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Abstract

We present “Ouroboros Praos”, a new proof-of-stake blockchain protocol that provides,
for the first time, a robust distributed ledger that is provably secure in the semi-synchronous
adversarial setting, i.e., assuming a delay ∆ in message delivery which is unknown to protocol
participants, and fully adaptively secure, i.e., the adversary can choose to corrupt any participant
of an ever evolving population of stakeholders at any moment as long the stakeholder distribution
maintains an honest majority of stake at any given time. To achieve that, our protocol puts to use
forward secure digital signatures and a new type of verifiable random functions that maintains
unpredictability under malicious key generation, a property we introduce and instantiate in the
random oracle model. Our security proof entails a combinatorial analysis of a class of forkable
strings tailored to semi-synchronous blockchains that may be of independent interest in the
context of security analysis of blockchain protocols.

1 Introduction

The design of proof-of-stake blockchain protocols has been identified early on as an important
objective in blockchain protocol design; a proof-of-stake blockchain substitutes the proof-of-work
component in Nakamoto’s blockchain protocol [Nak08] while still providing similar guarantees in
terms of transaction processing in the presence of a dishonest minority of users, where this “minor-
ity” is to be understood here in the context of stake rather than computational power.

The basic security properties of blockchain protocols from a cryptographic point of view were
first identified in [GKL15] and further studied in [KP15, PSS17]; these include common prefix,
chain quality and chain growth and refer to resilient qualities of the underlying data structure of
the blockchain in the presence of an adversary that attempts to subvert them.

Proof-of-stake protocols follow a structure that is typified by the following characteristics. Based
on her local view, a party is capable of deciding, in a publicly verifiable way, whether she is permitted
to produce the next block. Assuming the block is valid, other parties update their local views by
adopting the block, and proceed in this way ad infinitum. At any moment, the probability of
being permitted to issue a block is proportional to the relative stake a player has in the system, as
reported by the blockchain itself.
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It is easy to see that the above mechanism requires some entropy to be regularly injected into
the system. This follows from the fact that as the stake shifts, together with the evolving population
of stakeholders, an adversary observing the system can predict possible identities that are likely to
be elected and transition the stake it possesses to those identities. Realizing this entropy injection
mechanism in a way that provably prevents biasing is a delicate task that so far has eluded a
practical solution that is secure against all possible attacks.

Our Results. We present “Ouroboros Praos”, a provably secure proof-of-stake protocol that is the
first to be secure against adaptive attackers and scalable in a truly practical sense. Our protocol
is based on a previous proof-of-stake protocol, Ouroboros [KRDO17], as its analysis relies on some
of the core combinatorial arguments that were developed to analyze that scheme. Nevertheless,
the protocol construction has a number of novel elements that require a significant recasting and
generalization of the previous combinatorial analysis. In more details our results are as follows.

In Ouroboros Praos, deciding whether a certain participant of the protocol is eligible to issue a
block is decided via a private test that is executed locally using a special verifiable random function
(VRF) on the current time-stamp and a nonce that is determined for a period of time known as an
“epoch”. The special feature of this VRF primitive, that is novel to our approach, is that the VRF
must have strong security characteristics even in the setting of malicious key generation: specifically,
if provided with an input that has high entropy, the output of the VRF is unpredictable, even when
adversary has subverted the key generation procedure. We call such VRF functions VRF with
“unpredictability under malicious key generation.” This security property and forward security
of the signature scheme are at the core of our security analysis for adaptive corruptions. Using
a signature scheme with forward security also allows us to relax the restrictions on the period
during which a stakeholder can be offline and on introduction of new stakeholders in comparison
to Ouroboros. Ouroboros Praos allows honest stakeholders to be offline for arbitrary amounts of
slots and allows a newly spawned stakeholder to be initialized with merely the genesis block.

In more detail, we analyze our protocol in the partial or semi-synchronous model, [DLS88,
PSS17]. In this setting, there is a maximum delay ∆ that is applied on message delivery and is
unknown to the protocol participants. In order to cope with the ∆-semisynchronous setting we
introduce the concept of “empty slots” which occur with sufficient frequency to enable short periods
of silence that facilitate synchronization. This feature of the protocol gives also its moniker, “Praos”,
standing for “mellow”, or “gentle”. Ensuring that the adversary cannot exploit the stakeholder
keys that it possesses to confuse or out-maneuver the honest parties, we develop a combinatorial
analysis to show that the simple rule of following the longest chain still enables the honest parties
to converge to a unique view with high probability. To accomplish this we revisit and expand the
forkable strings and divergence analysis of [KRDO17]. We remark that significant alterations are
indeed necessary: As we demonstrate in Appendix C, the protocol of [KRDO17] and its analysis is
critically tailored to synchronous operation and is susceptible to a desynchronization attack that
can completely violate the common prefix property. Our new combinatorial analysis introduces a
new concept of characteristic strings and “forks” that reflects silent periods in protocol execution
and network delays. To bound the density of forkable strings in this ∆-semisynchronous setting
we establish a syntactic reduction from ∆-semisynchronous characteristic strings to synchronous
strings of [KRDO17] that preserves the structure of the forks they support. This is followed by
a probabilistic analysis that controls the distortion caused by the reduction and concludes that
∆-semisynchronous forkable strings are rare. Finally, we control the effective power of adaptive
adversaries in this setting with a stochastic dominance argument that permits us to carry out the
analysis of the underlying blockchain guarantees (e.g, common prefix) with a single distribution that
provably dominates all distributions on characteristic strings generated by adaptive adversaries. We
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remark that these arguments yield graceful degradation of the analysis as a function of network
delays (∆), in the sense that the effective stake of the adversary is amplified by a function of ∆.

The above combinatorial analysis is nevertheless only sufficient to provide a proof of the static
stake case, i.e., the setting where the stake distribution that facilitates the honest majority as-
sumption remains fixed at the onset of the computation and prior to the selection of the random
genesis data that are incorporated in the genesis block. For a true proof-of-stake system, we should
permit the set of stakeholders to evolve over time and adapt our honest stakeholder majority as-
sumption. Achieving this requires a bootstrapping argument that allows the protocol to continue
ad infinitum by revising its stakeholder distribution as it evolves. We bootstrap our protocol in two
conceptual steps. First we show how bootstrapping is possible if a randomness beacon is available
to all participants. The beacon at regular intervals emits a new random value and the participants
can reseed the election process so the stakeholder distribution used for sampling could be brought
closer to the one that is current. A key observation here is that our protocol is resilient even if the
randomness beacon is weakened in the following two ways: (i) it leaks its value to the adversary
ahead of time by a bounded number of time units, (ii) it allows the adversary to reset its value if it
wishes within a bounded time window. We call the resulting primitive a “leaky resettable beacon”
and show that our bootstrapping argument still holds in this stronger adversarial setting.

In the final refinement of our protocol, we show how it is possible to implement the leaky
resettable beacon via a simple algorithm that concatenates the VRF outputs that were contributed
by the participants from the blockchain and passes them via a hash function that is modeled
as a random oracle. This implementation explains the reasons behind the beacon relaxation we
introduced: leakiness stems from the fact that the adversary can complete the blockchain segment
that determines the beacon value before revealing it to the honest participants, while resettability
stems from the fact that the adversary can try a bounded number of different blockchain extensions
that will stabilize the final beacon value to a different preferred value.

Putting all the above together, we show how our protocol provides a “robust transaction ledger”
in the sense that an immutable record of transactions is built that also guarantees that new trans-
actions will be always included. Our security definition is in the ∆-semisynchronous setting with
full adaptive corruptions. As mentioned above, security degrades gracefully as ∆ increases, and
this parameter is unknown to the protocol participants.

Comparison to previous works. The idea of proof-of-stake protocols has been discussed exten-
sively in the bitcoin forum. The concept of using a publicly verifiable test that is computed by each
participant locally to determine eligibility was realized in a number of cases, (e.g., NXT is a notable
cryptocurrency that early on adopted this approach). The benefits of using a verifiable random func-
tion to implement this test1(that we also use in our protocol) were also put forth and implemented
in NXT, with the same motivation as in ours: to control adaptive corruptions; nevertheless none of
these early proposals included a formal security model and adversarial analysis of their claims, even
though a number of relevant attacks such as “grinding attacks” were identified. Injecting high qual-
ity randomness in the PoS blockchain was proposed by Bentov et al. [BLMR14, BGM16], though
the proposal does not have a full formal analysis. The Ouroboros proof-of-stake protocol [KRDO17]
is provably secure; nevertheless, the corruption model used excludes full adaptive attacks by impos-
ing a corruption delay on the corruption requests of the adversary. The Snow White proof-of-stake
[DPS16] is the first protocol to prove security in the ∆-semi-synchronous model but, as in the case
of Ouroboros, adopts a weak adaptive corruption model. It is worth noting that Algorand [Mic16]

1More precisely in the form H(Sign(B.value)) < T where Sign(·) is the signature algorithm of the stakeholder,
B.value a certain value of the previous block, and T a bound that depends on the signer’s stake, the current time
and other parameters. Note that NXT does not use the terminology of VRFs.
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provides a proof-of-stake ledger that is adaptively secure; on the other hand, it employs a byzantine
agreement protocol for every block. While the Algorand agreement protocol is very efficient, it still
can only produce an inherently slower blockchain compared to an “eventual consensus” protocol
like the one we present that can effectively produce a blockchain that advances at the theoretical
maximum speed (one block per round). Finally, Sleepy consensus [PS16] puts forth a technique for
handling adaptive corruptions in a model that also encompasses fail-stop and recover corruptions;
however, the protocol can be applied directly only in a static stake setting. We note that in fact
our protocol can be also proven secure in such mixed corruption setting, where both fail-stop and
recover as well as byzantine corruptions are allowed (with the former occurring at an arbitrarily
high rate); nevertheless this is out of scope for the present exposition and we omit further details.
In the present exposition we also put aside the issue of incentives; nevertheless, it is straightfor-
ward to adapt the mechanism of input endorsers from protocol of [KRDO17] to our setting and its
approximate Nash equilibrium analysis can be ported directly.

2 Preliminaries

We say a function negl(x) is negligible if for every c > 0, there exists an n > 0 such that negl(x) <
1/xc for all x ≥ n. The length of a string w is denoted by |w|; ε denotes the empty string. For two
strings v, w we use v ‖w to denote their concatenation. Given a string w and two integers 1 ≤ a ≤
b ≤ |w|, we denote by wa:b the substring consisting of symbols in w on positions a, a+ 1, . . . , b.

2.1 Transaction Ledger Properties

We adopt the same definitions for transaction ledger properties as stated in Ouroboros [KRDO17].
A protocol Π implements a robust transaction ledger provided that the ledger that Π maintains

is divided into “blocks” (assigned to time slots) that determine the order with which transactions
are incorporated in the ledger. It should also satisfy the following two properties.

• Persistence. Once a node of the system proclaims a certain transaction tx as stable, the
remaining nodes, if queried, will either report tx in the same position in the ledger or will not
report as stable any transaction in conflict to tx. Here the notion of stability is a predicate
that is parameterized by a security parameter k; specifically, a transaction is declared stable
if and only if it is in a block that is more than k blocks deep in the ledger.

• Liveness. If all honest nodes in the system attempt to include a certain transaction, then
after the passing of time corresponding to u slots (called the transaction confirmation time),
all nodes, if queried and responding honestly, will report the transaction as stable.

In [KP15, PSS17] it was shown that persistence and liveness can be derived from the following
three elementary properties provided that protocol Π derives the ledger from a data structure in
the form of a blockchain.

• Common Prefix (CP); with parameters k ∈ N. The chains C1, C2 possessed by two

honest parties at the onset of the slots sl1 < sl2 are such that Cdk1 � C2, where Cdk1 denotes
the chain obtained by removing the last k blocks from C1, and � denotes the prefix relation.

• Chain Quality (CQ); with parameters µ ∈ (0, 1] and k ∈ N. Consider any portion of
length at least k of the chain possessed by an honest party at the onset of a round; the ratio of
blocks originating from the adversary is at most 1−µ. We call µ the chain quality coefficient.
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• Chain Growth (CG); with parameters τ ∈ (0, 1], s ∈ N. Consider the chains C1, C2

possessed by two honest parties at the onset of two slots sl1, sl2 with sl2 at least s slots ahead
of sl1. Then it holds that len(C2)− len(C1) ≥ τ · s. We call τ the speed coefficient.

2.2 The Semi-Synchronous Model

On a high level, we consider the security model of [KRDO17] with a simple modification to account
for adversarially-controlled message delays and immediate adaptive corruption. Namely, we allow
the adversary A to selectively delay any messages sent by honest parties for up to ∆ ∈ N slots; and
corrupt parties without delay.

We now give a description of all the differences of our model from the model of [KRDO17]. A
self-contained description of the model can be obtained in conjunction with Appendix A.

Two important functionalities considered here are the Delayed Diffuse functionality and the
Key and Transaction functionality, which are defined as follows.

Delayed Diffuse Functionality. This functionality is parametrized by ∆ ∈ N. It is denoted
as DDiffuse∆ and is defined exactly as the functionality Diffuse given in [KRDO17], except for two
differences:

1. When the adversary A is activated, besides performing any of the actions that were allowed
by the Diffuse functionality, it is also allowed to:

• For any message m obtained via a diffuse request and any party Ui, A may move m into
a special string delayedi instead of the inbox of Ui. A can decide this individually for
each message and each party.

• For any party Ui, A can move any message from the string delayedi to the inbox of Ui.

2. At the end of each round, the functionality also ensures that for every message that was either
(a) diffused in this round and not put to the string delayedi or (b) removed from the string
delayedi in this round, it is present in the inbox of party Ui. If any message currently present
in delayedi was originally diffused at least ∆ slots ago, then the functionality removes it from
delayedi and appends it to the inbox of party Ui.

3. Upon receiving (Create, U) from the environment, the functionality spawns a new user without
providing it an intial chain C as it was the case in [KRDO17].

Key and Transaction Functionality. This functionality manages user keys and transactions.
It is defined exactly as in [KRDO17], with one exception: it allows for instant corruptions of parties,
i.e., the delay D from [KRDO17] is set to D = 0.

