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Abstract
Write-Only Oblivious RAM (WoORAM) protocols provide privacy by encrypt-

ing the contents of data and also hiding the pa�ern of write operations over that
data. WoORAMs provide be�er privacy than plain encryption and be�er perfor-
mance than more general ORAM schemes (which hide both writing and reading
access pa�erns), and the write-oblivious se�ing has been applied to important
applications of cloud storage synchronization and encrypted hidden volumes. In
this paper, we introduce an entirely new technique for Write-Only ORAM, called
DetWoORAM. Unlike previous solutions, DetWoORAM uses a deterministic, se-
quential writing pa�ern without the need for any “stashing” of blocks in local
state when writes fail. Our protocol, while conceptually simple, provides sub-
stantial improvement over prior solutions, both asymptotically and experimen-
tally. In particular, under typical se�ings the DetWoORAM writes only 2 blocks
(sequentially) to backend memory for each block wri�en to the device, which is
optimal. We have implemented our solution using the BUSE (block device in user-
space) module and tested DetWoORAM against both an encryption only baseline
of dm-crypt and prior, randomized WoORAM solutions, measuring only a 3x-14x
slowdown compared to an encryption-only baseline and around 6x-19x speedup
compared to prior work.

1 Introduction
ORAM Even when data is fully encrypted, the sequence of which operations have

been performed may be easily observed. �is access pa�ern leakage is prevented by
using Oblivious RAMs (or ORAMs), which are protocols that allow a client to access
�les in storage without revealing the sequence of operations over that data. ORAM so-
lutions that have been proposed provide strong privacy by guaranteeing that anyone
who observes the entire communication channel between client and backend storage
cannot distinguish any series of accesses from random. Due to this strong privacy
guarantee, ORAM has been used as a powerful tool in various application se�ings
such as secure cloud storage (e.g., [SS13b, SS13a, MBC14]), secure multi-party com-
putation (e.g., [GKK+12, LHS+14, LWN+15, WCS15, ZWR+16]), and secure processors
(e.g., [FRK+15, LHM+15, NFR+17]).
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Unfortunately, in order to achieve this obliviousness, ORAM schemes o�en re-
quire a substantial amount of shu�ing during every access, requiring more encrypted
data to be transferred than just the data being wri�en/read. Even Path ORAM [SvDS+13],
one of the most e�cient ORAM constructions, has an Ω(logN ) multiplicative over-
head in terms of communication complexity compared to non-private storage.

WoORAM Write-only ORAM (WoORAM) [LD13, BMNO14] introduces a relaxed
security notion as compared to ORAMs, where only the write pa�ern needs to be
oblivious. �at is, we assume the adversary is able to see the entire history of which
blocks have been wri�en to the backend, or to view arbitrary snapshots of the storage,
but that the adversary does not know which blocks are being read.

Every ORAM trivially satis�es the properties of WoORAM, but entirely di�erent
(and possibly more e�cient) WoORAM solutions are available because a WoORAM

may still be secure even if reads are not oblivious. WoORAM schemes can be used in
application se�ings where adversaries are unable to gather information about physi-
cal reads. In such se�ings, the weaker security guarantee of WoORAM still su�ce to
hide the access pa�erns from the adversary of limited power.

Deniable storage [BMNO14] is one such application. In this se�ing, a user has
a single encrypted volume and may optionally have a second, hidden volume, the
existence of which the user wishes to be able to plausibly deny. For example, a laptop
or mobile device owner may be forced to divulge their device decryption password
at a border crossing or elsewhere. Even given all snapshots of the disk, an adversary
should not be able to guess whether the user has a second hidden volume or not. In this
context, it is reasonable to assume that the adversary won’t get any information about
block reads that have taken place in the disk, since read operations do not usually leave
traces on the disk. Based on this observation, a hidden volume encryption (HiVE) for
deniable storage was constructed based on WoORAM [BMNO14].

Another example application was proposed in [ACMR17] for synchronization-

based cloud storage and backup services. Here, the user holds the entire contents of
memory locally, and uses a service such as DropBox to synchronize with other de-
vices or store backups. �e service provider or an eavesdropper on the network only
observes what the user writes to the synchronization folder, but does not see any
read operations as these are done locally without the need for network communica-
tion. Aviv et al. [ACMR17] showed that WoORAMs can provide e�cient protection
in this scenario, as well as protection against timing and �le size distribution a�acks.

