
MXPUF: Secure PUF Design against
State-of-the-art Modeling Attacks

Phuong Ha Nguyen1, Durga Prasad Sahoo2, Chenglu Jin1, Kaleel Mahmood1,
and Marten van Dijk1

1 University of Connecticut, USA,
2 Robert Bosch India (RBEI/ETI)

Abstract. Silicon Physical Unclonable Functions (PUFs) have been
proposed as an emerging hardware security primitive in various secu-
rity applications such as device identification, authentication, and cryp-
tographic key generation. Current so-called ‘strong’ PUFs, which al-
low a large challenge response space, are compositions of Arbiter PUFs
(APUFs), e.g. the x-XOR APUF. Wide scale deployment of state-of-
the-art compositions of APUFs, however, has stagnated due to various
mathematical and physical attacks leading to software models that break
the unclonability property of PUFs. The current state-of-the-art attack
by Becker, CHES 2015, shows that the XOR APUF can be broken by
modeling its APUF components separately thanks to CMA-ES, a ma-
chine learning algorithm, based on reliability information of measured
XOR APUF responses. Thus, it is an important problem to design a
strong PUF which can resist not only traditional modeling attacks but
also Becker’s attack. In this paper, we propose a new strong PUF design
called (x, y)-MXPUF, which consists of two layers; the upper layer is an
n-bit x-XOR APUF, and the lower layer is an (n+1)-bit y-XOR APUF.
The response of x-XOR APUF for an n-bit challenge c in the upper layer
is inserted at the middle of c to construct a new (n + 1)-bit challenge
for the y-XOR APUF in the lower layer giving the final response bit of
the (x, y)-MXPUF. The reliability of (x, y)-MXPUF can be theoretically
and experimentally shown to be twice the reliability of (x + y)-XOR
PUF. In the context of traditional modeling attacks, when we keep the
same hardware size, the security of (x, y)-MXPUF is only slightly weaker
than that of (x+ y)-XOR PUF. Our main contribution proves that the
(x, y)-MXPUF is secure against Becker’s attack.

Keywords: Arbiter physically unclonable function (APUF), majority
voting, modeling attack, propagation criterion, reliability based model-
ing, XOR APUF.

1 Introduction

Intuitively, a silicon Physical Unclonable Function (PUF) [10] is a fingerprint of
a chip which behaves as a one-way function in the following way: It offers Manu-
facturing Resistance as it leverages process manufacturing variation to generate

2 Nguyen et al.

c[0] c[1] c[n-1]

Clk

D Q r

Arbiter

Path-swapping switchTrigger signal Upper path Lower path

(a) n-bit APUF

c Ai ri

A0 r0

Ax−1 rx−1

r

(b) x-XOR APUF

Fig. 1: Arbiter PUF (APUF) and XOR APUF. A x-XOR APUF consists of x
APUFs A0, . . . , Ax−1.

a unique function taking “challenges” as input and generating “responses” as
output; The function is HW Unclonable in that it cannot be cloned in hardware
(the PUF’s internal behavior, e.g. its unique physical characteristics or behavior
of its wires, cannot be read out accurately enough; also it is not feasible to man-
ufacture two PUFs with the same responses to a significant subset of challenges)
and is SW Unclonable in that it cannot be efficiently learned given a “polynomial
number” of challenge response pairs (making it impossible to impersonate/clone
the function’s behavior to a new random challenge in software).

The general concept of a PUF was first introduced by Pappu [19]. Silicon
PUFs have been proposed as central building blocks for device identification
and authentication [15], binding software to hardware platforms [11], secure
storage of cryptographic secrets [29], and secure protocol design [3].

Fig. 1a depicts an Arbiter PUF (APUF) [10,13,14] with challenge input vector
c ∈ {0, 1}n and response bit r ∈ {0, 1}. An APUF is a strong PUF due to
the large (2n) number of Challenge Response Pairs (CRPs) which is infeasible
to enumerate. Fig. 1b depicts a XOR APUF [24] which XORs the response
bits of component APUFs into a final output response bit. In PUF literature,
APUF variants and Lightweight Secure PUFs [16] are called lightweight PUFs
because of their small hardware footprint. It has been shown that all these PUF
constructions are vulnerable to cryptanalysis attacks or purely mathematical
machine learning based modeling attacks [20,22,27,8,9,7]. In these attacks, a
mathematical model of a PUF instance is built based on PUF inputs and outputs
(CRPs) or some side channel information by using machine learning techniques
such as Logistic Regression (LR), Support Vector Machine (SVM), Evolution
Strategy (ES), Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
etc [4,6,21,26,2,25].

In CHES 2015 Becker presented for the first time an efficient reliability-
based modeling attack on x-XOR APUFs and another variant called x-way XOR
APUFs, which uses CMA-ES to optimize its mathematical model [2]. This attack
is based on the following observation: the repeatability or short-term reliability
and the linear delay model of a given APUF instance (or the mathematical model
of APUF) are strongly correlated [4,2]. Thus, instead of using CRPs directly for
building component APUF models, each challenge is given as input to the PUF

MXPUF: Secure PUF Design against State-of-the-art Modeling Attacks 3

c = (c[0], . . . , c[i], . . . , c[n− 1])

(c[0], . . . , c[i], a, c[i+ 1] . . . , c[n− 1])

a

y-XOR APUF

x-XOR APUF

r

Fig. 2: (x, y)-MXPUF (Multiple XOR APUF) comprises of x-XOR APUF and
y-XOR APUF.

multiple times and the resulting repeatability information of its response is used
in the attack. Due to the structure of XOR APUF (see Fig. 1b), the reliability
information of each individual component APUF equally affects the output of the
XOR APUF. Becker showed that if we apply the CMA-ES learning algorithm on
XOR APUF many times, then models for all the component APUFs can be built:
Since each component APUF equally affects the output of the XOR APUF, the
reliability information of a random batch of challenges will be most correlated
to one of the component APUFs, the component which happens to contribute
the most to the reliability information. This allows a divide-and-conquer attack
which builds each component APUF model separately.

In this paper we first perform analysis together with simulations to under-
stand the circumstances under which Becker’s attack is successful. Next we pro-
pose a new PUF design, coined the Multiple XOR PUF (MXPUF), see Fig. 2. A
(x, y)-MXPUF consists of two layers; the upper layer is an n-bit x-XOR APUF,
and the lower layer is an (n + 1)-bit y-XOR APUF. The response of x-XOR
APUF for an n-bit challenge c in the upper layer is inserted at the middle of
c to construct a new (n + 1)-bit challenge for the y-XOR APUF in the lower
layer giving the final response bit of the (x, y)-MXPUF. The reliability of (x, y)-
MXPUF can be theoretically and experimentally shown to be twice of reliability
of (x + y)-XOR APUF. Moreover, when keeping the same hardware footprint,
the security of our (x, y)-MXPUF is slightly weaker than that of (x + y)-XOR
APUF in context of traditional modeling attacks [20,22,27]. Our main contribu-
tion proves that the (x, y)-MXPUF is secure against Becker’s attack.

Contributions: Our contributions are as follows:

1. We revisit Becker’s attack on APUF variants in [2], and present two new
metrics to enhance Becker’s attack which require fewer challenge response
pairs compared to the original one.

2. We analyze in detail Becker’s attack on the x-XOR APUF:

We conclude that if, compared to other APUF components, an APUF com-
ponent contributes significantly less to the reliability information at the out-
put (final response) of an XOR APUF, then its model cannot be built using
the CMA-ES algorithm and Becker’s attack fails.

