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ABSTRACT
An internet user wanting to share observed content is typically

restricted to primitive techniques such as screenshots, web caches

or share button-like solutions. These acclaimed proofs, however, are

either trivial to falsify or require trust in centralized entities (e.g.,

search engine caches). This motivates the need for a seamless and

standardized internet-wide non-repudiation mechanism, allowing

users to share data from news sources, social websites or �nancial

data feeds in a provably secure manner.

Additionally, blockchain oracles that enable data-rich smart con-

tracts typically rely on a trusted third party (e.g., TLSNotary or

Intel SGX). A decentralized method to transfer web-based content

into a permissionless blockchain without additional trusted third

party would allow for smart contract applications to �ourish.

In this work, we present TLS-N, the �rst TLS extension that

provides secure non-repudiation and solves both of the mentioned

challenges. TLS-N generates non-interactive proofs about the con-

tent of a TLS session that can be e�ciently veri�ed by third parties

and blockchain based smart contracts. As such, TLS-N increases

the accountability for content provided on the web and enables

a practical and decentralized blockchain oracle for web content.

TLS-N is compatible with TLS 1.3 and adds a minor overhead to a

typical TLS session. When a proof is generated, parts of the TLS

session (e.g., passwords, cookies) can be hidden for privacy reasons,

while the remaining content can be veri�ed.

Practical demonstrations can be found at https://tls-n.org/.

1 INTRODUCTION
The overwhelming adoption of TLS [42] for most HTTP tra�c

has transformed the web into a more con�dential and integrity

protected communication platform. Despite TLS’s adoption, an

e�cient, secure, privacy-preserving, non-interactive and seamless

method to prove communication contents to a third party — i.e. a

standardized method for non-repudiation — that does not require an

additional trusted party is missing.

Such a non-repudiation solution and its proofs would allowmore

accountability in the web and aid the construction of decentralized

blockchain oracles as we outline in the following.

Interestingly, users are currently unable to prove to a third party

the content they have observed on a particular website. One of the

most popular methods for users to document and share content they

watch on the Internet are screenshots that are trivial to falsify [21,

30]. A non-repudiation solution would remove the necessary trust

towards a user that claims to have observed a given content. Further,

currently trusted third parties, such as search engine caches or web

archives could add non-repudiable proofs about the content they

have observed and thus increase their credibility.

Furthermore, blockchain-based smart contracts [43] can signif-

icantly bene�t from an e�cient non-repudiation solution. If for

example a stock market price API provides non-repudiable data,

any user could submit veri�ably valid stock price information to the

blockchain (e�ectively creating a decentralized blockchain oracle).

Because the blockchain-based smart contract veri�es the validity of

the provided data, peers would only need to trust the data provider,

not the peers that actually transmit the data to the blockchain. Gen-

erally, this would allow to seamlessly connect real world events

with a blockchain and as such enable new application scenarios for

smart contracts. Note that existing blockchain oracles either rely

on deprecated security protocols (e.g., TLS 1.1 for TLSNotary) or

introduce additional trusted third parties (e.g., TLSNotary and Intel

SGX).

In this paper, we propose TLS-N, an extension of TLS that en-

ables the seamless integration of non-repudiation between arbi-

trary parties within TLS. TLS-N allows the generation of privacy-

preserving, non-repudiable, non-interactive proofs of the contents

of a TLS session. Our solution takes into account the performance

requirements of TLS, both in computation and memory to promote

adoption and reduce the potential attack surface (e.g. against Denial-

of-Service attacks). Our design supports various proof types, that

can be shared with other parties, allowing them to verify the con-

versation contents.

The proof veri�cation requires no additional security assump-

tions other than those of TLS, and we do not need an additional

trusted third party. Note that any non-repudiation solution based

on a higher layer (e.g., HTTP), would either require access to the

cryptographic TLS keys, violating the layer principle, or would re-

quire the deployment and authentication of additional key material,

thereby signi�cantly increasing the complexity of the solution.

In TLS-N, by the de�nition of non-repudiation, message authen-

tication and the identi�cation of at least one TLS peer is guaran-

teed. We compare TLS-N to existing non-repudiation proposals and

identify properties that non-repudiation solutions must possess for

particular use cases.

We implement and evaluate TLS-N as an extension of the new

TLS 1.3 standard. As such, we implement a TLS-N-enabled web

server, web client and an Ethereum-based smart contract that can

verify TLS-N proofs.

We �nd that our prototype implementation incurs an overhead

of less than 1.5 milliseconds on existing TLS connections per HTTP

request for responses of 10 KB or less, which is a realistic size for

an API response. Verifying our proof examples in a smart contract

costs between 0.2 and 3 USD due to the currently high gasprice.

Prices depend on the proof size and signature type. Note that, once

this proof is veri�ed, it can be used by millions of blockchain users.
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Figure 1: Our view of non-repudiation. First, evidence gener-
ation (by generator), second proof generation (by requester),
third proof veri�cation (by veri�er). Message originator and
recipient might act as requester, generator or both.

As a summary, our contributions in this paper are as follows:

• We propose the �rst secure non-repudiation solution that

captures privacy and performance requirements and can

be seamlessly integrated with the TLS 1.3 standard [38].

Our solution does not add new security assumptions to

those of TLS and does not rely on an additional trusted

third party.

• We implement our extension for TLS 1.3 on top of Mozillas

NSS library [32] and create an Apache module supporting

our extension. Our experimental evaluation shows that

a typical proof size as well as the proof generation and

veri�cation times grow linear with the size of the data. The

server side processing times are low with less than 1ms for

16 KB plaintext without privacy protection and less than

8ms for 16 KB plaintext with privacy protection.

• We provide an Ethereum based smart contract implemen-

tation for TLS-N proof veri�cation. TLS-N therefore acts

as a practical decentralized blockchain oracle that does not

require any additional trusted third party. Users can source

data from any TLS-N-enabled content provider, submit it

to the blockchain where the smart contract veri�es the

proof. Note that only the data provider needs to be trusted,

and as such any client can submit a TLS-N proof to the

smart contract.

• We provide a structured description of non-repudiation

properties, possible attacks, requirements and use-cases

for non-repudiation solutions.

The remainder of the paper is organized as follows. In Section 2,

we de�ne the problem statement and motivate our TLS-based ap-

proach before presenting the design of our solution TLS-N in Sec-

tion 3. In Section 4, we perform its security analysis and evaluate it

in Section 5. We overview related work and contrast it to our solu-

tion in Section 6, while highlighting attacks on previous TLS-based

work. We provide a discussion in Section 7, before concluding the

paper in Section 8.

2 PROBLEM STATEMENT
In this section we describe the main problem that we are trying to

solve and we discuss relevant use cases and their requirements.

Broadly, we address the problem of non-repudiation in online

interactions as seen in Figure 1. Given that such interactions are

mainly protected using TLS [11], we focus on the provision of non-

repudiation for services that run on top of TLS. TLS is the most

widely used security protocol suite on the Internet and provides

authentication, con�dentiality, and integrity. Although it relies on

public-key signatures for authentication, TLS protects message

integrity and con�dentiality of exchanged messages via shared

secret keys that are established at the beginning of the session.

Given this, TLS does not provide non-repudiation for the exchanged

messages — clearly, a sender of the message can deny having sent

the message, given that the Message Authentication Codes have

been generated using a shared, symmetric key.

More precisely, we consider the following problem: Can TLS be
extended to provide a compact evidence allowing for e�cient proof
generation and veri�cation so that the non-interactive proofs allow
third parties to verify the TLS conversation contents. 1

In addition, since TLS peers might exchange privacy-sensitive

content (e.g., login credentials, cookies or access tokens), the TLS

extension should provide e�cient, privacy-protection features to

hide sensitive parts of the conversation from third parties.

Based on previous work in the area, we consider the following

non-repudiation types [1, 20, 36, 46]:

Non-repudiation of origin (NRO) provides proof that a mes-

sage has originated from the speci�ed originator. The evi-

dence is provided by the originator and given the proof, the

originator is not able to later deny having sent the message.

Non-repudiation of receipt (NRR) provides proof that a mes-

sage was received by the speci�ed recipient. The evidence

is provided by the recipient and given the proof, the recip-

ient is not able to later deny having received the message.

Non-repudiation of conversation (NRC) provides a proof of a

total order of messages sent and received by a party. In-

tuitively, NRC speci�es the conversation and the party’s

role in it, from the perspective of its system. The speci�ed

party is not able to later deny a claim of having sent and

received the message in the conversation or the order of

messages within the conversation.