In both cases, what makes WoORAMs a�ractive is that they can achieve secu-
rity much, much more e�ciently than the full read/write oblivious ORAMs such as
Path-ORAM. For example, consider storing N size-B data blocks in a non-recursive
se�ing in which the client has enough memory to contain the entire position map of
size O(N logN ), Blass et al. [BMNO14] provided a WoORAM construction (herea�er,
HiVE-WoORAM) with optimal asymptotic communication overhead ofO(B) and neg-
ligible stash over�ow probability. As a comparison, fully-functional read/write ORAM
schemes — again, even without the position map — have an overhead of Ω(B logN ).
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Logical Read Logical Write Client memory Security
Physical Read Physical Write Physical Read Physical Write

Path-ORAM [SvDS+13] O(B log2 N ) O(B log2 N ) O(B log2 N ) O(B log2 N ) ω(B logN ) RW
HiVE-WoORAM [BMNO14] O(B logN ) 0 O(B log2 N ) O(B logN ) ω(B logN ) W-only

DetWoORAM O(B logN ) 0 O(B logN ) 2B O(B) W-only
B denotes the block size (in bits), and N denotes the number of logical blocks. We assume B = Ω(log2 N ).

Table 1: Communication complexity and client memory size for various ORAMs in
the uniform block se�ing

Towards better e�ciency with realistic client memory Although HiVE-Wo-
ORAM has a be�er asymptotic communication complexity than Path-ORAM in the
non-recursive se�ing (i.e., with client memory of size O(N logN )), the situation is
di�erent when the size of the client memory is smaller (i.e., polylogarithmic in N ),
or when the entire state needs to be frequently synchronized to backend storage.
In this case, the client cannot maintain the entire position map in memory, and so
the position map storage needs to be outsourced to the server as another WoORAM.
�is encoding typically occurs via a recursive process, storing the position map in
recursively smaller WoORAMS, until the �nal WoORAM is small enough to �t within
client memory. �erefore, in the uniform block se�ing where every storage block
has the same size, both HiVE-WoORAM and Path-ORAM have the same overhead
O(B log2 N ) with poly-logarithmic client memory size.1

Hence, we ask the following question:

Can we achive WoORAM with be�er asymptotic communication complexity in

the se�ing of polylogarithmic client memory and uniform blocks?

1.1 A Deterministic Approach to WoORAMs
In answering the question above, observe that the security requirement of WoORAMs
are much weaker than that of ORAMs. Namely, only the write operations need to be
oblivious, and the read operations can occur using di�erent protocols than that of
writing. �is opens the door to a radically di�erent approach toward constructing a
WoORAM scheme.

Traditional approaches. Traditionally, in both ORAM and WoORAM schemes, to
write datad , the oblivious algorithm requires selectingk blocks at random from physi-
cal storage in order to write. In Path-ORAM, thosek blocks form a path in a tree, while
in HiVE-WoORAM, they are randomly selected from a storage array of blocks. All k
blocks are re-encrypted, but and the new block d is inserted if any existing blocks are
empty.

1�e multiplicative overhead O (log2 N ) can be reduced to additive overhead of O (log3 N ) if the size of
the block can be non-uniform [SvDS+13, BMNO14]. However, throughout the paper we will consider the
uniform block se�ing, since the two use cases we consider above assume uniform block sizes. We note that
our construction still has be�er additive overhead of O (log2 N ) even in the non-uniform block se�ing.
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One of the challenges with this approach is that there is the possibility for a write
to fail if none of the random k blocks are empty and thus d cannot be inserted. In-
stead d is placed into a stash in reserved client memory until it may be successfully
wri�en to the ORAM (or WoORAM) when two or more of the k blocks are empty. For-
tunately, the probability of this event is bounded, and thus the size of the stash can
also be bounded with negligible stash over�ow probability. �e schemes will, with
overwhelming probability, work for small client memory.

Main observations. A�er careful inspection of the security proofs, we discovered
that random slots are mainly used to hide read accesses, not write accesses! �at is,
the challenge for ORAMs is that successive reads of the same data must occur in a
randomly indistinguishable manner. For example, without the technique of choos-
ing random slots, two logical reads on the same address may result in reading the
same physical address twice, in which case the read accesses are not oblivious. In the
WoORAM se�ing, however, the scheme may still be secure even if reads are not obliv-

ious, since the security requirement doesn’t care about physical reads! Based on this
observation, we ask:

Can we construct a deterministic WoORAM scheme using a radically di�erent

framework?

