4.2 implies that for
both choices of b, the view of A2 is indistinguishable from a random and independent set of points.
Hence, the advantage of A2 in guessing b is negligible.

We remark that we choose to present the simplest proposed candidate in this style whose
security is plausible. One may consider several natural more complex extensions, such as including
additional “distractor” indices in the query list I whose values will be ignored within the decoding.
Such inclusion will correspond to introduction of error symbols within the permuted codeword.

4.1 Generalized and Toy Versions of Conjecture

We explore both a generalization and a specific instance of the Permuted Low-Degree Polynomials
conjecture above.

Generalization: Permuted Puzzles. As discussed in the Introduction, our main conjecture
is a particular instance of a broader class of distinguishing tasks of “permuted puzzles.” We think
of a puzzle as describing: (1) a distribution of structured functions from Fm to some range R
(e.g., the class of pixel maps defining images of dogs), and (2) a corresponding distribution of

11

unstructured functions (e.g., the class of all pixel maps with the same general color balance).
The corresponding Permuted Puzzle Conjecture considers a random secret permutation π of the
“puzzle pieces” (i.e., the input space Fm), and states that one cannot efficiently distinguish between
an arbitrary polynomial collection of permuted samples from Structured from permuted samples
from Unstructured, where each sample is permuted with the same π.

Definition 4.4 (Puzzle). We refer to an m-dimensional puzzle over F with range R as defined by a
pair of efficiently samplable distributions (Structured,Unstructured), each over the class of functions
{f : Fm → R}.

Conjecture 4.5 (Permuted Puzzle Conjecture). The Permuted Puzzle Conjecture with respect to
the m-dimensional puzzle (Structured,Unstructured) states that for every efficient non-uniform A,
there exists a negligible ν such that∣∣∣Pr[π ← PRP(1λ); b′ ← AOπ(struct)(1λ) : b′ = 1]

− Pr[π ← PRP(1λ); b′ ← AOπ(unstruct)(1λ) : b′ = 1]
∣∣∣ ≤ ν(λ),

where Oπ is an oracle that takes as input b ∈ {struct, unstruct} and performs the following:

• If b = struct: Sample f ← Structured, output f ◦ π.

• If b = unstruct: Sample f ← Unstructured, output f ◦ π.

For example, the Permuted Low-Degree Polynomials Conjecture 4.2 is a particular case of the
permuted puzzle conjecture, where Structured consists of functions f : Fm → {0, 1} which evaluate
to 1 precisely on (dλ + 1) points on a degree-λ parametric curve, and Unstructured consists of all
functions Fm → {0, 1} which have (dλ+ 1) nonzero outputs (but in an arbitrary placement).

Specific Instance: Toy Conjecture. To encourage investigation of the core Permuted Low-
Degree Polynomials conjecture, we put forth a simple toy variant, which constitutes an easier version
of the simplest parameter setting. In particular, it considers the case of dimension m = 2, and takes
the first-coordinate polynomial to be the identity function: that is, including the value of the curve
parameter explicitly. This variant brings the problem closer to typical settings of coding theory,
and may thus be a useful starting point toward addressing coding-based cryptanalytic attacks. We
pursue this strategy in the discussion of cryptanalysis in Section 4.2 below.

Conjecture 4.6 (Toy Conjecture). Let |F| ≈ λ2. Let p1, . . . , pm be random degree-λ polynomials
over F, for m = λ100. Let q1, . . . , qm be random functions from F to F.

Then the following two distributions are computationally indistinguishable, over the choice of
random permutation π ← SF×F over F×F. Here, elements of each set Si or Ti appear in canonical
sorted order (not ordered by x ∈ F).

1. Permuted low-degree polynomials: (S1, . . . , Sm), for Si = {π(x, pi(x)) : x ∈ F}.

2. Permuted random functions: (T1, . . . , Tm), for Ti = {π(x, qi(x)) : x ∈ F}.

4.2 Discussion on Cryptanalysis

We briefly address a selection of relevant cryptanalytic techniques with respect to the candidate
construction, as well as attacks on simplified versions of the construction. We focus on the Toy Con-
jecture 4.6 (i.e., m = 2 dimensions, where the first-coordinate polynomial is the identity function),
as an attack on the primary conjecture is necessarily also an attack on this easier version.

12

Permuting Individual Coordinates. To develop intuition, we first consider weaker (i.e., easier
to break) variants of the Toy Conjecture, and show that these are not secure. In these variants,
instead of choosing the permutation π from the entire space SF×F, we sample from a restricted class
that permutes one or both coordinates of F× F independently. In particular:

1. Permute only second coordinate: π ← id× SF. In this case, the permuted low-degree curves
are given as sets of points

{
(t, π2(p(t)))

}
⊆ F× F.

This weakened version is not secure. The exposure of the parameter values t themselves in
the clear reveals a linear constraint on the corresponding second coordinate symbols, cor-
responding to Lagrange interpolation where the coefficients are known. As discussed and
generalized in the second category of Linearization attacks below, this enables an adversary
with sufficiently many samples to learn the preimages of π.

2. Permute only first coordinate: π ← SF× id. In this case, the permuted low-degree curves are
given as sets of points

{
(π1(t), p(t))

}
⊆ F× F.

This weakened version is also not secure. One can view this as the problem of distinguishing
“noisy” Reed-Solomon codewords from uniformly random vectors in F|F|, where the “noise”
is a permutation of the codeword symbols. Since the resulting “noisy” codewords are still
codewords in a linear code, they are contained in some low-dimensional subspace. Thus,
the adversary may simply check the dimension of the span of sufficiently many samples to
determine whether the structured or unstructured case holds.

Standard Decoding Attacks. Coding-theoretic attacks are a natural attempt to refute the
Toy Conjecture 4.6; as above, the attacker’s task is similar to the task of distinguishing “noisy”
Reed-Solomon codewords from uniformly random vectors. As noted above, when the “noise” is a
permutation acting on either coordinate independently, the linearity of the underlying code provides
an attack. Similarly, if the “noise” did not include a permutation, and only included standard
coding-theoretic noise (that is, if Si were of the form {(x, pi(x) + ei(x)) : x ∈ F} for a sparse
ei(x)), then standard decoding algorithms (for example Reed-Solomon list-decoding, or the multi-
dimensional extension of Coppersmith and Sudan [CS03]) might apply. However, because the noise
takes the form of a permutation, it is not at all clear how to apply such techniques in this setting.