4 Nguyen et al.

3. We propose a new lightweight PUF design called (x, y)-MXPUF which has
the following properties:
(a) Compared to the (x + y)-XOR APUF (which has the same number of

multiplex units as the (x, y)-MXPUF) it is less prone to measurement
noise if we carefully place the feedback position a in Fig. 2 based on the
Propagation Criterion (PC) property [17,5,18].

(b) It is secure against Becker’s attack [2] because, compared to the lower
layer y-XOR APUF, the upper layer x-XOR APUF affects the reliability
information of the final response bit much less. In addition, we argue
that it is secure against a more powerful attack which combines Becker’s
attack [2] with fault analysis in [6]. We show that (x, y)-MXPUF is only
slightly weaker than (x+y)-XOR APUF in terms of security with respect
to previously known classical machine learning attacks.

4. Finally, we verify our observations using simulated results, where APUF in-
stances are simulated in Matlab. The simulation results show that reliability
of (x, y)-MXPUF is twice the reliability of (x+ y)-XOR APUF.

Organization: The rest of the paper is organized as follows. In Section 2, the
background of Arbiter PUFs is briefly provided. Section 3 describes Becker’s at-
tack on x-XOR APUF after which we detail experiments in order to understand
under what circumstances Becker’s attack cannot be successful. Based on the
knowledge gained in Section 3, we develop our MXPUF design and provide in
Section 4 its security analysis and reliability property. Section 5 presents our ex-
perimental results and Section 6 concludes the paper. Due to page limitation, we
discuss how to improve the efficiency of the attack in [2] in Appendix A and B.

2 Background Arbiter PUF

In this section, we briefly introduce the analytical delay model [13], and reliability
model [4] of APUF; this is needed to understand Becker’s attack and the newly
proposed (x, y)-MXPUF.

2.1 Linear Additive Delay Model

In [13,14], an analytical model which is called Linear Additive Delay Model is
presented. As shown in [13], the linear additive delay model of an APUF has the
form:

∆ = w[0]Φ[0] + · · ·+ w[i]Φ[i] + · · ·+ w[n]Φ[n] = wTΦ, (1)

where w and Φ are known as weight and parity (or feature) vectors, respectively.
The parity vector Φ is derived from the challenge c as follows:

Φ[n] = 1, and Φ[i] =

n−1∏
j=i

(1− 2c[j]), i = 0, . . . , n− 1. (2)

MXPUF: Secure PUF Design against State-of-the-art Modeling Attacks 5

In this delay model, the unknown weight vector w depends on the process
variation of the PUF instance (i.e. of a specifically manufactured PUF). The
response to a challenge c is defined as: If ∆ ≥ 0, then r = 0. Otherwise, r = 1.

In order to break the SW unclonability property of an APUF, an adversary
can build an accurate mathematical model using machine learning techniques
(e.g. Support Vector Machine, Logistic Regression, Evolution Strategy) based
on this linear model [13,23,20] and a recorded set of challenge-response pairs
(CRPs). Because APUFs are vulnerable to machine learning based modeling
attacks, the XOR Arbiter PUF (XOR APUF) was introduced in [24] (See Fig 1b).
Due to the non-linearity of the PUF models introduced by XOR operation,
traditional modeling attacks can be prevented (i.e. can become impractical) if a
sufficient number of component APUFs are employed in the XOR APUF [20,27].

2.2 Repeatability Models of APUFs

In [4], Delvaux et al. introduced the first modeling attack on APUFs which
exploits the reliability (or repeatability) information of an APUF response. To
make the paper self-contained, we briefly introduce the repeatability model of
an APUF and the key idea of the attacks presented in [4].

Variability vs. Noise Typically, manufacturing variability and measurement
noise are two undesired phenomenons in an electric circuit [4]. Variability is
caused by the manufacturing processes, and noise is a random temporal phe-
nomenon, for example instability of the supply voltage or change of circuit
temperature. While noise is a non-reproducible physical feature, variability is
reproducible and is exploited to build PUFs. Due to noise, the reproducibility
or reliability of PUF output is not perfect, i.e., less than 100%.

Repeatability Model of an APUF The repeatability is the short-term reli-
ability of a PUF in presence of CMOS noise, and it is not the long-term device
ageing effect [4]. For a given challenge c, a repeatability R is measured as fol-
lows. Assume that the challenge c is evaluated M times, and suppose that the
measured responses are equal to 1 in N out of M evaluations. The repeatability
is defined as R = N/M ∈ [0, 1]. As shown in [4], the relationship between the
delay difference ∆ and R ∈ [0.1, 0.9] of a given challenge c can be described as:

∆/σN =

n∑
i=0

(w[i]/σN)Φ[i] = −Φ−1(R) ≈ R, (3)

where the noise follows a normal distributionN (0, σN) and Φ(·) is the probability
distribution function of the standard normal distribution.

Due to noise, the repeatability R of a given challenge c leaks information
about weights w[0], . . . ,w[n] in the analytical expression of ∆. Conceptually,
instead of using CRPs in traditional modeling attacks, the repeatability of APUF
outputs can be used to build an APUF model. Based on a set of challenge

6 Nguyen et al.

reliability (not response) pairs (c, R) with R ∈ [0.1, 0.9], a system of linear
equations is established and the weights w[i]/σN can be solved by using the
Least Mean Square algorithm [4]. This can be used to predict the response r to a
challenge c based on the comparison ∆/σN ≈ R ≤ or ≥ 0. Hence, we can follow
traditional modeling attacks based on the linear additive delay model, which use
machine learning techniques and a measured set of CRPs (now replaced by a set
of (c, R) pairs) to built a model for the APUF.

In general, R = Φ(−∆/σN), and this formula is exploited for enhancing
Becker’s attack [2] in Appendix A.

2.3 Repeatability based CMA-ES on APUFs

In [1,2] Becker develops a modeling attack on APUFs using CMA-ES with re-
liability information obtained from the repeated measurements of CRPs. More
precisely, reliability information R of a challenge c (i.e. (c, R)) is used in the
attack instead of the corresponding response r (i.e. (c, r)).

The rationale behind this attack is as follows: if the delay difference |∆| be-
tween the two competing paths in an APUF for a given challenge c is smaller
than a threshold ε, then the corresponding response r would be unreliable in the
presence of noise; otherwise the response would be reliable. This implies that
reliability information directly leaks information about the ‘wire delays’ in an
APUF model. Unlike CRP-based modeling attacks [20] where noisy (or unreli-
able) CRPs reduce the modeling accuracy, the unreliable CRPs are exploited in
CMA-ES based modeling.

Let ri be the i-th measured response of challenge c for i = 1, . . . ,M . Two
different definitions of R, as provided in Eq. (4) and Eq. (5), are found in [4]
and [2], respectively:

R =
1

M

M∑
i=1

ri (4)

R = |M/2−
M∑
i=1

ri| (5)

Let us recall the CMA-ES based modeling attack on an APUF as discussed
in [1,2]. The objective of CMA-ES is to learn weights w = (w[0], . . . ,w[n])
together with a threshold value ε. All variables w[0], . . . ,w[n− 1] are treated as
independent and identically distributed Gaussian random variables. The attack
is conducted as follows:

1. CollectN challenge-reliability pairsQ = {(c1, R1), . . . , (ci, Ri), . . . , (cN , RN)}.
2. Generate K random models: {(w1, ε1), . . . , (wj , εj), . . . , (wK , εK)}.
3. For each model (wj , εj) (j = 1, . . . ,K), do the following steps:

(a) For each challenge ci (i = 0, . . . , N), compute the R′i as follows:

R′i =

{
1, if |∆| ≥ ε
0, if |∆| < ε,

(6)

MXPUF: Secure PUF Design against State-of-the-art Modeling Attacks 7

where ε = εj and ∆ follows from (1) and (2) with c = ci and w = wj .
(b) Compute the Pearson correlation ρj based on the (R1, . . . , Ri, . . . , RN)

and (R′1, . . . , R
′
i, . . . , R

′
N), i.e.