1.2 Our Work: DetWoORAM
We answer both of the above questions a�rmatively. In what follows, we describe
the main features and contributions of DetWoORAM.

Deterministic, sequential physical accesses DetWoORAM departs from the tra-
ditional approach in constructing a WoORAM scheme in that the write pa�ern is de-
terministic and sequential. Roughly speaking, if some logical write results in writing
the two physical blocks i and j, the next logicalwrite will result in writing in physical
blocks (i + 1) mod N and (j + 1) mod M , where M is a parameter in the system.

No stash �e deterministic nature of the physical writes also implies that a stash
is no longer needed. A write will always succeed and always occurs in a free block.
�erefore, we were able to remove the notion of stash completely in our scheme. To
elaborate this point, we give a very simple toy construction that captures these as-
pects in Section 3.1. Due to the deterministic access pa�ern and the absence of stash,
security analysis of our scheme is extremely simple; in fact, the security of our scheme
holds simply by observation.

Optimal communication complexity of physical writes DetWoORAM has bet-
ter asymptotic communication complexity than previous constructions (see Table 1).
In particular, DetWoORAM improves the complexity of write operations compared to
HiVE-WoORAM by a factor of logN .
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We stress that to the best of our knowledge, DetWoORAM is the �rst WoORAM

construction whose physical write cost is 2B for a single logical write. In other words,
the physical-write overhead is a single block (additive!), which is exactly optimal in the

uniform block se�ing with small client storage.

Optimization techniques: ODS and packing We applied two optimization tech-
niques to further reduce the communication complexity and improve practical per-
formance.

First, we created a new write-only oblivious data structure (ODS), in the form of a
Trie, to function as the position map. As with previous tree-based ODS schemes [WNL+14,
RAC16], our ODS scheme avoids recursive position map lookups by employing a
pointer-based technique. �at is, the pointer to a child node in a Trie node directly

points to a physical location instead of a logical location, and therefore it is no longer
necessary to translate a logical address to a physical address within the Trie itself.
We note that the ODS idea has previously been applied to WoORAM by [CCS17],
although their overall scheme turns out the be insecure (see Section 6).

With the simpler position map stored as a Trie and the deterministic write-access
pa�ern in DetWoORAM, we can manipulate the parameters to optimize the procedure
with DetWoORAM. In particular, we will show how to pack write-updates of the po-
sition map Trie into block size chunks. With additional interleaving techniques, we
will show that we can achieve a minimal communication complexity of 2B, one block
for the data and one block for position map and other updates. �e details of these
techniques are described in Section 3.3 and 3.4.

Stateless WoORAM WoORAM is usually considered in a single-client model, but
it is sometimes useful to have multiple clients accessing the same WoORAM. Since
our scheme has no stash, we can convert our scheme to a stateless WoORAM with no
overhead except for storing the encryption key and a few counter variables. On the
other hand, previous schemes such as Path-ORAM and HiVE-WoORAM must main-
tain the stash of size ω(B logN ), which in the stateless se�ing must be transferred in
its entirety on each write operation in order to maintain obliviousness.

Less randomness and storage for IVs �e deterministic and sequential access
pa�ern �ts nicely with encryption of each block using counter mode. Suppose the
previous writes so far have cycled the physical storage i times, and physical block j
is about to be encrypted. �en, the block can be encrypted with the counter i‖j‖0` ,
where ` depends on how many times one needs to apply a block cipher to encrypt the
entire block. �at is, we can get indistinguishable symmetric encryption by storing
just a single IV.

We stress that the above optimization cannot be applied to previous schemes due
to the randomized procedure. For example, HiVE-WoORAM chooses instead random
IVs to encrypt each block. �ese IVs must be stored separately on the server adding
to the communication cost overhead.

Additionally, we remark that the implementation [BMNO14] of HiVE-WoORAM
used RC4 as a PRG to choose random IVs for performance reasons, but the insecurity
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of RC4 lead to an a�ack on the implementation [PS15].

Implementation and experiments We have implemented DetWoORAM using
C++ and BUSE (block device in user space). We tested our implementation using Bon-
nie++ and �o on both a spinning-pla�er hard drive and a solid state drive, comparing
the implementation to a baseline that performs encryption only (no obliviousness) as
well as to an implementation of HiVE-WoORAM. We found that DetWoORAM incurs
only a 3x-14x slowdown compared to an encryption-only baseline and around 6x-19x
speedup compared to HiVE-WoORAM.

