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Abstract

We study the quantum query complexity of finding a collision for a function f whose out-
puts are chosen according to a non-uniform distribution D. We derive some upper bounds
and lower bounds depending on the min-entropy and the collision-entropy of D. In partic-
ular, we improve the previous lower bound in [TTU16] from Ω(2k/9) to Ω(2k/5) where k is
the min-entropy of D.
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1 Introduction

We study the quantum query complexity of finding a collision for a function f whose outputs
are chosen according to a non-uniform distribution D. We derive some upper bounds and lower
bounds depending on the min-entropy and the collision-entropy of D. Recall that a collision for
function f consists of two distinct inputs x1 and x2 such that f(x1) = f(x2). By Lemma A.9
in [KL07], Ω(2k/2) classical queries are necessary to find a collision with constant probability
where k is the min-entropy of D, and Theorem 3 in [Wie05] shows that O(2k/2) classical queries
are sufficient to find a collision with constant probability where k is the collision-entropy of D.
However, in the quantum query model this number of queries may be too high since one quantum
query may contain the whole input-output values of the function. The quantum collision problem
for a non-uniform distribution has been studied in [TTU16]. They prove an Ω(2k/9) lower bound
for the problem where k is the min-entropy of D. We improve their bound to Ω(2k/5) in this
paper, and additionally prove upper and lower bounds for a number of cases (see below).

One motivation for studying the quantum collision problem for a non-uniform distribution
is the interest in proving the security of classical cryptographic schemes against quantum ad-
versaries. Hash functions are crucial cryptographic primitives that are used to construct many
encryption schemes and cryptographic schemes and they may be distributed non-uniformly.
Even though in the random oracle model [BR93] they are modeled as random functions, they
are often used as a composition with other functions. Therefore the output of the combination
of a function f and a random function H may not be distributed uniformly at random and
finding a collision for this non-uniformly distributed f ◦H may break the security of the scheme.
For example the well-known Fujisaki-Okamoto construction [FO99] uses a random function H
to produce the randomness for an encryption scheme f . The security relies on the fact that the
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Lower bound Upper bound
Quantifier H∞(D) H2(D) Quantifier H∞(D) H2(D)

∀ A ∀ D Ω(2H∞(D)/5) Ω(2H2(D)/9) ∃ A ∃ D O(2H∞(D)/3) O(2H2(D)/4)

∀ A ∃ D Ω(2
H∞(D)

2 ) Ω(2
H2(D)

3 ) ∃ A ∀ D O(2
2H∞(D)

3 ) O(2
H2(D)

3 )

∃ D ∀ A Ω(2
H∞(D)

2 ) Ω(2
H2(D)

3 ) ∀ D ∃ A O(2
H∞(D)

2 ) O(2
H2(D)

3 )

Figure 1: Summary of the bounds achieved in this paper. The columns marked H∞(D), H2(D) give
lower/upper bounds on the number of queries needed for finding a collision in terms of the min-entropy
and the collision-entropy, respectively. The “quantifier” column indicates for what quantification of
collision-finding algorithm A and distribution D the respective bound is achieved. For example, a lower
bound Ω(B) with quantifiers ∀A∃D means that for any adversary A, there exists a distribution D such
that A needs at least Ω(B) queries to find a collision.

adversary can not find two inputs of the random function that lead to the same ciphertext. This
is roughly equivalent to saying that f ◦H is collision-resistant. In fact, the quantum collision-
resistance of a non-uniform distributed function has been used for analyzing a variant of the
Fujisaki-Okamoto construction in the quantum setting [TU16].

The table in Figure 1 summarizes our results. We give twelve bounds altogether, depending
on whether it is an upper or a lower bound, whether it is expressed in terms of the min-entropy
or the collision-entropy, and depending on the order of the quantification of the collision-finding
algorithm and the non-uniform distribution.

Why twelve bounds? Our work gives twelve different bounds (see Figure 1). Why do we
need this number of bounds? First, when considering non-uniform distributions, there are a
number of entropy measures that can quantify the deviation from the uniform distribution. At
least in a cryptographic context, the min-entropy H∞ and the collision-entropy H2 are often of
particular interest. Thus we state our bounds in terms of these two entropy measures. (Other
entropy measures may be of interest in this context, too. We leave this as possible future work.)
Then, there are three main applications that we might be interested in:

• A cryptographic bound. For example, in the context of [TU16], we have a cryptosystem
which can be broken iff the adversary can find a collision in a function with non-uniform
distribution D (see above). All we know about D is a lower bound on its entropy. Thus
we need a bound of the following form: “for every algorithm A, and every distribution D
of entropy ≥ k, finding a collision takes at least Ω(. . . ) queries.” Such lower bounds are
given in Figure 1 in the row marked ∀A∀D.

• An algorithmic upper bound. On the other hand, our analysis might be motivated by
algorithmic considerations. We wish to implement an algorithm that finds collisions in
functions with non-uniform distribution. That is, we look for a statement of the kind: “for
every distribution D of entropy ≤ k, there is an algorithm A that finds a collision in at
most O(. . . ) queries.” Such upper bounds are given in Figure 1 in the row marked ∀D ∃A.

• An algorithmic upper bound for universal algorithms. Still in the algorithmic setting, we
might not be content with an algorithm that depends on the distribution at hand. We may
search for an algorithm that works without needing to know what the distribution is. That
is, we look for a universal algorithm. (This might also be relevant if the distribution is
known, but too hard to describe.) In this case, we look for a statement of the form: “there
is an single algorithm A that finds a collision in at most O(. . . ) queries for any distribution
D of entropy ≤ k (without needing to know from which distribution we draw).” Such upper
bounds are given in Figure 1 in the row marked ∃A∀D.