ρj =

∑N
i=1(Ri − R̄)× (R′i − R̄′)√∑N

i=1(Ri − R̄)2 ×
√∑N

i=1(R′i − R̄′)2
,

where R̄ =
∑N

i=1 Ri

N and R̄′ =
∑N

i=1 R′
i

N .
4. CMA-ES keeps L models (wj , εj) which have the highest Pearson correlation
ρ, and then, from these L models, another K models are generated based on
the CMA-ES algorithm.

5. Repeat the steps (3)-(4) for H iterations and model (w, ε) which has highest
Pearson correlation ρ will be chosen as the correct model. It is noted that
sometimes the chosen model can have a poor prediction accuracy and in
this case we restart the algorithm to find a model with higher prediction
accuracy.

Compared to traditional modeling attacks, the CMA-ES attack in [2] has the
following main advantage: There is no noisy information or wrong information
in the training dataset. In traditional modeling attacks, noisy CRPs are treated
as noise, i.e., they are unwanted information (or wrong information) in training
data. This fact strongly affects the prediction accuracy of the constructed model.
In contradiction to traditional modeling attacks, the CMA-ES attack in [2] does
not have wrong information in the training dataset. Particularly, noisy CRPs
are the most valuable information for constructing models in this approach.

3 Becker’s Attack on XOR APUF: Insights

An x-XOR APUF consists of x n-bit APUF instancesA0, . . . , Ax−1 as depicted in
Fig. 1b. For a given challenge c, the response r of an x-XOR APUF is generated
as follows:

r = r0 ⊕ · · · ⊕ ri ⊕ · · · ⊕ rx−1, (7)

where ri = Ai(c), i = 0, . . . , x− 1. According to traditional ML-based modeling,
the modeling complexity of an x-XOR APUF increases exponentially in x. How-
ever, Becker’s attack [2] on XOR APUF achieves a modeling complexity that
increases linearly in x. In this section, we explain insights into Becker’s attack
as understanding the rationale behind this attack helps us to develop our strong
MXPUF design that is secure against Becker’s attack.

Let Q = {(c1, R1), . . . , (ci, Ri), . . . , (cN , RN)} be a set of challenge and reli-
ability information pairs of an x-XOR APUF instance. In [2] Becker reported an
important observation in the context of x-XOR APUF modeling: if the CMA-
ES algorithm for modeling an APUF (see Section 2.3) is executed many times
with the set Q, then it can produce x different models for A0, . . . , Ax−1 with

8 Nguyen et al.

high probability. Although there is no proof on how many times the CMA-ES
algorithm has to be executed to get the models of all APUF instances of the
x-XOR APUF, experimentally it is observed that this value needs not to be
large. As done in [2] one can parallelize CMA-ES executions to built models for
A0, . . . , Ax−1. Thus the modeling of x-XOR APUF boils down to the modeling
of x independent APUF instances.

Now, we consider the following questions for in-depth analysis of Becker’s
attack:

1. As Becker mentioned in [2] as a fact, in practice some APUFs are easier
and some are harder to model using the given challenges and reliability
information pairs. It turns out that CMA-ES converges more often to some
PUF instances than others. Why does this happen?

2. In [2], Becker did not clearly mention in different runs whether the same set
Q is used or not. Thus we wonder whether Becker’s attack can build the
models of all APUF instances in XOR APUF if the same data set Q is used
in different runs.

3. What are the conditions such that CMA-ES never converges to a particular
APUF instance? In other words, under which condition does the attack fail?

In [2] Becker posed question-1 without any theoretical answer and question-3
is still not investigated in the literature. The next experiments are aimed at an-
swering these questions; based on the knowledge gained from these experiments,
we develop an APUF composition that is secure against Becker’s reliability-based
modeling attack as well as traditional mathematical modeling attacks.

3.1 Experiment-I

Objective of this experiment is to investigate why some APUF instances are
easier and some are harder to model by using reliability-based CMA-ES. More
specifically, we want to verify whether the probability of being converged to in
CMA-ES is correlated with the noise rate of each APUF instance presenting in
a given data set Q, where the noise rate is the number of noisy CRPs divided
by the number of total CRPs in Q.

Setup. We perform the attack on 10-XOR APUF by executing CMA-ES al-
gorithm for APUF 100 times on different data sets Q. The 10-XOR APUF is
simulated using Matlab as described in Section 5, and the noise rate of all APUFs
are set at 20%. Notice that, the noise rate is set to be 20%, but for a given data
set Q, the noise rate of each APUF instance presents in Q is not guaranteed
to be 20%. In each run, we randomly generate set Q of size 70× 103, and each
challenge is evaluated 11 times. Note that, in this experiment, we know the con-
figuration of each PUF instances, i.e., we are not a true attacker who does not
have this knowledge.

Result and Discussion. In each run of CMA-ES, an APUF model w is pro-
duced. Since we know the configurations and CRPs of each individual APUF in

MXPUF: Secure PUF Design against State-of-the-art Modeling Attacks 9

Table 1: Correlation between the noise rate ranking presenting in each Q and
probability of correct models of APUF instances over 100 runs of CMA-ES

Rank 0 1 2 3 4 5 6 7 8 9 10

Count 2 36 5 9 5 12 7 7 5 7 5

XOR APUF, we do the following classification of the built model: if the model
w matches with any of the APUF instances with probability ≥ 0.9 or ≤ 0.1
(complemented model), then we accept it as a correct model for that particular
APUF instance; otherwise, model w is a random model and it should be ignored.
Note that w can match with at most one APUF instance, because if the model
w corresponds to a particular APUF instance, then only this instance can have
the matching probability ≥ 0.9 or ≤ 0.1, and for the other APUF instances, the
matching probability would be around 0.5 due to the good uniqueness property
of simulated APUF instances.

For the given Q, we measure the noise rate of each APUF with respect to
the challenges present in Q. Subsequently, we rank the 10 APUF instances of
10-XOR APUF, using numbers between 1 to 10, with respect to their noise rate,
i.e. the APUF with rank 1 has the highest noise rate. Let us denote the rank
of the APUF, for which a correct model is built in the i-th run of CMA-ES,
by ki. Note that if a model w does not match with any of the APUFs in i-th
run of CMA-ES, then we set ki = 0. Thus, after 100 runs of CMA-ES, we have
a set of rank values {k1, . . . , k100}, and we count how many times each rank
value appearing in this set {k1, . . . , k100}. Table 1 shows the rank values and its
corresponding counts.

From Table 1, it is evident that if an APUF instance is more noisy with
respect to a givenQ, then the built model w can match with that APUF instance
with high probability. In this case, rank 1 represents the APUF instances with
highest noise value in each run of CMA-ES, and its count value is 36. If we
estimate the probability of the 5 most noisy APUF instance, namely rank 1 to
5, the probability of having a correct is approximately 0.7 (70%).

