Birthday Attack on Dual EWCDM

Mridul Nandi

Indian Statistical Institute

Abstract. In CRYPTO 2017, Mennink and Neves showed almost *n*bit security for a dual version of EWCDM. In this paper we describe a birthday attack on this construction which violates their claim.

1 Introduction

We briefly recall the construction EWCDM [CS16] and its dual version EWCDMD [MN17a,MN17b]. Let π_1 and π_2 be two independent random permutations over $\{0,1\}^n$. Let \mathscr{H} be an ϵ -AXU over a message space \mathscr{M} . For a permutation π , we denote $\pi(x) \oplus x$ as $\pi^{\oplus}(x)$. For a nonce $\nu \in \{0,1\}^n$ and a message $m \in \mathscr{M}$, we define

$$\mathrm{EWCDM}(\nu, m) = \pi_2(\pi_1^{\oplus}(\nu) \oplus \mathscr{H}(m)) \tag{1}$$

$$EWCDMD(\nu, m) = \pi_2^{\oplus}(\pi_1(\nu) \oplus \mathscr{H}(m))$$
(2)

If there is no message we define them as

$$EDM(\nu) = \pi_2(\pi_1^{\oplus}(\nu)) \tag{3}$$

$$EDMD(\nu) = \pi_2^{\oplus}(\pi_1(\nu)) \tag{4}$$

These are called EDM and EDMD respectively. In [CS16], author proved PRF (pseudorandom function) and MAC (message authentication security) for EWCDM in a nonce respecting model. The original security is proved to be at least 2n/3-bit. In CRYPTO 2017, Mennink and Neves showed almost *n*-bit PRF security for EWCDMD, the dual version of EWCDM.

Our Observation. In this paper we describe a PRF attack against EWCDMD in query complexity $2^{n/2}$. Thus, it violates the claim. The main idea of the attack is simple. Note that the EWCDMD can be viewed as a composition of two keyed *non-injective functions* (and so it follows birthday paradox), namely π_2^{\oplus} and a function f mapping (ν, m) to $\pi_1(\nu) \oplus \mathscr{H}(m)$. Thus we expect that the collision probability of the composition $\pi_2^{\oplus} \circ f$ is almost double of the collision probability for the random function. Thus, by observing a collision we can distinguish EWCDMD from a random function. Note that EWCDM is a composition of a permutation and a non-injective keyed function. Hence our observation is not applicable to it. The same argument applies for EDM and EDMD.

2 Mridul Nandi

2 Distinguishing Attack

In this section we provide details of a nonce respecting distinguishing attack on EWCDMD. For better understanding we consider a specific hash function $\mathscr{H}(m) = K \cdot m$ where K is a nonzero random key chosen uniformly from $\{0,1\}^n \setminus \{0\}$ and $m \in \mathscr{M} := \{0,1\}^n$. Here $K \cdot m$ means the field multiplication with respect to a fixed primitive polynomial. Clearly, \mathscr{H} is $\frac{1}{2^{n}-1}$ AXU hash. Moreover it is injective hash. In other words, for distinct messages m_1, \ldots, m_q , $\mathscr{H}(m_1), \ldots, \mathscr{H}(m_q)$ are distinct.

Distinguishing Attack. \mathscr{A} choses $(\nu_1, m_1), \ldots, (\nu_q, m_q) \in \{0, 1\}^n \times \mathscr{M}$ where all ν_i 's are distinct and all m_i 's are distinct. Suppose T_1, \ldots, T_q are all responses. \mathscr{A} returns 1 if there is a collision among T_i values, otherwise returns zero.

When \mathscr{A} is interacting with a random function, $\Pr[\mathscr{A} \to 1] \leq q(q-1)/2^{n+1}$ (by using the union bound). Now we provide lower bound of $\Pr[\mathscr{A} \to 1]$ while \mathscr{A} is interacting with EWCDMD in which π_1, π_2 are two independent random permutations and \mathscr{H} is the above hash function whose key is chosen independently. To obtain a lower bound we first prove the following lemma. Let $N = 2^n$.

Lemma 1. Let $x_1, \ldots, x_q \in \{0, 1\}^n$ be q distinct values. Let π be a random permutation. Then, for all distinct ν_1, \ldots, ν_q , let C denote the event that there is a collision among values of $\pi(\nu_i) \oplus x_i$, $1 \leq i \leq q$. Then,

$$\alpha(1-\beta) \le \Pr[C] \le \alpha$$

where $\alpha = \frac{q(q-1)}{2(N-1)}$ and $\beta = \frac{(q-2)(q+1)}{4(N-3)}$.