And finally, in each of these three cases we may ask whether the bound is tight (and if not,
how loose it is). For example, to see whether the ∀A∀D lower bound is tight, we need to find
an ∃A∃D upper bound. (Our bounds are not matching yet, we leave this as future work).
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Similarly, to understand whether the ∃A∀D upper bound is tight, we need a matching ∀A∃D
lower bound. (We achieve a tight bound for the collision-entropy case here.) And finally, to show
that the ∀D ∃A upper bound is tight, we need an ∃D ∀A lower bound. (We have matching
bounds in this case.)

Related works. The quantum collision problem has been studied in various previous works.
In the following, we mention the existing results on the number of queries that are necessary
to find a collision. In [TTU16], they prove an Ω(2k/9) lower bound for the quantum query
complexity of the function f whose output are chosen according to a distribution with the min-
entropy k. An Ω

(
(N/r)1/3

)
lower bound for an r-to-one function f is given by Aaronson and

Shi [AS04] where N is the domain size and r|N . Yuen [Yue14] proves an Ω(N1/5/polylogN)
lower bound for the quantum collision problem for a random function f with same domain and
co-domain of size N . They reduce the distinguishing between a random function and a random
permutation problem to the distinguishing between a function with r-to-one part and a function
without r-to-one part. Their proof combines the r-to-one lower bound from [AS04] and the
quantum adversary method [Amb00]. Zhandry [Zha15] improves Yuen’s bound to the Ω(N1/3)
and also removes the same size domain and co-domain constraint (N is the size of co-domain
here.). They use the existing result from [Zha12] to prove their bound.

The sufficient number of quantum queries to find a collision is given in the following works.
A quantum algorithm that requires O

(
(N/r)1/3

)
quantum queries and finds a collision for any

r-to-one function f is given by Brassard, Høyer and Tapp [BHT97]. Ambainis [Amb07] gives
a quantum algorithm that requires O(N2/3) queries to find two equal elements among N given
elements and therefore it is an algorithm for finding a collision in an arbitrary function f with
the domain of size N given the promise that f has at least one collision. Yuen [Yue14] shows
that the collision-finding algorithm from [BHT97] is able to produce a collision for a random
function with the same domain and co-domain using O(N1/3) queries. Zhandry shows that
O(M1/3) queries are sufficient to find a collision for a random function f : [N ] → [M ] where
N = Ω(M1/2). They use Ambainis’s element distinctness algorithm [Amb07] as a black box in
their proof.

Organization of the paper. In Section 2, we present some definitions and known results
that are needed in this paper. In Section 3, we present upper bounds for the collision problem
and cover both the collision-entropy and the min-entropy. Section 4 is devoted to lower bounds
for the collision problem and we divide the section into two subsections for the case of the
collision-entropy, (Subsection 4.1), and the min-entropy, (Subsection 4.2).

2 Preliminaries

In this section, we present some definitions and existing results that are needed in this paper.
We show the restriction of the function f to the set S by notation f |S . We represent the set
{1, . . . ,m} by [m]. Notation x $←− X shows that x is chosen uniformly at random from set X.
If D is a distribution over X, then notation x← D shows that x is chosen at random according
to the distribution D. Pr[P : G] is the probability that the predicate P holds true where free
variables in P are assigned according to the program in G. We say that the quantum algorithm
A has quantum access to the oracle O : {0, 1}n0 → {0, 1}n1 , denoted by AO, where A can submit
queries in superposition and the oracle O answers to the queries by a unitary transformation
that maps |x, y〉 to |x, y ⊕O(x)〉.

Definition 1. Let D be a distribution on a set X. The min-entropy and collision-entropy of the
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distribution D is defined as the following, respectively.

H∞(D) = − log max
x∈X
D(x), H2(D) = − log

∑
x∈X
D(x)2.

Lemma 1 (Theorem 7 [Zha15]). Let h : X → Y be a random function. Then any quantum
algorithm making q queries to h outputs a collision for h with probability at most C(q+2)3

|Y | where
C is a universal constant.

Definition 2 (Universal Hash Function [CW79]). A family of functions H = {h : {0, 1}n →
{0, 1}m} is called a family of universal hash function if for all distinct x, y ∈ {0, 1}n:

Pr[h(x) = h(y) : h
$←− H] ≤ 1/2m.

Definition 3. Let D1 and D2 be distributions on a set X. The statistical distance between D1

and D2 is
SD(D1,D2) =

1

2

∑
x∈X

∣∣Pr[D1(x)]− Pr[D2(x)]
∣∣.

Lemma 2 (Leftover Hash Lemma [HILL93]). Let D be a distribution with collision-entropy k
and e be a positive integer. Let h : {0, 1}m × {0, 1}n → {0, 1}k−2e be a universal hash function.
Then,

SD
((
h(y, x), y

)
,
(
z, y
))
≤ 2−e−1

where x D←− {0, 1}n, y $←− {0, 1}m and z $←− {0, 1}k−2e.

Lemma 3 (Proof of Theorem 1 in [HRS16]). Let F : X → {0, 1} be a function such that
F (x) := 1 with probability γ, and F (x) := 0 otherwise. Then for any oracle algorithm A making
q queries,

|Pr[b = 1 : b← AF ]− Pr[b = 1 : b← AN ]| ≤ 8q2γ,

where N is the zero function on X.

Lemma 4 ([Zha12]). Let D1 and D2 be efficiently sampleable distributions over some set Y,
and let X be some other set. For i = 1, 2, let DXi be the distributions of functions Fi from X to
Y where for each x ∈ X, Fi(x) is chosen at random according to the distribution Di. Then if A
be a quantum algorithm that makes q queries and distinguish DX1 from DX2 with non-negligible
probability ε, we can construct a quantum algorithm B that distinguishes samples from D1 and
D2 with probability at least 3ε2

64π2q3
.