Insecurity of other proposed WoORAM improvements DataLair [CCS17] and
FlatORAM [HvD16] are two other WoORAM schemes that have been proposed re-
cently with the goal of improving the practical performance compared to HiVE-Wo-
ORAM. As our secondary contribution, we analyzed these two WoORAM protocols,
both of which achieve faster writes by tracking empty blocks within the WoORAM.
We show in Section 6 that, unfortunately, neither of these constructions satis�es
write-only obliviousness.

2 Background

2.1 Write-only ORAM
ORAM An Oblivious RAM (ORAM) allows a client to store and manipulate an array
of N blocks on an untrusted, honest-but-curious server without revealing the data or
access pa�erns to the server. Speci�cally, the (logical) array of N blocks is indirectly
stored into a specialized backend data structure on the server, and an ORAM scheme
provides an access protocol that implements each logical access with a sequence of
physical accesses to the backend structure. An ORAM scheme is secure if for any two
sequences of logical accesses of the same length, the physical accesses produced by
the access protocol are computationally indistinguishable.

More formally, let ®y = (y1,y2, . . .) denote a sequence of operations, where each
yi is a read(ai ) or a write(ai ,di ); here, ai ∈ [0,N ) denotes the logical address of
the block being read or wri�en, and di denotes a block of data being wri�en. For
an ORAM scheme Π, let PhysicalAccΠ(®y) denote the physical access pa�ern that its
access protocol produces for the logical access sequence ®y. We say the scheme Π is
secure if for any two sequences of operations ®x and ®y of the same length, it holds

PhysicalAccΠ(®x) ≈c PhysicalAccΠ(®y),

where ≈c denotes computational indistingushability (with respect to the security pa-
rameter λ).

Since the seminal work by Goldreich and Ostrovsky [GO96], many ORAM schemes
have been proposed and studied in the literature; see Section 7 for more related work.
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WoORAM Blass et al. [BMNO14] considered a relaxed security notion of write-
only ORAM (WoORAM), where only the write physical accesses are required to be
indistinguishable. In particular, we say an ORAM scheme Π is write-only oblivious

if for any two sequences of logical accesses ®x and ®y containing the same number of
write operations, it holds

WOnly(PhysicalAccΠ(®x)) ≈c WOnly(PhysicalAccΠ(®y)),

where WOnly denotes a function that �lters out the read physical accesses but passes
the write physical accesses.

�ey also gave an WoORAM construction which is much more e�cient than full
ORAM constructions. We will brie�y describe their construction below.

2.2 HiVE-WoORAM
Setting In [BMNO14], to store N logical blocks, the server needs a physical array D
ofM ≥ 2N elements, where each element is a pair (a,d), where a is the logical address
and d is the actual data. Obviously, all the data in the backend storage D is encrypted
with an IND-CPA encrption scheme; throughout the paper, we will implicitly assume
that the backend data is encrypted with an IND-CPA encryption scheme, even if we
don’t use any encryption notations.

�e client maintains a bu�er, called stash, that temporarily holds the blocks yet to
be wri�en to D. We assume for now that the client also maintains the position map
pos in its memory; the map pos translates a logical address into the corresponding
physical address.

�is protocol depends crucially on parameter k , the number of physical writes per
logical write. �is is selected to ensure a very low probability of �lling up the stash;
according to [BMNO14], for k = 3, the probability of having more than 50 items in
the stash at any given time is bounded by 2−64.

Write algorithm �e access protocol for write(a,d) works as follows.
1. Insert (a,d) into stash
2. Choose k physical addresses r1, . . . , rk uniformly at random from [0,M).
3. For i ∈ {1, . . . ,k} do:

(a) Determine whether D[ri ] is free by checking whether pos[D[ri ].a] , ri .
(b) IfD[ri ] is free and stash is nonempty, remove an element (α ,δ ) from stash,

set D[ri ] ← β , D[ri ].a ← α , and update the position map pos[α] ← ri .
(c) Otherwise, rewrite D[ri ] under a new random IV.