The experimental result can be explained as follows. The challenge-reliability
pairsQ = {ci, Ri} can be divided into two parts, i.e., reliable challenge-reliability
pairs Qr and noisy challenge-reliability pairs Qn (see Section 2.3). For each
APUF instance Ai, it has its own set of noisy challenge-reliability pairs Qi,n ⊂
Qn, i = 0, . . . , 9. From the view of CMA-ES algorithm, it tries to converge to
the APUF instance which has the largest number of pairs in the combined set
Qr ∪Qi,n, i.e., highest Pearson correlation (see Step-4 of CMA-ES based attack
on APUF in Section 2.3). Since Qr is useful for modeling of all APUF instances,
the set Qi,n should be large to make the Qr∪Qi,n sufficient enough for modeling
the i-th APUF instance. In other words, the CMA-ES tries to converge to APUF
instance having largest value for |Qi,n|/|Q| (i.e. noise rate).

As a side remark, we built models of all the APUF instances in these 100
runs of CMA-ES.

10 Nguyen et al.

3.2 Experiment-II

Objective of this experiment is to investigate how many different APUF models
can be built if we execute CMA-ES many times using the same Q.

In this case, we follow the same experiment setup as in Experiment-I with
the exception that the same set Q is used for 100 runs of CMA-ES.

Result and Discussion. After the 100 runs of CMA-ES, we are able to model
only five APUF instances out of 10 APUFs in 10-XOR APUF. This happened
due to the probabilistic nature of CMA-ES, and the correlation between the
built model and the noise rate which is shown in Experiment-I. Moreover, this
experiment shows that the efficient approach for building all APUF models is
to use different set Q in each run, i.e., the models of all PUFs are found in 100
runs when Q is randomly generated in each run (Experiment-I).

3.3 Experiment-III

Objective of this experiment is to investigate under which condition Becker’s
attack cannot build a model for a particular APUF in XOR APUF. We want to
show that if the noise rate of APUF instances presenting at the XOR APUF’s
output are not equally (i.e., drawn from different distribution), then there are
some APUF instances cannot be built by Becker’s attack.

Setup. We perform the following extreme test. We execute the CMA-ES for
APUF on 2-XOR APUF 100 times. The 2-XOR APUF consists of two APUF
instances, namely A0 and A1, which are simulated using the Matlab as described
in Section 5, and the noise rate of both APUFs are set at 1%. In each run, we
use a newly generated set Q of size 70× 103, and each challenge is evaluated 11
times. In this setup, we try to manipulate the reliability information presented
in the final output, such that A0 always has lower noise rate in the measured
data set Q. This is achieved by applying the majority voting of responses of A0

before XOR-ing it with the response of A1. In majority voting, we have tried
with 5 and 10 measurements to observe the modeling performance. Let M be
the number of measurements used in majority voting.

Result and Discussion. The experimental results are shown in Table 2. The
second and the fourth columns refer to the counts of correct model building
corresponding to A0 and A1, respectively, in 100 runs of CMA-ES. The third
and the fifth columns describe the reliability of A0 and A1 measured just before
XOR-ing, respectively, with mean (µ) and standard deviation (σ). From Table 2,
it is prominent that if M is sufficiently large (≥ 10), then Becker’s attack cannot
build a model for A0 as its reliability is enhanced by applying the majority voting
compared to A1.

Applying the majority voting for A0 with a sufficiently large value for M ,
we can prevent the attacker to build a model for A0 using Becker’s attack, but
this does not make the design secure, as the output of A0 is exposed by XOR-
ing the outputs of A1 and 2-XOR APUF. Thus, eventually, the attacker can
build a model for A0 in straightforward way. But the lesson we learned from

MXPUF: Secure PUF Design against State-of-the-art Modeling Attacks 11

Table 2: Results of Experiment-III

M† A0 A1

Count Reliability (µ, σ) Count Reliability (µ, σ)

5 8 (99.72%, 0.02) 92 (98.82%,0.05)
10 0 (99.58%, 0.02) 99 (98.78%,0.06)
† No. of measurements used in the majority voting of A0.

this experiment is that if we can create two APUFs with two different noise
rates, then the influence of reliability of A0 and A1 on the final output r of
XOR APUF is also different or unequal in terms of noise. Even if the gap is very
small as shown in Table 2, the attack fails to build a model of A0. As studied in
Experiment-I, if the noise of one APUF instance is always smaller than others,
then that APUF is hidden from the attacker.

3.4 Lessons from the Experiments

After all experiments above, to successfully attack a PUF design based on APUFs
the following conditions should be satisfied.

1. All APUF instances’ outputs must have the same influence on the final
output of PUF design.

2. The noise rate of all APUF instances should be similar.

In next section, we present the security and reliability analyses of the pro-
posed MXPUF based on the insights of Becker’s attack.

4 Security and Reliability Analyses of (x, y)-MXPUF

In this section, we analyze the security and reliability of our MXPUF design.
In particular, we discuss how to select values for x and y, and where to insert
the response of the upper layer x-XOR PUF in the intermediate challenge of the
lower layer y-XOR PUF. We start with analyzing the role of challenge bit c[j]
in a component APUF’s output r, j = 0, . . . , n− 1. After this, we introduce and
study a simplified version of a (x, y)-MXPUF, and then, extend this analysis to
(x, y)-MXPUF.

4.1 Influence of challenge bit c[j] in APUF’s output r

The influence of a challenge bit on APUF’s response depends on its position in
the challenge c [17,5,18]. From Eq. (1), it can be observed that Φ[j+1], . . . ,Φ[n−
1] do not depend on the challenge bit c[j]. For a given challenge c, based on the
linear delay model of APUF, the delay difference ∆ can be described as:

∆ = (1− 2c[j])×∆F +∆N , (8)

12 Nguyen et al.

where ∆F =
∑j

i=0 w[i] Φ[i]
(1−2c[j]) , and ∆N =

∑n
i=j+1 w[i]Φ[i].

One can notice that ∆N does not depend on c[j]. Let ∆j,0 be ∆ = ∆F +∆N

when c[j] = 0 and r0 be the corresponding response. Similarly, ∆j,1 be ∆ =
−∆F +∆N when c[j] = 1, and r1 be the corresponding response. If ∆j,0×∆j,1 ≥
0 (or equivalently |∆F | ≤ |∆N |), then it results in r0 = r1.

We follow existing PUF literature and assume that when generating an
instance of an APUF all wi are sampled from the same normal distribution
N (0, σ2) [13,12], and hence, ∆F ∼ N (0, (j+1)×σ2) and ∆N ∼ N (0, (n−j)×σ2).
This implies that the probability Pr(r0 = r1) decreases with the increasing value
of j, i.e.,

Pr(r0 = r1) ≈ (n− j)/n, j = 0, . . . , n− 1 (9)

Thus, contribution of each challenge bit in security are not equal, which is an
undesirable property.

This analysis is similar to that of Strict Avalanche Criterion (SAC) property
of APUF discussed in [17,5,18]. The SAC property of a PUF refers to the rela-
tionship between the responses r and r′ of two challenges c and ci, respectively,
where c and ci differ in the i-th bit. A PUF design with n-bit challenge is said
to satisfy SAC property if Pr(r 6= ri) = 0.5 for all i = 0, . . . , n − 1. It is worth
mentioning that the SAC property of APUF is not affected significantly by the
reliability of APUF [18].

Now, we analyze the security and reliability of proposed MXPUF by exploit-
ing the SAC property of APUF.