3 Upper bounds

We divide this section to three following subsections according to the possible quantifiers. We
denote the set of natural numbers by N.

3.1 Quantifier order ∃ A ∃ D

Theorem 1. There exist a quantum algorithm A and a distribution D with the min-entropy k
such that A returns a collision for the function f ← DN with constant probability using O(2k/3)
queries.

Proof. Theorem 6 in [Zha15] presents a quantum algorithm that outputs a collision with constant
probability using O(2k/3) queries where k := H∞(D) and D is an uniform distribution. By
repeating their algorithm on distinct subset of N, we can amplify the success probability arbitrary
close to 1.
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We improve the bound above to O(2k/4) for the collision-entropy in the following theorem.

Theorem 2. There exists a quantum algorithm A and a distribution D with H2(D) ≥ k such
that A returns a collision for the function f ← DN with constant probability using O(2k/4)
queries.

Proof. Let n be some integer such that 2n−1
(1−γ)2

≥ 2k+1 for γ := 1/2(k+1)/2. Let D be a distribution

over {0, 1}n such that D(0) = γ and D(y) = 1−D(0)
2n−1 for any non-zero y ∈ {0, 1}n. Simple

calculation shows H2(D) ≥ k. We define the boolean function g : N1 → {0, 1} as:

g(n) :=

{
1 if f(n) = 0

0 otherwise
,

where N1 is an arbitrary subset of N and of size d2/γe and f ← DN. Note that every query to
g can be implemented by 2 queries to f . Let X :=

∑
n∈N1

g(n). Therefore µ := E(X ) ≥ 2. We
use Chernoff inequality, Theorem 4.5 in [MU05], that states for any 0 < δ < 1:

Pr[X > (1− δ)µ] > 1− e−
δ2µ
2 .

By choosing δ = 1/2, there exists at least one pre-image for 1 with probability at least 1−e−1/4.
Hence, Grover’s algorithm [Gro96, BBHT98] returns input n̂ such that g(n̂) = 1 using O(

√
|N1|)

queries with constant probability C. We choose an arbitrary subset N2 ⊂ N \ N1 and of size
d2/γe and define the function g′ : N2 → {0, 1} similar to g and invoke Grover’s algorithm to
obtain n′ such that g′(n′) = 1. Note that (n̂, n′) is a collision for f and the success probability
of the algorithm is C2(1−e−1/4)2. By repeating this procedure on distinct subset of the domain
of f , we can amplify the success probability arbitrary close to 1.

3.2 Quantifier order ∃ A ∀ D

Theorem 3. There exists a quantum algorithm A such that for any distribution D with H2(D) ≤
k outputs a collision for the function f ← DN with constant probability using O(2k/3) queries.

Proof. The proof follows by the reduction technique used in [AS04, Zha15] and using Ambainis’s
algorithm [Amb07] for the element distinctness as a black box. Let S be a random subset of N
of size 2k/2 + 1. By Theorem 3 in [Wie05], f ′ := f |S has at least one collision with probability
at least 1 − 2/e. Now, invoking Ambainis’s algorithm [Amb07] for f ′ returns a collision with
bounded error. The query complexity of Ambainis’s algorithm is O(|S|2/3) = O(2k/3). By
repeating this procedure on distinct subset of the domain of f , we can amplify the success
probability arbitrary close to 1.

Theorem 4. There exists a quantum algorithm A such that for any distribution D with H∞(D) ≤
k outputs a collision for function f ← DN using O(22k/3) queries and with constant probability.

Proof. The proof follows by the theorem above and the inequality H2(D) ≤ 2H∞(D).

3.3 Quantifier order ∀ D ∃ A

Theorem 5. For any distribution D with H∞(D) ≤ k, there exists a quantum algorithm A that
finds a collision for the function f ← DN with constant probability using O(2k/2) queries.

Proof. Let Y := sup(D). Fix some y ∈ Y such that D(y) ≥ 1/2k. We define the boolean
function g : N1 → Y as follows:

g(n) :=

{
1 if f(n) = y

0 otherwise
,
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where N1 is a random subset of N and of size 2k+1. Note that every query to g can be imple-
mented by 2 queries to f . Using Chernoff bound and similar to the Theorem 2, we can show
that there exists at least one pre-image for 1 with probability at least 1−e−1/4. Hence, Grover’s
algorithm [Gro96, BBHT98] returns input n̂ such that g(n̂) = 1 using O(

√
|N1|) queries with

constant probability. We choose a random subset N2 ⊂ N \N1 and of size 2k+1 and define the
function g′ : N2 → {0, 1} similar to g and invoke Grover’s algorithm to obtain n′ such that
g′(n′) = 1. Note that (n̂, n′) is a collision for f . By repeating this procedure on distinct subset
of the domain of f , we can amplify the success probability arbitrary close to 1.

Theorem 6. For any distribution D with H2(D) ≤ k, there exists a quantum algorithm A that
outputs a collision for the function f ← DN with constant probability using O(2k/3) queries.

Proof. By Theorem 3.

4 Lower bounds

In this section, we prove the lower bounds on number of queries needed to output a collision.
We present them in two subsections based on the collision-entropy and min-entropy.