Communication complexity Let M = O(N ). Without considering the position
map, their access protocol for write has fantastic communication complexity ofO(k(logN+
B)), where B is the size of a data block. In particular, with k = 3 and assuming
B = Ω(logN ), the communication complexity is O(B). However, the size of the po-
sition map is Ω(N · logN ), which is usually too large for the client to store in mem-
ory. �is issue can be addressed by recursively storing the map in smaller and smaller
ORAMs. Taking these recursion steps into account, the eventual communication com-
plexity becomes O(B log2 N ).
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3 Deterministic WoRAM Design
In this section, we describe the algorithm for DetWoORAM construction. We begin
by �rst describing a “toy construction” that has some of the key properties as the �nal
algorithm, such as not employing a stash while using a deterministic write pa�ern.
From this toy construction, we make a series of improvements that lead to our actual
DetWoORAM construction with sequential write pa�ern and 2B communication cost
per write.

3.1 A Toy Deterministic WoRAM Construction
�e toy deterministic WoRAM construction is inspired by the square-root ORAM solu-
tion of Goldreich and Ostrovsky [GO96], adapted to the write-only oblivious se�ing.
For now, we set aside the issue of the position map, which one could consider being
stored by the user locally and separately from the primary procedure. Later, we will
describe a method for storing the position map within an adjacent, smaller WoRAM.

Toy Construction. Physical storage consists of an array D of 2N data blocks of B
bits each. D is divided into two areas, a main area and a holding area (see Figure 1),
where each area contains N blocks.

main area holding area

N blocks N blocks

Figure 1: Physical data array D for the toy construction.

Each block of the storage area has an address a, and a user interacts with the
system by writing data to an address within the main area, that is a ∈ [0,N ), and
reading data back by referring to the address. In the main area, a block is always
stored at its address, but in the holding area, blocks are appended as they are wri�en,
irrespective of their address.

In order to track where to write the next block in the holding area, we keep a
counter i of the number of write operations performed so far. Additionally, as the
holding area is not ordered, there needs to be a position map that associates addresses
a ∈ [0,N ) to the location in [0, 2N ) of the freshest data associated with that address,
either at the address within the main area or a more recent write to the holding area.
�e position map construction will be described later as a write-only oblivious data
structure stored with in an adjacent, smaller WoORAM. For now, we abstract posi-
tion map as a straightforward key-value store with operations getpos(a) → a′ and
setpos(a,a′)

With parameter N , counter i , and the WoORAM storage array D, where |D | = 2N ,
we can now de�ne the primary operations of the toy WoORAM as in Algorithm 1.

Properties of toy construction. Already, our toy construction has some of the
important of the properties of our �nal construction. As explained below, it provides
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Algorithm 1 Operations in Toy Deterministic WoRAM
//Perform the i-th write, storing data d at address a
function writei (a,d)

D[N + (i mod N )] := enc(d) //Write to holding area

setpos(a,N + (i mod N )) //Update position map

i := i + 1 //increment counter

//Refresh the main area

if i mod N = 0 then
for a ∈ [0,N ) do

D[a] := enc(dec(D[getpos(a)]))
setpos(a,a) //Update the position map

end for
end if

end function

//Read and return data at address a
function read(a)

return dec(D[getpos(a)]) //Return freshest version of the data

end function

write obliviousness, it is deterministic, and it does not require a stash.
To see why the toy construction is write-oblivious, �rst consider that each write

occurs sequentially in the holding area and has no correspondence to the actual ad-
dress of the data. Writing to the holding area does not reveal the address of the data.
Second, once the holding area has been �lled completely with the freshest data, a�er
N operations, all the main area blocks are refreshed with data from the holding area,
or re-encrypted if no fresher data is found in the holding area. Since all the main
area blocks are wri�en during a refresh, it is impossible to determine which of the
addresses occurred in the holding area. In both cases, for a write to the holding area
and during a refresh, the block writes are oblivious.

�e toy construction also has a deterministic write pa�ern: the i-th write always
touches the holding area block at index N + (i mod N ). As compared to previous
ORAM and WoORAM schemes, in which writing (or access) requires randomly se-
lecting a set (or path) of blocks to overwrite with the expectation that at least one of
the blocks has the requisite space to store the wri�en data, our construction does not
require any random selection and operates in a completely deterministic manner.