4.2 CASE-I: (1,1)-MXPUF

In (1, 1)-MXPUF, the upper layer consists of a single component APUF Au

and the lower layer consists of a single component APUF Al. Let us denote
the responses to Au and Al by a and r, respectively. The final response of the
(1, 1)-MXPUF is response r of the lower layer.

Reliability of (1,1)-MXPUF In order to determine the effect of measure-
ment noise, we evaluate a challenge c twice. Let (a0, r0) and (a1, r1) denote the
corresponding outputs of Au and Al. We assume that the two APUFs Au and
Al have the same noise rate β, i.e., Pr(a0 6= a1) = Pr(r0 6= r1|a0 = a1) = β
where the probability is over the noise distribution—we actually assume the
stronger statement that for any two manufactured APUFs Au and Al we have
this property.

Suppose that i+1 is the feedback position of output a of Au in the (n+1)-bit
challenge of Al. We derive

Pr(r0 6= r1) = Pr(r0 6= r1|a0 = a1)Pr(a0 = a1) + Pr(r0 6= r1|a0 6= a1)Pr(a0 6= a1)

= β(1− β) +

(
i+ 1

n+ 1

)
β. (10)

In practice, β � 1, and thus, (10) is approximately equal to β + β i
n .

MXPUF: Secure PUF Design against State-of-the-art Modeling Attacks 13

We notice that our analysis shows that the reliability information of Au

and Al available at the output of (1, 1)-MXPUF are not equal : Al contributes
approximately β while Au contributes approximately β i

n .

Security of (1, 1)-MXPUF In this section, we discuss the security of the
(1,1)-MXPUF with respect to Becker’s attack and traditional modeling attacks.
We also discuss a new type of attack on this structure to complete our analysis.

Becker’s attack. Due to the unequal contribution of Au and Al to the reliabil-
ity information extracted from the MXPUF, the model for Au cannot be built
as mentioned in Section 3.3. We performed an experiment where the position i
at which a is inserted in the lower layer varies from 0 to n− 1; our experiment
confirms that the model of Au cannot be built. To build the model of Al, for a
given challenge c, we need to know the output a in order to compute the ∆ for R′

(see Eq. (6)). Since a cannot be accurately predicted by the attacker, modeling
of Al becomes impossible as well and Becker’s attack fails for (1, 1)-MXPUF.

Traditional modeling attack. (1, 1)-MXPUF is not secure: For example, we
can perform CMA-ES based modeling to learn Au and Al at the same time based
on the CRPs of the (1, 1)-MXPUF (instead of challenge reliability information
pairs).

Linear approximation based modeling attack. We consider the following
cryptanalysis attack on (x ≥ 1,1)-MXPUFs. We develop the attack based on the
following observations:

1. The lower level y-XOR APUF consists of only one (y = 1) APUF instance
Al, which has one more bit in its challenge which comes from the upper level
x-XOR APUF.

2. The impact of a on the output of MXPUF depends on the feedback position
of a as discussed in Section 4.1.

We linearly approximate the (x, 1)-MXPUF, which we will denote by P , by
using the (n + 1)-bit APUF Al with a substituted by 0. For a given challenge
c = (c[0], . . . , c[i], c[i+ 1], . . . , c[n− 1]), we compute:

papprox = Pr(Al(c
′) = P (c)),

where c′ = (c[0], . . . , c[i], 0, c[i+ 1], . . . , c[n− 1]).

If papprox is high, then the MXPUF is accurately approximated by APUF
Al which is vulnerable to the described modeling attacks: We can use a machine
learning technique to build the model of Al based on either CRPs or reliability
information.

For the sake of analysis, we assume that all APUF components in the (x, 1)-
MXPUF are a 100% reliable, and the output a of the x-XOR APUF is uniform,

14 Nguyen et al.

i.e., Pr(a = 0) = Pr(a = 1) = 1/2. Then,

papprox = Pr(Al(c
′) = P (c))

= Pr (Al(c
′) = P (c)|a = 0) Pr(a = 0) + Pr(Al(c

′) = P (c)|a = 1)Pr(a = 1)

= 1× 1/2 +
n− i
n
× 1/2 = 1/2 +

n− i
2n

. (11)

Equation (11) shows hat papprox decreases while i increases. We performed
an experiment with i = 0, n/2 and n − 1 for the (1, 1)-MXPUF, which we ap-
proximated by a single APUF as described above. The experiment tells us that
papprox can be around 97%, 77% and 50% when i = 0, n/2 and n−1, respectively.
This experimental result matches Eq. (11). We notice that the same argument
can be used to show that a (x, y)-MXPUF can be approximated by a single
y-XOR APUF.

4.3 CASE-II: (x, y)-MXPUF

Based on the above analysis of (x ≥ 1, 1)-MXPUF, we can now explain how to
choose the parameters x, y and feedback position i of a.

Security Analysis We will show: i) MXPUF is secure against Becker’s attack
and traditional modeling attacks, ii) the importance of the parity of y, and iii)
why a should be inserted at the middle of challenge c.

Becker’s attack The security argument for the (1, 1)-MXPUF copies over to
the (x, y)-MXPUF in that Becker’s attack fails, i.e., the adversary cannot build
models for the x component APUFs in the x-XOR APUF if a is inserted at
the middle position. She cannot build models of the y component APUFs in
the y-XOR APUF as a cannot be predicted. As shown in [6], the adversary can
change the environmental condition to get more ‘noisy’ challenges and thus, the
efficiency of the attacks in [2] can be improved in terms of the number of CRPs
used. However, the combined attacks of [2] and [6] will still not work because of
the same argument.

Linear approximation based modeling attack As discussed above, we can
approximate (x, y)-MXPUF by a y-XOR APUF. It is evident that when y
increases, then the prediction accuracy of the approximated y-XOR PUF de-
creases. For y = 2 and the feedback position at the middle (i.e., papprox = 75%),
the prediction accuracy of approximated model of y(= 2)-XOR PUF is equal to
p2approx = 75% × 75% = 56%, and it is the upper bound for this attack when
y ≥ 2 since introducing more APUF instances in y-XOR APUF decreases the
prediction accuracy of final model. This implies that for y ≥ 2, (x, y)-MXPUF
is secure against this attack.

MXPUF: Secure PUF Design against State-of-the-art Modeling Attacks 15

Traditional modeling attacks When the two aforementioned modeling at-
tacks are ruled out, the only other known way to attack is to build models of
all (x+ y) component APUFs at the same time using traditional methods. Let
b0, b1, . . . , by−1 be the outputs of the y APUFs in the lower layer y-XOR PUF
for a substituted by 0. Since traditional modeling attacks work best if no mea-
surement noise is present, we assume no measurement noise at all. This means
that Section 4.1 is applicable: For a given challenge c, bi depends on the upper
layer output a (in that bit bi would flip if a would be substituted by 1) with
probability p = (i+1)/(n+1) ≈ i/n if the feedback position of a is i (the proba-
bility is taken over the possible manufacturing variations which produce each of
the component APUFs). For a given challenge c, let pr be the probability that
the response of (x, y)-MXPUF is equal to r = 1⊕ b0 ⊕ . . .⊕ by−1 if a would be
substituted by 1. I.e., pr is the probability that a affects the the final response
r. Then pr depends on i:

pr =

y∑
k=1,k odd

(
y

k

)
pk(1− p)y−k =

1− (1− 2p)y

2
. (12)

From Eq. (12) we infer that, for odd y, the influence of a on r reduces when
the feedback position of a is towards the least significant challenge bit position.
For even value of y, the influence of a increases when feedback position of a
drifts from the very last bit of challenge to the middle bit position and then it
decreases when moving a from the middle position to the very first bit challenge.