4.1 Collision-entropy

4.1.1 Quantifier orders ∃ D ∀ A and ∀ A ∃ D.

Theorem 7. There exist a distribution D with H2(D) = k such that for any quantum algorithm
A making q queries to f ← DX returns a collision for f with probability at most C(q+2)3

2k
where

C is a universal constant. That is,

Pr[f(x) = f(x′) ∧ x 6= x′ : f ← DX , (x, x′)← Af ] ≤ C(q + 2)3

2k
.

Proof. If we consider the uniform distribution D over {0, 1}k then Lemma 1 shows the result for
the reason that H2(D) = k.

Theorem 8. For any quantum algorithm A, there exist a distribution D with H2(D) = k such
that A making q queries to f ← DX returns a collision for f with probability at most C(q+2)3

2k

where C is a universal constant. That is,

Pr[f(x) = f(x′) ∧ x 6= x′ : f ← DX , (x, x′)← Af ] ≤ C(q + 2)3

2k
.

Proof. It follows immediately from the above theorem.

4.1.2 Quantifier order ∀ A ∀ D

In the following, we prove that for any quantum algorithm A and for any distribution D, Ω(2k/9)
quantum queries are needed to output a collision.

Lemma 5. Let D be a distribution over {0, 1}n1. Let f : {0, 1}n1 → {0, 1}n2 be a public function
and X = {0, 1}n0. If A is a quantum algorithm that makes q queries to the function O drawn
from distribution DX and finds a collision for f ◦ O with some probability, then there exists a
quantum algorithm B that makes 2q queries to f ◦ O and outputs a collision for f ◦ O with the
same probability.
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Proof. Let Sy = f−1({y}) for y ∈ Im f . Let Y0 := {y ∈ Im f : D is zero on Sy}. For any
y ∈ Im f \ Y0, we define the distribution Dy over Sy as

Dy(z) :=
D(z)∑
z∈Sy D(z)

.

Let D′ be the distribution of functions F : {0, 1}n0 × (Im f \ Y0) → {0, 1}n1 where for any
x ∈ {0, 1}n0 and y ∈ Im f \ Y0, F (x, y) is chosen at random in Sy according to the distribution
Dy. Let (F �g)(x) := F

(
x, g(x)

)
. We show that output of F � (f ◦O) are chosen independently

according to the distribution D when F is chosen according to distribution D′ and this shows that
O and F � (f ◦O) have the same distribution. For every x ∈ {0, 1}n0 and z ∈ {0, 1}n1 \∪y∈Y0Sy:

Pr[
(
F � (f ◦O)

)
(x) = z : O ← DX , F ← D′]

= Pr[F
(
x, f

(
O(x)

))
= z : O ← DX , F ← D′]

= Pr[F
(
x, f(z′)

)
= z : z′ ← D, F ← D′]

= Pr[z′′ = z : z′ ← D, z′′ ← Df(z′)]

(∗)
= Pr[z′′ = z ∧ z′ ∈ Sf(z) : z′ ← D, z′′ ← Df(z′)]

(∗∗)
= Pr[z′ ∈ Sf(z) : z′ ← D] Pr[z′′ = z : z′′ ← Df(z)]

=

( ∑
z′∈Sf(z)

D(z′)

)
· D(z)∑

z′∈Sf(z) D(z′)
= D(z),

where (∗) holds for the reason that if z′′ = z be true, then f(z) = f(z′) and z′ will be in the set
Sf(z), and (∗∗) holds because z′ and z′′ are independent. Note that when z ∈ ∪y∈Y0Sy, then

Pr[
(
F � (f ◦O)

)
(x) = z : O ← DX , F ← D′] = 0 = D(z).

Let Ō := f ◦O. As a result:

Pr[Ō(x) = Ō(x′) ∧ x 6= x′ : O ← DX , (x, x′)← AO]

= Pr[f ◦ (F � Ō)(x) = f ◦ (F � Ō)(x′) ∧ x 6= x′ : O ← DX , F ← D′, (x, x′)← AF�Ō].

Now, we construct a quantum algorithm B. The algorithm B with oracle access to Ō runs
AF�Ō with F ← D′. The way that the quantum algorithm B handles quantum queries is shown
in the following circuit.

Input wire: |x〉
UO

UF U †F

U †
O

|x〉

Ancillary wire: |0〉 |0〉

Ancillary wire : |0〉 • |0〉

Output wire: |0〉 |F �O(x)〉

The algorithm B returns the output of A, say (x, x′), as a collision for Ō after 2q queries to
oracle Ō. Note that from f ◦ (F � Ō)(x) = f ◦ (F � Ō)(x′), we can deduce Ō(x) = Ō(x′) because
F � Ō(x) ∈ f−1({Ō(x)}) and F � Ō(x′) ∈ f−1({Ō(x′)}). Therefore, we prove the existence of
the quantum algorithm B stated in the lemma.
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Theorem 9. Let D be a distribution with H2(D) ≥ k over set {0, 1}n1. Let f be a function
drawn from distribution DX . Then any quantum algorithm A making q queries to f returns a
collision for f with probability at most C′(q+2)9/5

2k/5
where C ′ is a universal constant. That is,

Pr[f(x) = f(x′) ∧ x 6= x′ : f ← DX , (x, x′)← Af ] ≤ C ′(q + 2)9/5

2k/5
.