Similarly, an attacker might hope to adapt attacks on instantiations of the McEliece cryp-
tosystem [McE78] with Reed-Solomon codes in the place of Goppa codes, since these attacks are
aimed at distinguishing a permutation applied to a Reed-Solomon generator matrix from uni-
formly random; such attacks might apply directly in the setting where the Si are of the form
{(π(x), pi(x) + ei(x)) : x ∈ F}. However, there are two reasons that these sorts of attacks are
not directly applicable to the general Toy Conjecture 4.6. First, the permuation acts on the entire
space F × F, rather than just on the first coordinate. Second, these attacks require knowledge of
the public key—the scrambled generator matrix—and in the Oblivious LDC setting the attacker is
not privy to this information.

Linearization Attacks. Generalizing the discussion above on permuting individual coordinates,
linearization-style attacks can be used to break any version of the above candidate construction
satisfying the following simplified properties:

1. Encoding is linear & deterministic (i.e., public), decoding is linear:

In this case, each encoded database entry Xj corresponds to a known linear combination of
the original database entries xj , i.e. to a known n-dimensional coefficient vector c(j) ∈ Fn

13

for which Xj =
∑n

i=1 c
(j)
i xi. Given a query set I ∈ [N]q, we can simply determine whether a

given basis vector ~ei lies in the span of the vectors c(j) corresponding to the queried locations.
By correctness and linearity of the decoder, this must be the case for the true queried index
i. But, since the number of queries q < n/2, this cannot be the case for most indices i′ 6= i.

In particular, this means that if Encode is a linear procedure, then it must utilize secret
randomness. In our candidate construction, this is achieved by use of the secret permutation
π. Namely, Encode corresponds to implementing a fixed public linear Reed-Muller encoding
procedure composed with a random permutation matrix.

2. Decoding is linear & deterministic (public), encoding is linear:

In this case, even if the encoding is randomized and secret, but the decoding is linear and
public, we can launch a simple linearization attack. As above, linear encoding means each
encoded symbol Xj corresponds to some n-dimensional coefficient vector c(j) ∈ Fn (for which

Xj =
∑n

i=1 c
(j)
i xi). Define nN linearization variables, corresponding to the unknown values of

{c(j)i }i∈[n],j∈[N]. Plugging in the known linear decoding function, each received query sample
I ∈ [N]q on input i ∈ [n] (whose data value xi is known) yields a fresh linear constraint on
these variables.

In particular, this means that a simplified version of our candidate construction in which
the dλ + 1 parameter values t0, . . . , tdλ ∈ F are fixed (and public) would be broken, as well
as the simplified variant discussed in “Permuting Individual Coordinates” above where the
parameter values are random but public. We avoid this issue in our proposed candidate by
sampling a random set of such values for each query, and passing this information along to
the decoder (but not revealing it directly). In effect, each distinct subset of parameter values
induces a distinct linear function for the decoding, corresponding to the different value of
Lagrange interpolation coefficients.

Generic Learning Approach. Assuming the existence of pseudorandom functions in NC1 [GGM86,
NR04] (a mild assumption that follows from most standard cryptographic assumptions), we can
rule out the following hypothetical generic attack that applies to constructions based on permuted
linear LDCs. The generic attack views every symbol of X as a hidden vector which specifies some
linear combination of x. By repeatedly invoking the decoder on index i, one can get polynomially
many samples of sets of hidden vectors which span a given target vector t. If this information could
be used to learn the hidden vectors, or even just distinguish between samples that span t and ones
that do not, this would give rise to a distinguishing attack.

However, the existence of pseudorandom functions in NC1, together with the fact that span
programs [KW93] can efficiently simulate NC1 functions, imply that an attack as above cannot
work in general. For simplicity we restrict the attention to the case where t is the unit vector e1
and the field size is fixed.

Proposition 4.7. Suppose there is a pseudorandom function in NC1. Then, for any finite field
F, there are PPT algorithms (Gen,Query) such that Gen(1λ), on a security parameter λ, outputs a
secret key sk and a matrix M ∈ FN×n, and Query(sk, b) outputs a row index set Ib ⊆ [N], and the
following conditions hold.

• For the pair (M, I1) obtained by running Gen(1λ) and then Query(sk, 1), the set of I1-rows of
M spans the unit vector e1 ∈ Fn except with neg(λ) failure probability.

14

• For the pair (M, I0) obtained by running Gen(1λ) and then Query(sk, 0), the set of I0-rows of
M does not span e1 except with neg(λ) failure probability.

• For any polynomial p(λ), the distribution ensembles {(I10 , . . . , I
p(λ)
0)}λ and {(I11 , . . . , I

p(λ)
1)}λ

are computationally indistinguishable, where (I1b , . . . , I
p(λ)
b)λ is obtained by letting (sk,M)←

Gen(1λ) and then Ijb ← Query(sk, b) for j = 1, . . . , p(λ).

Proof. Let Gen(1λ) generate a boolean formula F of size N computing a PRF described by a secret
evaluation key sk on an input x ∈ {0, 1}λ. (The existence of polynomial-time Gen follows from the
existence of a PRF in NC1.) Using the known simulation of formulas by span programs [KW93],
one can efficiently construct 2λ matrices Mi,0,Mi,1 over F, 1 ≤ i ≤ λ, each with n ≤ N columns
and a total of N rows, such that F (x) = 1 if and only if the unit vector e1 ∈ Fn is spanned by the
rows of the λ matrices Mi,xi . The matrix M output by Gen is the matrix whose rows contain all
rows of Mi,b in order.

The algorithm Query(sk, b) samples a random x such that F (x) = b, and outputs the index
set Ib of the rows of Mi,xi as rows of M . Since F = Fsk is a PRF, F (x) = b holds for roughly a
half of the inputs, and so such an x can be sampled with negligible failure probability by trying
λ random candidates. Finally, since F is indistinguishable from a random function, polynomially
many samples of inputs x for which F (x) = 0 are indistinguishable from polynomially many samples
of inputs x for which F (x) = 1. Since the row indices in Ib are determined by the input, this implies
the required indistinguishability condition.