Restrictions on the Environment. Similarly to [KRDO17] we apply some restrictions to the
environment in all executions but remark that these restrictions are weaker. As in [KRDO17],
we require that at least one honest stakeholder is activated at each slot and that, in every slot,
the adversary does not control more than 50% of the stake in the view of any honest stakeholder.

If this is violated, an event Bad
1
2 becomes true for the given execution. However, in contrast

to [KRDO17], we do not require that honest stakeholders are activated at least once every k slots
and the environment determine the delay between activations. Finally, we note that in all our
proofs, whenever we say that a property Q holds with high probability over all executions, we will

in fact argue that Q∨Bad
1
2 holds with high probability over all executions. This captures the fact

that we exclude environments and adversaries that trigger Bad
1
2 with non-negligible probability.
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Random Oracle. In some of our results, we also assume the availability of a random oracle.
As usually, this is a function H : {0, 1}∗ → {0, 1}w available to all parties that answers every fresh
query with an independent, uniformly random string from {0, 1}w, while any repeated queries are
answered consistently.

Erasures. We assume that honest users can do secure erasures, which is argued to be a reasonable
assumption in protocols with security against adaptive adversaries, see e.g., [Lin09].

2.3 Verifiable Random Functions

Informally, a Verifiable Random Function (VRF) is a pseudorandom function that produces non-
interactive and publicly verifiable proofs of correctness of its outputs. Given an input x, a prover
who possesses a secret key VRF.sk can compute a pseudorandom output y = FVRF.sk(·) along with a
proof πVRF.sk(x) that allows a verifier to check that y is indeed the correct output of FVRF.sk(x) with
respect to the corresponding public key VRF.pk. VRFs are required to be unique, meaning that for
every pair of input and public key there exists only one output and proof pair that is valid in relation
to that public key; and pseudorandom, meaning that outputs are computationally indistinguishable
from random strings of the same size even after many other outputs and accompanying proofs are
revealed. VRFs were first introduced by Micali et al. [MRV99] and the first construction with
constant key and proof sizes was proposed by Dodis et al. [DY05]. Formal definitions are presented
in Appendix B.1.

2.4 Forward Secure Signatures Schemes

In regular digital signature schemes, an adversary who compromises the signing key of a user can
generate signatures for any messages it wishes, including messages that were (or should have been)
generated in the past. Forward secure signature schemes [BM99] prevent such an adversary from
generating signatures for messages that were issued in the past, or rather allows honest users to
verify that a given signature was generated at a certain point in time. Basically, such security
guarantees are achieved by “evolving” the signing key after each signature is generated and erasing
the previous key in such a way that the actual signing key used for signing a message in the past
cannot be recovered but a fresh signing key can still be linked to the previous one. This notion is
formalized through key evolving signature schemes, which allow signing keys to be evolved into fresh
keys for a number of time periods. We remark that efficient constructions of key evolving signature
schemes with forward security exist [IR01]. Formal definitions are presented in Appendix B.2.

3 The Static Case

We first consider the static case, where the stake distribution is fixed throughout protocol execu-
tion. The general structure of the protocol in the semi-synchronous model is very similar to that
of synchronous Ouroboros [KRDO17] but requires two fundamental modifications to the leader
selection process: not all slots will be attributed a slot leader, some slots might have more than
one slot leader and slot leaders’ identities remain unknown until they act. The first modification
is used to deal with delays in the semi-synchronous network as the empty slots where no block
is generated assist the honest parties to synchronize. The last modification is used to deal with
adaptive corruptions, as it prevents the adversary from learning the slot leaders’ identity ahead of
time and using this knowledge to corrupt just enough of them in order to create arbitrary forks.
Before describing the specifics of the new leader selection process and the new protocol, we first
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formally define the static stake scenario and introduce basic definitions as stated in [KRDO17]
following the notation of [GKL15].

Setup: In the static stake case, we assume that a fixed collection of n stakeholders U1, . . . , Un
interact throughout the protocol. Stakeholder Ui possesses si stake before the protocol starts. For
each stakeholder Ui a verification and signing key pair (KES.vki,KES.ski,1) for R time periods (cor-
responding to the slots in the epoch) for a prescribed key evolving signature scheme are generated,
a public and secret key pair (VRF.pki,VRF.ski) for a VRF are generated and a stakeholder secret
and public key pair (pki = (KES.vki,VRF.pki), ski = (KES.ski,1,VRF.ski) is set; we assume without
loss of generality that all the stakeholders know the public keys

pk1 = (KES.vk1,VRF.pk1), . . . , pkn = (KES.vkn,VRF.pkn) .

Definition 3.1 (Genesis Block). The genesis block B0 contains the list of stakeholders identified
by their public keys, their respective stakes (pk1, s1), . . . , (pkn, sn) and a nonce η.

With foresight we note that the nonce η will be used to seed the slot leader election process.

Definition 3.2 (State). A state is a string st ∈ {0, 1}λ.

Definition 3.3 (Block Proof). A block proof is a value (or set of values) Bπ containing information
that allows stakeholders to verify if a block is valid.

Definition 3.4 (Block). A block B generated at a slot slj ∈ {sl1, . . . , slR} contains the cur-
rent state st ∈ {0, 1}λ, data d ∈ {0, 1}∗, the slot number slj, a block proof Bπj and σj =
SignKES.ski,j ((st, d, slj , Bπj)), a signature under the signing key for the time period of slot slj of
the stakeholder Ui generating the block.

We consider as valid blocks that are generated by a stakeholder in the slot leader set of the slot
to which the block is attributed. Later on in this Section we discuss slot leader sets and how they
are selected.

Definition 3.5 (Blockchain). A blockchain (or simply chain) relative to the genesis block B0 is a
sequence of blocks B1, . . . , Bn associated with a strictly increasing sequence of slots for which the
state sti of Bi is equal to H(Bi−1), where H is a prescribed collision-resistant hash function. The
length of a chain len(C) = n is its number of blocks. The block Bn is the head of the chain, denoted
head(C). We treat the empty string ε as a legal chain and by convention set head(ε) = ε.

Let C be a chain of length n and k be any non-negative integer. We denote by Cdk the chain
resulting from removal of the k rightmost blocks of C. If k ≥ len(C) we define Cdk = ε. We let
C1 � C2 indicate that the chain C1 is a prefix of the chain C2.

Definition 3.6 (Epoch). An epoch is a set of R adjacent slots S = {sl1, . . . , slR}.

(The value R is a parameter of the protocol we analyze in this section.)

Definition 3.7 (Absolute and Relative Stake). Let UP , UA and UH denote the sets of all stakehold-
ers, the set of stakeholders controlled by an adversary A, and the remaining (honest) stakeholders,
respectively. For any party (resp. set of parties) X we denote by s+

X (resp. s−X) the maximum
(resp. minimum) absolute stake controlled by X in the view of all honest stakeholders at a given
slot, and by α+

X , s+
X/sP and α−X , s−X/sP its relative stake taken as maximum and minimum

respectively across of the view of all honest stakeholders. For simplicity, we use ss
X , α

s
X instead of

sUX , αUX for all X ∈ {P,A,H}, s ∈ {+,−}. We also call αA , α+
A and αH , α−H the adversarial

stake ratio and honest stake ratio, respectively.
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3.1 Oblivious Leader Selection and FINIT

As in synchronous Ouroboros, for each 0 < j ≤ R, a slot leader Ej is a stakeholder who is
elected to generate a block at slj . However, our leader selection process differs from synchronous
Ouroboros [KRDO17] in three points: (1.) potentially, multiple slot leaders may be elected for
a particular slot (forming a slot leader set), (2.) frequently, slots will have no leaders assigned
to them, and (3.) a priori, only a slot leader is aware that it indeed a leader for a given slot;
this assignment is unknown to all the other stakeholders—including other slot leaders of the same
slot—until the other stakeholders receive a valid block from this slot leader. The combinatorial
analysis presented in §4 shows (with an adaptively-determined honest stake majority) that (i.) forks
generated according to these dynamics are well-behaved even if multiple slot leaders are selected
for a slot and that (ii.) sequences of slots with no leader provide sufficient stability for honest
stakeholders to effectively synchronize. As a matter of terminology, we call slots with an associated
nonempty slot leader set active slots and slots that are not assigned a slot leader empty slots.

The fundamental leader assignment process calls for a stakeholder Ui to be selected as a member
of the slot leader set for a particular slot slj with probability pi depending on its stake registered
in the genesis block B0 and an active slots coefficient ; these assignments are independent between
slots. A precise description follows:

Definition 3.8 (Slot Leader Set and Active Slots Coefficient). A slot leader set for slot slj with
respect to stakeholder distribution (pk1, s1), . . . , (pkn, sn) and active slots coefficient f is a set Lj
such that, for all slj ∈ {sl1, . . . , slR}, each stakeholder Ui ∈ {U1, . . . , Un} is independently selected
to be in Lj (i.e. Ui ∈ Lj) with probability

pi = φf (αi) , 1− (1− f)αi ,

where αi is the relative stake held by stakeholder Ui; furthermore the family of random variables Lj
are independent.

We sometimes drop the subscript f and write φ(αi) when f can be inferred from context.

Remarks about φf (·). Observe that φf (1) = f ; in particular, the parameter f is the probability
that a party holding all the stake will be selected to be a leader for given slot. On the other hand,
φf () is not linear, but slightly concave. (See Figure 5, in the next section.) To motivate the choice
of the function φf , we note that it satisfies the “independent aggregation” property:

1− φ

(∑
i

αi

)
=
∏
i

(1− φ(αi)) . (1)

In particular, when leadership is determined according to φf , the probability of a stakeholder
becoming a slot leader in a particular slot is independent of whether this stakeholder acts as a single
party in the protocol, or splits its stake among several “virtual” parties. In particular, consider
a party U with relative stake α who contrives to split its stake among two virtual subordinate
parties with stakes α1 and α2 (so that α1 +α2 = α). Then the probability that one of these virtual
parties is elected for a particular slot is 1− (1−φ(α1))(1−φ(α2)), as these events are independent.
Property (1) guarantees that this is identical to φ(α). Thus this selection rule is invariant under
arbitrary reapportionment of a party’s stake among virtual parties.

In the static stake case, the genesis block is determined by an ideal initialization functionality
FINIT, defined in Figure 1. Notice that this functionality incorporates the diffuse and key/transaction
functionality apart from providing the stake distribution and random nonce data to be included in
the genesis block.
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Functionality FINIT

FINIT incorporates the diffuse and key/transaction functionality from Section 2.2 and is parameterized
by the public keys and respective stakes of the initial stakeholders

S0 = {(pk1 = (KES.vk1,VRF.pk1), s1), . . . , (pkn(KES.vkn,VRF.pk1), sn)} .

In addition, FINIT interacts with stakeholders U1, . . . , Un as follows:
• Upon receiving the first request of the form (genblock req, Ui) from some stakeholder Ui, FINIT

samples a random nonce η
$← {0, 1}λ and sends (genblock,S0, η) to Ui. Later requests from any

stakeholder are answered using the same value η.

Figure 1: Functionality FINIT.

3.2 VRFs with Unpredictability Under Malicious Key Generation

The usual pseudorandomness definition for VRFs (as stated in Definition B.1) captures the fact
that an attacker who sees a number of VRF outputs and proofs for a number of adversarially cho-
sen inputs generated under a secret and public key pair that is correctly generated by a challenger
cannot distinguish the output of the VRF on a new (also adversarially chosen) input from a truly
random string. However, this definition does not take into consideration malicious key generation,
i.e., adversaries who are allowed to generate the secret and pubic key pair used in the pseudoran-
domness experiment. If the adversary is allowed to generate its own key pair, there is no guarantee
that it cannot influence the distribution of the VRF outputs. In fact, for some known constructions
(e.g. [DY05]), an adversary that maliciously generates keys can easily and significantly skew the
output distribution. In order to implement oblivious slot leader set selection in our protocols, we
need a VRF for which the output distribution is not affected by maliciously chosen key pairs given
that the inputs have sufficient min-entropy. We call this property unpredictability under malicious
key generation and formally define it as follows.

Definition 3.9 (Unpredictability Under Malicious Key Generation). For an input distribution D
and any PPT algorithm A = (AK , AJ) that runs for a total of s(k) steps when its first input is 1k,

Pr

b = b′

∣∣∣∣∣∣∣∣
(VRF.pk,VRF.sk,Ast)← AK(1k);
x← D; y0 = FVRF.sk(x);
y1 ← {0, 1}`VRF ; b← {0, 1};
b′ ← AJ(yb, Ast)

 ≤ 1

2
+ negl(k)

The above definition is impossible to achieve for any distribution D but we will show that
any standard VRF (i.e., one that matches Definition B.1) can be transformed into a VRF with
unpredictability under malicious key generation for distributions D with high min-entropy in the
Random Oracle Model. Let H(·) be a random oracle, F·(·) : {0, 1}` → {0, 1}`VRF be a family of
VRFs with algorithms (Gen,Prove,Ver) with standard security as stated in Definition B.1 and D
be an input distribution. We construct a family of VRFs with unpredictability under malicious key
generation UF·(·) : {0, 1}` → {0, 1}`VRF with algorithms (UGen,UProve,UVer) that works as follows:

• UGen(1k) outputs a pair of keys (UVRF.pk,UVRF.sk)← Gen(1k).
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Protocol πSPoS

Let H(·) be a random oracle, F·(·) : {0, 1}` → {0, 1}`VRF be a family of unpredictable under malicious key
generation VRFs with algorithms (Gen,Prove,Ver) and KES = (Gen,Sign,Verify,Update) be a forward
secure key evolving signature scheme. Define Ti = 2`VRFφf (αi) as the threshold of a stakeholder Ui, where
`VRF is the length in bits of the VRF output, f is the active slots coefficient and φf is the mapping from
Definition 3.8. πSPoS is a protocol run by stakeholders U1, . . . , Un interacting among themselves and
with FINIT over a sequence of slots S = {sl1, . . . , slR}. πSPoS proceeds as follows:

1. Initialization Stakeholder Ui ∈ {U1, . . . , Un}, receives from the key registration interface its
public key pki = (KES.vki,VRF.pki) and secret key ski = (KES.ski,1,VRF.ski). Then it re-
ceives the current slot from the diffuse interface and sends (genblock req, Ui) to FINIT, receiving
(genblock,S0, η) as answer. Ui sets the local blockchain C = B0 = (S0, η) and the initial internal
state st = H(B0).