Let h : {0, 1}m × {0, 1}n1 → {0, 1}k−2e be a universal hash function. Lemma 2 implies that:

SD
(
(hy(d), y), (z, y)

)
≤ 2−e−1, (1)

where hy(d) := h(y, d), d ← D, y $←− {0, 1}m and z
$←− {0, 1}k−2e. Let U be the uniform

distribution over {0, 1}k−2e. The upper bound can be concluded by the following steps:

Pr[f(x) = f(x′) ∧ x 6= x′ : f ← DX , (x, x′)← Af ]

(i)

≤ Pr[hy ◦ f(x) = hy ◦ f(x′) ∧ x 6= x′ : y
$←− {0, 1}m, f ← DX , (x, x′)← Af ]

=
∑

y∈{0,1}m

1

2m
Pr[hy ◦ f(x) = hy ◦ f(x′) ∧ x 6= x′ : f ← DX , (x, x′)← Af ]

(ii)
=

∑
y∈{0,1}m

1

2m
Pr[hy ◦ f(x) = hy ◦ f(x′) ∧ x 6= x′ : f ← DX , (x, x′)← Bhy◦f (y)]

(iii)

≤ Pr[f∗(x) = f∗(x′) ∧ x 6= x′ : f∗ ← UX , (x, x′)← Bf∗ ] +
√

64π2q32−e−1/3

(iv)

≤ C(q + 2)3

(2k−2e)
+

√
64π2q3

3(2e+1)

where
(i) follows from the fact that collisions for f will also be collisions for hy ◦ f ;
(ii) follows from Lemma 5 that implies the existence of quantum algorithm B;
(iii) can be seen as follows: Let

εy :=
∣∣∣Pr[hy ◦ f(x) = hy ◦ f(x′) ∧ x 6= x′ : f ← DX , (x, x′)← Bhy◦f (y)]−

Pr[f∗(x) = f∗(x′) ∧ x 6= x′ : f∗ ← UX , (x, x′)← Bf∗ ]
∣∣∣.

Let for any y ∈ {0, 1}m, D1y be a distribution over {0, 1}k−2e where for any ` ∈ {0, 1}k−2e,
D1y(`) = Pr[hy(d) = ` : d ← D]. Using Lemma 4, we can conclude that there exists an
adversary A such that

SD(D1y,U) ≥ |Pr [A(x) = 1 : x← D1y]− Pr [A(x) = 1 : x← U ]| ≥
3ε2y

64π2q3
,

and Equation 1 implies that ∑
y∈{0,1}m

1

2m
SD(D1y,U) ≤ 2−e−1.

Therefore, we can deduce
1

2m

∑
y∈{0,1}m

3ε2y
64π2q3

≤ 2−e−1.

Using Jensen’s inequality [Jen06], we can obtain
∑

y∈{0,1}m
1

2m εy ≤
√

64π2q32−e−1/3.
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Let

ε :=
∣∣∣ ∑
y∈{0,1}m

1

2m
Pr[hy ◦ f(x) = hy ◦ f(x′) ∧ x 6= x′ : f ← DX , (x, x′)← Bhy◦f (y)]−

Pr[f∗(x) = f∗(x′) ∧ x 6= x′ : f∗ ← UX , (x, x′)← Bf∗ ]
∣∣∣.

By triangle inequality, ε ≤
∑

y∈{0,1}m
1

2m εy ≤
√

64π2q32−e−1/3.
(iv) follows from applying Lemma 1 to the random function f∗.

So far, we have the upper bound

ηe :=
22eµ

2k
+

ν

2e/2
, where µ := C(q + 2)3 and ν :=

8πq3/2

√
6

.

It is minimized by choosing

e =
2

5
k +

2

5
log

ν

4µ
.

Substituting this value of e gives us

Pr[f(x) = f(x′) ∧ x 6= x′ : f ← DX , (x, x′)← Af ] ≤ 22/5µ1/5ν4/5

2k/5
≤ C ′(q + 2)9/5

2k/5
.

.

4.2 Min-entropy

4.2.1 Quantifier orders ∃ D ∀ A and ∀ A ∃ D.

Theorem 10. For any k, there exists a distribution D with min-entropy k such that for every
adversary A making q queries,

Pr[f(x) = f(x′) ∧ x 6= x′ : f ← DX , (x, x′)← Af ] ≤ O
(

max
{
q2/2k, q3/23k/2

})
.

Proof. Let n ≥ 3k/2. Let D be a distribution over {0, 1}n ∪ {a} such that D(a) = 1/2k and
D(y) = (1 − 1/2k)/2n for y ∈ {0, 1}n. Let A be a quantum adversary that makes q queries to
the function f ← DX and outputs a collision with probability ε.

ε := Pr[f(x) = f(x′) ∧ x 6= x′ : f ← DX , (x, x′)← Af ]

= Pr[f(x) = f(x′) = a ∧ x 6= x′ : f ← DX , (x, x′)← Af ](:= ε1)

+ Pr[f(x) = f(x′) 6= a ∧ x 6= x′ : f ← DX , (x, x′)← Af ](:= ε2).

First we obtain an upper bound for ε1. Let B be a quantum adversary that want to distinguish
between the function

g(x) :=

{
1 with probability 1/2k

0 otherwise

and the zero-function F on X. B picks a random function f0 : X → {0, 1}n and the constant
function f1 : X → {a} and runs the adversary A. It answers to A’s queries by function
f ′(x) := fO(x)(x) where O is either g or F . Simple calculation shows that f and f ′ has the
same distribution when B has oracle access to g. To simulate a quantum query to f ′, B makes
two queries to its oracle (a quantum circuit that simulates the queries has been presented in the
proof of Lemma 7 that uses the same idea). The adversary B outputs 1 if A outputs x 6= x′ such
that f ′(x) = f ′(x′) = a and 0 otherwise (this includes when A halts without an output). Note
that since the element ’a’ is not in image of fF , B outputs 0 with probability 1 when it interacts
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with F . Therefore, the adversary B distinguishes g from a zero-function with probability ε1 and
making at most 2q+ 2 queries (two extra queries needed to check that x, x′ are pre-image of a).
By Lemma 3, we can conclude ε1 ≤ 8(2q + 2)2/2k.
To prove an upper bound for ε2, let B be a quantum adversary that has oracle access to a random
function f ′ : X → {0, 1}n . The adversary B picks function f̃ as the following,

f̃(x) :=

{
a with probability 1/2k

f ′(x) otherwise
,

and runs Af̃ . Note that f and f̃ has the same distribution, hence, after q queries A returns
x 6= x′ such that f(x) = f(x′) 6= a with probability ε2. By Lemma 1, ε2 ≤ C(q+2)3

2n and therefore
ε ≤ O

(
max

{
q2/2k, q3/23k/2

})
since n ≥ 3k/2.