From the next discussion on reliability and experiments we obtain that a
should be inserted at the middle position and y = 3 (it must be ≥ 2 in order
not to be vulnerable to the linear approximation based modeling attack). This
gives a (x, 3)-MXPUF with the feedback position at the middle. Compared to
an (x+ 3)-XOR APUF, it has almost similar security against modeling attacks
such as LR and CMA-ES [20,27]. Moreover, it is secure against Becker’s attack.

Reliability analysis From the above security analysis, we know that y must
be ≥ 2 in order not to be vulnerable to the linear approximation based modeling
attack. For best reliability (least influence of measurement noise), y = 3 is the
optimal choice.

We now compare the reliability of (x, 3)-MXPUF and (x + 3)-XOR APUF.
Let βx and βy be the noise rates of the x-XOR APUF and (y = 3)-XOR APUF.
Then the noise rate of the (x + 3)-XOR APUF is βx(1 − βy) + βy(1 − βx) =
βx + βy − 2βxβy. If βy � βx < 1 when y = 3 � x, the noise is approximated
by βx + βy. We can further approximate it by using the fact βy � βx, i.e., the
noise rate of (x+ 2)-XOR APUF is equal to βx.

Actually, the noise of MXPUF can be computed as βy + βx × pr ≈ βx ×
1−(1−2p)y

2 where p = i/n and i is the feedback position of a. The noise rate of
(x, 3)-MXPUF can be approximated as βx/2 when a is inserted at the middle
position (i.e., i = n/2 and p = 1/2), and thus, it is equal to half of that of
(x+3)-XOR APUF. We confirm these approximations of the noise rates through
experiments in Section 5.1.

16 Nguyen et al.

5 Simulation Results

We simulated the APUF variants using Matlab (for challenge sizes of 64-bit)
assuming that propagation delay of each delay component follows normal distri-
bution with µ = 10 and σ = 0.05. In case of simulation, we directly compare the
delays of top and bottom paths using an ideal comparator, so there is no impact
of the non-ideal arbiter component on the PUF behavior.

To evaluate the reliability metric of simulated APUF (as well as MXPUF and
XOR APUF), we have considered a simulated additive noise (in case of hardware
implementation this noise occurs due to temperature and supply voltage varia-
tions) with the delay distribution of delay components. In the presence of noise,
each delay component follows a normal distribution N (µ+ 0, σ2 +σ2

noise), where
noise distribution is a normal distribution N (0, σ2

noise). In our simulations, we
have used following relation between σ and σnoise to control the reliability levels:
σnoise = γσ, where 0 ≤ γ ≤ 1. For γ = 0, PUF instance is 100% reliable. In
case of hardware implementation on FPGA and ASIC, it not necessary to know
the value of γ as one can control the reliability level by changing the operating
temperature and supply voltage.

In this section, we do experiments to confirm our theoretical findings about
security and reliability of (x, y)-MXPUF

5.1 Reliability

To compare the reliability, we have simulated (x+y)-XOR APUF, (x, y)-MXPUF,
x-XOR APUF and y-XOR APUF for x = 20, and y = 2 and y = 3. In simula-
tion, we have used 64-bit APUFs, and the noise rate of each APUF is around
5%. To estimate the reliability, we evaluated each PUF design with 10 × 103

randomly generated challenges, and each challenge is measured 11 times to de-
termine whether it is noisy or not. If the repeatability of a challenge is 100%,
we say it is reliable; otherwise, it is a noisy challenge. The reliability of a PUF
is estimated as the fraction of reliable challenges.

We varied the feedback position of a from 0 to 64, and for each feedback
position, we measured the reliability of (x + y)-XOR APUF, (x, y)-MXPUF,
x-XOR APUF and y-XOR APUF. The simulated results are presented in Fig. 3.

Figures 3a and 3b show that the noise rate of (x + y)-XOR APUF and x-
XOR APUF are close to each other as the value of y is very small compared to
x (i.e. y = 2 or y = 3). The noise rate of y-XOR APUF is very small compared
to (x + y)-XOR APUF and x-XOR APUF. The noise rate of (x, 3)-MXPUF
increases when the feedback position increases from 0 to 64. However, the noise
rate of (x, 2)-MXPUF reaches the maximum value at feedback positions around
32. This is because of the parity of y (see Eq. (12)). The noise rate (x, 3)-MXPUF
is equal to half of the noise rate of (x+3)-XOR APUF when a is fed at the middle.
The experiments confirm our findings related to reliability (see Section 4).

MXPUF: Secure PUF Design against State-of-the-art Modeling Attacks 17

 0

 0.25

 0.5

 0.75

 1

 0 16 32 48 64

N
oi

se
 R

at
e

Feedback Position

(x+y)-XOR APUF
(x,y)-MXPUF

x-XOR APUF
y-XOR APUF

(a) x = 20 and y = 2

 0

 0.25

 0.5

 0.75

 1

 0 16 32 48 64

N
oi

se
 R

at
e

Feedback Position

(x+y)-XOR APUF
(x,y)-MXPUF

x-XOR APUF
y-XOR APUF

(b) x = 20 and y = 3

Fig. 3: Noise rate of (x+y)-XOR APUF, (x,y)-MXPUF, x-XOR APUF and y-
XOR APUF when noise rate of APUF is around 0.05.

 0.5

 0.6

 0.7

 0.8

6-XOR APUF (5,1)-MXPUF (4,2)-MXPUF (3,3)-MXPUF

Pr
ed

ic
tio

n
A

cc
ur

ac
y

Fig. 4: Modeling of (x+ y)-XOR APUF and (x, y)-MXPUF using CMA-ES and
CRPs of PUFs. Each boxplot is built using 10 prediction accuracy values of 10
different models of a PUF design.

5.2 Security

In this section, we present the security comparison between simulated (x + y)-
XOR APUF and (x, y)-MXPUF against modeling attack. Note that in this exper-
iment, all APUF instances are reliable, i.e., we do not consider Becker’s attack.
Since the linear delay model of MXPUF is not known, we have used the CMA-ES
with the CRPs for modeling MXPUF and XOR APUF. Our target is to compare
the security between XOR APUF and MXPUF, we can use small APUFs, i.e.,
20-bit APUFs. In modeling, we used the training and testing sets of 20 × 103

CRPs and 1000 CRPs, respectively. In each run of CMA-ES algorithm, we set
the number of iteration to 1000. We built the models for 6-XOR APUF, (5, 1)-,
(4, 2)- and (3, 3)-MXPUFs. We repeated the attack on each PUF 10 times, and
in each attack, the new set of training CRPs is randomly generated. The predic-
tion accuracy values of our attacks on these PUFs are reported in Fig. 4. This
figure shows that the security of (3,3)-MXPUF is slightly weaker than that of
6-XOR APUF. The security of (4,2)-MXPUF is poor compared to (3,3)-MXPUF
due to the value of y (see Eq. (12)). Since the output of MXPUF fully depends

18 Nguyen et al.

on the APUF instances in y-XOR PUF and partially depends on the APUF
instances in x-XOR APUF, the security of (x, y)-MXPUF would increase with
increasing value of y. In fact, the result of (4, 2)-MXPUF is acceptable in terms
of modeling attack, since a successful modeling attack is expected to have pre-
diction accuracy larger than 90% [28]. Moreover, the security of (5, 1)-MXPUF is
poorer compared to others. This is because of linear approximation based attack
mentioned in Section 4.