2. Chain Extension For every slot slj ∈ S, every online stakeholder Ui performs the following
steps:

(a) Collect all valid chains received via broadcast into a set C, pruning blocks belonging to future
slots and verifying that for every chain C′ ∈ C and every block B′ = (st′, d′, sl′, Bπ

′, σj′) ∈
C′ it holds that the stakeholder U ′ is in the slot leader set L′ of slot sl′ (by pars-
ing Bπ

′ as (pk′, y′, π′), verifying that VerVRF.pk′(η ‖ sl′, y′, π′) = 1, and that y′ < T ′),
VerifyKES.vk′((st

′, d′, sl′, Bπ
′), σj′) = 1 and that the signature σj′ is for the the time pe-

riod that corresponds to sl′. Ui computes C′ = maxvalid(C,C), sets C′ as the new local chain
and sets state st = H(head(C′)).

(b) Ui checks whether it is in the slot leader set Lj of slot slj by checking that y < Ti, where
(y, π) ← ProveVRF.ski(η ‖ slj). If yes, it generates a new block B = (st, d, slj , Bπj , σj)
where st is its current state, d ∈ {0, 1}∗ is the transaction data, Bπ = (pki, y, π) and
σj = SignKES.ski,j (st, d, slj , Bπj) is a signature on (st, d, slj , Bπj) for slot slj . Ui computes
C′ = C|B, sets C′ as the new local chain and sets state st = H(head(C′)).

(c) Execute Update(KES.ski,j) obtaining the signing key KES.ski,j+1 for the next slot, erases
the current signing key KES.ski,j . Finally, if Ui has generated a block in the previous step,
it broadcasts C′.

Figure 2: Protocol πSPoS.
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• UProveUVRF.sk(x) outputs a pair (UFUVRF.sk(x),U.πUVRF.sk(x)), where

UFUVRF.sk(x) = (H(x ‖FUVRF.sk(x)),FUVRF.sk(x)) ,

U.πUVRF.sk(x) = πUVRF.sk(x) , and

(FUVRF.sk(x), πUVRF.sk(x))← ProveUVRF.sk(x) .

• UVerVRF.pk(x, y,U.πUVRF.sk(x)) parses y as (y1, y2) and outputs 1 if

y1 = H(x ‖ y2) and VerUVRF.pk(x, y2,U.πUVRF.sk(x)) = 1 .

Otherwise, it outputs 0.

Theorem 3.10. Let H(·) be a random oracle, F·(·) : {0, 1}` → {0, 1}`VRF be a family of VRFs
with algorithms (Gen,Prove,Ver) with standard security as stated in Definition B.1 and D be an
input distribution with k bits of min-entropy. The family of VRFs UF·(·) : {0, 1}` → {0, 1}`VRF
with algorithms (UGen,UProve,UVer) constructed above is secure with respect to Definition B.1 and
achieves unpredictability under malicious key generation as stated in Definition 3.9.

The proof is given in Appendix D.

3.3 The Protocol in the FINIT-hybrid model

We will construct our protocol for the static case in the FINIT-hybrid model, where the genesis
stake distribution S0 and the nonce η (to be written in the genesis block B0) are determined by
the ideal functionality FINIT. Moreover FINIT also incorporates the diffuse and key/transaction
functionality from Section 2.2, which sets stakeholders’ public and secret key pairs and diffuses
messages among stakeholders. The stakeholders U1, . . . , Un interact among themselves and with
FINIT through Protocol πSPoS described in Figure 2.

The protocol relies on a maxvalidS(C,C) function that chooses a chain given the current chain
C and a set of valid chains C that are available in the network. In the static case we analyze the
simple “longest chain” rule.

Function maxvalid(C,C): Returns the longest chain from C ∪ {C}. Ties are broken in
favor of C, if it has maximum length, or arbitrarily otherwise.

We describe protocol πSPoS in terms of a forward secure key evolving signature scheme KES
and a VRF with unpredictability under malicious key generation F·(·) : {0, 1}` → {0, 1}`VRF , which
we instantiate via constructions proven secure through game based arguments. However, in the
security analysis presented in the next section, we refer to πiSPoS, an idealized version of πSPoS

where these primitives are treated as ideal functionalities. This allows us to focus attention on
the combinatorial and stochastic arguments relevant for establishing the structural properties of
the resulting blockchain. We remark that the forward secure signature scheme and VRF with un-
predictability under malicious key generation we use are variations of standard signature schemes
and VRFs, which have been shown to realize corresponding ideal functionalities [Can04, CL07].
Standard UF-CMA signature schemes are shown to be UC secure in [Can04], while [CL07] intro-
duces the notion of simulatable VRFs, which can be cast as an ideal functionality realizable in the
random oracle model (adopted in this paper). Generic constructions of forward secure key evolv-
ing signature schemes from any UF-CMA secure signature scheme that could be used to realize
an ideal functionality for this primitive are shown in [MMM02], while our generic construction of
VRFs with unpredictability under malicious key generation operates in the random oracle model,
which is amenable to simulation based arguments.
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4 Combinatorial Analysis of the Idealized Protocol

The idealized protocol πiSPoS yields a stochastic process for assigning slots to parties which we
abstract and study here in detail. Our analysis of the resulting blockchain dynamics proceeds
roughly as follows: We begin by generalizing the framework of “forks” [KRDO17] to our semi-
synchronous setting—this is a natural bookkeeping tool that reflects the chains possessed by honest
players during an execution of the protocol. We then establish a simulation rule that associates with
each execution of the semi-synchronous protocol an execution of a related “virtual” synchronous
protocol. Motivated by the setting with a static adversary—which simply corrupts a family of
parties at the outset of the protocol—we identify a natural “generic” probability distribution for
this simulation theorem which we prove controls the behavior of adaptive adversaries by stochastic
domination. Finally, we prove that this simulation amplifies the effective power of the adversary in a
controlled fashion and, furthermore, permits forks of the semi-synchronous protocol to be projected
to forks of the virtual protocol in a way that preserves their relevant combinatorial properties. This
allows us to apply the density theorems and divergence result of [KRDO17, RMKQ17] to provide
strong common prefix (§4.5), chain quality (§4.7), and chain growth (§4.6) guarantees for the semi-
synchronous protocol with respect to an adaptive adversary.

We begin in §4.1 with a discussion of characteristic strings, semi-synchronous forks, and their
relationship to executions of πiSPoS. §4.2 then develops the combinatorial reduction from the semi-
synchronous to the synchronous setting. The “generic, dominant” distribution on characteristic
strings is then motivated and defined in §4.3, where the effect of the reduction on this distribution
is also described. Sections §4.5–4.6, as described above, establish various guarantees on the resulting
blockchain under the dominant distribution. The connection to adaptive adversaries is established
in §4.8. Finally, in preparation for applying the idealized protocol in the dynamic stake setting,
we formulate a “resettable setting” which further enlarges the power of the adversary by providing
some control over the random nonce that seeds the protocol.

4.1 Chains, Forks and Divergence

We begin by suitably generalizing the framework of characteristic strings, forks, and divergence
developed in [KRDO17] to our semi-synchronous setting. The leader assignment process given by
protocol πiSPoS assigns leaders to slots with the following guarantees: (i.) a party with relative
stake α becomes a slot leader for a given slot with probability φf (α) , 1 − (1 − f)α; (ii.) the
event of becoming a slot leader is independent for each party and for each slot. Clearly, these
dynamics may lead to slots with multiple slot leaders and, likewise, slots with no slot leader. For
a given adaptive adversary A and environment Z, we reflect the outcome of this process with a
characteristic string, as follows.

Definition 4.1 (Characteristic string). Let S = {sl1, . . . , slR} be a sequence of slots of length R
and A an adversary. For a slot sli, let P(i) denote the set of parties assigned to slot i by the process
above. We define the characteristic string w ∈ {0, 1,⊥}R of S to be the random variable so that

wi =


⊥ if P(i) = ∅,
0 if |P(i)| = 1 and the assigned party is honest,

1 if |P(i)| > 1 or a party in P(i) is adversarial.

(2)

We emphasize that in the setting of πiSPoS, the appropriate characteristic string is determined
by both the nonce (and the effective leader selection process), the adaptive adversary A, and the
environment Z (which, in particular, determines the stake distribution). For such a characteristic
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string w ∈ {0, 1,⊥}∗ we say that the index i is uniquely honest if wi = 0, tainted if wi = 1, and
empty if wi = ⊥. We say that an index is active if wi ∈ {0, 1}. Note that an index is “tainted”
according to this terminology in cases where multiple honest parties (and no adversarial party) have
been assigned to it.

We denote by DfZ,A the distribution of the random variable w = w1 . . . wR in the experiment
with the active slots coefficient f , adversary A, and environment Z.

The notion of “fork”, defined in [KRDO17], is a bookkeeping tool that indicates the chains
broadcast by honest players during an idealized execution of a blockchain protocol. We now adapt
the synchronous notion of [KRDO17] to reflect the effect of message delays.

From executions to forks. An execution of Protocol πiSPoS induces a collection of blocks broad-
cast by the participants. As we now focus merely on the structural properties of the resulting
blockchain, for each broadcast block we now retain only two features: the slot during which it was
broadcast and the previous block to which it is “attached” by the idealized digital signature σj .
(Of course, we only consider blocks with legal structure that meet the idealized verification criteria
of πiSPoS.) Note that multiple blocks may be broadcast during a particular slot, either because
multiple parties are assigned to the slot or an adversarial party is assigned to a slot. In any case,
these blocks induce a natural directed tree by treating the legal broadcast blocks as vertices and
introducing a directed edge between each pair of blocks (b, b′) for which b′ identifies b as the previous
block. In the ∆-semisynchronous setting, the maxvalid rule enforces a further critical property on
this tree: the depth of any block broadcast by an honest player during the protocol must exceed
the depths of any honestly-generated blocks from slots at least ∆ in the past. (This follows because
such previously broadcast blocks would have been available to the honest player, who always builds
on a chain of maximal length.) We call a directed tree with these structural properties a ∆-fork,
and define them precisely below.

We may thus associate with any idealized execution of πiSPoS a fork. While this fork disregards
many of the details of the execution, any violations of common prefix are immediately manifested
by certain “viable” diverging paths in the fork. A fundamental element of our analysis relies on
controlling the structure of the forks that can be induced in this way for a given characteristic string
(which determines which slots have been assigned to uniquely honest parties). In particular, we
prove that common prefix violations are impossible for “typical” characteristic strings generated by
πiSPoS with an adversary A by establishing that such diverging paths cannot exist in their associated
forks. We then go on to study related structural properties of the blockchain.

Definition 4.2 (∆-forks). Let w ∈ {0, 1,⊥}k and ∆ be a non-negative integer. Let A = {i |
wi 6= ⊥} denote the set of active indices, and let H = {i | wi = 0} denote the set of uniquely
honest indices. A ∆-fork for the string w is a directed, rooted tree F = (V,E) with a labeling
` : V → {0} ∪A so that

(i) the root r ∈ V is given the label `(r) = 0;

(ii) each edge of F is directed away from the root;

(iii) the labels along any directed path are strictly increasing;

(iv) each uniquely honest index i ∈ H is the label of exactly one vertex of F ;

(v) the function d : H → {1, . . . , k}, defined so that d(i) is the depth in F of the unique vertex v
for which `(v) = i, satisfies the following ∆-monotonicity property: if i, j ∈ H and i+ ∆ < j,
then d(i) < d(j).
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Figure 3: A (synchronous) fork F for the string w = 010100110. Vertices appear with their labels
and vertices belonging to (uniquely) honest slots are highlighted with double borders. Note that
the depths of the (honest) vertices associated with the honest indices of w are strictly increasing.
Two tines are distinguished in the figure: one, labeled t̂, terminates at the vertex labeled 9 and is
the longest tine in the fork; a second tine t terminates at the vertex labeled 3. The divergence of t
and t̂ is div(t, t̂) = 2.
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Figure 4: A 3-fork F ′ for the characteristic string w = 0⊥1⊥01001⊥⊥10. Note that F ′ is not
a 2-fork since d(8) = 2 6> 2 = d(5). Indices {1, 5, 7, 8, 14} are uniquely honest, {3, 6, 12, 13} are
tainted, and {2, 4, 9, 10, 11} are empty. The index 8 is 4-right-isolated, but not 5-right-isolated.

As a matter of notation, we write F `∆ w to indicate that F is an ∆-fork for the string w. When
there is no risk of confusion, we refer to a ∆-fork as simply a “fork”.

See Figures 3 and 4 for examples.

Definition 4.3 (Tines, length, and viability). A path in a fork F originating at the root is called
a tine. For a tine t we let length(t) denote its length, equal to the number of edges on the path.
For a vertex v, we let depth(v) denote the length of the tine terminating at v. For convenience, we
overload the notation `(·) so that it applies to tines by defining `(t) , `(v), where v is the terminal
vertex on the tine t.

We say that a tine t is ∆-viable if

length(t) ≥ max
uniquely honest h

h+∆≤`(t)

d(h) ,

this maximum extended over all uniquely honest indices h appearing ∆ or more slots before `(t).
Note that any tine terminating in a uniquely honest vertex is necessarily viable by the ∆-monotonicity
property.

Remarks on viability and divergence. The notion of viability, defined above, demands that
the length of a tine t be no less than that of all tines broadcast by uniquely honest slot leaders prior
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to slot `(t)−∆. Observe that such a tine could, in principle, be selected according to the maxvalid()
rule by an honest player online at time `(t): in particular, if all blocks broadcast by honest parties
in slots `(t) − ∆, . . . , `(t) are maximally delayed, the tine can favorably compete with all other
tines that the adversary is obligated to deliver by slot `(t). The major analytic challenge, both in
the synchronous case and in our semisynchronous setting, is to control the possibility of a common
prefix violation, which occurs when the adversary can manipulate the protocol to produce a fork
with two viable tines with a relatively short common prefix. We define this precisely by introducing
the notion of divergence.