The theorem above implies that the adversary needs Ω(2k/2) queries in order to find a collision
with constant probability.

Theorem 11. For any k and any quantum adversary A there exists a a distribution D with
min-entropy k such that Ω(2k/2) quantum queries are needed to output a collision with constant
probability.

Proof. The proof follows from the theorem above.

4.2.2 Quantifier order ∀ D ∀ A.

It is left to prove a lower bound for any adversary A and any distribution D. One could try
to use the fact that every distribution of min-entropy k is a convex combination of some flat
distributions over subsets of size at least 2k [CG88] and reduces the collision problem for a non-
uniform function to the uniform case . However, when the number of the flat distributions are
exponentially large, the derived bound might not be suitable. To circumvent this problem, we
use a similar idea used in [FRS16], namely leveling approach, and work with some nearly flat
distributions. This gives us an Ω(2k/5) lower bound.

Leveling approach. Let D be a distribution with H∞(D) ≥ k over Y := {0, 1}n. For
i = k, . . . ,m, we define the distributions D̃i as the following:

D̃i(y) :=
Di(y)∑

y∈{0,1}n Di(y)
,

where for i = k, . . . ,m− 1,

Di(y) :=

{
D(y), if D(y) ∈

(
2−(i+1), 2−i

]
0, otherwise

and

Dm(y) :=

{
D(y), if D(y) ∈ (0, 2−m]

0, otherwise
.

We define the distribution α(i) :=
∑

y∈{0,1}n Di(y) over {k, . . . ,m}. It is clear that the distribu-
tion D is equivalent to the distribution D′′ obtained by choosing i according to the distribution
α and then picking an element according to the distribution D̃i. (Note that there are no values
i with D(i) > 2−k since H∞(D) ≥ k.) For i = k, . . . ,m, let Yi := {y ∈ {0, 1}n : D̃i(y) 6= 0}.
Note that the sets of {Yk, . . . , Ym} is a partition of the set sup(D) := {y ∈ {0, 1}n;D(y) 6= 0}.
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Lemma 6. For i = k, . . . ,m− 1 with Yi 6= ∅, any set X and any quantum adversary A making
q queries to the function f̃ ← D̃Xi ,

Pr[f̃(x) = f̃(x′) ∧ x 6= x′ : f̃ ← D̃Xi , (x, x′)← Af̃ ] ≤ O
( q3

2iα(i)

)
.

Proof. In order to prove the lemma, we need to define the new distributions D∗i : Yi∪{⊥} → [0, 1]
as the following:

D∗i (y) :=

{
2i

|Yi| Di(y), if y ∈ Yi
1− 2i

|Yi|α(i), if y =⊥
.

It is easy to show that D∗i is a distribution for i = k, . . . ,m−1. Then we prove that the function
f∗ ← D∗Xi is collision-resistant in the claim below and use it later on to show the lemma.

Claim 1. For i = k, . . . ,m− 1 with Yi 6= ∅, and any quantum adversary A making q queries to
the function f∗ ← D∗Xi :

ε∗i := Pr[f∗(x) = f∗(x′) ∧ x 6= x′ ∧ f∗(x) ∈ Yi : f∗ ← D∗Xi , (x, x′)← Af∗ ] ≤ O
( q3

2iα(i)

)
.

Proof. Let Ui be the uniform distribution over Yi and B be a quantum adversary that has access
to the function f ← UXi . The adversary B picks the function g : X × Yi → {0, 1},

g(x, y) :=

{
1, with probability 2iDi(y)

0, otherwise

and answers to A’s queries by the following function:

f ′(x) :=

{
f(x), if g(x, f(x)) = 1

⊥, otherwise
,

and returns A’s output. The quantum circuit corresponding to the function f ′ is drawn below.

Input wire: |x〉
Uf

Ug U †g

U †f

|x〉

Ancillary wire: |0〉

UAncillary wire: |0〉

Output wire: |0〉 |f ′(x)〉
where U is an unitary operator such that

U |y, b, z〉 :=

{
|y, b, z⊕ ⊥〉 , if b = 0

|y, b, z ⊕ y〉 , if b = 1
.

We show that the outputs of f ′ are chosen independently at random according to the distribution
D∗i . Therefore, f

′ and f∗ have the same distribution. For any x ∈ X and y ∈ Yi,

Pr[f ′(x) = y]

= Pr[g(x, f(x)) = 1 ∧ f(x) = y]

= Pr[g(x, f(x)) = 1 | f(x) = y] · Pr[f(x) = y]

= 2iDi(y) · (1/|Yi|) = D∗i (y),
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and consequently for any x ∈ X, Pr[f ′(x) =⊥] = 1 − 2i

|Yi|α(i) and it is easy to see that f ′(x)

are independent. Now since f∗ and f ′ have the same distribution, given f ′ the adversary A
outputs x 6= x′ such that f ′(x) = f ′(x′) ∈ Yi with probability ε∗i . The adversary B returns the
output of A as a collision for function f and by Lemma 1, ε∗i ≤ O( q3

|Yi|) ≤ O( q3

2iα(i)
) where the

last inequality follows for the reason that |Yi| ≥ 2iα(i).