Note, that non-repudiation of conversation (NRC) implies non-

repudiation of origin (NRO) for all sent messages within the con-

versation and non-repudiation of receipt (NRR) for all received

messages. Therefore, NRC is a stronger proof than NRR or NRO.

To highlight the di�erence between NRO and NRC consider the

following example. A web service returns the current stock price

for a requested ticker symbol, e.g. for the request EXAMPLE the re-
sponse is $10. Non-repudiation of origin would ensure that the web

service answered $10. The answer by itself, however, is not useful

without the context of the conversation. Non-repudiation of con-

versation would ensure that the web service answered $10 after

being queried for EXAMPLE.
Apart from the non-repudiation type we also consider the fol-

lowing properties of a non-repudiation solution. These properties

are motivated by di�erent use cases, as we will show in Table 1.

1
Here by extended we mean that a proper TLS Extension as speci�ed in [38] can be

created.
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Document Submission NRR     Bytes  
Public Data Feed NRC G#   - - -

Web Archive NRC G#   - - -

Misbehaviour in P2P NRC,NRR G#  G# G# Bytes  

Table 1: For the use cases presented here, non-repudiation of
conversation NRC is the most commonly required one. We
also �nd that most use cases require request-response bind-
ing and timing information. Additionally, some use cases
require privacy protection (e.g., hiding of access tokens or
passwords).  = required property, G# = partially required
property, - = non-required property.

Order-Preserving: A total order of messages between the TLS

peers can be determined based on the proof.

Request-Response Binding: A TLS conversation might in-

clude multiple requests and responses. This property ensures a

binding between requests and responses based on the proof. This

is important as protocols such as HTTP/1.x do not reference the

request in the response, e.g. they contain no request ID.

Time: Based on the proof the content creation time (as seen by

the peers) can be identi�ed.

Privacy Protecting: Privacy sensitive content (e.g., passwords

or cookies) transmitted in a TLS session can be e�ciently hidden

in the proof.

Possible use cases that would bene�t from a non-repudiation

solution are (cf. Table 1) (i) Document Submission Systems (e.g.,

HotCRP) and (ii) Public Data Feeds, e.g. for stock exchange rates and

currency exchange rates [35, 44]. Veri�able, public data feeds are

essential for the further development and expansion of blockchain-

based smart contract applications [43]. Given such a feed, public

data can be securely inserted into the blockchain: a smart contract

can, on submission of data including a proof, verify the proof and

then store the veri�ed data on the blockchain. Any other contract

can use such blockchain-based information. This disintermediation

removes the need for an additional third party acting as an ora-

cle [26, 45]. Further use cases are (iii) Web Archives [2, 37] for web

content or deleted social media content [13], and (iv) proving mis-

behaviour in P2P networks [15, 33].

2.1 Previous Work and its Limitations
Here, we brie�y motivate why existing work is insu�cient and

motivate our TLS-based design. For a more extensive discussion,

please refer to Section 6.

Our design is TLS-based as this comes with multiple key ad-

vantages. TLS is ubiquitous. Based on the layer approach, many

applications can bene�t from a TLS-based solution. TLS provides

extension support, allowing for for incremental deployment as our

extension is backwards compatible. We can reuse existing, crypto-

graphic primitives of TLS reducing development and maintenance

overhead. Additionally, most TLS deployments are based on a few

cryptographic libraries simplifying standardization. Finally, TLS al-

ready uses an established public-key infrastructure (PKI) necessary

for authentication.

Existing TLS-based solutions: Existing TLS-based solutions

do not provide secure non-repudiation, as we will show in Sec-

tion 6.2. In particular, none of the solutions provides NRC. We

present attacks against all existing solutions and conclude that

none of them has all the required security properties.

(Existing) Application Layer solutions: Non-repudiation can
also be managed on the application layer. However, as we will

explain in Section 6.2, application layer solutions come with multi-

ple drawbacks. One drawback is that each of the application layer

solutions has to provide a separate non-repudiation implementa-

tion resulting in many presumably poorly maintained implemen-

tations. Therefore, we think that the TLS layer should provide

non-repudiation, because it already provides a frequently-used

layer o�ering con�dentiality and authentication to all kinds of

applications. Furthermore, application layer solutions need their

own authentication scheme, while a TLS-based solution can reuse

the existing PKI. Finally, in a design as ours, the application layer

still retains full �exibility, as it decides what will be included in the

proof.

Other existing solutions: There are other solutions providing
similar properties, such as TLSnotary [41] and Town Crier [45]

that we will discuss in Section 6.3. While TLSnotary only works

for older TLS versions and requires trust in a third party, Town

Crier is a speci�c solution for smart contracts that requires special

hardware and trust in the attestation service.

Our design, overcomes the shortcomings of previous work, re-

quires no special hardware, no trusted third party and provides a

general and portable solution for secure non-repudiation that reuses

existing TLS primitives. We describe our design in the following

section.

3 OUR DESIGN: TLS-N
Throughout this paper, we consider the following three parties:

(i) the requester (typically a client machine), (ii) the generator

(typically a web server) and (iii) the veri�er (third party or smart

contract), as seen in Figure 1. Our design, called TLS-N, provides

generator-signed evidence about the TLS conversation to the re-

quester, who can then construct a (redacted) proof. The design is

similar to content extraction signatures [39] and redactable signa-

tures [22], which have not been used in combination with TLS. We

provide a comparison to these schemes in Section 6.

Figure 2 shows the evidence and proof generation between re-

quester and generator. Initially, they establish a TLS connection

and negotiate the TLS-N parameters in the handshake. During the

TLS session, the generator keeps a small TLS-N state that is up-

dated using all the sent and received records. This state contains a

hash value incorporating all previous records, an ordering vector

and a timestamp from the beginning of the session.

Once the requester asks for the evidence, the evidence window

that de�nes which records will be included in the evidence closes.
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Figure 2: Simplied Overview of TLS-N: The “Return Evi-
dence” message closes the Evidence Window, which deter-
mines the evidence-relevant records. The dashed lines rep-
resent TLS messages and gray elements represent TLS-N.

Note, that in TLS-N and in contrast to previous work the evidence

window begins right after the handshake. To compute the evidence,

the generator signs its TLS-N state using its private key. Together

with the saved records, this evidence allows the requester to produce

non-repudiable proofs for the entire conversation or for a subset of

it.

Therefore, the requester retains full control what is included

in the proof. To protect sensitive TLS content, the requester can

hide entire records or chunks thereof. The generator is oblivious

to what the requester considers sensitive and is not involved in

the proof generation. By checking the proof, a veri�er learns the

disclosed content of the TLS session in a non-repudiable manner.

We only make standard TLS assumptions, such that both requester

and veri�er trust the certi�cates to correctly identify the generator.

3.1 Parameter Negotiation
TLS sessions begin with the handshake during which settings such

as the cipher suite are negotiated. If the requester wants to use

TLS-N, it includes a TLS-N extension into the handshake. Here, the

requester also speci�es its preferences for the TLS-N settings. To

hide sensitive content, the requester can chose between: record-
level and chunk-level granularity. While chunk-level granularity is

more precise it also has a higher computational overhead. In case

of chunk-level granularity the requester can also select the chunk

size. Again a smaller granularity leads to a higher computational

overhead.

Essentially, record-level granularity allows e�cient proofs for

public data, e.g. in a web archive, or for conversations where entire

records can be censored. It represents the most e�cient design, as

the conversation has to be parsed record-by-record.

The generator can reject or accept the TLS-N settings by includ-

ing a corresponding response in its handshake message. To ensure

that TLS-N cannot be abused for Denial-of-Service attacks, the gen-

erator can also enforce the use of a TLS client puzzle [34].

3.2 Evidence Generation
In this Section, we outline how the generator (server) produces the

evidence in TLS-N. We discuss the evidence window, the provided

evidence and provided auxiliary information to aid proof genera-

tion.

In our solution, the evidence collection starts immediately after

the TLS handshake. This has two main bene�ts. One is to prevent

Content Omission Attacks (cf. Section 6.2.1) and the other is that

TLS-N then does not require an explicit “Collect Evidence” message

(proposed by related work [6]). In TLS-N, the evidence window

ends as soon the generator receives a “Return Evidence” message.

Order of records
The generation of the evidence is non-trivial as the requester and

generator might observe a di�erent order of records. We label the

i-th requester and generator records ri and дi respectively. If both
peers simultaneously send records r0 and д0, each peer will observe

its sent record before observing its received record, resulting in two

di�erent orders: (r0, д0) and (д0, r0). Note, however, that the two
peers have identical partial orders over records generated by one

peer, i.e., they observe the same order for all {ri } and for all {дi }.
Based on their partial orders, both peers have to agree on a total

order. In TLS-N the generator determines the total order of records,

as it generates the evidence. To inform the requester about the

chosen total order, the generator uses an ordering vector. As both
peers have the same partial order over {ri } and {дi }, the ordering
vector is a bit vector encoding the interleaving of {ri } and {дi }.
In the ordering vector, a 0 corresponds to a record sent by the

requester (ri ) and a 1 to a record sent by the generator (дi ). An
ordering vector of (1, 0, 0, 1) results in the total record order of

(д0, r0, r1,д1).