Further, as each write is guaranteed to succeed—we always write sequentially to
the holding area—there is no need for a stash. To the best of our knowledge, all other
WoORAM schemes require a stash to handle failed write a�empts. In some sense,
one can think of the stash in these systems as providing state information about the
current incomplete writes, and to have a stateless system the full size of stash would
need to be transferred on every step (even if there is nothing in it). By contrast, our
construction has constant state cost, which consists simply of the counter i and the
encryption key.
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3.2 De-amortizing the toy construction
We can advance upon the toy constructing above by further generalizing the storage
procedure via de-amortization of the refresh procedure as well as allowing the main
and holding area to be of di�erent sizes. �e key idea of de-amortization is that in-
stead of refreshing the main area once the holding area has been fully wri�en, we can
perform a few writes to the main area for each write to the holding area, so that it is
fully refreshed at the same rate.

In this generalized se�ing, physical storage consists of a main area of size N as
before, and a holding area of size M , where M is arbitrary, so that |D | = N +M .

main area holding area

N blocks M blocks

Figure 2: Back end data array D with unequal main and holding areas.

�e key to the de-amortized write procedure is that there needs to be a commen-
surate number of refreshes to the main area for each write to the holding area. A�er
any consecutive M writes to the holding area, the entire main area (of size N ) needs
to be refreshed, just like what would happen in the amortized toy construction.

When N = M , this is simply accomplished by performing one refresh for each
write. When the sizes are unequal, we need to perform on average N /M refreshes
per write to achieve the same goal. For example, consider the case where N = 2M ,
where the main area is twice as large as the holding area, then N /M = 2, and thus we
perform two refreshes for every write. A�er M writes to the holding area, the entire
main area will have been refreshed.

It is also possible to have ratios where M > N , such as M = 2N where the main
area is half the size of the holding area, and in fact, this se�ing and M = N · dlog(N )e
are both critical se�ings for performance. When M > N this implies that we need
to do less than one refresh per write, on average. Speci�cally for N /M = 1/2, we
perform a refresh on every other write to the holding area.

Algorithm 2 has the properties of performing on average N /M refreshes per write,
while the read operation is the same as before.

It is straightforward to see that the unequal size, de-amortized solution has the
same key properties as the toy construction: it is write-oblivious, deterministic, and
does not require a stash. It is clearly deterministic because just as before, writes and
refreshes occur sequentially in the holding area and main area, respectively, and this
also assures write-obliviousness for the same reasons discussed before. It still does not
require a stash because every write will succeed, as the refresh pa�ern guarantees that
the next write to the holding area will always overwrite a block that has already had
the chance to be refreshed to the main area.

3.3 Incorporating the Position Map
In this section, we consider methods for implementing a position map for DetWo-
ORAM, and crucially, modifying the procedure so that only a single position map up-

Page 10 of 33



Preprint dated June 9, 2017

Algorithm2De-amortized write operation with unequal size main and holding areas.
//Perform the i-th write, storing data d at address a
function write(a,d)

D[N + (i mod M)] := enc(d) //Write to holding area

setpos(a,N + (i mod M)) //Update position map

//Refresh N /M main area blocks per-write

s := bi · N /Mc mod N
e := b(i + 1) · N /Mc mod N
for a′ ∈ [s, e) do

D[a′] := enc(dec(D[getpos(a′)]))
setpos(a′,a)

end for
i := i + 1 //increment counter

end function

date per write is needed.
We �rst describe how to modify our algorithm so that we can store the position

map recursively within successively smaller DetWoORAMs, and then show how to
further improve by using a Trie-based write-only oblivious data structure (WoODS)
stored within an adjacent DetWoORAM to the main, data-storing one.

Recursively stored position map. One possibility for storing the position map is
to pack as many positions as possible into a single block, and then store an adjacent,
smaller WoORAM containing these position map blocks only. �en that WoORAM’s
position map is stored in a smaller one, and so on, until the size is a constant and can
be stored in memory or refreshed on each write. If at least two positions can be packed
into each block, the number of levels in such a recursive position map is O(logB N ).

If we consider each of the recursive WoRAM’s using the same write procedure
as described in Algorithm 2, a problem quickly emerges. A write requires multiple
updates to the position map due to the de-amortized procedure: one update to store
the location within the holding area of the newly wri�en data, and some number of
updates to store the refreshed main areas. In a recursive se�ing, as these position
map updates must occur for every recursive level of the position map, we can get
exponential blow up. One write to the main WoRAM requires O((1 +M/N )R ) writes
at the smallest WoRAM, where R ∈ O(logB N ) is the number of recursive levels.