Definition 4.4 (Divergence). Let F be a ∆-fork for a string w ∈ {0, 1,⊥}∗. For two ∆-viable tines
t1 and t2 of F , define their divergence to be the quantity

div(t1, t2) , min{length(t1), length(t2)} − length(t1 ∩ t2) ,

where t1 ∩ t2 denotes the common prefix of t1 and t2. We extend this notation to the fork F by
maximizing over viable tines:

div∆(F ) , max
t1,t2 ∆-viable
tines of F

div(t1, t2) .

Finally, we define the ∆-divergence of a characteristic string w to be the maximum over all ∆-forks:

div∆(w) , max
F `∆w

div(F ) .

Our primary goal in this section is to prove that, with high probability, the characteristic
strings induced by protocol πiSPoS have small divergence. In particular, such characteristic strings
necessarily provide strong guarantees on common prefix.

4.1.1 The Synchronous Case

The original development of [KRDO17] assumed a strictly synchronous environment. Their defini-
tions of characteristic string, fork, and divergence correspond to the case ∆ = 0, where characteristic
strings are elements of {0, 1}∗. As this setting will play an important role in our analysis—fulfilling
the role of the “virtual protocol” described at the beginning of this section—we set down some fur-
ther terminology for this synchronous case and establish a relevant combinatorial statement based
on a result in [KRDO17] that we will need for our analysis.

Definition 4.5 (Synchronous characteristic strings and forks). A synchronous characteristic string
is an element of {0, 1}∗. A synchronous fork F for a (synchronous) characteristic string w is a
0-fork F `0 w.

An immediate conclusion of the results obtained in [KRDO17, RMKQ17] is the following bound
on the probability that a synchronous characteristic string drawn from the binomial distribution
has large divergence.

Theorem 4.6. Let `, k ∈ N and ε ∈ (0, 1). Let w ∈ {0, 1}` be drawn according to the binomial
distribution, so that Pr[wi = 1] = (1− ε)/2. Then Pr[div0(w) ≥ k] ≤ exp(ln `− Ω(k)).

A proof of a weaker bound of the form exp(ln ` − Ω(
√
k)) appears in [KRDO17]. Russell et

al. [RMKQ17] then strengthened the basic probabilistic tools of [KRDO17] to achieve a bound of
the form exp(ln ` − Ω(k)) for the local notion of forkability. For completeness, we include a proof
of Theorem 4.6 relying on the results of [RMKQ17] in Appendix F.
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4.2 The Semisynchronous to Synchronous Reduction

We will make use of the following mapping, that maps characteristic strings to synchronous char-
acteristic strings.

Definition 4.7 (Reduction mapping). For ∆ ∈ N, we define the function ρ∆ : {0, 1,⊥}∗ → {0, 1}∗
inductively as follows:

ρ∆(ε) = ε,

ρ∆(⊥‖w′) = ρ∆(w′),

ρ∆(1 ‖w′) = 1 ‖ ρ∆(w′),

ρ∆(0 ‖w′) =

{
0 ‖ ρ∆(w′) if w′ ∈ ⊥∆−1 ‖ {0, 1,⊥}∗,
1 ‖ ρ∆(w′) otherwise.

(3)

We call ρ∆ the reduction mapping for delay ∆.

Note that for any w ∈ {0, 1,⊥}∗ we have |ρ∆(w)| ≤ |w|, in particular |ρ∆(w)| = |w| −#⊥(w),
where #⊥(x) denotes the number of appearances of the symbol ⊥ in x.

A critical feature of the map ρ∆ is that it monotonically transforms ∆-divergence to synchronous
divergence.

Lemma 4.8. Let w ∈ {0, 1,⊥}∗ be a characteristic string. Then div∆(w) ≤ div0(ρ∆(w)).

Proof. Let w ∈ {0, 1,⊥}∗ be a characteristic string with div∆(w) = k and let F `∆ w be a ∆-fork
with div∆(F ) = k. Let w′ = ρ∆(w); to prove that div0(w′) ≥ k, we construct a fork F ′ `0 w

′ for
which div(F ′) ≥ k. Let A = {i | wi 6= ⊥} denote the set of active indices (as in Definition 4.2) and
note that |ρ∆(w)| = |A|; as noted above, each non-⊥ symbol of w corresponds to a unique symbol
in w′. We let π : A→ {1, . . . , |A|} be the (bijective, increasing) function which records the position
in w′ corresponding to a particular active index i in w. Finally, we define the fork F ′ as follows: as
a graph, F ′ has the same structure as F ; the labeling `′ (for F ′) is given by the rule `′(v) = π(`(v));
of course, `′(r) = 0 for the root vertex r.

To verify that F ′ `0 w
′ = ρ∆(w), we recall the necessary properties from the definition. Prop-

erties (i) and (ii) of the Definition 4.2 are immediate; property (iii) follows because π is strictly
increasing. For the remaining properties, we recall the definition of ρ∆: According the rule,
wi = 1 ⇒ w′π(i) = 1 from which property (iv) follows immediately. It remains to check prop-

erty (v). The value w′π(i) when wi = 0 is determined by the ∆ − 1 following symbols of w: if

wi+1 = wi+2 = · · · = wi+∆−1 = ⊥, we say that i is ∆-right-isolated (cf. [GKL17], where a similar
feature arises in a proof-of-work setting) and in this case w′π(i) = 0; otherwise w′π(i) = 1. In par-

ticular, if w′π(i) = 0 we must have wi = 0 and wi+s = ⊥ for 0 ≤ s < ∆. As we wish to conclude

that F ′ is a synchronous fork, it must satisfy the ∆-monotonicity property with ∆ = 0, which is to
say that d(·) is strictly increasing on the set of uniquely honest indices (of w′). However, in light
of the discussion above, any two uniquely honest indices of w′ must correspond to uniquely honest
indices of w separated by at least ∆− 1 intervening ⊥ symbols; thus the ∆-monotonicity property
of F ensures the 0-monotonicity property of F ′, as desired.

In preparation for establishing that div0(F ′) ≥ div(F ) = k, we note that a ∆-viable tine t of
F `∆ w is 0-viable when viewed as a tine of F ′ ` w′. In particular, let h′ be a uniquely honest
index of w′ for which h′ ≤ `′(t) and let h be the uniquely honest index of w for which π(h) = h′.
As π(h) is uniquely honest in w′, h is ∆-right isolated in w, and we conclude that length(t) ≥ d(h),
because t is ∆-viable. This t is 0-viable in F ′.
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Finally, let t1 and t2 be two ∆-viable tines of F for which div∆(t1, t2) = div∆(w). In light of
the discussion above, these tines are 0-viable in F ′; as the two forks have the structure as graphs,
we conclude that div0(w′) ≥ div∆(t1, t2) = div∆(w), as desired.

4.3 The Dominant Characteristic Distribution

The high-probability results for our desired chain properties depend on detailed information about
the distribution on characteristic strings determined by an adversary A, the environment Z, and
the parameters f and R. In this section we define a distinguished distribution on characteristic
strings which we will see “dominates” the distributions produced by any adaptive adversary. We
then study the effect of ρ∆ on the distribution in preparation for studying common prefix, chain
growth, and chain quality.

4.3.1 Motivating the Dominant Distribution: Static Adversaries

To motivate the dominant distribution, consider the distribution induced by a static adversary who
corrupts—at the outset of the protocol—a set UA of parties with total relative stake αA. Recalling
Definition 3.8, a party with relative stake αi is independently assigned to be a leader for a slot with
probability

φf (αi) , φ(αi) , 1− (1− f)αi .

As indicated, we drop the subscript f when it can be inferred from context. As discussed earlier,
φf satisfies the “independent aggregation” property (1). Noting that

∂2φf
∂α2

(α) = −(ln(1− f))2(1− f)α < 0

the function φf is concave; Figure 5 shows a plot of φ1/2 for illustration. Considering that φf (0) = 0
and φf (1) = f , concavity implies that φf (α) ≥ fα for α ∈ [0, 1]. As φf (0) ≥ 0 and φf is concave,
the function φf is subadditive. We record these properties:

φf

(∑
i

αi

)
= 1−

∏
i

(1− φf (αi)) ≤
∑
i

φf (αi) , αi ≥ 0 , (4)

φf (α)

φf (1)
=
φf (α)

f
≥ α , α ∈ [0, 1] . (5)

Recalling Definition 4.1, this (static) adversary A determines a distribution DfZ,A on strings w ∈
{0, 1,⊥}R by independently assigning each wi so that

pA⊥ , Pr[wi = ⊥] =
∏
i∈P

(1− φ(αi)) =
∏
i∈P

(1− f)αi = (1− f) ,

pA0 , Pr[wi = 0] =
∑
h∈H

φ(αh) ·
∏

i∈P\{h}

(1− φ(αi)) =
∑
h∈H

(1− (1− f)αh) · (1− f)1−αi ,

pA1 , Pr[wi = 1] = 1− pA⊥ − pA0 .

(6)

Here H denotes the set of all honest parties in the stake distribution S determined by Z. As before,
P denotes the set of all parties.
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Figure 5: The function φ1/2(α) = 1− (1/2)α and the linear function α 7→ α/2, for comparison. The
point (1, 1/2) is marked in solid black.

The dominant distribution. It is convenient to work with some bounds on the above quantities
that depend only on “macroscopic” features of S and A: namely, the relative stake of the honest
and adversarial parties, and the parameter f . For this purpose we note that

pA0 ≥
∑
h∈H

φ(αh) ·
∏
i∈P

(1− φ(αi)) ≥ φ(αH) · pA⊥ = φ(αH) · (1− f) , (7)

where αH denotes the total relative stake of the honest parties. Note that this bound applies to
all adversaries A that corrupt no more than a 1− αH fraction of all stake. With this in mind, we
define the distribution Dfα on strings w ∈ {0, 1,⊥}R that independently assigns each wi so that

p⊥ , Pr[wi = ⊥] = 1− f ,
p0 , Pr[wi = 0] = φ(α) · (1− f) ,

p1 , Pr[wi = 1] = 1− p⊥ − p0 .

(8)

The distribution Dfα “dominates” DfZ,A for any static adversary A that corrupts no more than a
relative 1−α share of the total stake, in the sense that nonempty slots are more likely to be tainted
under Dfα than they are under DfZ,A.

To make this relationship precise, we introduce the partial order � on the set {⊥, 0, 1} associated
with the Hasse diagram

1

⊥ 0

so that x � y if and only if x = y or y = 1. We extend this partial order to {⊥, 0, 1}R by declaring
x1 . . . xR � y1 . . . yR if and only if xi � yi for each i. Intuitively, the relationship x ≺ y asserts that
y is “more adversarial than” x; concretely, any legal fork for x is also a legal fork for y. We record
this in the lemma below.

Lemma 4.9. Let x and y be characteristic strings in {0, 1,⊥}R for which x � y. Then

1. for every fork F , F `∆ x =⇒ F `∆ y;

2. for every ∆, div∆(x) ≤ div∆(y).
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Proof. The proof follows directly from the definition of ∆-fork and div∆.

Finally, we define a notion of stochastic dominance for distributions on characteristic strings,
and α-dominated adversaries.

Definition 4.10. We say that a subset E ⊆ {⊥, 0, 1}R is monotone if x ∈ E and x � y implies
that y ∈ E. Let D and D′ be two distributions on the set of characteristic strings {⊥, 0, 1}R. Then
we say that D′ dominates D, written D � D′, if

Pr
D

[E] ≤ Pr
D′

[E]

for every monotone set E. An adversary A is called α-dominated if the distribution DfZ,A that it

induces on the set of characteristic strings satisfies DfZ,A � D
f
α.

In our application, the events of interest are

D∆ = {x | div∆(x) ≥ k} , (9)

which are monotone by Lemma 4.9. We note that any static adversary that corrupts no more than
a 1− α fraction of stake is α-dominated,2 and it follows that

Pr
DfZ,A

[div∆(w) ≥ k] ≤ Pr
Dfα

[div∆(w) ≥ k] ,

where the random variable w is distributed according to DfZ,A in the first probability, and Dfα in

the second. This motivates a particular study of the “dominant” distribution Dfα.

4.3.2 The Induced Distribution ρ∆(Dfα)

The dominant distribution Dfα on {0, 1,⊥}R in conjunction with the definition of ρ∆ of (3) above
implicitly defines a family of random variables ρ∆(w) = x1 . . . x` ∈ {0, 1}∗, where w ∈ {0, 1,⊥}R
is distributed according to Dfα. As noted above, ` = R −#⊥(w) is precisely the number of active
indices of w. We now note a few properties of this resulting distribution that will be useful to us
later. In particular, we will see that the xi random variables are roughly binomially distributed,
but subject to an exotic stochastic “stopping time” condition in tandem with some distortion of
the last ∆ variables.

It simplifies our analysis to treat w as the first R symbols of an infinite string w1w2 . . . of
independent random variables with distribution given by (8) above. (We use the same name for
this infinite sequence as it will cause no confusion.) The distribution of the infinite sequence w
can be given an alternative description as b0e1b1e2b2 . . ., where the (independent) random variables
ei ∈ {0, 1} and bi ∈ {⊥}∗ have the probability laws

ei =

{
0 with probability p0/(p0 + p1),

1 with probability p1/(p0 + p1),

2Note that strictly speaking, this dominance is only satisfied for an “idealized” adversary whose actions can be
represented also in the setting of the idealized protocol πiSPoS. A general adversary trying to attack the imperfections
of the cryptographic building blocks used (such as the signature scheme and the VRF) can increase the desired
probabilities by additional negligible additive terms. For the sake of simplicity of our exposition, we will neglect these
terms in the present treatment.
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and bi = ⊥t with probability pt⊥(1− p⊥). In this description, the random variables bi generate the
contiguous sequences of ⊥ symbols that appear between appearances of 0 and 1. Now we observe
that z1z2 . . . = ρ∆(b0e1b1 . . .)—which we temporarily treat as operating on an infinite sequence—
has an immediate description in terms of the xi, bi random variables:

zi =

{
1 if ei = 1 or |bi| < ∆− 1,

0 if ei = 0 and |bi| ≥ ∆− 1.