Commitments
To allow chunk-level censoring of sensitive information during

proof generation, each record of length lr is split into �xed-sized
chunks of the negotiated chunk size lc . We construct hiding and

binding commitments for each of the chunks using a commitment

scheme C() that takes a chunk and a pseudo-random value, called

salt, as input. As the chunk might have low entropy the pseudo-

random salt is used to protect the hiding property of the commit-

ment against brute-force attacks.

Merkle Tree Generation
To e�ciently include commitments in the proof, we construct a

Merkle Tree [29] over the commitments, as shown in Figure 3a.

The root hashes of the Merkle trees hi are generated from the

children hash values, the length of the record lr and the originator

information Oi . Oi is the i-th element of the ordering vector. We

assume that H() provides a binding commitment scheme, i.e., is

a collision-resistant hash function. To reuse secure, existing TLS

primitives we use the hash function negotiated in the cipher suite

(typically SHA-256) as H().
The records’ root hashes hi are combined in a hash chain (hci ),

with hcn−1 being the �nal hash chain state. Using a hash chain

ensures a very small storage overhead per TLS session, namely

only a single hash value. The hash chain uses markers (0x0, 0x1)
to prevent second preimage attacks, as explained in Section 4.3.

Salt Tree Generation
To create hiding commitments using C() we need independent,

random values Sir ,ic , called salts, for record ir and chunk ic . To pre-
serve hiding, the outputs SiR,ic and Si′R,i

′
c
have to be independent,
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hash function H(). Oi gives the originator information and lRi is the record length. The record-based hashes hi are input to a
hash chain, whose result is the �nal hash value hcn−1 that will be signed by the generator. Sensitive content is marked red and
is hidden in the proof while all blue elements are included in the proof.

if iR , i ′R ∨ ic , i ′c . Additionally, to reduce proof sizes we need

e�cient disclosure of salts for non-sensitive chunks. Therefore, we

use a salt tree based on the function E() to derive the salt values.

By using a salt tree, to censor a single chunk, only a logarithmic

number of salts need to be revealed in the proof.

The salt tree is computed as follows (cf. Figure 3a): Initially, for

each record Ri composed of c chunks, a unique the salt secret is
derived from the TLS tra�c secret using a record-based nonce. This

ensures the generation of a pseudo-random, independent and salt

secret as explained in Section 4.3. The derived salt secret is further

expanded using E() to generate the salt tree. In the salt tree, each

output of E() is truncated to length 2ls and split into two bitstrings
of length ls , e.g., S

2

0,0 and S
2

0,1 in Figure 3a. Until the salt tree has c

leaves and thus is large enough to supply a unique salt for every

chunk of the record, this process is repeated, i.e. each intermediate

secret Sdi, j at depth d is used as an input to E() and the output

is split again to produce the values Sd−1i,2j and Sd−1i,2j+1. The leaves

of this tree are then used as salts. E() is a variable-length output

pseudorandom function that takes a pseudorandom key, (possibly

empty) context information and the output length as inputs. E()
leaks no information about its key. In TLS 1.3, HKDF-Expand-Label
is used as E() [23, 38].

Chunk-level granularity vs. Record-level granularity
In Figures 3a and 3b we show the overall evidence generation based

on the content for chunk-level and record-level granularity. For
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chunk-level granularity we combine the salt tree with the com-

mitments, the Merkle tree and the hash chain. On the other hand

for record-level commitments, we only generate a single commit-

ment per record and therefore do not need a salt or Merkle tree. In

short, for record-level granularity, each record is handled as a sin-

gle chunk. In both cases we generate the overall hash chain result

hcn−1 that is subsequently signed.

Providing Trustworthy Timing Information
To provide trustworthy timing information and protect against the

Time Shifting attack (cf. Section 6.2.1), our design employs two

generator-produced timestamps: one timestamp taken during the

TLS handshake and one timestamp taken during evidence gener-

ation, i.e. at the beginning and the end of the evidence window.

As both timestamps are included in the evidence, the veri�er can

detect proofs resulting from long TLS sessions and Time Shifting

attacks.

As seen in Figure 3c, the evidence consists of the �nal hash

hcn−1, the two timestamps, the chunk size lc , the salt size ls and
the TLS cipher suite negotiated for this session. When the evidence

is requested, it is hashed and signed with the generator’s private

key. Our design limits the generator’s computational overhead as

it mostly computes hashes and only provides one signature. The

evidence is sent to the requester together with the ordering vector.

The requester can use the evidence to construct a variety of di�erent

proofs as we will show in the following section.

3.3 Proof Generation And Veri�cation
A central bene�t of performing non-repudation over TLS is that we

can reuse the already deployed public-key infrastructure (PKI). The

signed evidence and its authentication can therefore be veri�ed by

third parties. However, third parties only possess the trusted root

certi�cates and miss intermediate certi�cates required to verify the

certi�cate chain. To allow third-party veri�cation, the requester

saves the certi�cate chain of the TLS connection and includes it in

the proof.

For proof generation, the requester uses the n records, the salt

secrets, the evidence provided by the generator, the ordering vector,

and the certi�cate chain. Based on these, the requester can gen-

erate di�erent kinds of proofs. Here, we give some representative

examples.

Proving NRO or NRR: As explained in Section 2, NRC implies

non-repudiation of origin (NRO) and non-repudiation of receipt (NRR).

Therefore, we can also prove these for one or multiple messages of

the conversation. A NRO-proof or NRR-proof for a record i , con-
tains the following: plain text of record i , salt secret i , Oi , hci−1,
hi+1, . . . ,hn , the evidence and the certi�cate chain.

During proof veri�cation the veri�er uses the plain text of record

i , its salt secret, the cipher suite and Oi to build the Merkle tree

and salt tree, and compute hi as in Figure 3a. Using the hash chain

value hci−1 and the computed hi the veri�er can compute hci and
using the hi+1, . . . ,hn the veri�er can complete the hash chain and

compute hcn−1. Then, the veri�er checks the evidence, by verifying
the signature using the certi�cate chain and comparing its hcn−1
to the provided hcn−1. Finally, the veri�er checks the timestamps

based on the application-speci�c requirements, e.g., testing whether

they are too far apart or from a wrong date.

Privacy-preserving, browser-basedNRCproof: In this scenario,
the browser acts as the requester and a web server as generator.

The browser is con�gured to consider all passwords and cookies

sensitive and remove them from the proof, while the web server is

unaware of these privacy settings. To hide only the passwords the

browser requests evidence with chunk-level granularity. The web

server generates the evidence as shown in Figure 3a.

For the proof generation the browser proceeds as follows: For ev-

ery record i without sensitive information, the browser includes its

plaintext, its salt secret and Oi . For every record i with sensitive in-

formation, the browser proceeds as in Figure 3a. All plaintext of all

non-sensitive chunks are included with their salts Si, j . For chunks
with sensitive content the browser includes their commitment. If

subsequent chunks are sensitive or non-sensitive the browser in-

cludes higher level-nodes from the Merkle tree and the salt tree

respectively. Therefore, only O(log(c)) nodes have to be included
and the proof size is reduced. Additionally, the proof contains the

evidence, and the certi�cate chain.

During proof veri�cation the veri�er uses the proof to re-generate

the same evidence as in Figure 3a. For records without sensitive
content it constructs the Merkle Tree and salt tree, for records with
sensitive content it constructs the partial Merkle Tree based on the

provided plaintext, commitments and hashes. Thereby, the veri�er

obtains all root hashes hi , constructs the hash chain and hcn−1. As
before the veri�er also checks the evidence based on the certi�cate

chain and validates the timestamps.

4 SECURITY ANALYSIS
In this section we present the security analysis of TLS-N. We start

by introducing our system and attacker model.