6 Conclusion

In this paper, we comprehensively studied the Becker’s attack based on relia-
bility information [2], and then, we proposed a new APUF composition (called
MXPUF). The MXPUF is secure against both the Becker’s attack [2] and tradi-
tional modeling attacks [20,27]. Compared to XOR APUF design, the security of
MXPUF against traditional modeling attack is slightly weaker than XOR APUF
while the same number of APUFs are used in the compositions. Moreover, the
reliability of (x, y)-MXPUF is twice the reliability of (x + y)-XOR APUF. We
verified all our findings through simulated PUFs.

Appendix

A Enhanced Repeatibility based CMA-ES on APUF

In the reliability based CMA-ES modeling, the efficiency of the model depends
on how the reliability (R) and hypothetical reliability (R′) values are defined.
Let us denote the reliability R in Eq. (5) by H1 and hypothetical reliability
R′ in Eq. (6) as H ′1. The fitness value of a model is defined as the correlation
between H1 and H ′1. In this section, we propose two alternative definitions for
(H1, H

′
1), namely, (H2, H

′
2) and (H3, H

′
3), and subsequently, we show that they

can build an APUF model using lesser number of CRPs than that required for
modeling using (H1, H

′
1). The (H2, H

′
2) and (H3, H

′
3) are defined as follows:

H2 = |M/2−
M∑
i=1

ri| and H ′2 = |∆| (13)

H3 =
1

M

M∑
i=1

ri and H ′3 = Φ(−∆/σN) (14)

Like the parameter ε in the modeling of APUF using (H1, H
′
1), the parameter

σN is to be learned while (H3, H
′
3) is used. Thus, in both the cases (H1, H

′
1) and

(H3, H
′
3), total number of parameters to be learned for an n-bit APUF is (n+2).

However, in the case of (H2, H
′
2) only (n+ 1) parameters w[0], . . . ,w[n] is to be

learned.
The only difference between (H1, H

′
1) and (H2, H

′
2) is H ′1 6= H ′2. The dis-

advantage of H ′1 is that it exploits transformed digital value of ∆ based on the

MXPUF: Secure PUF Design against State-of-the-art Modeling Attacks 19

Table 3: A comparison of 64-bit APUF’s modeling accuracy using CMA-ES

N† Modeling Accuracy(%)
(H1, H

′
1) (H2, H

′
2) (H3, H

′
3)

600 60.33 78.27 96.02
1500 69.60 96.64 97.80
3000 97.49 97.65 98.38
6000 97.85 97.98 98.40
† No. of CRPs is used to train a

model.

parameter ε, while the values of H1 lies in [0,M/2]. This results in less correlation
between H1 and H ′1. On the other hand, in H ′2, we have directly used absolute
value of ∆ (i.e. |∆|), and in this case, H2 and H ′2 exhibit better correlation
compared to (H1, H

′
1).

In H1 and H2, the polarity of response (i.e., whether it is 0 or 1) is not
considered while computing reliability information R. However, H3 retains the
response polarity information within the reliability information as reliability in-
formation lies in [0, 1]. In this case, we have borrowed the reliability formulation
shown in Eq. (3) to define H ′3. Since both the response polarity and reliability
information are used in mode building, (H3, H

′
3) yields a high accuracy APUF

model using less number of CRPs.

Table 3 depicts the modeling accuracy of 64-bit simulated APUF using CMA-
ES and reliability information. In this simulation, we have followed the same
setup as mentioned Section 5 with σnoise = σ/10. For this value of σnoise, the
reliability of APUF instances are around 96− 97%. From Table 3, it is evident
that CMA-ES modeling using our proposed (H2, H

′
2) and (H3, H

′
3) outperforms

the modeling using (H1, H
′
1) as proposed in [2]. In addition, (H3, H

′
3) outper-

forms (H2, H
′
2) as both the response polarity and reliability information are

considered in (H3, H
′
3). Although (H3, H

′
3) is better than (H2, H

′
2) for modeling

a standalone APUF, in the context of XOR APUF, we have observed from ex-
perimental result that the performance of (H1, H

′
1) and (H2, H

′
2) are superior

than (H3, H
′
3). One reason is the consideration response polarity in the H3 as it

makes the modeling task more difficult in the context of XOR APUF. Next, we
discuss the performance of (H1, H

′
1) and (H2, H

′
2) in the context of XOR APUF

modeling.

B Enhanced Repeatibility based CMA-ES on XOR
APUF

In Section 3, we have discussed the XOR APUF modeling using CMA-ES and
(H1, H

′
1). The (H1, H

′
1) was proposed by Becker in [2], and it works well for XOR

APUF. However, our proposed (H2, H
′
2) can achieved better modeling accuracy

for XOR APUF using less number of (c, R) pairs compared to (H1, H
′
1).

20 Nguyen et al.

Table 4: Modeling results of 4-XOR APUF using CMA-ES and different relia-
bility models

Model
setup

N† Modeling Acc.(%) Frequency?

A0 A1 A2 A3 A0 A1 A2 A3

(H
1
,H

′ 1
) 10 × 103 65.10 66.17 67.40 68.96 0 0 0 0

20 × 103 98.08 97.91 98.23 98.33 1 4 3 1
30 × 103 98.27 98.06 98.27 98.39 19 10 6 3
50 × 103 98.31 98.16 98.37 98.44 39 20 17 10

(H
2
,H

′ 2
) 10 × 103 97.53 97.09 97.10 95.24 22 24 31 8

20 × 103 97.86 97.75 97.74 97.78 24 29 29 17
30 × 103 98.08 97.89 98.02 98.12 47 27 20 6
50 × 103 98.17 98.06 98.23 98.27 50 29 16 5

† No. of CRPs is used to train an APUF as well as
4-XOR APUF models.

? No. of correct models (prediction accuracy > 90%)
for Ai out of 100 runs of CMA-ES.

To demonstrate the performance of (H2, H
′
2), we have simulated a 4-XOR

APUF in Matlab by following the same simulation setup as mentioned Section 5
with σnoise = σ/10. For this value of σnoise, the reliability of APUF instances
are around 96 − 97%. Table 4 shows the performance comparison of (H1, H

′
1)

and (H2, H
′
2) based on a simulated 4-XOR APUF modeling. In Table 4, we have

reported two aspect: i) modeling accuracy, and ii) frequency of the correct APUF
models (a correct model has prediction accuracy greater than 90). We have
run CMA-ES for 100 times, and it can be observed that (H2, H

′
2) results more

successful models than that of (H1, H
′
1). Let us consider the case of N = 10×103.

In this case, there is no successful model for APUFs if (H1, H
′
1) is used. However,

the attacker can build models for APUF using (H2, H
′
2) with N = 10 × 103.

Although (H2, H
′
2) is derived from (H1, H

′
1) with a small change in H ′1, this

modification results in an efficient modeling of XOR APUF.