Overall, while there are certainly some simplified variants of the Toy Conjecture 4.6 that are not
secure, it seems that the stated version is not immediately susceptible to natural attack strategies.
We hope that this Toy Conjecture will be the subject of further study (either with the goal of
refuting or confirming it), as this will lead to a better understanding of our core Permuted Low-
Degree Polynomials Conjecture.

5 Oblivious LDC to Public-Key PIR

We demonstrate a general transformation from any Oblivious LDC to a construction of Public-Key
PIR, assuming virtual black-box program obfuscation.

Theorem 5.1. Suppose Oblivious LDCs exist. Then, assuming one-way functions, there exists a
secure Public-Key PIR in the virtual black-box obfuscation hybrid model.

Proof. We present a general transformation from any oblivious LDC (G,E,Q,D) to a public-key
PIR scheme (Gen,Encode,Query,Decode) in Construction 5.2, assuming the following tools (each
of which, aside from VBB obfuscation itself, are implied by one-way functions):

• Let O be a VBB circuit obfuscator secure with auxiliary input.

• Let (GenSKE,Enc,Dec) be a semantically secure symmetric encryption scheme.

• Let (GenMAC,Tag,Verify) be a secure deterministic MAC.2

• Let (GenPRF,EvalPRF) be a pseudorandom function family.

2Note that a pseudorandom function can also be used directly for this purpose; however, we use separate notation
for clarity to emphasize the two uses.

15

Construction 5.2 (pk-PIR from Oblivious LDC).

Gen(1λ, x):

1. Sample P ← Samp(1λ), defined as follows:

• Sample an oblivious LDC key skLDC ← G(1λ).

• Sample a SKE key skSKE ← GenSKE(1λ).

• Sample a MAC key skMAC ← GenMAC(1λ).

• Sample a PRF key k ← GenPRF(1λ).

• Let P be as in Figure 1, with skLDC, skSKE, skMAC, k hardcoded.

2. Obfuscate the program as P̃ ← O(P, 1λ, 1n).

3. Output sk := (skLDC, skSKE, skMAC, k) and pk := P̃ .

Encode(1λ, sk, x):

1. Encode x using the oblivious LDC: i.e., X ′′ ← E(1λ, skLDC, x).

2. Encrypt each item in the encoded database (using skSKE from above):
For j = 1, . . . , N , let X ′j ← EncskSKE(X ′′j).

3. MAC each item in the encrypted database (using skMAC from above):
For j = 1, . . . , N , compute tagj = Tag(skMAC, (j,X

′
j)), and define Xj = (X ′j , tagj).

4. Output the database X = (X1, . . . , XN).

Query(pk, i): Sample randomness r ← {0, 1}λ. Evaluate (I, c, tagQ) = P̃ (“query”, i, r). Output
ski = (c, tagQ) and query index set I.

Decode(ski, XI): Parse ski = (c, tagQ). Output v = P̃ (“decode”, (i, I, c, tagQ, XI)).

Suppose, for contradiction, that Construction 5.2 is not a secure pk-PIR: that is, that there
exists a non-negligible function α and non-uniform polynomial-time A = (A1,A2,A3) who wins in
the pk-PIR security challenge game with advantage α. We will demonstrate a contradiction via a
sequence of related games.

Game 0. Real pk-PIR security game.

By definition of the pk-PIR security game, we have that A satisfies

Pr
[
(x, aux)← A1(1

λ); (sk, pk)← Gen(1λ);X ← Encode(1λ, sk, x);

(i0, i1, aux
′)← A2(pk, X, aux); b← {0, 1}; (skib , I)← Query(pk, ib);

b′ ← A3(aux
′, I) : b′ = b

]
≥ α. (1)

Game 1. VBB security. In this step, we show that the adversaryAmust still be able to successfully
distinguish in the pk-PIR security game given only black-box access to the program P in the
place of seeing the actual obfuscated code pk = P̃ .

16

Public Key Program P
Hardcoded: Oblivious LDC key skLDC, SKE key skSKE, MAC key skMAC, PRF key k.

• Input (“query”, i, r):

1. Let (r1, r2) = EvalPRF(0, i, r). This will serve as the randomness.

2. Let I = Q(1λ, 1n, i, skLDC; r1). Sample the LDC query set, using randomness r1.

3. Let c = EncskSKE(r1; r2). Encrypt the randomness r1 (using randomness r2).

4. Let tagQ = MACskMAC
(i, I, c).

5. Output (I, c, tagQ).

• Input (“decode”, (i, I, c, tagQ, (dataCTj , tagj)j∈I)):

1. Test 1
?
= Verify(skMAC, (i, I, c), tagQ). That is, verify the query MAC tag.

2. For each j ∈ I:

(a) Test 1
?
= Verify(skMAC, (j, dataCTj), tagj). That is, verify the submitted MAC on

message (j, dataCT) consisting of the index and submitted encrypted data value.

(b) Decrypt dataj = DecskSKE(dataCTj).

3. Decrypt r1 = DecskSKE(c).

4. If any MACs did not properly verify, output ⊥.
Otherwise, output D(1λ, 1n, i, (dataj)j∈I , skLDC, r1).

Figure 1: Query/Decode program whose obfuscation will constitute the pk-PIR public key.

Formally, consider Expression (1) above. By the pigeonhole principle applied over index pairs
(i0, i1) ∈ [n2], there must exist a fixed choice of (i∗0, i

∗
1) ∈ [n]2 for which

Pr
[
(x, aux)← A1(1

λ); (sk, pk)← Gen(1λ);X ← Encode(1λ, sk, x);

(i0, i1, aux
′)← A2(pk, X, aux); b← {0, 1}; (skib , I)← Query(pk, ib);

b′ ← A3(aux
′, I) : (b′ = b) ∧

[
(i0, i1) = (i∗0, i

∗
1)
]]
≥ α/n2.