Trust assumptions For the purpose of this paper, we make the

following trust assumptions. First, we assume that the used cryp-

tographic primitives such as digital signatures and cryptographic

hash functions are secure. We need H() to produce a binding and

hiding commitment. Note, that the hiding property of hash func-

tions has neither been proven nor rejected. Second, we assume

the existence of a Public Key Infrastructure (PKI) that correctly

binds entities to the public keys used in TLS, i.e. we inherit the

trust assumptions of TLS. Hence, both requester and veri�er trust

the generator’s identity. Third, we assume that private keys used

by the generator are not leaked to the adversary and that the gen-

erator will not sign arbitrary statements. In any non-repudiation

solution relying on digital signatures, incorrect use of the private

key compromises the security of the scheme. We consider concrete

solutions to the problem of revoked or leaked private keys to be

out of the scope of this work (a non-repudiable statement could be

included in a blockchain together with a recent Online Certi�cate

Status Protocol (OCSP) response). Finally, the veri�er trusts the

generator to produce accurate content and timestamps.

4.1 Security Properties
For the security analysis, we adopt the security de�nition of Con-

tent Extraction Signature [39] and match them to our design in
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Appendix A. We formally de�ne a record, a conversation and sub-

relations for each of them. Then, given the design of TLS-N above,

we aim to achieve the following security property, some of which

are by Steinfeld et al.

Property P0, is the adapted CES-Unforgeability stating that a valid

proof can only be produced for a conversation that is a subconver-

sation of a conversation signed in a proof. Here, we substitute the

documents in the de�nition of CES-Unforgeability with the conver-

sations de�ned in Appendix A.1.

Property P1 is the adapted CES-Privacy, stating that a proof leaks

no information about hidden parts.

Property P2: The proof reveals the structure of hidden data. Records

with hidden chunks are distinguishable from records without hid-

den chunks and conversations with missing records are distinguish-

able from complete conversations.

Property P3: For every non-hidden record, the originator is known.

Property P4: The timestamps inside the proof provide tight upper

and lower bounds on the generator’s time during the conversation.

4.2 Adversarial Model
We assume a computationally-bounded adversary that can take

one of two roles. Either the adversary acts as requester trying to

generate proofs that lead the veri�er to wrong conclusions about

the conversation (violating P0, P2, P3 or P4). Or the adversary acts

as a veri�er trying to learn hidden data (violating P1).
Either way, the adversary is allowed to interact with the genera-

tor, request evidence for di�erent conversations and inspect proofs

published by other users. Furthermore, in accordance to the TLS

threat model, on the network the adversary acts as described in the

Dolev-Yao Model [12]. In section 6.2.1, we detail attacks on existing

solutions under this adversarial model.

4.3 Security Sketch for TLS-N
In this section we provide a brief security analysis of TLS-N. For

the full analysis and the proofs, please refer to Appendix A. We go

through the di�erent properties and sketch a proof for them.

For Property P0, the unforgeability of the signature scheme and

the collision resistance of H(), ensure that the additional data (pa-
rameters and timestamps) and the hash chain output are unforge-

able. The unforgeability of the hash chain inputs, namely theMerkle

hashes, reduces to the collision resistance of H(). Given all these,

the CES-Unforgeability is satis�ed for each records according to

the proof provided by Steinfeld et al. [39] as records are almost

identical to documents and as the di�erences are irrelevant for the

proof.

For Property P1 we need to prove that the commitments do not

leak any information and that the TLS tra�c secret is not revealed,

which together with the adversarial network capabilities would dis-

close hidden data. The hiding property of C() is su�cient for the

�rst part given that the salts are pseudorandom and independent.

Salts are pseudorandom due to the properties of E() and indepen-

dent as for each record they are derived from an independent salt

secret. The TLS tra�c secret is not leaked as it is only input to E(),
which due to its properties does not leak it.

A hidden chunk is observable due to the de�nition of a record and

its length is known due its position, the chunk size and the record

size. If the �rst record of a conversation is not included the proof

must start with a hash chain node of the type H(0x1,hci−1,hi)
instead of H(0x1,h0), which together satis�es property P2.

As the records include originator information that is unforge-

able due to P0, P3 is satis�ed. And as the timestamps are likewise

unforgeable and are taken at the beginning and the end of the ev-

idence window, tight bounds can be provided on the generator’s

time, ful�lling P4.

5 IMPLEMENTATION AND EVALUATION
In this section we describe our TLS-N implementation, its deploy-

ment and its evaluation using real-world as well as synthetic tra�c.

5.1 Implementation
For the purposes of our implementation, we extend the Network

Security Services (NSS) library [32] provided by the Mozilla Founda-

tion.We chose the NSS library for its support of TLS 1.3 and because

it can be used on the client side, e.g. in Mozilla Firefox, and on the

server side, e.g. through the mod_nss Apache module [18, 19]. We

implement TLS-N as an extension in NSS and deploy it in a real-

world setting using an adapted version of mod_nss and Apache

running on an Amazon EC2 node.

We extend TLS so that the requester application can enable the

TLS-N extension. The peers negotiate the usage of TLS-N during the

handshake. We use a 16-byte salt size, in order to preserve the 128-

bit con�dentiality protection of TLS [11]. Unless otherwise stated,

we also use a 16-byte chunk size, as Figure 4b shows that it provides

a good trade-o� between granularity and e�ciency. For H() our

implementation uses the hash function of the chosen cipher suite

and for E() we use the HKDF-Expand-Label function with speci�c

labels for salt secret and salt tree generation. HKDF-Expand-Label
is already used for these properties [38]. As nonce for the salt secret

generation, we use the TLS per-record nonce, which is guaranteed

to be unique in combination with the tra�c secret [38]. For C() we
use the same function as for H(), as we assume that modern hash

functions with su�ciently large salts provide a hiding commitment.

To reduce the proof size we use TLS certi�cates using elliptic curve

cryptography, namely secp256r1. Overall, we completely reuse

cryptographic primitives that are already present in TLS.

Our extension then constructs a proof according to the settings

of the requester application, which provides regular expressions for

sensitive content that is then hidden in the proof. Finally, the proof is

returned to the requester application. The requester application can

store the proof and send it to veri�ers. Veri�ers can use our library

extension to determine the validity of a proof, which includes the

necessary salt tree and Merkle tree computations as well as the

signature check and the veri�cation of the included certi�cate chain.

5.2 Blockchain Implementation and
Evaluation

To show that the proof veri�cation can be performed by a blockchain-

based smart contract, we provide an Ethereum [43] implementation

of the proof veri�cation procedure. The smart contract parses the
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Figure 4: Performance Evaluation for our implemented extension of TLS-N on client and server side.

proof, computes the salt tree and Merkle tree, and performs a sig-

nature veri�cation.

Table 2 shows the respective gas costs in ether and USD (at the

time of writing), depending on the conversation size (the cumula-

tive length of all records) and the elliptic curve used in the evidence

signature. We also show the basic gas cost that results from the

size of a transaction [43]. We show two elliptic curves, because no

elliptic curve is supported by both TLS [38] and Ethereum (TLS

supports secp256r1 while Ethereum uses secp256k1). The costs dif-

fer greatly for the signature schemes, because Ethereum’s support

for secp256k1 [5]. We had to implement veri�cation for secp256r1

on top of Ethereum, resulting in a veri�cation cost around 1.2 mil-

lion gas. Overall, we observe, that the proof validation costs are

dominated by the basic gas cost and cost for signature veri�cation,

whereas our design only adds a marginal cost.

Another issue is the certi�cate chain veri�cation within the

blockchain. To the best of our knowledge there is no blockchain-

based system to verify TLS signatures based on the web-PKI. We

therefore suggests that the verifying smart contract knows the

generator’s (e.g. the content provider’s) public key so that it can

omit the certi�cate chain veri�cation. Once the smart contract

has veri�ed the proof, it knows that the conversation is authentic

and can act immediately, e.g. perform a matching payout, save the

content or save a content hash in order to avoid future veri�cations.

Given our smart contract implementation, TLS-N allows to con-

nect web-based content from any TLS-N-enabled content provider

such that any smart contract can operate on the provided, non-

repudiable data. Note that the requester is not required to be trusted,

and as such any requester can submit a TLS-N proof to the smart

contract.

5.3 Evaluation
In the following we evaluate the performance of our implemented

TLS extension using real world examples and synthetic examples

to test its scalability, as shown in Table 3 and Figure 4.

Conversation Size

1 KB 10 KB

secp256r1 secp256k1 secp256r1 secp256k1

C
o
s
t
s

Basic Gas 119,758 737,159

Total Gas 1,284,723 131,286 1,938,872 782,219

Ether 0.0257 0.0026 0.0388 0.0156

USD 2.0381 0.2083 3.0758 1.2409

Table 2: Gas costs for validating public, record-level proofs
within our Ethereum smart contract based on the conversa-
tion size and the elliptic curve. The basic gas cost is intrinsic
for a transaction of that size. Gas and ether prices taken as
of May 1st 2017.