In HiVE-WoORAM, this issue is solved using additional state information of “meta-
data blocks”, each containing the actual index of the block as well as the IV used to
encrypt that block. �ese metadata blocks are stored alongside the primary physi-
cal blocks for the WoORAM. Crucially, by storing the actual index associated with
each block in memory, it is no longer necessary to update the position map multiple
times for each write. While something similar would work for our system, we solve
this problem more e�ciently, avoiding the need for extra storage of metadata blocks
entirely.
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Algorithm 3DetWoORAM Operations with a Pointer Based Position Map: main area
size N , holding area size M , data array D, and counter i
//Read and return data for address a
function read(a)
(as ,o,q) := getpos(a)
Bm = dec(D[a])
if Bm [o] = q then return Bm
else return dec(D[as ])
end if

end function

//Perform the i-th write of data d to address a
function write(a,d)

as := N + (i mod M) //Holding address
D[as ] := enc(d) //Write to holding area

(o,q) := diff(d,dec(D[a])) //O�set o and bit di� q
setpos(a, (as ,o,q)) //Update Position Map

//Refresh N /M main area blocks per-write

s := bi · N /Mc mod N
e := b(i + 1) · N /Mc mod N
for am ∈ [s, e) do
(as ,o,q) := getpos(am )
D[am ] := enc(dec(D[as ]))
//No position map update needed

end for
i := i + 1 //increment counter

end function

Positionmap pointers and one-bit di� technique. To improve the position map
and remove exponential blow-up in updating the position map, we recognize that we
have a distinct advantage in DetWoORAM construction as compared to prior schemes
in that for main area blocks, data is always located at its address. �e holding area is
the only portion of the WoRAM that needs a position map. �e position map does not

need to be updated for a refresh if we could determine the freshest block during a read.

To see this, consider a position map that simply stores a holding-area address.
When we perform a read of address a, we need to look in two locations, both in the
holding area at where the position map says a is and in the main area at a. Given
these two blocks, which is freshest data associated with a?

We can perform a freshness check between two blocks using the one-bit di� tech-
nique. Speci�cally, the position map gives a mapping of logical address a ∈ [0,N ) to
a tuple (as ,o,q), where as ∈ [0,M) is an address to the holding area, o ∈ [0,B) is a bit
o�set within a block, and q ∈ {0, 1} is the bit value of the freshest block at the o�set
o. We de�ne the tuple (as ,o,q) as a position map pointer.

Whenever a write occurs for logical address a to holding area as , the o�set o is
chosen so as to invalidate the old data at address a in the main area. Speci�cally, we
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ensure that the oth bit of the new, fresh data dec(D[as ]) is di�erent from the oth bit
of the old, stale data dec(D[a]). (If there is no di�erence between these, then the old
data is not really stale and the o�set o can take any valid index, say 0.)

Given the pointer (as ,o,q), a freshness check between two blocks dec(D[a]) and
dec(D[as ]) is performed as follows:

Check if theoth bit of dec(D[a]) isq. If so, dec(D[a]) is fresh; otherwise dec(D[as ])
is fresh.

�e key observation is that when a block is refreshed to the main area, there is no need

to update the position map with a new pointer, since the read operation always starts
by checking if the block in the main area is fresh. If the main area block is fresh,
then there is no need to even look up the holding area position (which may have been
rewri�en with some newer block for a di�erent logical address). See Algorithm 3 for
details of how this is accomplished.

Trie WoODS for Position Map A more e�cient solution for storing the position
map, as compared to the recursively stored position map, is to use an oblivious data
structure (ODS) in the form of a Trie. Recall that Trie edges are labeled, and looking
up a node with a keyword w1w2 · · ·w` is performed by starting with a root node and
following the edge labeled with w1, and then with w2, and all the way through the
edge labeled with w` one by one, �nally reaching the target node.

As with previous tree-based ODS schemes [WNL+14, RAC16], our ODS scheme
avoids recursive position map lookups by employing a pointer-based technique. �at
is, the pointer to a child node in a Trie node directly points to a physical location in-
stead of a logical location, and therefore it is no longer necessary to translate a logical
address to a physical address within the Trie itself.

Applying an ODS in a write-only se�ing (a WoODS or write-only oblivious data
structure) is similar to an idea proposed by Chakraborti et. al [CCS17]. A major
di�erence in our construction is that we do not store the data structure within the
primary WoORAM. We also allow changing the branching factor of the Trie indepen-
dently of the block size, so we can tune the secondary WoORAM and �exibly control
the number of physical block writes for every logical write, including position map
information stored within the Trie.