For this choice of (i∗0, i
∗
1) ∈ [n]2, define a new adversary A(i∗0,i

∗
1)

= (A1,A2,A′3) where
A′3(aux′, I) outputs A3(aux

′, I) if (i0, i1) = (i∗0, i
∗
1) and ⊥ otherwise. Then

Pr
[
(x, aux)← A1(1

λ); (sk, pk)← Gen(1λ);X ← Encode(1λ, sk, x);

(i0, i1, aux
′)← A2(pk, X, aux); b← {0, 1}; (skib , I)← Query(pk, ib);

b′ ← A′3(aux′, I) : b′ = b
]]
≥ α/n2.

Plugging in the particular procedure for Gen (consisting of sampling (P, sk)← Samp(1λ) and
then obfuscating P̃ ← O(P, 1λ, 1n), and taking pk := P̃), of Query (which samples randomness
r ← {0, 1}λ and evaluates the obfuscated program at input (ski, I) = P̃ (“query”, i, r)), and
making use of the correctness of the obfuscator (so that P̃ (“query”, i, r) = P (“query”, i, r)),

17

this implies

Pr
[
(x, aux)← A1(1

λ); (P, sk)← Samp(1λ); P̃ ← O(P, 1λ, 1n);

X ← Encode(1λ, sk, x); (i0, i1, aux
′)← A2(P̃ ,X, aux); b← {0, 1}; r ← {0, 1}λ;

(skib , I) = P (“query”, ib, r); b
′ ← A′3(aux′, I) : b′ = b

]
≥ α/n2.

For i ∈ [n], define the distribution (P, (aux, X, I))← InstSampi(1
λ) by:

1. (x, aux)← A1(1
λ).

2. (P, sk)← Samp(1λ) (where Samp samples keys and takes
sk = (skLDC, skSKE, skMAC, k) as specified in Gen in Construction 5.2).

3. X ← Encode(1λ, sk, x) (where Encode is specified in Construction 5.2).

4. r ← {0, 1}λ; (ski, I) = P (“query”, i, r).

5. Output (P, (aux, X, I)).

Then (for the same (i∗0, i
∗
1) ∈ [n]2 as above) we have

Pr
[
b← {0, 1}; (P, (aux, X, I))← InstSampi∗b (1

λ); P̃ ← O(P, 1λ, 1n);

(i0, i1, aux
′)← A2(P̃ ,X, aux); b

′ ← A′3(aux′, I) : b′ = b
]
≥ α/n2

Note that while the challenge I is sampled using either i∗0 or i∗1 instead of i0 or i1 as selected
by A, this does not affect the probabilities since A′3 will anyway output ⊥ in the case that
(i0, i1) 6= (i∗0, i

∗
1).

For the same (i∗0, i
∗
1) ∈ [n]2 as above, define the algorithm B(i∗0,i∗1) that, on input an obfuscated

program P̃ , and a triple (aux, X, I), executes as follows:

1. Run (i0, i1, aux
′)← A2(P̃ ,X, aux).

2. Output b′ ← A′3(aux′, I).

Then, plugging in B(i∗0,i∗1) notation to the expression above we have

Pr
[
b← {0, 1}; (P, (aux, X, I))← InstSampi∗b (1

λ);

P̃ ← O(P, 1λ, 1n); b′ ← B(i∗0,i∗1)(P̃ , (aux, X, I)) : b′ = b
]
≥ α/n2.

Now, by the VBB security of the obfuscator O, then for the algorithm B(i∗0,i∗1) there exists a
corresponding simulator S(i∗0,i∗1) such that for every auxiliary input z = (aux, X, I),∣∣∣Pr[P̃ ← O(P, 1λ, 1n); b′ ← Baux(i∗0,i

∗
1)

(P̃ , (aux, X, I)) : b′ = 1]

− Pr[b′ ← (S(i∗0,i∗1))
P (·)(1|P |, 1n, 1λ, (aux, X, I)) : b′ = 1]

∣∣∣ ≤ ν(λ).

18

Therefore it must be the case that

Pr
[
b← {0, 1}; (P, (aux, X, I))← InstSampi∗b (1

λ);

b′ ← (S(i∗0,i∗1))
P (·)(1|P |, 1n, 1λ, (aux, X, I)) : b′ = b

]
≥ α/n2 − 2ν(λ). (2)

That is, the simulator (S(i∗0,i∗1)) wins an analogous pk-PIR challenge (on a fixed cohice of
challenge indices (i∗0, i

∗
1)), given only black-box oracle access to the program P instead of its

obfuscated code.

Game 2. MAC security. In this game, we consider the same experiment as in Equation (2), but
where the simulator S(i∗0,i∗1) instead interacts with a modified (stateful) oracle, PMAC defined
below. PMAC acts precisely as P but self destructs if it ever receives as input a valid MAC
tag was not generated by the program itself (or appearing in the given encoded database X).

(Stateful) program PMAC:
Hardcoded: Program P , and encoded databaseX = ((dataCTreal

1 , tagreal1), . . . , (dataCTreal
N , tagrealN)).

• Initialize ValidTagList← ∅.
• For each input (“query”, i, r):

1. Let (I, c, tagQ) = P (“query”, i, r).

2. Add new message-tag pair to the list: ValidTagList← ValidTagList∪{((i, I, c), tagQ)}.
3. Output (I, c, tagQ).

• For each input (“decode”, (i, I, c, tagQ, (dataCTj , tagj)j∈I)):

1. If either of the following holds, set ForgedTag← 1. Otherwise, ForgedTag← 0.

– For some j ∈ I, Verify(skMAC, (j, dataCTj), tagj) = 1 and dataCTj 6= dataCTreal
j .

– Verify(skMAC, (i, I, c), tagQ) = 1 and ((i, I, c), tagQ) /∈ ValidTagList.

2. If ForgedTag = 1: then selfdestruct.

3. Else, output P (“decode”, (i, I, c, tagQ, (dataCTj , tagj)j∈I)).

Claim 5.3. For (i∗0, i
∗
1), InstSamp defined in Game 1, and PMAC as above, there exists a

negligible function ν2 for which

Pr
[
b← {0, 1}; (P, (aux, X, I))← InstSampi∗b (1

λ);

b′ ← (S(i∗0,i∗1))
PMAC(·)(1|P |, 1n, 1λ, (aux, X, I)) : b′ = b

]
≥ α/n2 − ν2(λ). (3)

Proof. Follows directly by the security of the MAC. Namely, if the expression in Equation
(3) differed by that in Equation (2) by more than a negligible amount, this would imply
that the non-uniform polynomial algorithm S(i∗0,i∗1) succeeds with non-negligible probability
in generating a fresh message-tag pair, given black-box access to the program P . But, such
an algorithm can be directly used to win with non-negligible probability in the MAC security
game, since the outputs of the program P can be simulated given only query access to the
algorithms Tag and Verify for a challenge key.