Proof.Let $E_{i,j}$ denote the event that $\pi(\nu_i) \oplus \pi(\nu_j) = x_i \oplus x_j$. So for all $i \neq j$, $\Pr[E_{i,j}] = 1/(N-1)$. Let $C = \bigcup_{i\neq j} E_{i,j}$ denote the collision event. By using union bound we can easily upper bound

$$\Pr[C] \le \alpha := \frac{q(q-1)}{2(N-1)}.$$

Now, we show the lower bound. For this, we apply Boole's inequality and we obtain lower bound of collision probability as

$$\Pr[C] \ge \alpha - \sum \Pr[E_{i,j} \cap E_{k,l}]$$

here the sum is taken over all possible choices of $\{\{i, j\}, \{k, l\}\}$. Hence there are $q(q-1)(q+1)(q-2)/8 = \binom{q(q-1)/2}{2}$ choices. Note that for each such choice i, j, k, l,

$$\Pr[E_{i,j} \cap E_{k,l}] \le \frac{1}{(N-1)(N-3)}$$

Hence,

$$\Pr[C] \ge \alpha - \frac{q(q-1)(q+1)(q-2)}{8(N-1)(N-3)}$$
(5)

$$= \alpha (1 - \frac{(q-2)(q+1)}{4(N-3)}) = \alpha (1-\beta).$$
(6)

This completes the proof.

Advantage Computation. Using the above Lemma we now show that the probability that \mathscr{A} returns 1 while interacting EWCDMD is significant when $q = O(2^{n/2})$.

Let C_1 denote the event that there is a collision among the values $z_i := \pi_1(\nu_i) \oplus \mathscr{H}(m_i)$. We can apply our lemma as $\mathscr{H}(m_i)$'s are distinct due to our choice of the hash function. Thus, $\Pr[C_1] \geq \alpha(1-\beta)$. Moreover, $\Pr[\neg C_1] \geq (1-\alpha)$. Hence,

$$\Pr[\mathscr{A} \to 1] \ge \Pr[C_1] + \Pr[$$
 collision in T values $|\neg C_1| \times \Pr[\neg C_1].$

By simple algebra, one can obtain that $\Pr[\mathscr{A} \to 1] \ge 2\alpha - 2\alpha\beta - \alpha^2$. Thus, the advantage of the adversary is at least $\alpha - 2\alpha\beta - \alpha^2$. Now when $q \le c2^n$ for some suitable constant c (one can easily find c from the expression) such that $1 - 2\beta - \alpha \le 1/2$ then the advantage is at least $\alpha/2$, i.e. q(q-1)/4(N-1).

3 Conclusion and Possible Future Research Work

We have demonstrated a distinguishing attack on EWCDMD. We would like to note that this attack does not work for EDM, EWCDM and EDMD as we can not write them as a composition of two non-injective functions.

- 1. We would like to note that our attack is PRF attack and it is not easy to extend for forging attack in a nonce respecting situation. On the other hand, we usually prove MAC security through the PRF advantage. In [MN17b] authors only proved PRF security for EWCDMD. However, in a nonce respecting model only proving PRF security is not worth as one can easily design PRF as $PRF(\nu)$ by completely ignoring the message m.
- 2. One can consider other dual variants. E.g.,

$$\pi_2(\pi_1(\nu) \oplus \mathscr{H}(m)) \oplus \pi_1(\nu). \tag{7}$$

This is very close to the sum of permutations. However, the presence of $\mathscr{H}(m)$ makes it very difficult to prove (without using the Patarin's claim or conjecture on the interpolation probability of sum of random permutations [Pat08]). Moreover, it can not be expressed as a composition function with *n*-bit outputs. Hence it is a potential dual candidate of EWCDM.

3. The other possibility is to use three independent random permutations. As mentioned in [CS16], we can consider

$$\pi_3(\pi_1(\nu)\oplus\pi_2(\nu)\oplus\mathscr{H}(m)).$$

This will give 2^n security in nonce respecting model assuming that the sum of permutations would give *n*-bit PRF security. However, we don't know trade off between the number of allowed repetition of nonce and the security bound.

4 Mridul Nandi

References

- CS16. Benoît Cogliati and Yannick Seurin. EWCDM: an efficient, beyond-birthday secure, nonce-misuse resistant MAC. In CRYPTO 2016, Proceedings, Part I, pages 121–149, 2016.
- MN17a. Bart Mennink and Samuel Neves. Encrypted davies-meyer and its dual: Towards optimal security using mirror theory. Cryptology ePrint Archive, Report 2017/473, 2017. http://eprint.iacr.org/2017/473.
- MN17b. Bart Mennink and Samuel Neves. Encrypted davies-meyer and its dual: Towards optimal security using mirror theory. In *CRYPTO 2017, Proceedings* (*To appear*), pages xxx–xxx, 2017.
- Pat
08. Jacques Patarin. A proof of security in $o(2^n)$ for the xor of two random
 permutations. In $ICITS\ 2008,$ volume 5155 of
 LNCS, pages 232–248. Springer, 2008.