References

1. Becker, G.T.: On the Pitfalls of using Arbiter-PUFs as Building Blocks. IACR
Cryptology ePrint Archive 2014, 532 (2014)

2. Becker, G.T.: The Gap Between Promise and Reality: On the Insecurity of XOR
Arbiter PUFs. In: Proc. of 17th International Workshop on Cryptographic Hard-
ware and Embedded Systems (CHES) (2015)

3. Brzuska, C., Fischlin, M., Schrauder, H., Katzenbeisser, S.: Physically Unclone-
able Functions in the Universal Composition Framework. In: Rogaway, P. (ed.)
CRYPTO, pp. 51–70 (2011)

4. Delvaux, J., Verbauwhede, I.: Side Channel Modeling Attacks on 65nm Arbiter
PUFs Exploiting CMOS Device Noise. In: IEEE 6th Int. Symposium on Hardware-
Oriented Security and Trust (2013)

MXPUF: Secure PUF Design against State-of-the-art Modeling Attacks 21

5. Delvaux, J., Gu, D., Schellekens, D., Verbauwhede, I.: Secure Lightweight Entity
Authentication with Strong PUFs: Mission Impossible? In: Proc. of 16th Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems (CHES).
pp. 451–475 (2014)

6. Delvaux, J., Verbauwhede, I.: Fault Injection Modeling Attacks on 65 nm Arbiter
and RO Sum PUFs via Environmental Changes. IEEE Trans. on Circuits and
Systems 61-I(6), 1701–1713 (2014)

7. Ganji, F., Tajik, S., Fäßler, F., Seifert, J.P.: Strong Machine Learning Attack
against PUFs with No Mathematical Model. In: CHES. pp. 391–411. Springer
Berlin Heidelberg (2016)

8. Ganji, F., Tajik, S., Seifert, J.P.: Why attackers win: on the learnability of XOR
arbiter PUFs. In: International Conference on Trust and Trustworthy Computing.
pp. 22–39. Springer International Publishing (2015)

9. Ganji, F., Tajik, S., Seifert, J.P.: PAC learning of arbiter PUFs. Journal of Cryp-
tographic Engineering 6(3), 249–258 (2016)

10. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Silicon physical random func-
tions. In: ACM CCS (2002)

11. Kumar, S., Guajardo, J., Maes, R., Schrijen, G.J., Tuyls, P.: Extended abstract:
The butterfly PUF protecting IP on every FPGA. In: HOST. pp. 67–70 (June
2008)

12. Lao, Y., Parhi, K.K.: Statistical Analysis of MUX-Based Physical Unclonable Func-
tions. IEEE Trans. on CAD of Integrated Circuits and Systems 33(5), 649–662
(2014)

13. Lim, D.: Extracting Secret Keys from Integrated Circuits. Master’s thesis, MIT,
USA (2004)

14. Lim, D., Lee, J.W., Gassend, B., Suh, G.E., van Dijk, M., Devadas, S.: Extract-
ing secret keys from integrated circuits. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 13(10), 1200–1205 (October 2005)

15. Maes, R., Verbauwhede, I.: Physically Unclonable Functions: A Study on the State
of the Art and Future Research Directions. In: Sadeghi, A.R., Naccache, D. (eds.)
Towards Hardware-Intrinsic Security, pp. 3–37. Information Security and Cryptog-
raphy, Springer, Berlin Heidelberg (2010)

16. Majzoobi, M., Koushanfar, F., Potkonjak, M.: Testing Techniques for Hardware
Security. In: Proc. of IEEE International Test Conference(ITC). pp. 1–10 (Oct
2008)

17. Majzoobi, M., Koushanfar, F., Potkonjak, M.: Techniques for Design and Imple-
mentation of Secure Reconfigurable PUFs. ACM Trans. Reconfigurable Technol.
Syst. 2(1), 1–33 (2009)

18. Nguyen, P.H., Sahoo, D.P., Chakraborty, R.S., Mukhopadhyay, D.: Security Anal-
ysis of Arbiter PUF and Its Lightweight Compositions Under Predictability Test.
ACM TODAES 22(2), 20 (2016)

19. Pappu, R.S.: Physical one-way functions. Ph.D. thesis, Massachusetts Institute of
Technology (March 2001)

20. Rührmair, U., Sehnke, F., Sölter, J., Dror, G., Devadas, S., Schmidhuber, J.: Mod-
eling attacks on physical unclonable functions. In: Proc. of 17th ACM conference
on Computer and communications security(CCS). pp. 237–249. ACM, New York,
NY, USA (2010)

21. Rührmair, U., Xu, X., Sölter, J., Mahmoud, A., Majzoobi, M., Koushanfar, F.,
Burleson, W.P.: Efficient Power and Timing Side Channels for Physical Unclonable
Functions. In: Proc. of 16th International Workshop on Cryptographic Hardware
and Embedded Systems (CHES). pp. 476–492 (2014)

22 Nguyen et al.

22. Sahoo, D.P., Saha, S., Mukhopadhyay, D., Chakraborty, R.S., Kapoor, H.: Com-
posite PUF: A New Design Paradigm for Physically Unclonable Functions on
FPGA. In: IEEE International Symposium on Hardware-Oriented Security and
Trust (HOST). Arlington, VA, USA (May 2014)

23. Sölter, J.: Cryptanalysis of Electrical PUFs via Machine Learning Algorithms.
Master’s thesis, Technische Universität München (2009)

24. Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication
and secret key generation. In: DAC. pp. 9–14 (2007)

25. Tajik, S., Lohrke, H., Ganji, F., Seifert, J.P., Boit, C.: Laser Fault Attack on Phys-
ically Unclonable Functions. In: 12th Workshop on Fault Diagnosis and Tolerance
in Cryptography (FTDC) (2015)

26. Tajik, S., Dietz, E., Frohmann, S., Seifert, J., Nedospasov, D., Helfmeier, C., Boit,
C., Dittrich, H.: Physical Characterization of Arbiter PUFs. In: Cryptographic
Hardware and Embedded Systems - CHES 2014 - 16th International Workshop,
Busan, South Korea, September 23-26, 2014. Proceedings. pp. 493–509 (2014)

27. Tobisch, J., Becker, G.T.: On the Scaling of Machine Learning Attacks on PUFs
with Application to Noise Bifurcation. In: Proc. of 11th International Workshop on
Radio Frequency Identification: Security and Privacy Issues (RFIDsec). pp. 17–31
(2015), http://dx.doi.org/10.1007/978-3-319-24837-0_2

28. Vijayakumar, A., Kundu, S.: A novel modeling attack resistant PUF design based
on non-linear voltage transfer characteristics. In: DATE. pp. 653–658 (2015)

29. Yu, M.D.M., M’Räıhi, D., Sowell, R., Devadas, S.: Lightweight and Secure PUF
Key Storage Using Limits of Machine Learning. In: CHES. pp. 358–373 (2011)

http://dx.doi.org/10.1007/978-3-319-24837-0_2

	MXPUF: Secure PUF Design against State-of-the-art Modeling Attacks
	Introduction
	Background Arbiter PUF
	Linear Additive Delay Model
	Repeatability Models of APUFs
	Variability vs. Noise
	Repeatability Model of an APUF

	Repeatability based CMA-ES on APUFs

	Becker's Attack on XOR APUF: Insights
	Experiment-I
	Experiment-II
	Experiment-III
	Lessons from the Experiments

	Security and Reliability Analyses of (x,y)-MXPUF
	Influence of challenge bit c[j] in APUF's output r
	CASE-I: (1,1)-MXPUF
	Reliability of (1,1)-MXPUF
	Security of (1,1)-MXPUF

	CASE-II: (x,y)-MXPUF
	Security Analysis
	Reliability analysis

	Simulation Results
	Reliability
	Security

	Conclusion
	Enhanced Repeatibility based CMA-ES on APUF
	Enhanced Repeatibility based CMA-ES on XOR APUF