Now using Claim 1 we prove Lemma 6, i.e.,

ε̃i := Pr[f̃(x) = f̃(x′) ∧ x 6= x′ : f̃ ← D̃Xi , (x, x′)← Af̃ ] ≤ O
( q3

2iα(i)

)
.

Let A be a quantum adversary that makes q queries to the oracle f̃ ← D̃Xi and outputs a
collision with probability ε̃i. Let B be a quantum adversary that has oracle access to the function
f∗ ← D∗Xi and does the following. The adversary B picks function g : X × (Yi ∪ {⊥})→ Yi,

g(x, y) :=

{
y, if y 6=⊥
y ← D̃i, if y =⊥

,

(let say B picks the function g according to the distribution Dg) runs the adversary A and
answers to its queries by function H(x) := g(x, f∗(x)) and returns A’s output. Let Df∗ be
the distribution of this function. We show that f̃ and H have the same distribution. For any
x ∈ X, y ∈ Yi:

Pr[H(x) = y]

= Pr[g(x, f∗(x)) = y]

=
∑
y′∈Yi

Pr[g(x, f∗(x)) = y ∧ f∗(x) = y′] + Pr[g(x, f∗(x)) = y ∧ f∗(x) =⊥]

=
∑
y′∈Yi

Pr[g(x, f∗(x)) = y | f∗(x) = y′] · Pr[f∗(x) = y′] + Pr[g(x, f∗(x)) = y | f∗(x) =⊥] · Pr[f∗(x) =⊥]

=
∑
y′∈Yi

Pr[y′ = y] · Pr[f∗(x) = y′] + Pr[y ← D̃i] · Pr[f∗(x) =⊥]

= Pr[f∗(x) = y] +
Di(y)

α(i)
(1− 2iα(i)

|Yi|
)

=
2iDi(y)

|Yi|
+
Di(y)

α(i)
(1− 2iα(i)

|Yi|
) =
Di(y)

α(i)
= D̃i(y).

It is easy to see that H(x) are independent. The quantum circuit corresponding to the function
H is drawn below.

Input wire: |x〉
Uf∗

Ug

U †f∗

|x〉

Ancillary wire: |0〉

Output wire: |0〉 |H(x)〉

The quantum adversary Bf∗ returns the output of A as a collision for f∗. Let εB be the
probability that B finds a collision. Note that H(x) = H(x′) implies f∗(x) = f∗(x′) when
f∗(x) 6=⊥ and f∗(x′) 6=⊥. We show that

εB = Pr[f∗(x) = f∗(x′) ∧ x 6= x′ ∧ f∗(x) ∈ Yi : f∗ ← D∗Xi , (x, x′)← Bf∗ ] ≥ 1

4
ε̃i.
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Let D∗i (⊥) := δ, and f̃∗ be a function with the following distribution, called Df̃ ,

f̃∗(x) :=

{
f̃(x), with probability 1− δ
⊥, with probability δ

.

We show that f̃∗ and f∗ have the same distribution. For any x ∈ X and y ∈ Y ,

Pr[f̃∗(x) = y] = Pr[f̃(x) = y] · (1− δ) =
Di(y)

α(i)
· 2i

|Yi|
α(i) = D∗i (y),

and it is easy to see that f̃∗(x) are independent. It is clear that (H, f∗) and (f̃ , f̃∗) have the
same distribution and δ ≤ 1/2. Therefore,

Pr[f∗(x) = f∗(x′) ∧ x 6= x′ ∧ f∗(x) 6=⊥: f∗ ← D∗Xi , (x, x′)← Bf∗ ]
= Pr[f∗(x) = f∗(x′) ∧ x 6= x′ ∧ f∗(x) 6=⊥: f∗ ← D∗Xi , g ← Dg, H(x) := g(x, f∗(x)), (x, x′)← AH ]

≥ Pr[H(x) = H(x′) ∧ x 6= x′ ∧ f∗(x) 6=⊥ ∧ f∗(x′) 6=⊥ : f∗ ← D∗Xi , H ← Df∗ , (x, x′)← AH ]

= Pr[f̃(x) = f̃(x′) ∧ x 6= x′ ∧ f̃∗(x) 6=⊥ ∧f̃∗(x′) 6=⊥ : f̃ ← D̃Xi , f̃∗ ← DXf̃ , (x, x
′)← Af̃ ]

= Pr[f̃(x) = f̃(x′) ∧ x 6= x′ ∧ f̃∗(x) 6=⊥ ∧f̃∗(x′) 6=⊥: f̃ ← D̃Xi , (x, x′)← Af̃ , f̃∗ ← Df̃∗ ]

= Pr[f̃(x) = f̃(x′) ∧ x 6= x′ : f̃ ← D̃Xi , (x, x′)← Af̃ ](1− δ)2

≥ 1

4
ε̃i.

And by Claim 1, ε̃B ≤ O( q3

2iα(i)
) and thus ε̃i ≤ O( q3

2iα(i)
).

Lemma 7. Let D be a distribution with H∞(D) ≥ k over {0, 1}n and X be some other set.
Then for any i ∈ [m], any quantum algorithm A making q queries to the function f ← DX
outputs x ∈ X such that f(x) ∈ Yi with probability at most 8(2q + 1)2α(i).

Proof. Let δi := Pr[f(x) ∈ Yi : f ← DX , x ← Af ]. Let B be a quantum adversary that has
oracle access either to the zero function over X or the function g : X → {0, 1},

g(x) :=

{
1, with probability α(i)

0, otherwise
.