5.3.1 Real-world Examples. We evaluate the performance of

TLS-N for real-world examples by replaying recorded HTTP con-

nections of web services, such as the Twitter API, Facebook API,

YAHOO! API and a Google Search (cf. Table 3). Since the network

latency is irrelevant for the proof size and the processing times, we

locally replay the recorded tra�c between a Lenovo X220 laptop

and a server with an Intel Core i7.

We �rst study the time we deem most critical, the server’s pro-

cessing time during the TLS connection. For conversation sizes

below 6 KB the server has a total processing time of less than

3.5 ms. After processing all the records during the connection, the

server’s the �nal step of the evidence generation is independent of

the conversation size. For chunk-level proofs, we �lter all cookies,

passwords and authentication tokens, but we also show an un�l-

tered record-level proof, namely archiving a Wikipedia page, which

is signi�cantly more e�cient given the conversation size.

5.3.2 Performance Projections. In Figure 4a, we study the scala-

bility of proof generation and veri�cation using synthetically gen-

erated proofs. For each size, we create random conversations con-

sisting of 2000-byte records. We observe that the proof generation

and veri�cation times scale linearly in the conversation size. Re-

garding the proof veri�cation, Figure 4a shows the worst-case sce-

nario, as the proofs contain no hidden data and as such all salt and
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Server side during TLS session

Online Upon Request Client side, O�ine

Use Case

Conver-

sation

Size (B)

Number

of

Records

TLS-N

Processing

Time (ms)

Evidence

Size (B)

Evidence

Generation

Time (ms)

Proof

Type

Proof

Size
+
(B)

Proof

Generation

Time (ms)

Proof

Veri�cation

Time (ms)

Hidden Data,

e.g., cookies

(B)

Twitter API 5,320 3 3.223 84 0.404 Chunk 5,668 9.491 10.345 348

Facebook API 3,187 4 2.041 84 0.394 Chunk 3,629 8.410 9.734 224

YAHOO! API 2,038 4 1.376 84 0.395 Chunk 2,676 8.721 10.032 182

Oanda API 935 2 0.662 84 0.397 Chunk 1,414 6.320 8.767 161

Google Search* 549,530 424 283.162 84 0.398 Chunk 552,180 357.411 231.934 10,001

Wikipedia Archive 585,136 218 11.418 84 0.339 Record 589,924 20.949 20.662 0

Table 3: Use case evaluation: For each use case we give its sizes, total, server-side processing time during the session, the evi-
dence generation time (performed upon request) and the client-side times for proof generation and veri�cation. We highlight
the only additional latency during the TLS session. Times are averaged over 20 repetitions. When applicable, the chunk size
was 16 B. *The Google Search includes many records due to auto-completion.+ The proof size includes the conversation size.

Merkle tree nodes have to be computed. We observe that proofs

with record-level granularity are signi�cantly e�cient, as Merkle

and salt trees only have a single node.

In Figure 4b, we �nd that server processing times scale linearly

in the record size. We plot the average server side processing time

for a single record depending on the record length and the chunk

size. Bigger chunk sizes require less computation, but have a coarse-

grained privacy protection. Along this trend, record-level granular-

ity is by far the most e�cient solution.

5.3.3 Latency Overhead. To estimate the real-world overhead

of a complete HTTP request, we measure the overhead of our im-

plementation on the latency of HTTP requests to an Apache server

running on an Amazon AWS c4.large instance. In each request, the

client requests a �le of a size between 10 and 10
7
bytes (in powers

of 10). For each �le size, the average time from sending the request

until the �le is received is plotted in Figure 4c. Again, we use a

chunk size of 16 B. We observe that as long as the whole �le can

be sent in a single record (i.e. its size is smaller than 16 KB), the

latency of TLS 1.3 without TLS-N remains below 10 milliseconds.

For larger �les the overhead increases but remains below one sec-

ond for 10MB �les. Even though our implementation is neither

optimized or parallelized, i.e. the overhead could still be reduced,

the overhead appears tolerable. Additionally, recall that this was

achieved with a relatively small chunk size of 16 B.

6 SOLUTION SPACE AND RELATEDWORK
In the following we summarize existing solutions and their limita-

tions, provide insights on possible strawman solutions and com-

pare their applicability to the use-cases from Section 2 and which

properties they satisfy.

6.1 Related Approaches
In this section, we overview related approaches to our design.

Content Extraction Signatures [39] aim to solve a similar prob-

lem. Given a signed document, di�erent parts can be extracted

while the signature remains valid and is still veri�able by third

parties. Content Extraction Signatures consist of a “PseudoRandom

Generator with Seed Extraction” corresponding to our salt tree and

use merkle trees based on commitments. As they are only designed

for a single document, the document length is included in the signa-

ture. We include the record length and the originator information

in the Merkle root node.

Redactable Signatures [22] as proposed by Johnson et al., are also

design-related. Their GGM tree [14] corresponds to our salt tree and

they use a Merkle tree, however without commitments. However,

they do not include the overall document length in the proof so

that a veri�er cannot observe how much data was “redacted”, if

it was “redacted” at the end of the document. Also, their solution

requires a marker in every Merkle tree node which is less e�cient.

Further additions to redactable signatures provide transparency [7,

24]. These signatures aim to prevent any inference attacks as they

hide the structural information of the data. Some schemes even

make its impossible for the veri�er to observe a redaction. In our

work, we intentionally reveal the fact that data was hidden and its

structural information (P2). Previously motivated [22], we provide

our motivation for this design through the Content Hiding Attack.

Another related solution, Sanitizable Signatures [8], can be gen-

erated by a signer using its private key. They also include the public

key of a designated sanitizer and a division into blocks and admis-

sible. These admissible blocks can later be changed by the sanitizer.

However, in our design there shouldn’t be a designated sanitizer.

To simplify adoption and deployment, any generator-accepted peer

can act as requester.

Authenticated Data Structures [10, 31] achieve a similar goal as

our design. An untrusted party extracts or computes a result based

on a signed construct so that the result correctness can be veri�ed

by a third party. However, authenticated data structures are more

aimed at data outsourcing, e.g. for databases.

6.2 Existing and Strawman TLS Solutions
In this section, we look at other solutions to provide non-repudiation

through TLS and present attacks according to our adversarial de�-

nition in Section 4. The solutions and their provided properties are

summarized in Table 4.

TLS Sign is a proposed extension [16] for TLS 1.1. TLS Sign de�nes

a new sub-protocol (or content type) for TLS called TLSSignOnO�

(in addition to the three already existing: Handshake, Application

data, and Alert). Both, client and server can use the TLSSignOnO�
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TLS Sign NRO - - -  Record G#
TLS Evidence NRO, NRR G# - G#  Record G#
MAC Chaining - - - - - n/a -

One Signature NRC    - n/a  

Our Solution NRC     Bytes  
Table 4: Provided properties satis�ed by the di�erent solu-
tions.  = provided property, G# = partially provided prop-
erty, - = not provided property.

messages to notify their peer that they will start or stop transmit-

ting signed data, i.e., the sub-protocol is used to specify the evi-

dence window. In the evidence window, each record is hashed, and

a signature over this hash is generated. When the stop signal is

triggered, the generator gathers all hash signature pairs and sends

them to the requester as evidence.

The development of TLS Sign had stopped before a �nal version

was released; thus this extension is incomplete. TLS Sign’s design

presents following disadvantages: TLS Sign is ine�cient, because it

requires one asymmetric signature per record within the evidence

window. TLS Sign is vulnerable to content reordering and content

omission attacks. Therefore, TLS Sign only provides NRO and no

timing information or message ordering.

TLS Evidence is a TLS extension [6]. Similar to TLS Sign, the client

expresses his intent to use TLS Evidence in the TLS extension �eld.

TLS evidence uses a set of new alert messages to be transmitted

in the existing alert protocol to de�ne the evidence window. The

requester sends an alert message and waits (i.e. he is not allowed

to send any messages) for the responding alert. After exchanging

these alerts, the evidence window is open until one of the peers

sends an alert, triggering a corresponding reply. Then, the peers

exchange their certi�cates and generate the following evidence: a

signature over a timestamp, a hash over all sent messages, a hash

over all received messages and a hash of the handshake.

TLS evidence has several limitations. First, for human-centered

use cases it is unclear when to start and stop the evidence collec-

tion.Second, since TLS evidence provides a signature over the hash

of all sent and the hash of all received messages, it only provides a

partial order within the sent and the received messages. However,

the total order between sent and received messages is not preserved.