19

Game 3. Correctness of SKE and Oblivious LDC. In this step, instead of actually running the
oblivious LDC decoder D on a “decode” request to the program, we will respond in one of
two ways: (1) if the request is invalid or includes message-tag pair that was not generated
earlier by the program or X (ie the case where PMAC would self-destruct) then output ⊥; (2)
otherwise, the decode request corresponds directly to a previously asked “query” request for
some index i ∈ [n], in which case we will directly output the database value xi.

(Stateful) program Pcorrect:
Hardcoded: Program P , plaintext database x = x1, . . . , xn, encoded database
X = ((dataCTreal

1 , tagreal1), . . . , (dataCTreal
N , tagrealN)).

• Initialize QueryList← ∅.
• For each input (“query”, i, r):

1. Let (I, c, tagQ) = P (“query”, i, r).

2. Add new query pair to the list: QueryList← QueryList ∪ {((i, I, c), tagQ)}.
3. Output (I, c, tagQ).

• For each input (“decode”, (i, I, c, tagQ, (dataCTj , tagj)j∈I)):

1. If either of the following holds, set ForgedTag← 1. Otherwise, ForgedTag← 0.

– For some j ∈ I, Verify(skMAC, (j, dataCTj), tagj) = 1 and dataCTj 6= dataCTreal
j .

– Verify(skMAC, (i, I, c), tagQ) = 1 and ((i, I, c), tagQ) /∈ QueryList.

2. If ForgedTag = 1: then selfdestruct.

3. If ((i, I, c), tagQ) ∈ QueryList, output xi.

4. Else output ⊥.

Claim 5.4. For (i∗0, i
∗
1), InstSamp defined in Game 1, and Pcorrect as above, there exists a

negligible function ν3 for which

Pr
[
b← {0, 1}; (P, (aux, X, I))← InstSampi∗b (1

λ);

b′ ← (S(i∗0,i∗1))
Pcorrect(·)(1|P |, 1n, 1λ, (aux, X, I)) : b′ = b

]
≥ α/n2 − ν3(λ). (4)

Proof. Note that PMAC and Pcorrect identically treat “query” inputs (including an identi-
cal update of respective lists ValidTagList and QueryList). Suppose an input is received of
the form (“decode”, (i, I, c, tagQ, (dataCTj , tagj)j∈I)), for which ForgedTag = 0 (otherwise, if
ForgedTag = 1, both PMAC and Pcorrect self destruct). In particular, this means two things:

• The triple (I, c, tagQ) was generated as the output of the program on some input
(“query”, i, r). By the definition of the “query” portion of the programs, this means
there exists (r1, r2) for which I = Q(1λ, 1n, i, skLDC; r1) and c = EncskSKE(r1; r2).

• The input values (dataCTj)j∈I are the true values of the encoded database at the indices
specified by I (i.e., XI). Now, recall that X was generated (within InstSampi∗b , defined

in Game 1, where Samp,Encode are defined as in Figure 1) by: sampling an oblivious
LDC key as skLDC ← G(1λ); encoding x via the oblivious LDC as X ′′ ← E(1λ, skLDC, x);
encrypting each coordinate of the encoded database as dataCTj ← EncskSKE(X ′′j) ∀j ∈
[N]; MACing each encrypted coordinate as tagj ← Tag(skMAC, (j, dataCTj)) ∀j ∈ [N];
and taking final output values Xj = (dataCTj , tagj) ∀j ∈ [N].

20

Now, consider the steps of the “decode” portion of PMAC that are replaced within Pcorrect:

1. For each j ∈ I: Decrypt dataj = DecskSKE(dataCTj).
By correctness of the SKE, we have that dataj = X ′′j (as defined above) for each j.

2. Decrypt r1 = DecskSKE(c).
By correctness of the SKE, we have that DecskSKE(c) = r1, for the randomness value r1
used in Q to generate I.

3. Output D(1λ, 1n, i, (dataj)j∈I , skLDC, r1).
In our notation, this is D(1λ, 1n, i,X ′′I , skLDC, r1), where I = Q(1λ, 1n, i, skLDC; r1).
By correctness of decoding for the Oblivious LDC, this value is thus the queried ith data
value, xi.

Therefore, the programs PMAC and Pcorrect are in fact identical. The claim follows.

Game 4. PRF security. We now replace the pseudorandom values (r1, r2) with truly random
values.

(Stateful) program PPRF:
Hardcoded: skLDC, skSKE, skMAC, Plaintext database x = x1, . . . , xn, encoded database X =
((dataCTreal

1 , tagreal1), . . . , (dataCTreal
N , tagrealN)).

• Initialize QueryList← ∅.
• Initialize OutputList← ∅.
• Input (“query”, i, r):

1. If there exists a pair ((“query”, i, r), (I, c, tagQ)) ∈ OutputList, then output (i, c, tagQ).

2. Else, let (r1, r2)← {0, 1}λ × {0, 1}λ. (This was previously pseudo-randomness).

3. Let I = Q(1λ, 1n, i, skLDC; r1).

4. Let c = EncskSKE(r1; r2).

5. Let tagQ = MACskMAC
(i, I, c).

6. Add new query pair to the list: QueryList← QueryList ∪ {((i, I, c), tagQ)}.
7. Add new output value to the list:

OutputList← OutputList ∪ {((“query”, i, r), (I, c, tagQ))}.
8. Output (I, c, tagQ).

• Input (“decode”, (i, I, c, tagQ, (dataCTj , tagj)j∈I)):
Compute and output Pcorrect((“decode”, (i, I, c, tagQ, (dataCTj , tagj)j∈I)), as in Game 3.