It follows that the variables zi ∈ {0, 1} are independent and binomially distributed, with the
property that

Pr[zi = 0] =

(
p0

p0 + p1

)
p∆−1
⊥

(8)
=
φ(α)

f
· (1− f)∆

(5)

≥ α · (1− f)∆ , (10)

where
(i)

≥ follows from equation (i) and the equality p0 + p1 = 1− p⊥.
In our setting, the reduction function ρ∆(·) is applied to a prefix of the string w of finite length

R. In fact, the resulting “stopping criteria” on the random variables z1, z2, . . . can both introduce
correlations and distort the coordinatewise distribution. However, we note that ρ∆(w1 . . . wR)
produces a prefix of the sequence z1, z2, . . . with the irritating possibility that the last ∆ of the zi
in this prefix may be altered by the fact that there are not sufficient symbols in the string w to
satisfy the criteria for zi = 0. Thus we have

x1 . . . x`−∆ = ρ∆(w1 . . . , wR)d∆ is a prefix of z1z2 . . . . (11)

where ·d∆ denotes the truncation operator that removes the last ∆ symbols, and the sequence
z1z2 . . . is determined by the infinite string w1w2 . . .. Recall that the zi are binomially distributed
with parameter ≈ 1− α(1− f)∆.

4.4 Divergence for the Dominant Distribution

Our goal is to apply the reduction ρ∆, Lemma 4.8, and Theorem 4.6 to establish an upper bound
on the probability that a string drawn from the dominant distribution Dfα has large ∆-divergence.
The difficulty is that the distribution resulting from applying ρ∆ to a string drawn from Dfα is no
longer a simple binomial distribution, so we cannot apply Theorem 4.6 directly. We resolve this
obstacle in the proof of the following theorem.

Theorem 4.11. Let f ∈ (0, 1], ∆ ≥ 1, and α be such that α(1− f)∆ = (1 + ε)/2 for some ε > 0.

Let w be a string drawn from {0, 1,⊥}R according to Dfα. Then we have

Pr[div∆(w) ≥ k + ∆] = 2−Ω(k)+logR .

Remark. Intuitively, the theorem asserts that sampling the characteristic string in the ∆-semi-
synchronous setting with protocol parameter f according to Dfα is, for the purpose of analyzing
divergence, comparable to the synchronous setting in which the honest stake has been reduced from
α to α(1− f)∆.

Proof of Theorem 4.11. Observe that div0(·) is monotone in the sense that if y̌ is a prefix of y then
div0(y̌) ≤ div0(y); this follows because any fork F̌ `0 y̌ can be “extended” to a fork F ` y which
includes all tines of F̌ . Additionally, we note that div0(·) has a straightforward “Lipshitz property”:
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if |y| ≤ |y̌|+ s then div0(y) ≤ div0(y̌) + s; this follows because any fork F `0 y can be restricted to
a fork F̌ `0 y̌ by retaining only vertices labeled by y̌—this can trim no more than s vertices from
any tine.

In light of Lemma 4.8 we conclude that

div∆(w) ≤ div0(ρ∆(w)) ≤ div0(ρ∆(w)d∆) + ∆ ≤ div0(z1 . . . zR) + ∆ ,

where the last inequality follows because the random variable ρ∆(w1 . . . wR) can certainly have
length no more than R. As the random variables zi are binomial with Pr[zi = 0] ≥ α(1− f)∆, the
conclusion of Theorem 4.11 now follows directly from the assumption that α(1 − f)∆ ≥ (1 + ε)/2
and Theorem 4.6.

4.5 Common Prefix

Our results on ∆-divergence from the previous section allow us to easily establish the following
statement.

Theorem 4.12. Let k,R,∆ ∈ N and ε ∈ (0, 1). Let A be an α-dominated adversary against the
protocol πiSPoS for some α satisfying α(1 − f)∆ ≥ (1 + ε)/2. Then the probability that A, when
executed in a ∆-semisynchronous environment, makes πiSPoS violate the common prefix property
with parameter k throughout a period of R slots is no more than exp(lnR+∆−Ω(k)). The constant
hidden by the Ω(·)-notation depends on ε.

Proof. Observe that an execution of protocol πiSPoS violates the common prefix property with
parameter k precisely when the ∆-fork F induced by this execution has div∆(F ) ≥ k. We have

Pr[div∆(F ) ≥ k] ≤ Pr
DfZ,A

[div∆(w) ≥ k] ≤ Pr
Dfα

[div∆(w) ≥ k] ≤ exp(lnR− Ω(k −∆)) ,

where the first inequality follows from the definition of div∆(·); the second one holds since DfZ,A �
Dfα and the set D∆ defined in (9) is monotone; and the last one follows from Theorem 4.11. (For
convenience, we have moved the ∆ outside the asymptotic notation, which only makes the bound
weaker as the hidden constant is less than 1.)

4.6 Chain Growth

To obtain a bound on the probability of a violation of the chain growth property, we again consider
the ∆-right-isolated uniquely honest slots introduced in Section 4.2.3 Intuitively, we argue that the
leader of such a slot has already received all blocks that were created in all previous such slots and
therefore the block it creates will be having depth larger than all these blocks. It then follows that
the length of the chain grows by at least the number of such slots.

Theorem 4.13. Let k,R,∆ ∈ N and ε ∈ (0, 1). Let A be an α-dominated adversary against the
protocol πiSPoS for some α > 0. Then the probability that A, when executed in a ∆-semisynchronous
environment, makes πiSPoS violate the chain growth property with parameters s ≥ 4∆ and τ = cα/4
throughout a period of R slots, is no more than

exp
(
− cαs

20∆
+ lnR∆ +O(1)

)
,

where c denotes the constant c := c(f,∆) = f(1− f)∆.
3Technically, one could get a slightly better result by giving up on the uniqueness property, as it is not needed for

the argument.
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Proof. Recall that the definition of chain growth requires that if the longest chain possessed by an
honest party at the onset of some slot sl1 is C1, and the longest chain possessed by a (potentially
different) honest party at the onset of slot sl2 ≥ sl1 + s is C2, then length(C2)− length(C1) ≥ τs.

Let ŝl1, . . . , ŝlh be the increasing sequence of all ∆-right-isolated uniquely honest slots among
the slots in T := {sl1 + ∆, sl1 + ∆ + 1, . . . , sl2−∆}. Observe that since ŝl1 ≥ sl1 + ∆, the leader of
ŝl1 will append a block to a chain that is at least as long as C1, since C1 will be known to him and
will be considered in the maxvalid function. Therefore, the chain that the leader of ŝl1 diffuses will
be at least 1 block longer than C1. Analogously, the leader of every ŝli will diffuse a chain that is
at least 1 block longer than the chain diffused by the leader of ŝli−1 since ŝli−1 is ∆-right-isolated.
Finally, the chain diffused by the leader of ŝlh will be known to all parties at slot sl2 and hence
length(C2) will be at least as long as this chain. It follows that length(C2)− length(C1) ≥ h.

It remains to bound the number h of ∆-right-isolated uniquely honest slots among the slots with
indices in T . To make our notation more flexible, let HT (x) denote the number of ∆-right-isolated
uniquely honest slots among the slots from T in x ∈ {0, 1,⊥}R, we hence have h = HT (x) for

x← DfZ,A. Furthermore, let E ,
{
x ∈ {0, 1,⊥}R | HT (x) < cαs/4

}
where c = c(f,∆) = f(1−f)∆.

Observe that E is monotone, and hence DfZ,A � D
f
α implies

Pr[h < cαs/4] = Pr
x←DfZ,A

[HT (x) < cαs/4] ≤ Pr
x←Dfα

[HT (x) < cαs/4]

and it is sufficient to bound upper-bound the last probability.
Consider now a characteristic string x sampled according to Dfα and for each t ∈ T , let Xt be the

indicator random variable for the event that ŝlt is ∆-right-isolated uniquely honest. Observe that
µ , E[Xt] = p0p

∆−1
⊥ ≥ αf(1− f)∆ by the inequalities (8) and (5), and that the random variables

Xt and Xt′ are independent if |t − t′| ≥ ∆ (as they depend on the leader sets of non-overlapping
sets of slots). If we let Tz = {t ∈ T | t ≡ z mod ∆}, then the family of variables Xt indexed by Tz
are independent. Note also that |Tz| > b(s − 2∆)/∆c ≥ (s − 3∆)/∆ and that we may write T as
the disjoint union T0∪ · · · ∪T∆−1. By the Chernoff bound of Appendix E with δ = 1/2, for each Tz

Pr

[∑
t∈Tz

Xt < µ|Tz|/2

]
≤ e−µ|Tz |/20 ≤ e−

µ(s−3∆)
20∆ .

Observe that if
∑

t∈Tz Xt ≥ µ|Tz|/2 for each z then also HT (x) =
∑

t∈T Xt ≥ µ|T |/2 ≥ µŝ/2, where

we let ŝ , s− 2∆. It follows from the union bound that

Pr
x←Dfα

[HT (x) < µŝ/2] ≤ ∆ · e−
µ(s−3∆)

20∆ .

As µ ≥ αf(1− f)∆, we obtain

Pr
x←Dfα

[HT (x) < cαŝ/2] ≤ Pr
x←Dfα

[HT (x) < µŝ/2] ≤ ∆ · e−
c·α(s−3∆)

20∆ .

Since s ≥ 4∆, we have ŝ ≥ s/2 and we can conclude that

Pr
x←Dfα

[HT (x) < cαs/4] = ∆ · e−
c·α(s−3∆)

20∆ .

Applying the union bound over the R slots, we conclude that the probability that there is a
chain growth violation with parameters s and τ = cα/4 is no more than

R∆ exp(−cα(s− 3∆)/(20∆)) = exp(−cα(s− 3∆)/(20∆) + lnR∆) .
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4.7 Chain Quality

Lemma 4.14. Let k,∆ ∈ N and ε ∈ (0, 1). Let A be an α-dominated adversary against the
protocol πiSPoS for some α > 0 satisfying α(1 − f)∆ = (1 + ε)/2. Let B1, . . . , Bk be a sequence
of consecutive blocks in a chain C possessed by an honest party. Then at least one block Bi was
created in a ∆-right-isolated uniquely honest slot, except with probability exp(−Ω(k)).

Proof sketch. For convenience, let us call a slot good if it is ∆-right-isolated uniquely honest, and
bad if it is neither empty nor good. Moreover, we call a block good (resp. bad) if it comes from a
good (resp. bad) slot.

Towards contradiction, assume that all blocks B1, . . . , Bk are bad. Let G1 denote the latest
good block preceding B1 in C, and G2 the earliest good block appearing after Bk in C (or the last
block of C, if there is no good one). Note that all blocks between G1 and G2 are bad.

Let ŝl1 (resp. ŝl2) denote the good slot in which G1 (resp. G2) was created (if G2 is not good,
let ŝl2 be the current slot). Denote by T the continuous sequence of slots between ŝl1 and ŝl2,
excluding ŝl1 and including ŝl2. As we argued in the proof of Theorem 4.13, in each good slot in
T the (unique) leader creates a block that has depth increased by at least 1 compared to the block
from the previous good slot. Therefore, we have d(G2) ≥ d(G1)+g, where g is the number of good
slots in T . However, in chain C we have d(G2) ≤ d(G1) + b, where b is the number of bad slots in
the same sequence T . These two conditions can only be satisfied at the same time if g ≤ b, we will
now show that this is very unlikely.

Consider E =
{
x ∈ {0, 1,⊥}R | g(x) ≤ b(x)

}
, where g(x) and b(x), as intuition suggests, denote

the numbers of good and bad slots on the positions indexed by T in the string x, respectively. We
again observe that E is monotone and therefore DfZ,A � D

f
α implies

Pr
x←DfZ,A

[g(x) ≤ b(x)] ≤ Pr
x←Dfα

[g(x) ≤ b(x)]

and it is sufficient to bound upper-bound the last probability. However, we know that α(1− f)∆ =
(1+ε)/2 and as we observed in (10), this implies that good slots are sampled with higher probability

than bad slots. Therefore, the probability that g(x) ≤ b(x) for x← Dfα falls exponentially with k.

Lemma 4.14 implies the following theorem.

Theorem 4.15. Let k,R,∆ ∈ N and ε ∈ (0, 1). Let A be an adversary against the protocol πiSPoS,

inducing a distribution of the characteristic string DfZ,A such that DfZ,A � D
f
α for some α >

0 satisfying α(1 − f)∆ ≥ (1 + ε)/2. Then the probability that A, when executed in a ∆-semi-
synchronous environment, makes πiSPoS violate the chain quality property with parameters k and
µ = 1/k throughout a period of R slots, is no more than exp(lnR− Ω(k)).

4.8 Adaptive Adversaries

The statements in the previous sections give us guarantees on the common prefix, chain growth,
and chain quality properties as long as the adversary is α-dominated for some suitable value of α.
In Section 4.3.1 we argued that any static adversary that corrupts at most (1−α)-fraction of stake
is α-dominated. In this section we extend this claim also to adaptive adversaries, showing that
as long as they corrupt no more than (1 − α)-fraction of stake adaptively throughout the whole
execution, they are still α-dominated.
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Theorem 4.16. Every adaptive adversary A that corrupts at most (1−α)-fraction of stake through-
out the whole execution is α-dominated.

Proof sketch. Let us start by taking a different (but equivalent) view on the choice of slot leaders
in the execution of πiSPoS. Assuming that we have a fixed number C of coins (equally-sized units of
stake), consider a family of independent, identically distributed boolean random variables {ct,i | 1 ≤
t ≤ R, 1 ≤ i ≤ C} such that for every ct,i we have

ct,i =

{
1 with probability φf (1/C) = 1− (1− f)1/C ,

0 otherwise.

We can view each of the random variables ct,i as being associated with a concrete, fixed coin; with
the intuitive interpretation that if ct,i = 1 then the owner of coin i becomes a slot leader for slot t.
Thanks to the “independent aggregation property” given in (1), sampling the random variables ct,i
is a way of determining the slot leaders that is equivalent to the one used in πiSPoS, i.e., switching
to this method of assigning slot leaders does not affect DfZ,A for any adversary A.