Therefore, TLS Evidence is vulnerable to the content reordering

attack, as seen in Figure 5. Because the evidence window can be

opened after some content has already been transmitted, TLS Evi-

dence is also vulnerable to the content omission attack. Finally, as

the included timestamp is the time of evidence generation, a time

shifting attack is possible. Therefore, TLS Evidence only provides

NRO, NRR, a partial order and upper time bound.

MAC Chaining was described in the IETF mailing list [25] as

combining the already-used Message Authentication Codes (MACs)

of individual records to a MAC over the complete communication.

MAC Chaining suggests including the MAC of the previous record

into the current record and thereby chaining the MAC properties.

Finally, to provide the evidence the last MAC of the communication

is signed to verify the whole stream with very small overhead. Two

variants of MAC Chaining are proposed that either verify only one

side or both sides of the communication.

However, in TLS 1.3 a proof for MAC Chaining would have

to include the TLS tra�c secrets used for authenticated encryp-

tion (AEAD) [28] to allow the veri�cation of individual MACs.

Given such a proof, including the TLS tra�c secrets, the signature

of the last MAC and the conversation content, the adversary can

create proofs with di�erent conversation content. In short, the un-

forgeability of P0 is violated. This is because AEAD authentication

tags, for all cipher suites available in TLS 1.3 [38], are not consid-

ered collision resistant if the key is known to the adversary. We

therefore conclude that MAC Chaining provides no non-repudiation
as proofs can be forged given an existing proof.

Signing the complete TLS session from the beginning of the

handshake until one party closes the connection would be one of

the simplest solutions to provide non-repudiation. The evidence

window would thereby cover the complete connection. Similar to

previous work, such an extension would require the inclusion in

the handshake and an additional evidence message at the end of

the session.The evidence would be order-preserving. However, this

solution requires the requester to store all records in order to be

able to compute the �nal signature and would necessarily result

in a big proof size. Finally, such a non-repudiation service o�ers

no privacy protection. In contrast our record-level approach has

comparably low computational costs, while being more e�cient

and providing record-level privacy protection.

Signing content at the application layer could be another non-

repudiation solution, as one could argue that such a functionality

should not be handled at the TLS layer. Two parties can exchange

signed content on the application layer by explicitly requesting to

sign data, or employ already existing protocols such as OpenPGP [9].

Application layer non-repudiation however su�ers from several

disadvantages. First, regarding reusability, an application layer solu-

tion would only support a particular protocol/application. Having a

TLS layer solution, however, enables any TLS-based application to

bene�t from non-repudiation. Second, an application layer solution

would require that private keys are exposed to the application layer,

contradicting the principle of minimum exposure and that the TLS

layer is responsible of managing the cryptographic keys.

There are existing solutions providing additional authentication

for REST-ful HTTP as studied and extended by Lo Iacono et al. [27].

However, these solutions include di�erent HTTP headers, would

have to be extended for future headers and provide authentica-

tion only. A TLS-based non-repudiation solution includes all of

the HTTP tra�c and allows the proof contents to be chosen dur-

ing proof generation. Finally, in contrast to the existing solutions,

TLS-based non-repudiation solves the problem of public key au-

thentication by leveraging the already established web-PKI. Using
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Figure 5: Content Reordering Attack:
The left �gure shows the original and
the right �gure the signed conversation.
Due to content reordering, the response
123 seems to belong to request y, which
is incorrect.
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Figure 6: Content Omission Attack: The
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right �gure the signed conversation.
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conversation, the response 123 appears
to belong to request ywhich is incorrect.
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Figure 7: Content Hiding Attack: The
left �gure shows the original and the
right �gure the signed conversation.
The veri�er can not determine whether
a long password was used or an addi-
tional request took place.

the existing PKI from the application layer would require the expo-

sure of private keys.

As explained in the previous section, earlier works are vulnera-

ble to a number of attacks and do not achieve all of the desirable

properties. Furthermore, they don’t easily allow the speci�cation

of the evidence window and, therefore, limit usability. The protec-

tion of sensitive information moreover is only feasible on a record

granularity which is impractical for most applications (e.g., stock

market API).

6.2.1 A�acks on Existing TLS Solutions. In this sectionwe present
attacks against existing TLS solutions apart from the already ex-

plained attack on MAC Chaining.

Time Shifting Attack. In Section 2 we described why proofs

should contain timing information. However, an adversary act-

ing as requester can manipulate time information included in the

proof. The possible kind of manipulation depends the kind of tim-

ing information included in the proof.

If a single timestamp is included, the adversary can manipulate

the connection according to its type. If the proof generation time is

included, the adversary can request the information at time t , then
keep the connection open for a time duration ∆t and �nally request
the proof at time t ′ = t + ∆t . Note that ∆t may be substantial as

TLS connections can be long lived. Therefore, the proof contains

timestamp t ′ for content requested at time t . Even if ∆t is only in

the order of minutes, this could have big impacts for data feeds such

as stock prices or currency exchange rates. Thus, if such attacks are

possible, the timing information is not trustworthy, violating P4.

Content Reordering Attack. As our system makes no assumptions

about the higher level protocol, we must assume that there are cases

where the order of messages is important. In particular, the veri�er

should be able to identify the message order from the perspective

of the generator, i.e. the relative order of sent and received messages.

If the adversary can perform a partial content reordering or the

content order is not clear from the proof, unforgeability is violated.

The scheme cannot prove non-repudiation of conversation (NRC)

as the context is unclear. An example relevant for TLS Sign and

TLS Evidence is shown in Figure 5.

Content Omission Attack. If the adversary acts as the requester

and if the evidence window does not start right after the TLS hand-

shake, i.e., the non-repudiation service allows omission of content

as in TLS Sign or TLS Evidence, P2 is violated. Figure 6 shows a
scenario where the adversary requests a resource x before opening

the evidence window, immediately requesting another resource y
and closing the evidence window. Now, only two records are in the

evidence window: the request for y and the response for x.
If the upper-level protocol does not supply any resource identi�er

in the response, as is the case for HTTP 1.x, it appears to a veri�er

that x was the legitimate response to the request for y. Therefore
such non-repudiation services provide no request-response binding

and cannot provide a NRC.

Content Hiding Attack. In this attack the adversary hides im-

portant communication content of variable-length protocols by

abusing the privacy protection features. In particular, the adversary

hides a part of the communication, e.g. a complete request, in order

to trick the veri�er. An example is shown in Figure 7.

In Figure 7 we assume a simple protocol with three message

types: authentication with a password (Auth), requests with an

identi�er (Req) and responses. As passwords, identi�ers and re-

sponses can be of variable length, all messages are terminated with

a special character (\0).

The adversary �rst starts evidence collection, then authenticates,

sends two requests for resources x and y and then requests the

evidence so that only the response for x will be included in the

evidence. If the non-repudiation service allows the protection of in-

formation, the adversary hides the password along with the request

for x (up until the terminating character). The veri�er observe the

authentication with a hidden password, a request for y and the re-

sponse 123. The veri�er therefore incorrectly assumes that 123 is
the correct response for resource y, even though it is 987.

Note that the adversary can send the authentication and the �rst

request within the same TLS record, so that the veri�er cannot use

TLS metadata to determine whether an additional request was sent.

6.3 Orthogonal Solutions
In the following, we describe orthogonal solutions that o�er ev-

idence of TLS sessions using a trusted third party, e.g., TLSno-

tary [41] and Town Crier [45].

6.3.1 TLSnotary. TLSnotary [41] provides a service that allows

a third party auditor to attest a TLS connection between a server

and a client. If the client follows a particular protocol with a third

party auditor, while initiating a connection to a server, the third
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party auditor is able to claim with certainty that the client provided

data that originated from the server. TLSnotary modi�es the TLS

handshake protocol on the client side by leveraging particular prop-

erties of TLS 1.0 and TLS 1.1. The modi�ed protocol prevents the

client from learning the TLS keymaterial that would allow the client

to authenticate tra�c from the server. More speci�cally, the client

is not able to generate the server MAC key, only the third party

auditor is capable of doing so, e�ectively preventing the client from

crafting tra�c that seemingly originates from the server. After the

client provided a hash of the tra�c, the third-party auditor releases

the TLS server MAC key. The client can then verify the message

authentication.

TLSnotary LimitationsAlthough TLSnotary provides the capabil-
ity of notarizing TLS connections, it comes with several limitations

and security issues.

First, TLSnotary is only supported up to TLS 1.1. The properties

that are used by TLSnotary were removed in versions 1.2 and 1.3.

TLS 1.1 and below are considered less secure than current TLS ver-

sions. Second, TLSnotary uses and can only use the hash functions

MD5 and SHA-1, both of which can be considered deprecated [40].