B chooses the functions f1 : X → Yi and f0 : X → {0, 1}n \ Yi as follows:

f1(x) := y with probability D(y)/α(i)

f0(x) := y with probability D(y)/(1− α(i))
(2)

The adversary BO runs A and answers to its queries by function f ′(x) := fO(x)(x). The following
circuit depicts how the queries are simulated.

Input wire: |x〉

UO

Uf1 Uf0

U †O

|x〉

Output wire: |0〉 |f ′(x)〉

Ancillary wire: |0〉 • X • X

At the end, B outputs 1 if f ′(x) ∈ Yi where x is the output of A, and it outputs 0 otherwise (this
includes when A halts without any outputs). Simple calculation shows that f and f ′ has the
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same distribution when B is interacting with g, and therefore A outputs x such that f ′(x) ∈ Yi
with probability δi in this case. In the other hand, when B is interacting with the zero-function
never output 1. Therefore BO can distinguish g from the zero-function over X making at most
2q + 1 queries (an extra query needed to check f ′(x) ∈ Yi) with probability δi. By Lemma 3,
δi ≤ 8(2q + 1)2α(i).

Theorem 12. Let D be a distribution with H∞(D) ≥ k over {0, 1}n and X be some other set.
Then any quantum algorithm A making q queries to the function f ← DX outputs a collision
for f with probability at most O

(
n q

5/2

2k/2

)
.

Proof. Let

βi := Pr[f(x) = f(x′) ∧ x 6= x′ ∧ f(x) ∈ Yi : f ← DX , (x, x′)← Af ]

for any i ∈ [m]. By Lemma 7, it is clear that βi ≤ 8(2q + 1)2α(i). We obtain another upper
bound for βi when i < m. Note that the distribution D is equivalent to the distribution D′′
obtained by choosing i according to the distribution α and then picking an element according to
the distribution D̃i.We define distribution D′ over partitions of the setX into subsetXk, . . . , Xm

as follows: for every x ∈ X we put x in the set Xi with probability α(i). Let P be the set of all
such partitions. We can conclude:

Pr[f(x) = f(x′) ∧ x 6= x′ ∧ f(x) ∈ Yi : f ← DX , (x, x′)← Af ]

= Pr[f(x) = f(x′) ∧ x 6= x′ ∧ f(x) ∈ Yi : f ← D′′X , (x, x′)← Af ]

= Pr[f(x) = f(x′) ∧ x 6= x′ ∧ f(x) ∈ Yi : (Xk, . . . , Xm)← D′, ∀j ∈ {k, · · · ,m}

fj ← D̃
Xj
j , f =

⋃
fj , (x, x′)← Af ]

=
∑

(Xk,...,Xm)∈P

D′
(
(Xk, . . . , Xm)

)
· Pr[f(x) = f(x′) ∧ x 6= x′ ∧ f(x) ∈ Yi : ∀j ∈ {k, · · · ,m}

fj ← D̃
Xj
j , f =

⋃
fj , (x, x′)← Af ]

≤
∑

(Xk,...,Xm)∈P

D′
(
(Xk, . . . , Xm)

)
·
m∑
j=k

Pr[fj(x) = fj(x
′) ∧ x 6= x′ ∧ fj(x) ∈ Yi : ∀j ∈ {k, · · · ,m}

fj ← D̃
Xj
j , f =

⋃
fj , (x, x′)← Af ]

(∗)
=

∑
(Xk,...,Xm)∈P

D′
(
(Xk, . . . , Xm)

)
·
m∑
j=k

Pr[fj(x) = fj(x
′) ∧ x 6= x′ ∧ fj(x) ∈ Yi : ∀j ∈ {k, · · · ,m}

fj ← D̃
Xj
j , f =

⋃
fj , (x, x′)← Bfjj,Xk,...,Xm ]

(∗∗)
=

∑
(Xk,...,Xm)∈P

D′
(
(Xk, . . . , Xm)

)
· Pr[fi(x) = fi(x

′) ∧ x 6= x′ ∧ fi(x) ∈ Yi : fi ← D̃
Xi
i ,

(x, x′)← Bfii,Xk,...,Xm ]

(∗∗∗)

≤ O
( q3

2iα(i)

)
,

where (∗) holds because we define Bfjj,Xk,...,Xm to be a quantum adversary that picks f` ← D̃
X`
`

for ` ∈ {k, · · · ,m} and ` 6= j, runs A
⋃
fi and returns A’s output. The equality labeled by (∗∗)

holds since for any x ∈ Xj , fj(x) /∈ Yi when j 6= i. Finally, (∗ ∗ ∗) is obtained by Lemma 6.
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Using the bounds derived above:

Pr[f(x) = f(x′) ∧ x 6= x′ : f ← DX , (x, x′)← Af ]

=
m∑
i=k

Pr[f(x) = f(x′) ∧ x 6= x′ ∧ f(x) ∈ Yi : f ← DX , (x, x′)← Af ]

≤
m−1∑
i=k

O
(

min
{ q3

2iα(i)
, q2α(i)

})
+O

(
q2α(m)

)
(∗)
≤ (m− k − 1)O

( q5/2

2k/2

)
+O

(
q2α(m)

)
where (∗) holds because min

{ q3

2iα(i)
, q2α(i)

}
will be maximised when q3

2iα(i)
= q2α(i) and the

maximum value is q5/2/2i/2 (Note that the function f(x) := q3

2ix
is strictly decreasing and

the function g(x) := q2x is strictly increasing.). Choosing m = n + k results in q2α(m) ≤
q2|Ym|/2m ≤ q22n−m ≤ q2/2k and this proves the bound stated in the theorem.
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