We now make the adversary stronger by allowing it to corrupt not only stakeholders, but indi-
vidual coins. (Formally, we can see each stakeholder with stake si as si separate stakeholders where
each controls a single coin; corrupting a coin then means corrupting such single-coin stakeholder.
In particular, this means that after corrupting coin i in some slot t, the adversary also learns the
values of the random variables ct′,i for all t′ ≥ t.) To see that this only extends the class of consid-
ered adversaries, observe that any adversary A corrupting stakeholders can be trivially modified
into a coin-corrupting adversary A1 that simply corrupts all the coins belonging to the stake of a
player corrupted by A, maintaining DfZ,A = DfZ,A1

.
It is now important to observe that at any point during the execution, all the uncorrupted

coins are identical from the perspective of the adversary due to symmetry. Therefore, for any coin-
corrupting adversary A1 one can construct another coin-corrupting adversary A2 that achieves the
same outcomes, but corrupts the coins according to some fixed ordering: whenever A1 corrupts
a new coin, A2 instead corrupts the next coin in this ordering. The only difference this makes
from the perspective of the adversary is that with any corruption of a coin in slot t, the index i of
random variables ct′,i for t′ ≥ t, that are disclosed to it, changes. However, all these variables are

independent and identically distributed, hence we again have DfZ,A1
= DfZ,A2

.
Finally, consider a static adversary A3 that corrupts the first b(1 − α)Cc coins with respect

to the ordering used by A2. Then, during the execution, it acts exactly like A2 would, except for
corruptions; this is possible, since any coins corrupted by A2 must be already corrupted by A3 from
the beginning. Note that if we consider the natural coupling of the two executions with A2 and
A3, where the same randomness is used, then the sets of coins chosen for slot leaders will be the
same in both executions; and moreover, in each slot the set of coins corrupted by A3 is a superset
of those corrupted by A2. This implies that Pr[w(2) � w(3)] = 1, where w(i) is the random variable
corresponding to the characteristic string resulting from the execution with Ai. Using Theorem E.2
from Appendix E, this in turn implies DfZ,A2

� DfZ,A3
. The proof is now concluded by observing

that DfZ,A3
� Dfα follows from Section 4.3.1, since A3 is static and corrupts at most (1− α)-share

of the stake.

Theorem 4.16, together with Theorems 4.12, 4.13 and 4.15, gives us the following corollary.

Corollary 4.17. Let A be an adaptive adversary against the protocol ΠiSPoS that corrupts at most
(1−α)-fraction of stake. Then the bounds on common prefix, chain growth and chain quality given
in Theorems 4.12, 4.13, 4.15 are satisfied for A.
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4.9 The Resettable Protocol

With the analysis of these basic structural events behind us, we remark that the same arguments
apply to a modest generalization of the protocol which permits the adversary some control over
the nonce. Specifically, we introduce a “resettable” initialization functionality FrINIT, which permits
the adversary to select the random nonce from a family of r independent and uniformly random
nonces. Specifically, FrINIT is identical to FINIT, with the following exception:

• Upon receiving the first request of the form (genblock req, Ui) from some stakeholder Ui,

FrINIT samples a nonce η
$← {0, 1}λ, defines a “nonce candidate” set H = {η}, and permits

the adversary to carry out up to r − 1 reset events: each reset event draws an independent
element from {0, 1}λ, adds the element to the set H, and permits the adversary to replace
the current nonce η with any element of H. Finally, (genblock,S0, η) is sent to Ui. Later
requests from any stakeholder are answered using the same value η.

We remark that an equivalent formulation initially draws a nonce η, draws an independent
family of r− 1 “replacement nonces” η1, . . . , ηr−1, and permits the adversary to replace η with one
from the set {ηi} if he chooses.

It is immediate that this selection of η from among a set of size r uniformly random candidate
nonces can inflate the probability of events during πiSPoS by a factor no more than r. We record
this as a corollary below.

Corollary 4.18 (Corollary to Theorems 4.12, 4.13, 4.15). The protocol ΠiSPoS, with initialization
functionality FrINIT, satisfies the bounds of Theorems 4.12, 4.13, 4.15 with all probabilities scaled
by r.

Proof. The probability of any such event is no more than the probability that the event occurs
under any of the nonces {η} ∪ {η1, . . . , ηr−1} which, by the union bound, is no more than r times
that the probability the event would have occurred under FINIT.

5 The Dynamic Stake Case

In this section, we construct a protocol that handles the dynamic case, where the stake distribution
changes as the protocol is executed. As in Ouroboros [KRDO17], we divide protocol execution in
a number of independent epochs during which the stake distribution used for sampling slot leaders
remains unchanged. The strategy we use to bootstrap the static protocol is, at a high level, similar:
we first show how the protocol can accommodate dynamic stake utilizing an ideal “leaky beacon”
functionality and then we show this beacon functionality can be simulated via an algorithm that
collects randomness from the blockchain.

In order to facilitate the implementation of our beacon, we need to allow the leaky beacon
functionality to be adversarially manipulated by allowing a number of “resets” to be performed by
the adversary. Specifically, the functionality is parameterized by a parameter τ and a parameter r.
First, it leaks to the adversary, up to τ slots ahead of an epoch, the beacon value of the next
epoch. Second, the adversary can reset the value returned by the functionality a number of times
up to r. As expected for a beacon, it reports to honest parties the beacon value once the epoch
starts. After the epoch is started no more resets are allowed for the beacon value. This mimics the
functionality FINIT and its resettable version FrINIT. Note that the ability of the adversary to reset
the beacon can be quite influential in the protocol execution: for instance, any event that depends
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deterministically on the nonce of an epoch and happens with probability 1/2 can be easily forced
to happen almost always by the adversary using a small number of resets.

Expectedly, we do not want to assume the availability of a randomness beacon, even if it is
leaky and resettable. In our final iteration of the protocol we show how it is possible to simulate
such beacon using a hash function that is modeled as a random oracle applied on VRF values from
the blockchain itself. The verifiability of those values is a key property that we exploit in the proof.
Our proof strategy is to reduce any adversary against the basic properties of the blockchain to a
resettable beacon adversary that will simulate the random oracle. The key point of this reduction
is that whenever the random oracle adversary makes a query with a sequence of values that is
a candidate sequence from the nonce of the next epoch, the resettable attacker detects this as a
possible reset opportunity and resets the beacon; it obtains the response from the beacon and sets
this as the answer to the random oracle query. The final issue is to bound the number of resets:
given that the adversary controls a ratio of stake below 1/2, he will have assigned about 1/2 − ε
fraction of the last 4k slots of an epoch and thus can explore an exponentially large space of tines
as possibilites for setting the next epoch nonce. It follows that this is equal to the number of
random oracle queries that the adversary can afford in a sequence of 4k slots. To refine this bound
we utilize the q-bounded model of [GKL15] that bounds the number of queries the adversary can
pose per round: in that model, the adversary is allowed q queries per adversarial party per round
(“slot” in our setting).4 Without loss of generality we can assume a single adversarial party exists
and hence we obtain a bound equal to 4qtk.

5.1 The Dynamic Stake Case with a Resettable Leaky Randomness Beacon

First we construct a protocol for the dynamic stake case assuming access to a resettable leaky
beacon that provides a fresh nonce for each epoch. This beacon is leaky in the sense that it allows
the adversary to obtain the nonce for the next epoch before the epoch starts and resettable in the
sense that it allows the adversary to reset the nonce a number of times. We model the resettable
leaky randomness beacon in functionality Fτ,rRLB presented in Figure 6.

We now describe protocol πDPoS, which is a modified version of πSPoS that updates its genesis
block B0 (and thus the assignment of slot leader sets) for every new epoch. Protocol πDPoS is
described in Figure 7 and functions in the Fτ,rRLB-hybrid model.

We proceed to the security analysis of this protocol in the hybrid world where the functionality
Fτ,rRLB is available to the protocol participants. A key challenge is that in the dynamic stake setting,
the honest majority assumption that we have in place for the stakeholders refers to the stakeholder
view of the honest stakeholders in each slot. Already in the first few slots this assumption may
diverge rapidly from the stakeholder distribution that is built-in the genesis block.

To accomodate the issues that will arise from the movement of stake throughout protocol
execution, we recall the notion of stake shift defined in Ouroboros [KRDO17] before the theorem
about the security of πDPoS:

Definition 5.1. Consider two slots sl1, sl2 and an execution E. The stake shift between sl1, sl2 is
the maximum possible statistical distance of the two weighted-by-stake distributions that are defined
using the stake reflected in the chain C1 of some honest stakeholder active at sl1 and the chain C2

of some honest stakeholder active at sl2 respectively.

Theorem 5.2. Fix parameters k,R,∆, L ∈ N, ε, σ ∈ (0, 1). Let R ≥ 8k be the epoch length, L the
total lifetime of the system, and αH(1−f)∆ ≥ (1+ε)/2+σ. The protocol ΠDPoS, with initialization

4Note that we utilize the q-bounded model only to provide a more refined analysis; given that the total length of
the execution is polynomial in λ one may also use the total execution length as a bound.
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Functionality Fτ,rRLB

Fτ,rRLB incorporates the diffuse and key/transaction functionality from Section 2.2 and is parame-
terized by the public keys and respective stakes of the initial (before epoch e1 starts) stakeholders
S0 = {(vk1, s

0
1), . . . , (vkn, s

0
n)}, a nonce leakage parameter τ and a number of allowed resets r. Fτ,rRLB

interacts with stakeholders U1, . . . , Un and an adversary A as follows:
• Upon receiving (genblock req, Ui) from stakeholder Ui it operates as functionality FINIT on that

message.
• Upon receiving (epochrnd req, Ui, ej) from stakeholder Ui, if ej ≥ 2 is the current epoch, Fτ,rRLB

sends (epochrnd, ηj) to Ui.

• For every epoch ej , at slot jR−τ , Fτ,rRLB samples the next epoch’s nonce ηj+1
$← {0, 1}λ and leaks

it by sending (epochrnd leak, ej , ηj+1) to the adversary A. Additionally, Fτ,rRLB sets an internal
reset request counter Resets = 0 and sets P = ∅.

• Upon receiving (epochrnd reset,A) from A at epoch ej , if Resets < r and if the current slot is past

slot jR−τ , Fτ,rRLB samples a fresh nonce for the next epoch ηj+1
$← {0, 1}λ and leaks it by sending

(epochrnd leak, ηj+1) to A. Finally, Fτ,rRLB increments Resets and adds ηj+1 to P.
• Upon receiving (epochrnd set,A, η) from A at epoch ej , if the current slot is past slot jR− τ and

if η ∈ P, Fτ,rRLB sets ηj+1 = η and sends (epochrnd leak, ηj+1) to A.

Figure 6: Functionality Fτ,rRLB.

functionality FrINIT and access to Fτ,rRLB, with τ ≤ 4k satisfies persistence with parameters k and
liveness with parameters u = 2k throughout a period of L slots of ∆-semisynchronous execution
with probability 1− exp(lnL+ ∆− Ω(k − log r)) assuming that σ is the maximum stake shift over
R slots.

Proof sketch. We first observe that due to the conditions imposed on the leakiness of the Fτ,rRLB
oracle, its level of resettability and the stake shift advantage that reduces the adversarial probability,
Corollary 4.18 still applies for the whole execution over L slots. Thus we observe that any violation
of persistence in the execution with parameter k results in the violation of CP with parameter k and
as a result it will be bounded by error exp(lnL+ ∆− Ω(k)). We then examine liveness. Consider
any transaction that is provided to the honest parties for a sequence of u = 8k/(1 + ε) slots, it
holds that except with probability exp(−Ω(k) + lnL∆) the chain will grow by f(1− f)∆αH/4 ·u ≥
(1 + ε)/8 · u = k blocks. By the chain quality property this means that at least one honest block
will be added and hence this block will contain the transaction posted.

5.2 Instantiating F τ,rRLB
In this section, we show how to substitute the oracle Fτ,rRLB of protocol πDPoS with a subprotocol
πRLB that simulates Fτ,rRLB. The resulting protocol can then operate directly in the FINIT-hybrid
model as in Section 3 (without resets) while utilizing a random oracle H(·). The sub-protocol πRLB
is described in Figure 8.

We will show next that the sub-protocol πRLB can safely substitute Fτ,rRLB when called from
protocol πDPoS. We will perform our analysis in the q-bounded model of [GKL15] assuming that
the adversary is capable of issuing q queries per each round of protocol execution.

Lemma 5.3. Consider the event of violating one of common prefix, chain quality, chain growth in
an execution of πDPoS using sub-protocol πRLB with adversary A and Z. We construct an adversary
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Protocol πDPoS

Let H(·) be a random oracle, F·(·) : {0, 1}` → {0, 1}`VRF be a family of unpredictable under malicious key
generation VRFs with algorithms (Gen,Prove,Ver) and KES = (Gen,Sign,Verify,Update) be a forward
secure key evolving signature scheme. Define T ij = 2`VRFφf (αji ) as the threshold of a stakeholder Ui

for epoch ej , where αji is the relative stake of stakeholder Ui at epoch ej , `VRF is the length in bits of
the VRF output and f is the active slots coefficient. πDPoS is a protocol run by a set of stakeholders,
initially equal to U1, . . . , Un, interacting among themselves and with Fτ,rRLB over a sequence of L slots
S = {sl1, . . . , slL} and L/R epochs with R slots (w.l.o.g. we assume L is divisible by R). πDPoS proceeds
as follows:

1. Initialization Stakeholder Ui ∈ {U1, . . . , Un}, receives from the key registration interface its
public and secret key. Then it receives the current slot from the diffuse interface and sends
(genblock req, Ui) to Fτ,rRLB , receiving (genblock,S0, η) as answer. Ui sets the local blockchain
C = B0 = (S0, η) and the initial internal state st = H(B0).

2. Chain Extension For every slot sl ∈ S, every online stakeholder Ui performs the following steps:
(a) If a new epoch ej , with j ≥ 2, has started, Ui defines Sj to be the stakeholder distribution

drawn from the most recent block with time stamp less than jR− τ as reflected in C (where
τ parameterizes Fτ,rRLB) and sends (epochrnd req, Ui, ej) to Fτ,rRLB , receiving (epochrnd, ηj) as
answer.