Claim 5.5. For (i∗0, i
∗
1), InstSamp defined in Game 1, and PPRF as above, there exists a neg-

ligible function ν4 for which

Pr
[
b← {0, 1}; (P, (aux, X, I))← InstSampi∗b (1

λ);

b′ ← (S(i∗0,i∗1))
PPRF(·)(1|P |, 1n, 1λ, (aux, X, I)) : b′ = b

]
≥ α/n2 − ν4(λ). (5)

Proof. Follows directly by the security of the PRF. Note that Step 1 ensures consistency if
the same input (“query”, i, r) is received more than once.

21

Game 5. SKE security. We consider a new program PSKE that replaces each c← Enc(r1) in PPRF

with an encryption of 0, ie c ← Enc(0). (Note that each encryption in PPRF indeed uses
true, freshly sampled randomness r2.) In addition, we modify the InstSamp procedure so that
instead of including encryptions of the encoded database as X, we now simply generate N
fresh encryptions of 0 (and MAC the resulting ciphertexts).

Formally, for i ∈ [n], define the new distribution (P, (aux, X, I))← InstSamp
Enc(0)
i (1λ) by:

1. (x, aux)← A1(1
λ).

2. (P, sk)← Samp(1λ) (where Samp is defined in Gen in Construction 5.2).

3. For j = 1, . . . , N :

(a) Sample CT of 0: dataCTj ← EncskSKE(0).

(b) MAC each item: tagj ← Tag(skMAC, (j, dataCTj)).

(c) Let Xj = (dataCTj , tagj).

4. r ← {0, 1}λ; (ski, I) = P (“query”, i, r).

5. Output (P, (aux, X, I)).

(Stateful) program PSKE:
Hardcoded: skLDC, skSKE, skMAC, Plaintext database x = x1, . . . , xn, encoded database X =
((dataCTreal

1 , tagreal1), . . . , (dataCTreal
N , tagrealN)).

• Initialize QueryList← ∅.
• Initialize OutputList← ∅.
• Input (“query”, i, r):

1. If there exists a pair ((“query”, i, r), (I, c, tagQ)) ∈ OutputList, then output (I, c, tagQ).

2. Let I ← Q(1λ, 1n, i, skLDC).

3. Let c← EncskSKE(0). (Previously encrypted the randomness used in Q).

4. Let tagQ = MACskMAC
(i, I, c).

5. Add new query pair to the list: QueryList← QueryList ∪ {(i, I, c)}.
6. Add new output value to the list:

OutputList← OutputList ∪ {((“query”, i, r), (I, c, tagQ))}
7. Output (I, c, tagQ).

• Input (“decode”, (i, I, c, tagQ, (dataCTj , tagj)j∈I)):
Compute and output Pcorrect((“decode”, (i, I, c, tagQ, (dataCTj , tagj)j∈I)), as in Game 3.

Claim 5.6. For (i∗0, i
∗
1) as in Game 1, and InstSamp

Enc(0)
i , PSKE as above, there exists a

negligible function ν5 for which

Pr
[
b← {0, 1}; (P, (aux, X, I))← InstSamp

Enc(0)
i∗b

(1λ);

b′ ← (S(i∗0,i∗1))
PSKE(·)(1|P |, 1n, 1λ, (aux, X, I)) : b′ = b

]
≥ α/n2 − ν5(λ). (6)

Proof. Follows by the semantic security of the SKE and a standard hybrid argument.

22

Game 6. Oblivious LDC security. In our final step, we argue that Equation (6) cannot hold for
non-negligible α. The reason is because interaction with the program PSKE can be completely
simulated given only access to the challenge oracle for the Oblivious LDC security game.
Therefore, the combined (non-uniform polynomial-time) adversary which runs the simulator
S(i∗0,i∗1) and simulates the answers of its oracle PSKE(·) serves as an Oblivious LDC adversary,

who successfully distinguishes between the challenge I sampled via InstSamp
Enc(0)
i∗0

from that

sampled via InstSamp
Enc(0)
i∗1

.

Claim 5.7. For (i∗0, i
∗
1) as in Game 1, and InstSamp

Enc(0)
i , PSKE as in Game 5, there exists a

negligible function ν6 for which

Pr
[
b← {0, 1}; (P, (aux, X, I))← InstSamp

(Enc(0)
i∗b

(1λ);

b′ ← (S(i∗0,i∗1))
PSKE(·)(1|P |, 1n, 1λ, (aux, X, I)) : b′ = b

]
≤ ν6(λ). (7)

Proof. Suppose, to the contrary, the probability expression in Equation (7) is equal to some
non-negligible function β(λ).

Consider following the Oblivious LDC adversary BLDC:

1. An Oblivious LDC challenge key is sampled as sk← G(1λ). BLDC receives oracle access
to Qsk(·) (which on input i ∈ [n] outputs I ← Q(1λ, 1n, i, sk)).

2. BLDC simulates the remaining (non-LDC) items in InstSampEnc(0):

(a) Simulate A1 to obtain (x, aux)← A1(1
λ).

(b) Sample skSKE ← GenSKE(1λ); skMAC ← GenMAC(1λ); and k ← GenPRF(1λ).

(c) For j = 1, . . . , N :

i. Sample CT of 0: dataCTj ← EncskSKE(0).

ii. MAC each item: tagj ← Tag(skMAC, (j, dataCTj)).

iii. Let Xj = (dataCTj , tagj).

3. BLDC selects the Oblivious LDC challenge index pair (i∗0, i
∗
1) ∈ [n]2, and receives a

challenge index sequence I generated as I ← Q(1λ, 1n, i∗b , sk) for randomly selected
b← {0, 1}.

4. BLDC simulates b′ ← (S(i∗0i∗1))
PSKE(·)(1|P |, 1n, 1λ, (aux, X, I)), for the values of (aux, X, I)

as generated in Step 2.

For each query made by S(i∗0i∗1) to the oracle PSKE(·), BLDC simulates the response:

• In Step 3 of computation for an input of the form (“query”, i, r), BLDC makes a query
to its oracle Qsk(·) on the input index i.

• In all other steps, BLDC simulates precisely.

5. BLDC outputs the guess bit b′.

By construction, the advantage of BLDC in the Oblivious LDC security challenge for (G,E,Q,D)
is precisely β. Therefore, it must be the case that β is negligible.