Third, TLSnotary only supports the RSA key exchange, which does

not provide forward secrecy. Last, TLSnotary requires trust in a

third party in most use cases, e.g. if the evidence should be publicly

veri�able. If the veri�er takes the role of the auditor in the proto-

col, a trusted third party is not required. However, in that case, the

veri�er needs to take part in the interactive protocol, i.e. evidence

of a past session cannot be provided.

6.3.2 Town Crier. Town Crier [45] is a system for authenticated

data feeds that leverages the Intel SGX technology to provide pub-

licly veri�able evidence of the contents of a TLS session. It is in-

tended to provide veri�able data feeds for smart contracts (e.g. on

the Ethereum blockchain [43]). The core of Town Crier runs in an

SGX enclave and can thus provide attestation that the correct code

was executed. Town Crier then forwards information that was pro-

vided by an HTTPS website to a smart contract on the blockchain.

Town Crier Limitations Similarly to TLSnotary, Town Crier re-

quires a trusted third party, i.e., a client of the service needs to trust

Intel since the attestation relies on the security of Intel SGX. In

contrast to TLSnotary, Town Crier always requires the trusted third

party. In addition, while Town Crier could be modi�ed to provide

evidence of TLS sessions in general, it currently only provides data

feeds for smart contracts.

7 DISCUSSION
In the following we discuss observations and possible avenues for

future work. Our solution is not directly applicable to Datagram

TLS (DTLS) that is based on UDP. The DTLS extension remains

as a challenge. Moreover, because TLS 1.3 provides simpli�ed re-

sumption features, TLS-N could be extended to support TLS session

resumption.

7.1 Validity or Expiry of Proof
A proof should only by considered valid as long as all involved TLS

certi�cates are neither outdated nor revoked. In order to retrospec-

tively understand the time of validity of a proof, either the generator

or the validator could make use of a timestamping service attesting

the existence of the proof. Besides a centralized service, a crypto-

graphic hash of the proof could also be submitted to a blockchain,

e�ectively timestamping the �rst occurence of the proof and reduc-

ing the trust into a single entity.

7.2 Variable-sized chunking
Our current solution provides �xed-size chunking which is gener-

ally applicable, but which might not represent the most e�cient

solution for the privacy protection of certain applications. Cook-

ies or access tokens (e.g. an OAuth bearer token [17]) are typically

stored in the HTTP header. In a hypothetical HTTP mode, TLS-

N could support variable-sized chunking, where one chunk could

represent one HTTP header. The privacy protection of one header

would therefore be more e�cient.

7.3 SNARKs for extended Proofs
In some cases, it may be desirable for a requester to provide a

more �ne grained proof. For example, if a higher-level protocol

is used that contains large sections of sensitive variable length

data, an attacker could succeed with a content hiding attack (cf.

Section 6.2.1). In such cases, the proof will no longer convince a

veri�er of its validity. Therefore, a requester can extend the TLS-

N proof with a zk-SNARK [4]. Such a proof could e.g. prove that

the hidden content matches some regular expression, i.e. that no

non-sensitive content is censored that is required for the correct

semantic meaning of the provided data.

Additionally, a prover can extend a TLS-N proof with a zk-

SNARK to prove some statement about the sensitive data. For ex-

ample, if a party requires proof of su�cient funds, a prover can

provide a TLS-N proof of his bank statement but censor his actual

bank account balance. He can then provide a zk-SNARK stating

that his balance is above some threshold value. Since the TLS-N

proof contains a signature of the bank, the veri�er is convinced of

the origin of the bank account information but since the sensitive

content is hidden, he does not receive any unnecessary information.

8 CONCLUSION
In this paper we present TLS-N, the �rst e�cient and privacy-

preserving TLS extension that provides non-repudiation of a TLS

conversation based on content extraction signatures. Our �exible,

parametrized design allows the trade-o� between e�ciency and

privacy, being especially e�cient if privacy is not required. No

trusted third party or trusted hardware is requiredwhile the security

assumptions of TLS are inherited and TLS primitives are reused.

Our real-world evaluation including recorded tra�c and an

Apache Server module demonstrate the usability. For smaller re-

quests, such as API calls, the extra latency is less than 1.5 ms. This

secure and e�cient non-repudiation solution for TLS will enable

parties to provably share the vast amounts of content accessible

through TLS — and thus provide disintermediation leading to more

trustworthy and decentralized services.
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A DETAILED SECURITY ANALYSIS OF TLS-N
Our security analysis of TLS-N is based on the de�nitions and the

security analysis of Content Extraction Signature [39].

A.1 De�nitions
In their work, Steinfeld et al. de�ne a document model. Analogously,

we de�ne a TLS conversation model. A conversation c consists of
n records, i.e. len(c) = n, where c[i] denotes the i-th record. For

each record i , len(c[i]) = (l ,m) where l is the length of the record

in bytes andm is the number of chunks. c[i][j] is the j-th chunk of

c[i] We also adopt the “blank symbol” ?. A chunk is blank if it is

hidden in the proof. A record is blank if all of its chunks are hidden

and only its merkle root hash is included in the proof. In this case

the length is also hidden, i.e. c[i] =? → len(c[i]) = (?, ?).
Note, however that our records are not quite identical with the

documents de�ned by Steinfeld et al. as the records also contain

originator information. O(c[i]) provides the originator information

for a given record. If the record is blank, it is blank also, i.e.

c[i] =? → O(c[i]) =?. Similarly, each conversation contains addi-

tional information A(c), namely the timestamps, the cipher suite,

the salt size and the chunk size.

The clear set Cl(c[i]) = {j | len(c[i]) = (l ,m)∧ j ≤ m∧c[i][j] ,?}
contains the chunk indices which are not blank for a given record.

And for a given conversation Cl(c) = {i | i ≤ len(c) = n ∧ c[i] ,?}
contains the record indices which are not blank.

We say a conversation c is complete, if all records of the conversa-
tion are included, i.e. the �rst hash chain element has the structure

H(0x1,h0), so that h0 has to be the Merkle hash of the �rst record.

Steinfeld et al. de�ne a subdocument relation, based on which

we de�ne a subrecord and a subconversation relation.

De�nition A.1. For any pair of records r and r′, r is a subrecord
of r′, denoted r ≤ r′, if:

(1) len(r) = len(r′), i.e. they are of equal length and structure

(2) O(r) = O(r′) and
(3) Cl(r) ⊆ Cl(r′) and
(4) r[j] = r′[j] for all j ∈ Cl(r)).

De�nition A.2. For any pair of TLS conversations c and c′, c is a
subconversation of c′, denoted c ≤ c′, if:

(1) len(c) = len(c′), i.e. the same number of records and

(2) c and c′ are complete and

(3) A(c) = A(c′) and
(4) Cl(c) ⊆ Cl(c′) and
(5) c[i] is a subrecord of c′[i] for all i ∈ Cl(c).

A.2 P0: Unforgeability
In this section we prove that the adversary cannot produce a forged

evidence signature according to our assumptions. In other words,

CES-Unforgeability holds for our scheme.

A.2.1 Unforgeability of Signature.

LemmaA.3. Amodi�ed evidence hash leads to an invalid signature
that will be detected by the veri�er.

Proof. At the end of the evidence generation the generator

signs the evidence hash using its private key. We assume that the

private key is handled properly and that it is not used in a signature

oracle. Under these conditions, if the adversary can forge a valid

signature for a di�erent hash, the unforgeability assumption is

violated. Therefore, the signature scheme ensures that only the

correct evidence hash has a valid signature. All other signatures

will be rejected by the veri�er during veri�cation. �

A.2.2 Integrity of Inputs. In this section, we show that none of

the inputs can be modi�ed without leading to a modi�ed evidence

hash unless the adversary is able to �nd a hash collision. We proof

this for the operations in reverse order as they are executed.

Lemma A.4. If any of the �nal evidence inputs, listed in Figure 3c,
is modi�ed the evidence hash will be di�erent.

Proof. This follows directly from the collision resistance of H().
If a modi�ed input would not lead to a di�erent evidence hash, a

hash collision would be found. �

Through Lemma A.4 we have established that hcn−1 cannot be
modi�ed in a valid proof. We go on to show that this implies that

none of the hash chain inputs can be modi�ed. Note, that from now

on the output length of H() (the hash size as part of the cipher

suite), the salt size and the chunk size are �xed.

Lemma A.5. If any of the hash chain inputs for step i with i > 0 is
modi�ed the �nal hash chain output hcn−1 will be di�erent.

Proof. Again, this is a direct application of the collision resis-

tance of H(). We can apply the collision-resistance argument in-

ductively for all steps. A modi�cation in step i will propagate all
the way until the end, as the output of step i , hci , is an input to step

i + 1 unless a hash collision is found. �

Lemma A.6. If any of the hash chain inputs for step 0 is modi�ed
the �nal hash chain output hcn−1 will be di�erent.