(b) Collect all valid chains received via broadcast into a set C, verifying that for every chain
C′ ∈ C and every block B′ = (st′, d′, sl′, Bπ

′, ρ′, σj′) ∈ C′ it holds that the stakeholder
U ′ is in the slot leader set L′ of slot sl′ (by parsing Bπ

′ as (pk′, y′, π′), verifying that
VerVRF.pk′(ηj ‖ sl′ ‖ TEST, y′, π′) = 1, and that y′ < T ′j where T ′j is the threshold of stakeholder
U ′ for the epoch ej to which sl′ belongs), VerVRF.pk′(ηj ‖ sl′ ‖ NONCE, ρ′y, ρ′π) = 1 (parsing ρ′

as (ρ′y, ρ
′
π)), VerifyKES.vk′((st

′, d′, sl′, Bπ
′, ρ′), σj′) = 1 and that the signature σj′ is for the

the time period that corresponds to sl′. Ui computes C′ = maxvalid(C,C), sets C′ as the new
local chain and sets state st = H(head(C′)).

(c) Ui checks whether it is in the slot leader set L of slot sl with respect to the current epoch
ej by checking that y < T ij , where (y, π) ← ProveVRF.ski(ηj ‖ sl ‖ TEST). If yes, it gen-
erates a new block B = (st, d, sl, Bπ, ρ, σ) where st is its current state, d ∈ {0, 1}∗ is
the transaction data, Bπ = (pki, y, π), ρ = (ρy, ρπ) ← ProveVRF.ski(ηj ‖ sl ‖ NONCE) and
σj = SignKES.ski,j (st, d, sl, Bπ, ρ) is a signature on (st, d, sl, Bπ, ρ) for slot sl. Ui computes
C′ = C|B, sets C′ as the new local chain and sets state st = H(head(C′)).

(d) Execute Update(KES.ski,j) obtaining the signing key KES.ski,j+1 for the next slot, erases
the current signing key KES.ski,j . Finally, if Ui has generated a block in the previous step,
it broadcasts C′.

Figure 7: Protocol πDPoS
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Protocol πRLB

Let H(·) be a random oracle. πRLB is a sub-protocol of πDPoS and proceeds as follows:
• Upon receiving (epochrnd req, Ui, ej) from stakeholder Ui, if ej ≥ 2 is the current epoch, it per-

forms the following: for every block B′ = (st′, d′, sl′, Bπ
′, ρ′, σj′) ∈ C (where C is the callee’s

Ui’s internal chain) belonging to epoch ej−1 up to the slot with timestamp less than jR − 2k,
concatenate the values ρ′ into a value v. Return ηj = H(j||v).

Figure 8: Protocol πRLB.

A′ so that corresponding event happens with the same probability in an execution of πDPoS in the
Fτ,rRLB-hybrid world with adversary A′ and environment Z assuming that τ ≤ 4k and r = 4kq.

Proof. (Sketch) The adversary A′ simulates A by maintaining locally the table for the random
oracle H(·). The key point in the simulation of A is to detect when is appropriate for A′ to issue
a reset query to its Fτ,rRLB oracle. Specifically, a reset query will be triggered whenever A queries
H(·) with concatenated valid VRF values j ‖ ρi ‖ · · · ‖ ρi′ that are drawn from a valid chain and
specifically from the first block of epoch ej to a block of that epoch with time stamp at least R−4k.
We observe that it will happen that the nonce of an epoch will be determined by the VRF values of
a sequence of blocks that has time stamp less than R− 4k (if this is not the case liveness could be
violated). Finally, when the epoch ej reaches an end, A′ will issue (epochrnd set,w,) query to Fτ,rRLB
to set the value of the beacon to the correct value w of the H(·) table as it has been determined by
the chain that is on the common prefix. Note that if the j ‖ ρi ‖ · · · ‖ ρi′ sequence corresponding to
that chain in the common prefix was never queried to H(·), A′ will do a final reset query in order
to obtain a value for this sequence, store it in its H(·) table and set it for the next epoch.

Based on the above lemma, it is easy now to revisit Theorem 5.2, and show that the same result
holds for r in the q-bounded model assuming r = 4kq and τ ≤ 4k which permits to set our epoch
length R to 8k.
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A The Model Based on [KRDO17]

Time and slots. We consider a setting where time is divided into discrete units called slots. A
ledger, described in more detail below, associates with each time slot (at most) one ledger block.
Players are equipped with (roughly synchronized) clocks that indicate the current slot. This will
permit them to carry out a distributed protocol intending to collectively assign a block to this
current slot. In general, each slot slr is indexed by an integer r ∈ {1, 2, . . .}, and we assume that
the real time window that corresponds to each slot has the following properties.

• The current slot is determined by a publicly-known and monotonically increasing function of
current time.

• Each player has access to the current time. Any discrepancies between parties’ local time are
insignificant in comparison with the length of time represented by a slot.

Security Model. We adopt the model introduced by [GKL15] for analysing security of blockchain
protocols enhanced with an ideal functionality F . We denote by VIEWP,F

Π,A,Z(λ) the view of party P
after the execution of protocol Π with adversary A, environment Z, security parameter λ and access
to ideal functionality F . We note that multiple different “functionalities” can be encompassed by
F .

In our model we employ the “Delayed Diffuse” and “Key and Transaction” functionalities. The
former is based on the Diffuse functionality from [KRDO17] that we describe below, modified as
outlined in Section 2.2. The latter contains a modification to account for immediate adaptive
corruption, and we describe it in full here.
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Diffuse functionality from [KRDO17]. It maintains a incoming string for each party Ui that
participates. A party, if activated, is allowed at any moment to fetch the contents of its incoming
string hence one may think of this as a mailbox. Furthermore, parties can give the instruction to
the functionality to diffuse a message. The functionality keeps rounds and all parties are allowed
to diffuse once in a round. Rounds do not advance unless all parties have diffused a message.
The adversary, when activated, can also interact with the functionality and is allowed to read all
inboxes and all diffuse requests and deliver messages to the inboxes in any order it prefers. At the
end of the round, the functionality will ensure that all inboxes contain all messages that have been
diffused (but not necessarily in the same order they have been requested to be diffused).

Key and Transaction functionality. The key registration functionality is initialized with n
users, U1, . . . , Un and their respective stake s1, . . . , sn; given such initialization, the functionality will
consult with the adversary and will accept a (possibly empty) sequence of (Corrupt, U) messages and
mark the corresponding users U as corrupt. For the corrupt users without a public-key registered the
functionality will allow the adversary to set their public-keys while for honest users the functionality
will sample public/secret-key pairs and record them. Public-keys of corrupt users will be marked as
such. Subsequently, any sequence of the following actions may take place: (i) A user may request
to retrieve its public and secret-key, whereupon, the functionality will return it to the user. (ii)
The whole directory of public-keys may be required in whereupon, the functionality will return it
to the requesting user. (iii) A new user may be requested to be created by a message (Create, U, C)
from the environment, in which case the functionality will follow the same procedure as before: it
will consult the adversary regarding the corruption status of U and will set its public and possibly
secret-key depending on the corruption status; moreover it will store C as the suggested initial state.
The functionality will return the public-key back to the environment upon successful completion of
this interaction. (v) A transaction may be requested on behalf of a certain user by the environment,
by providing a template for the transaction (which should contain a unique nonce) and a recipient.
The functionality will adjust the stake of each stakeholder accordingly. (iv) An existing user may
be requested to be corrupted by the adversary via a message (Corrupt, U). A user can only be
corrupted immediately, i.e., without any delay.

Given the above we will assume that the execution of the protocol is with respect to a functional-
ity F that is incorporating the above two functionalities as well as possibly additional functionalities
to be explained below. Note that a corrupted stakeholder U will relinquish its entire state to A;
from this point on, the adversary will be activated in place of the stakeholder U . Beyond any
restrictions imposed by F , the adversary can only corrupt a stakeholder if it is given permission
by the environment Z running the protocol execution. The permission is in the form of a mes-
sage (Corrupt, U) which is provided to the adversary by the environment. In summary, regarding
activations we have the following.

• At each slot slj , the environment Z is allowed to activate any subset of stakeholders it
wishes. Each one of them will possibly produce messages that are to be transmitted to other
stakeholders.

• The adversary is activated at least as the last entity in each slj , (as well as during all adver-
sarial party activations).

• If a stakeholder does not fetch in a certain slot the messages written to its incoming string in
the diffuse functionality they are flushed.
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Restrictions imposed on the environment. It is easy to see that the model above confers
such sweeping power on the adversary that one cannot establish any significant guarantees on
protocols of interest. It is thus important to restrict the environment suitably (taking into account
the details of the protocol) so that we may be able to argue security. These environment restrictions
are described in Section 2.2.

B Definitions

In this appendix, we present formal definitions of Verifiable Random Functions and Key Evolving
Signature Schemes with Forward Security.

B.1 Verifiable Random Functions

We present formal definitions of Verifiable Random Functions from [DY05].

Definition B.1 (Verifiable Random Function). A function family F·(·) : {0, 1}` → {0, 1}`VRF
is a family of VRFs if there exist algorithms (Gen,Prove,Ver) such that (i.) Gen(1k) outputs a
pair of keys (VRF.pk,VRF.sk), (ii.) ProveVRF.sk(x) outputs a pair (FVRF.sk(x), πVRF.sk(x)), where
FVRF.sk(x) ∈ {0, 1}`VRF is the function value and πVRF.sk(x) is the proof of correctness, and (iii.)
VerVRF.pk(x, y, πVRF.sk(x)) verifies that y = FVRF.sk(x) using proof πVRF.sk(x), outputting 1 if y is
valid and 0 otherwise. Additionally, we require the following properties:

1. Uniqueness: no values (VRF.pk, x, y, y′, πVRF.sk(x), πVRF.sk(x)′) can satisfy both

ProveVRF.pk(x, y, πVRF.sk(x)) = 1 and ProveVRF.pk(x, y
′, πVRF.sk(x)′) = 1

unless y = y′.

2. Provability: if y, πVRF.sk(x) = ProveVRF.sk(x), then VerVRF.pk(x, y, πVRF.sk(x)) = 1.

3. Pseudorandomness: for any PPT algorithm A = (AE , AJ), which runs for a total of s(k)
steps when its first input is 1k, and does not query the Prove(·) oracle on x,

Pr

b = b′

∣∣∣∣∣∣∣∣∣
(VRF.pk,VRF.sk)← Gen(1k);

(x,Ast)← A
Prove(·)
E (VRF.pk);

y0 = FVRF.sk(x); y1 ← {0, 1}`VRF ;

b← {0, 1}; b′ ← A
Prove(·)
J (yb, Ast)

 ≤ 1

2
+ negl(k) .

B.2 Forward Secure Signatures Schemes

We present the formal definitions of key evolving signature schemes and forward security of [BM99,
IR01].

Definition B.2 (Key Evolving Signature Schemes). A key evolving signature scheme KES =
(Gen,Sign,Verify,Update) is a tuple of algorithms such that:

1. Gen(1k, T ) is a probabilistic key generation algorithm that takes as input a security parameter
1k and the total number of periods T , outputting a key pair (KES.sk1,KES.vk), where KES.vk
is the verification key and KES.sk1 is the initial signing key (we assume that the period j to
which a signing key KES.skj corresponds is encoded in the signing key itself).
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2. SignKES.skj (m) is a probabilistic signing algorithm that takes as input a secret key KES.skkest
for the time period j ≤ T and a message m, outputting a signature σj on m for time period j
(we assume that the period j for which a signature σj was generated is encoded in the signature
itself).

3. VerifyKES.vk(m,σj) is a deterministic verification algorithm that takes as input a public key
KES.vk, a message m and a signature σj, outputting 1 if σj is a valid signature on message
m for time period j and 0 otherwise.

4. Update(KES.skj) is a probabilistic secret key update algorithm that takes as input a secret key
KES.skj for the current time period j and outputs a new secret key KES.skj+1 for time period
j+ 1. We define KES.skT+1 as the empty string and set it as the output of Update(KES.skT ).

Correctness: for every key pair (KES.sk1,KES.vk)← Gen(1k, T ), every message m and every
time period j ≤ T ,
VerifyKES.vk(m,SignKES.skj (m)) = 1.

Given a key evolving signature scheme, forward security is defined by a game that starts as the
standard Chosen Message Attack (CMA) experiment but after a number of queries to the signing
oracle allows the adversary to learn the signing key for the current time period. The adversary is
successful if it can produce a valid signature on a message of its choice for an earlier time period.
The experiment and forward security are formally defined as follows.

Definition B.3 (Forward Security Experiment). A forger is a pair of algorithms F = (Fcma, Fforge)
such that Fcma has access to a signing oracle. For a key pair (KES.vk,KES.sk1)← Gen(1k, T ), Fcma

is given KES.vk and T and queries the signing oracle qsig times with adaptively chosen message
and time period pairs, outputting the set of queried message and time period pairs CM , the set of
corresponding signatures sign(CM) and a time period b. Given CM , sign(CM) and the signing key
KES.skb for time period b, Fforge outputs (m,σj)← Fforge(CM, sign(CM),KES.skb). F is successful
if (m, j) /∈ CM , j < b and VerifyKES.vk(m,σj) = 1. (The two components of F can communicate
the necessary information, including T and b through CM .)

Definition B.4 (Forward Security). Let Succfwsig(KES[k, T ], F ) be the probability (over the ran-
dom coins of KES and F ) that F is successful in the forward security experiment of Defini-
tion B.3. Let the function InSecfwsig(KES[k, T ], t, qsig) (the insecurity function) be the maximum
of Succfwsig(KES[k, T ], F ), over all algorithms F that are restricted to running time t and qsig
signature queries. A key evolving signature scheme KES is forward secure against an adversary
that runs in time t and makes qsig signature queries if Succfwsig(KES[k, T ], F ) is negligible in k.

C Insecurity of the original Ouroboros against adversarial mes-
sage delays

This appendix informally describes several attacks against the Proof-of-Stake protocol Ouroboros
proposed in [KRDO17], when used in various environments that allow the adversary to control
message delays to some extent.