Combining Games 1-6, we have that the original advantage α of the adversary A in the Public-
Key PIR security challenge game must be negligible. That is, (Gen,Encode,Query,Decode) of
Construction 5.2 is a secure Public-Key PIR. This concludes the proof of Theorem 5.1.

23

Combining Proposition 4.3 and Theorem 5.1, we obtain the following main theorem.

Theorem 5.8. Suppose the Permuted Low-Degree Polynomials Conjecture holds (Conjecture 4.2),
and one-way functions exist. Then given ideal obfuscation (alternatively, a poly(λ)-size, state-
less hardware token), there is a pk-PIR scheme with communication and computation complexity
poly(λ) · nε, for every ε > 0.

6 Conclusion and Open Problems

In this work we put forward two new cryptographic primitives: pk-PIR, a public-key variant of
single-server PIR with preprocessing, and OLDC, its secret-key variant. We propose a candidate
implementation for OLDC and reduce pk-PIR to OLDC via ideal obfuscation. Our work leaves
open many interesting directions for further research. For example:

• Further study the Permuted Low-Degree Polynomials Conjecture and more general instances
of the Permuted Puzzles problem.

• Can a construction of OLDC be based on standard cryptographic assumptions? Alternatively,
can it be based on standard assumptions together with ideal obfuscation?

• Are there OLDC candidates that provide a better tradeoff between storage overhead and de-
coding complexity?

• Does a general transformation from OLDC to pk-PIR follow from indistinguishability obfus-
cation?

• Is there a direct candidate construction of pk-PIR that does not rely on any form of general-
purpose obfuscation?

Acknowledgments. We thank David Cash, Ronald Cramer, Venkat Guruswami, Daniel Wichs,
and Chaoping Xing for helpful discussions.

This work was done in part while the first three authors were visiting the Simons Institute for the
Theory of Computing, supported by the Simons Foundation and by the DIMACS/Simons Collabo-
ration in Cryptography through NSF grant #CNS-1523467. EB was supported in part by ISF grant
1861/16, AFOSR Award FA9550-17-1-0069, and ERC Grant no. 307952. YI was supported in part
by NSF-BSF grant 2015782, BSF grant 2012366, ISF grant 1709/14, ERC starting grant 259426,
DARPA/ARL SAFEWARE award, NSF Frontier Award 1413955, NSF grants 1619348, 1228984,
1136174, and 1065276, a Xerox Faculty Research Award, a Google Faculty Research Award, an
equipment grant from Intel, and an Okawa Foundation Research Grant. This material is based
upon work supported by the DARPA through the ARL under Contract W911NF-15-C-0205. RP
was supported in part by NSF Award CNS-1561209, NSF Award CNS-1217821, AFOSR Award
FA9550-15-1-0262, a Microsoft Faculty Fellowship, and a Google Faculty Research Award. MW is
supported in part by NSF grant CCF-1657049. The views expressed are those of the authors and
do not reflect the official policy or position of the DoD, the NSF, or the U.S. Government.

References

[AF03] Daniel Augot and Matthieu Finiasz. A public key encryption scheme based on the
polynomial reconstruction problem. In Advances in Cryptology - EUROCRYPT 2003,

24

International Conference on the Theory and Applications of Cryptographic Techniques,
Warsaw, Poland, May 4-8, 2003, Proceedings, pages 229–240, 2003.

[AS15] Gilad Asharov and Gil Segev. Limits on the power of indistinguishability obfuscation
and functional encryption. In IEEE 56th Annual Symposium on Foundations of Com-
puter Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 191–209,
2015.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. J. ACM,
59(2):6, 2012.

[BGK+14] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Pro-
tecting obfuscation against algebraic attacks. In Advances in Cryptology - EURO-
CRYPT 2014 - 33rd Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings,
pages 221–238, 2014.

[BIM00] Amos Beimel, Yuval Ishai, and Tal Malkin. Reducing the servers computation in private
information retrieval: PIR with preprocessing. In Advances in Cryptology - CRYPTO
2000, 20th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 20-24, 2000, Proceedings, pages 55–73, 2000. Full version: J. Cryptology,
17(2), 125–151, 2004.

[BKY03] Daniel Bleichenbacher, Aggelos Kiayias, and Moti Yung. Decoding of interleaved reed
solomon codes over noisy data. In Automata, Languages and Programming, 30th In-
ternational Colloquium, ICALP 2003, Eindhoven, The Netherlands, June 30 - July 4,
2003. Proceedings, pages 97–108, 2003.

[BN00] Daniel Bleichenbacher and Phong Q. Nguyen. Noisy polynomial interpolation and
noisy chinese remaindering. In Advances in Cryptology - EUROCRYPT 2000, Interna-
tional Conference on the Theory and Application of Cryptographic Techniques, Bruges,
Belgium, May 14-18, 2000, Proceeding, pages 53–69, 2000.

[Bon02] Dan Boneh. Finding smooth integers in short intervals using CRT decoding. J. Comput.
Syst. Sci., 64(4):768–784, 2002.

[CG97] Benny Chor and Niv Gilboa. Computationally private information retrieval (extended
abstract). In Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory
of Computing, El Paso, Texas, USA, May 4-6, 1997, pages 304–313, 1997.

[CGKO11] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. Searchable sym-
metric encryption: Improved definitions and efficient constructions. Journal of Com-
puter Security, 19(5):895–934, 2011.

[CHR17] Ran Canetti, Justin Holmgren, and Silas Richelson. On single-server pir with sublinear
server work. Manuscript, 2017.

[CKGS98] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private information
retrieval. J. ACM, 45(6):965–981, 1998. Earlier version in Proc. FOCS ’05.

25

[Cor04] Jean-Sébastien Coron. Cryptanalysis of a public-key encryption scheme based on the
polynomial reconstruction problem. In Public Key Cryptography - PKC 2004, 7th In-
ternational Workshop on Theory and Practice in Public Key Cryptography, Singapore,
March 1-4, 2004, pages 14–27, 2004.

[CS03] Don Coppersmith and Madhu Sudan. Reconstructing curves in three (and higher)
dimensional space from noisy data. In Proceedings of the 35th Annual ACM Symposium
on Theory of Computing, June 9-11, 2003, San Diego, CA, USA, pages 136–142, 2003.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In FOCS, 2013.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions. J. ACM, 33(4):792–807, 1986.