Proof. Again, this is a direct application of the collision resis-

tance of H(). �

We have shown that none of the inputs to the hash chain, namely

hi can be modi�ed. The other inputs (0x1) are constants. As for
each record, the chunk size and its Merkle root hash is now �xed

due to the results above, we can use the CES-unforgeability proof of

Steinfeld et al. for documents on each record. Note, that records and

documents are slightly di�erent. Most importantly, for records the

length and the originator information is hashed into theMerkle root

node. However, the proof and the arguments about hash collisions

apply in the same manner.

Using these lemmas we can prove our theorem about the pre-

served integrity of TLS records and originator information.

Theorem A.7. The TLS records, the originator information and
the �nal evidence inputs included in a proof are integrity protected
through the evidence signature. Any modi�cation to them will lead to
an invalid proof.

Proof. Any modi�cation of the records or originator informa-

tion, leads to modi�ed Merkle root hash unless due to the biding

property of C() and the collision resistance of H().These lead to a

modi�ed hash chain output due to Lemmas A.6 and A.5. A di�erent

hash chain output or another modi�ed �nal evidence input leads
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to a di�erent evidence hash due to Lemma A.4, which ultimately

leads to an invalid proof due to A.3.

Note that this is true for proof with both record-level and chunk-

level granularity. In proofs with record-level granularity the Merkle

tree consists of a single node and there is only a single commitment.

However, the proofs equally apply. �

A.3 P1 : Con�dentiality of Hidden Chunks
The con�dentiality of hidden chunks has to be preserved against

an adversary even if these chunks have low entropy. To show that

the con�dentiality is provided we show that:

• The TLS tra�c secret is not leaked.

• All disclosed salts are pseudorandom and independent from

each other.

• The commitments do not leak information about the hid-

den chunks.

Lemma A.8. The TLS tra�c secret is not leaked to the adversary
through any proof.

Proof. By its de�nition, E() does not leak the pseudorandom

input key. In our design the TLS tra�c secret is only fed as an input

key to E() and never revealed. Therefore, even though proofs might

contain the salt secrets, which are derived from the TLS tra�c

secret, they do not leak the tra�c secret to the adversary. �

Lemma A.9. All salts are pseudorandom values of su�cient length.

Proof. We assume that the TLS tra�c secret is a pseudorandom

key, which is a core assumption of TLS [11]. E() is de�ned so that

given a pseudorandom input, it will provide a pseudorandom output

of a given length. Each salt is generated by alternating calls to E()
and Slice(), e.g. Slice(E(Slice(E(TLS traffic secret, ctx,
2 · lS), 0), ctx, 2 · lS),1). The Slice() function takes two

inputs x ,y so that |x | ≥ 2 · lS and lS is the salt size. Slice() is

de�ned as follows:

Slice(x ,y)=

{
x[0 : lS − 1] if y = 0

x[lS : 2 · lS − 1] if y = 1

Clearly, Slice() has a pseudorandom output given a pseudo-

random input, as it only selects a part of the input.

Therefore, each function in the call chain generates pseudoran-

dom output of size ≥ lS and thereby all salts are pseudorandom

values with su�cient length as the salt size lS is chosen as a secu-

rity parameter.

Note, that repeated application of E() might increase the at-

tacker’s distinguishing advantage. However, in our design the salt

tree can have at most 17 levels and therefore salts are the result of

at most 17 consecutive calls to E(). Therefore, salts are still pseudo-
random, as an attacker could otherwise use this constant overhead

in a distinguishing attack. Our salt tree has at most 17 levels as in

the worst case, a record would have 2
16 − 1 bytes and the chunksize

would be 1 byte leading to 2
16

leaf nodes. �

Lemma A.10. The adversary cannot distinguish the values of two
neighbouring nodes inside the salt tree from two random values of
the same length.

Proof. Two neighbouring nodes Sx , Sy are the result of Sx =
Slice(E(Kp, ctx, 2 · lS), 0) and Sy = Slice(E(Kp, ctx,

2 ·lS), 1) based on a parent nodeKp . We prove their independence

using a reduction to the pseudorandomness property of E().
Assuming the existence of a polynomial-time adversary A, able

to determine Sx , Sy from two random values of the same length

with non-negligible probability, we can distinguish E() from a

random oracle [3] as follows.

(1) Query the oracle Fn() using a random x for length 2 ∗ lS
(2) Compute Sx = Slice(Fn(x), 0), Sy = Slice(Fn(x), 1)
(3) Query A using Sx , Sy
(4) If A detects dependent values, output 1

(5) Else, output 0

If the adversary A detects dependent values, they must be gen-

erated by E(), hence the algorithm outputs 1 to signal that it is

in the real world. Thereby, the polynomial-time algorithm has a

signi�cant advantage.

�

Lemma A.11. Two salt values that are included in (potentially
di�erent) proofs are independent from each other. In particular the
adversary obtains no information about a salt Si, j from a salt of a
di�erent session, a di�erent record (e.g. Si′, j ) or a di�erent chunk (e.g.
Si, j′).

Proof. Given a salt from a di�erent session, the adversary can

not obtain any information about Si, j , because they are derived from
independent tra�c secrets. By the TLS design [11], each session has

a fresh tra�c secret that is independent from previous tra�c secrets.

Given a salt from a di�erent record inside the same session, the

adversary obtains no information about a salt Si, j because they are

derived from independent salt secrets. We prove this using a case

separation: Either the two salt secrets are based on di�erent tra�c

secrets, as tra�c secrets can change [38]. In that case the derived

salts are independent. Otherwise the nonce is di�erent for the dif-

ferent. In this case, E() is designed to generate independent outputs
even for correlated inputs, such as nonces, given a pseudorandom

key (the tra�c secret) [23].

Given a salt from the same record but for a di�erent chunk Si, j′ ,
the adversary obtains no information about Si, j . As E() does not
leak its input key, the adversary cannot compute a parent node of

Si, j′ that could be used to derive Si, j . What is left to prove is that

there is no dependency between Si, j and Si, j′ . If Si, j and Si, j′ are
direct neighbours, LemmaA.10 proves the independence. Otherwise

they have to have respective parent nodes that are direct neighbours.

These parent nodes are independent according to Lemma A.10 and

therefore the derived values are independent. The discussed parent

nodes exist in this case, as both nodes are from the same tree but

not from the same branch and therefore must have parent nodes

that are direct neighbours. They cannot be from the same branch as

no two salts from the same branch are included into a proof given

that one discloses the other and only a minimal number of salts is

included in the proof.

�

Lemma A.12. A commitment leaks no information about an un-
derlying chunk to an e�cient adversary.
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Proof. A chunk might have low entropy. In the worst case the

entropy of the chunk might be a single bit. Therefore, our com-

mitment scheme uses the salts to provide the hiding property. As

Lemma A.9 shows, these salts are pseudorandom. Additionally, as

A.11 shows, the salts are independent, so that the adversary cannot

learn about a salt from other salts in the proof or di�erent proofs.

Using these properties, the commitment scheme C() provides the
desired property as we assume that it is hiding. �

Theorem A.13. No information is leaked about sensitive chunks
that are hidden in a proof.

Proof. The adversary might obtain information about sensitive

chunks in di�erent ways. Given its network capabilities, the adver-

sary can capture the encrypted TLS tra�c and decrypt later given

the TLS tra�c secret. However, Lemma A.8 shows that the tra�c

is not leaked by the proofs. Alternatively, the adversary could try

to derive information about sensitive chunks given the commit-

ments contained in a proof. However, Lemma A.12 shows that the

commitments leak no information about the underlying sensitive

chunks. �

A.4 P2: Structure of Hidden Data
In this section we show the observable structure of hidden data.

A.4.1 Structure of Hidden Chunks. As the chunk size and the

record length are unforgeable the Merkle tree structure is �xed.

Therefore, no second-preimage attacks on the Merkle tree are possi-

ble and whenever a chunk is hidden, a Merkle tree node is inserted

into the proof. The Merkle tree node reveals the index of the hidden

chunk and together with the chunk size and record length also its

size.

A.4.2 Incomplete Conversations. For the conversation in Fig-

ure 3a, a proof might simply include hc1, Salt Secret2 and record 2.

(For this example we ignore data sensitivity as shown in the Figure.)

The proof can be veri�ed by computing hcn−1 and verifying the

signature. However, the conversation is incomplete as it is unclear

how many records were part of the conversation. This incomplete-

ness is clearly observable due to the inclusion of the hash chain

element hc1 in the proof.
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