We consider two variants of the semi-synchronous model. With sender-side delays, each message
can be delayed on the side of its sender, and hence after being delayed, it arrives to all recipients
in the same round. On the other hand, if we allow for recipient-side delays, the each message can
be delayed for a different time period for each of its recipients. The latter model is the one that
we consider for our positive results in the main body of the paper. Clearly this latter model gives
more power to the adversary, hence we explore it first here.
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C.1 Recipient-Side Delays

The Model. The model for recipient-side delays is identical to the one given in Section 2.2.

Attack Description. Intuitively, the adversary aims to violate the common prefix property by
maintaining two tines that are growing at approximately the same rate: so that their lengths never
differ by more than one block. This is achieved by disclosing the blocks mined in the past ∆ rounds
(which are distributed via the DDiffuse functionality and hence can be delayed by A) in a controlled
way to affect the decision of the current slot leader (in case he is honest) about which of the two
tines to extend.

The attack can be performed even in the simple setting with a static stake and slot leaders
sampled by an idealized beacon. Moreover, it can be carried out without any corrupted parties at
all (i.e., also if the adversarial stake ratio αA = 0), as long as A maintains control over message
delays.

In detail, A behaves as follows:

1. Internally, A maintains two tines T0 and T1, initially empty. Whenever any party diffuses a
chain C such that some Ti is a prefix of C, A replaces Ti with C (except for the trivial initial
case when any chain is a prefix of both T0 and T1, here A only replaces T0).

2. In each slot slr:

(a) Determine Ts, the tine that is currently not longer, i.e., such that it satisfies |Ts| ≤ |T1−s|.
(b) Let Ui denote the slot leader for the upcoming slot slr+1. If a message containing Ts

was diffused in this round, A delivers it to the inbox of Ui and to the delayedj-strings
for all other parties j 6= i. Otherwise, if a message containing Ts is already present in
delayedi, A removes it from delayedi and delivers it to the inbox of party Ui.

(c) A moves all messages diffused in this round into the delayed-strings of all parties.

C.2 Sender-Side Delays

We now argue that the original Ouroboros protocol is insecure even against sender-side adversarial
message delays.

The Model. We consider an ideal functionality SDiffuse∆ that is defined exactly as the function-
ality Diffuse given in [KRDO17], except for two differences:

1. When the adversary A is activated, besides performing any of the actions that were allowed
by the Diffuse functionality, it is also allowed to:

• move any message obtained in a diffuse request from a party to a special string delayed,

• move any message from the string delayed to the inboxes of all parties.

2. At the end of each round, the functionality ensures that for every message that was either (a)
diffused in this round and not put to the string delayed or (b) removed from the string delayed
in this round, it is present in the inboxes of all parties. If any message currently present in
delayed was originally diffused at least ∆ slots ago, then the functionality removes it from
delayed and appends it to the inbox of all parties.

We again define our model by replacing Diffuse by SDiffuse∆ in the model of [KRDO17] (this
gives us a class of models parametrized by ∆, setting ∆ = 0 again results in the original model
of [KRDO17]).
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Attack Description. The adversary again aims to violate the common prefix property by main-
taining two tines that are growing at approximately the same rate. However, this time it cannot
deliver messages selectively to future slot leaders, and hence the attack requires a slight modifica-
tion.

The details of the attack depend on the exact definition of the maxvalid function that honest
parties use to choose the winning chain, namely on how it does tie-breaking in case of several
equal-length chains. According to [KRDO17], maxvalid should favor the current chain C if it is the
longest, otherwise choose arbitrarily. There are several natural possibilities to perform this choice:

(i) Choose a chain that was delivered first out of those with maximal length.

(ii) Choose a chain at random out of those with maximal length.

(iii) Prefer an extension of the current chain C. This is not fully specified, a rule to choose among
several extensions of C with maximal length is also needed.

(iv) Apply some fixed ordering rule, e.g. take the lexicographically first out of the chains with
maximal length.

We now sketch an attack for each of the cases above. The attacks can again be performed even
in the simple setting with a static stake, slot leaders sampled by an idealized beacon, and without
any corrupted parties.

Case (i). The adversary starts by partitioning the stakeholders into two sets S0 and S1 so that
each of these sets controls about one half of the total stake. It again maintains two tines
T0 and T1, and also keeps track of the prefixes T ′i of each Ti that were already delivered by
SDiffuse∆ to all parties. The goal of A is to maintain |T ′0| = |T ′1|, and make all parties in Si
believe that T ′i is their current chain. This is achieved as follows:

• In each slot slj , the slot leader Uj ∈ Si will extend T ′i .

• A will delay this new block unless there is already also an existing block in T1−i \ T ′1−i
that can be used to extend both T ′0 and T ′1 by one block at the same time.

• If this is the case, A delivers both delayed blocks, extends both T ′0 and T ′1 by one block,
and uses its power to reorder messages in the inboxes of honest parties to maintain that
parties in Si still consider the new T ′i to be their current chain (note that parties follow
the rule ((i)) above).

The probability that a message would need to be delayed by A for more than ∆ slots to follow
this strategy decreases exponentially with ∆.

Case (ii). A similar approach as in the case (i) will work, with one small change. Here A does not
need to choose partitions S0 and S1 and maintain them using its inbox-reordering capability.
Instead, it can simply observe which of the chains T ′0 and T ′1 are being extended, and again
only deliver extensions for both of them at the same time. By rule (ii), each stakeholder
will choose its current chain by choosing at random between the new T ′0 and T ′1. This will
guarantee a quite even distribution of parties into S0 and S1 unless there are parties with a
very large stake.

Case (iii). The same attack as in the case (i) will work. Here the partitions S0 and S1 don’t need
to be maintained by inbox-reordering, each party will stay in the same partition thanks to
following the rule (iii).
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Case (iv). The attacker A again maintains two tines T0 and T1, and also keeps track of the prefixes
T ′i of each Ti that were already delivered by SDiffuse∆ to all parties. The goal of A is to make
T0 and T1 grow at roughly the same speed.

The attack starts by letting the honest slot leaders mine two separate length-1 tines from

the genesis block (by delaying the first one). Denote these blocks B
(1)
0 and B

(1)
1 , these will

be the first blocks of T0 and T1, respectively. Now, A delivers to all parties the one of these

two blocks (say B
(1)
i ) that has lower preference in the fixed ordering given by the rule (iv),

and hence the next honest slot leader will extend this tine by mining some block B
(2)
i on top

of B
(1)
i . A witholds B

(2)
i but now publishes B

(1)
1−i and due to the rule (iv), the next honest

slot leader will mine a block on top of B
(1)
1−i, call it B

(2)
1−i. Now A is in the same situation as

before, hence it again delivers the one of the blocks B
(2)
0 and B

(2)
1 that has lower preference

according to the rule (iv). The attack continues analogously.

This attack only requires ∆ ≥ 2.

D Proof of Theorem 3.10

Theorem 3.10. Let H(·) be a random oracle, F·(·) : {0, 1}` → {0, 1}`VRF be a family of VRFs
with algorithms (Gen,Prove,Ver) with standard security as stated in Definition B.1 and D be an
input distribution with k bits of min-entropy. The family of VRFs UF·(·) : {0, 1}` → {0, 1}`VRF
with algorithms (UGen,UProve,UVer) constructed above is secure with respect to Definition B.1 and
achieves unpredictability under malicious key generation as stated in Definition 3.9.

Proof. First we show that The family of VRFs UF·(·) : {0, 1}` → {0, 1}`VRF with algorithms
(UGen,UProve,UVer) constructed above achieves standard VRF security as stated in Definition B.1.
Provability holds by definition. If there exists an adversary A that breaks the uniqueness of UF·(·)
outputting (UVRF.pk, x, y, y′,U.πUVRF.sk(x),
U.πVRF.sk(x)′) such that UProveUVRF.pk(x, y,U.πUVRF.sk(x)) = UProveUVRF.pk(x, y

′,U.πVRF.sk(x)′),
this adversary generates (yU = (H(x ‖ y), y),U.π = π) and (yU = (H(x ‖ y′), y′),U.π′ = π′) where
it is ensured that x is the same (otherwise the verification would fail) but y 6= y′ in both yU and
y′U, while ProveVRF.pk(x, y, π) = ProveVRF.pk(x, y

′, π′). Thus, we can construct an adversary A∗ that
breaks uniqueness for the underlying family of VRFs F·(·) by outputting the same as A.

If there exists an adversary A that breaks the pseudorandomness of UF·(·), we can construct
an adversary A∗ that breaks pseudorandomness of F·(·) as follows: A∗ gives public key UVRF.pk
to A and every time A queries the UProve(·) oracle on x, A∗ queries the Prove(·) oracle on x and
returns ((H(x ‖FUVRF.sk(x)),
FUVRF.sk(x)), πUVRF.sk(x)) to A. When A outputs (x,Ast), A∗ outputs the same, receives its chal-
lenge yb and gives a challenge yU = (H(x ‖ yb), yb), yb) to A. A∗ outputs whatever A outputs. Notice
that the oracle queries are answered exactly as in the original pseudorandomness experiment and
that the challenge provided by A∗ is indistinguishable from the actual challenge in the experiment
since yb is pseudorandom and the output H· is random. The reduction only fails if x ‖ yb has been
queried to random oracle before, which happens with negligible probability.

As for unpredictability under malicious key generation, notice that challenge y0 = FVRF.sk(x) =
(H(x ‖FUVRF.sk(x)),FUVRF.sk(x)) has at least k bits of min-entropy for x← D. Hence, if there exists
an adversary A that distinguishes y0 from y1 (a random string of same size) with proability higher
than 1

2 +2−k, we can construct an adversary A∗ that distinguishes the output of the random oracle
from a random string of same size with probability better than 1

2 + 2−k as well.
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E Useful Probability-Theoretic Tools

In our arguments, we are using the following standard variant of the Chernoff bound. See,
e.g., [MR95] for a proof.

Theorem E.1 (Chernoff bound). Let X1, . . . , XT be independent random variables with E[Xi] = pi
and Xi ∈ [0, 1]. Let X =

∑T
i=1Xi and µ =

∑T
i=1 pi = E[X]. Then, for all δ ≥ 0,

• P[X ≥ (1 + δ)µ] ≤ e−
δ2

2+δ
µ;

• P[X ≤ (1− δ)µ] ≤ e−
δ2

2+δ
µ.

We also employ the following theorem.

Theorem E.2 ([Str65]). Let D1 and D2 be two distributions on a finite partially ordered set V with
partial order �. Then D1 � D2 iff there is a pair of (typically dependent) random variables, X1

and X2, taking values in V so that each Xi is distributed according to Di, and Pr[X1 � X2] = 1.

(Note that the statement of this theorem overloads the notation �, applying it both to distri-
butions in the sense of Definition 4.7 and elements of the partial order.) This result is implicit in
Strassen’s 1965 article [Str65]; a presentation with terminology closer to ours appears in Kamae et
al. [KKO77].

F Further Details on Forks, Forkability and Divergence

We introduce the notion of a forkable string that was central to the analysis in [KRDO17].

Definition F.1 (Height and fork intersection). The height of a fork (as usual for a tree) is defined
to be the length of the longest tine. For two tines t1 and t2 of a fork F , we write t1 ∼ t2 if they
share an edge. Note that ∼ is an equivalence relation on the set of nontrivial tines; on the other
hand, if tε denotes the “empty” tine consisting solely of the root vertex then tε 6∼ t for any tine t.

The common prefix property in the synchronous case is studied by focusing on a local property
of “forkability”.

Definition F.2 (Flat forks and forkable strings). We say that a synchronous fork is flat if it has
two tines t1 6∼ t2 of length equal to the height of the fork. A string w ∈ {0, 1}∗ is said to be forkable
if there is a flat synchronous fork F `0 w.

A fundamental tool in the security analysis in the synchronous case is an estimate of the

number of forkable strings of a particular length k. The original bound of 2−Ω(
√
k) in [KRDO17]

was strengthened to 2−Ω(k) in [RMKQ17].

Theorem F.3 ([KRDO17, RMKQ17]). Let ε ∈ (0, 1) and let w be a string drawn from {0, 1}k by
independently assigning each wi = 1 with probability (1 − ε)/2. Then Pr[w is forkable] = 2−Ω(k).
The constant hidden by the Ω(·) notation depends only on ε.

As mentioned above, the notion of forkability is directly related to (synchronous) divergence;
this is reflected by the theorem below.

Theorem F.4 ([KRDO17]). Let w ∈ {0, 1}∗ with div0(w) ≥ k. Then there is a forkable substring
w̌ of w with |w̌| ≥ k.
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An immediate conclusion of Theorems F.3 and Theorem F.4 is the following bound on the
probability that a synchronous characteristic string drawn from the binomial distribution has large
divergence.

Theorem F.5 (Restatement of Theorem 4.6). Let `, k ∈ N and ε ∈ (0, 1). Let w ∈ {0, 1}` be drawn
according to the binomial distribution, so that Pr[wi = 1] = (1− ε)/2. Then

Pr[div0(w) ≥ k] ≤ exp(ln `− Ω(k)) .

A proof of Theorem 4.6 is developed for a weaker bound on forkability in [KRDO17]; here we
include a proof adapted to the bound of Theorem F.3 for completeness.

Proof of Theorem 4.6. It follows from Theorem F.4 that if div0(w) ≥ k, there is a forkable substring
w̌ of length at least k. Thus

Pr[div0(w) ≥ k] ≤ Pr

[∃α, β ∈ {1, . . . , `} so that α +
k−1 ≤ β and wα . . . wβ is fork-
able

]
≤
∑

1≤α≤`

∑
α+k−1≤β≤`

Pr[wα . . . wβ is forkable]︸ ︷︷ ︸
(∗)

.

According to Theorem F.3 the probability that a string of length t drawn from this distribution
is forkable is no more than exp(−ct) for a positive constant c. Note that for any α ≥ 1,

∑̀
t=α+k−1

e−ct ≤
∫ ∞
k−1

e−ct dt = (1/c)e−c(k−1) = e−Ω(k)

and it follows that the sum (∗) above is exp(−Ω(k)). Thus

Pr[div0(w) ≥ k] ≤ ` · exp(−Ω(k)) ≤ exp(ln `− Ω(k)) ,

as desired.
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