[GMM+16] Sanjam Garg, Eric Miles, Pratyay Mukherjee, Amit Sahai, Akshayaram Srinivasan,
and Mark Zhandry. Secure obfuscation in a weak multilinear map model. In Theory of
Cryptography - 14th International Conference, TCC 2016-B, Beijing, China, October
31 - November 3, 2016, Proceedings, Part II, pages 241–268, 2016.

[GO96] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious
rams. J. ACM, 43(3):431–473, 1996.

[Gol90] Oded Goldreich. A note on computational indistinguishability. Inf. Process. Lett.,
34(6):277–281, 1990.

[Gol01] Oded Goldreich. Foundations of Cryptography — Basic Tools. Cambridge University
Press, 2001.

[HO08] Brett Hemenway and Rafail Ostrovsky. Public-key locally-decodable codes. In Advances
in Cryptology - CRYPTO 2008, 28th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 17-21, 2008. Proceedings, pages 126–143, 2008.

[IKOS04] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Batch codes and
their applications. In Proceedings of the 36th Annual ACM Symposium on Theory of
Computing, Chicago, IL, USA, June 13-16, 2004, pages 262–271, 2004.

[IKOS06] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptography from
anonymity. In 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2006), 21-24 October 2006, Berkeley, California, USA, Proceedings, pages 239–
248, 2006.

[KMRS16] Swastik Kopparty, Or Meir, Noga Ron-Zewi, and Shubhangi Saraf. High-rate locally-
correctable and locally-testable codes with sub-polynomial query complexity. In Pro-
ceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2016, Cambridge, MA, USA, June 18-21, 2016, pages 202–215, 2016.

[KO97] Eyal Kushilevitz and Rafail Ostrovsky. Replication is not needed: Single database,
computationally-private information retrieval. In FOCS, pages 364–373, 1997.

26

[KT00] Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures for
error-correcting codes. In Proceedings of the Thirty-Second Annual ACM Symposium
on Theory of Computing, May 21-23, 2000, Portland, OR, USA, pages 80–86, 2000.

[KW93] Mauricio Karchmer and Avi Wigderson. On span programs. In Proceedings of the
Eigth Annual Structure in Complexity Theory Conference, San Diego, CA, USA, May
18-21, 1993, pages 102–111, 1993.

[KY01] Aggelos Kiayias and Moti Yung. Secure games with polynomial expressions. In Au-
tomata, Languages and Programming, 28th International Colloquium, ICALP 2001,
Crete, Greece, July 8-12, 2001, Proceedings, pages 939–950, 2001.

[KY04] Aggelos Kiayias and Moti Yung. Cryptanalyzing the polynomial-reconstruction based
public-key system under optimal parameter choice. In Advances in Cryptology - ASI-
ACRYPT 2004, 10th International Conference on the Theory and Application of Cryp-
tology and Information Security, Jeju Island, Korea, December 5-9, 2004, Proceedings,
pages 401–416, 2004.

[McE78] R. J. McEliece. A Public-Key Cryptosystem Based On Algebraic Coding Theory. Deep
Space Network Progress Report, 44:114–116, January 1978.

[MNSW98] Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. On data struc-
tures and asymmetric communication complexity. J. Comput. Syst. Sci., 57(1):37–49,
1998.

[MRS09] Ben Morris, Phillip Rogaway, and Till Stegers. How to encipher messages on a small
domain. In Advances in Cryptology - CRYPTO 2009, 29th Annual International Cryp-
tology Conference, Santa Barbara, CA, USA, August 16-20, 2009. Proceedings, pages
286–302, 2009.

[NP06] Moni Naor and Benny Pinkas. Oblivious polynomial evaluation. SIAM J. Comput.,
35(5):1254–1281, 2006.

[NR04] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-
random functions. J. ACM, 51(2):231–262, 2004.

[OPS07] Rafail Ostrovsky, Omkant Pandey, and Amit Sahai. Private locally decodable codes. In
Automata, Languages and Programming, 34th International Colloquium, ICALP 2007,
Wroclaw, Poland, July 9-13, 2007, Proceedings, pages 387–398, 2007.

[SS09] V. M. Sidelnikov and S. O. Shestakov. On insecurity of cryptosystems based on general-
ized Reed-Solomon codes. Discrete Mathematics and Applications, 2:439–444, October
2009.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In Symposium on Theory of Computing, STOC 2014, New York,
NY, USA, May 31 - June 03, 2014, pages 475–484, 2014.

[SWP00] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques for
searches on encrypted data. In 2000 IEEE Symposium on Security and Privacy, Berke-
ley, California, USA, May 14-17, 2000, pages 44–55, 2000.

27

A Barriers to Proving Impossibility of OLDC

In this section we argue that ruling out the existence of OLDC is unlikely, as it would imply data
structure lower bounds that seem beyond the reach of current techniques.

When considering a relaxed notion of OLDC that allows for adaptive decoding (i.e., decoding
proceeds in rounds, where the location of each symbol read by the decoder may depend on the
contents of the previous ones) there is a known barrier which was already pointed out in [MNSW98,
BIM00]: proving strong lower bounds in the adaptive setting requires strong branching program
lower bounds. However, no such connection is known in the non-adaptive case.

We argue that ruling out the existence of OLDC is very unlikely, as it would require proving
strong data structure lower bounds. To be concrete, consider the following question:

Is it possible to preprocess any circuit C of size k100 with k input bits into a data
structure D of size poly(k) such that for any input q, C(q) can be evaluated by non-
adaptively probing k10 bits of D?

While this type of “dream data structure” seems extremely unlikely to exist, ruling it out seems
beyond the reach of current techniques.3 Given such a hypothetical data structure, we can take
existing single-server PIR protocols (e.g., the one from [KO97]) and just let D be the data structure
corresponding to the circuit Cx that computes the answer given the client’s PIR query. This would
in fact give a stronger version of OLDC that has a deterministic encoder and does not make use of
any secret key.

3We ran this problem by several relevant experts, who were unaware of any negative results or implications to
other well studied problems in complexity theory.

28