As the WoODS Trie is stored in an adjacent DetWoORAM construction, we di�er-
entiate between the two WoORAMs by referring to the dataWoORAM as the WoORAM
storing data blocks and the position WoORAM as the WoORAM storing the nodes of
the Trie. �e Trie itself acts as the position map, and will map addresses in the data
WoRAM’s main area to position map pointers referencing the data WoRAM’s holding
area. �e main idea is that given an address a, one can walk the Trie to �nd a leaf node
storing a’s position map pointer. �e position WoRAM will be strictly smaller than
the data WoRAM, but will be implemented using the same DetWoORAM framework
(i.e., using the notions of main area, the holding area, and the counter).

Details of the procedure for the position WoORAM is outlined in Algorithm 4. Ob-
serve that the functions for the position WoORAM call the READ and WRITE func-
tions from Algorithm 3, but with modi�ed versions of the subroutines for accessing
and updating the position map, as the Trie is its own position map.
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Algorithm 4 Trie WoODS with Np nodes and branching factor b. read and write
calls are the routines in Algorithm 3 (with modi�ed subroutines as speci�ed) applied
to position WoORAM instantiated with Np main blocks and Mp holding blocks.
//a ∈ [0,Np + N ) is a position WoORAM or data WoORAM address

function path-indices(a)
if a = 0 then return [] //Base case: empty path to root node

else return [path-indices(b(a − 1)/bc), (a − 1) mod b]
end if

end function

//Retrieve Trie nodes along a path
function path-nodes(a0,a1, . . . ,a`−1)

B0 := root node //Root node is kept in local state

a := 0
for i = 0, . . . , ` − 1 do

ptr := Bi [ai ] //�e pointer to the ai th child, i.e., ptr = (ap ,o,q)
a := (ai + 1) + b · a
Bi+1 := read(a) in Alg. 3 with its subroutine changed as:
B getpos(a) returns ptr

end for
return (B0, . . . ,B`)

end function

//a is an address; src is either DATA or TRIE
function getpos-trie(a, src)

if src = DATA then a0,a1, . . . ,a` := path-indices(Np + a)
else a0,a1, . . . ,a` := path-indices(a)
end if
(B0, . . . ,B`) := path-nodes(a0,a1, · · ·a`−1)
return B`[a`]

end function

//a is a data WoORAM index; ptr is a pointer
function setpos(a,ptr )

a0,a1, . . . ,a` := path-indices(Np + a)
(B0, . . . ,B`) := path-nodes(a0,a1 · · ·a`−1)
B`[a`] := ptr //Change the leaf �rst
for j = `, . . . , 1 do //from leaf to root

Call write(aj−1,Bj ) in Alg. 3 with its subroutines changed as:
B setpos(aj−1,ptr ′) assigns ptr ′ to Bj−1[aj−1]
B getpos(a) returns getpos-trie(a, TRIE)

end for
if ` , dlogb (Np )e then write a dummy Trie node end if
Root node := B0

end function
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Figure 3: DetWoORAM Diagram with Trie Position Map

As noted, the Trie is stored in an adjacent WoORAM that has a main area and a
holding area. �e key di�erence is that the Trie nodes are addressed with the position
WoORAM’s main area using heap indexing. For example, with a branching factor of
b = 4, the root node of the Trie has address 0, its children are at address 1, 2, 3, and
4, and their children are at addresses (5, 6, 7, 8), (9, 10, 11, 12), and so on. By using
heap indexing, the structure of the Trie reveals the position of its nodes, becoming
its own position map. In particular, this indexing avoids the need to store edge la-
bels explicitly; they can instead be stored implicitly according to the heap indexing
formulas.

It is still possible for a node of the Trie to have been recently updated and thus the
freshest node information to be resident in the holding area of the position WoORAM.
As such, each internal node of the Trie stores b position map pointers to the position
WoORAM’s holding area, one for each of its child nodes. A leaf node in the Trie then
stores b position map pointers to the data WoORAM’s holding area. �e root node
of the Trie can be stored as part of the local state, since it is constantly rewri�en and
read on every operation. A visual of the Trie is provided in Figure 3.

Reading from the Trie to retrieve a position map pointer for the data WoORAM
is a straightforward process. One only needs to traverse from the root node to a leaf,
following a path dictated by the address a called via getpos-trie(a, DATA). On each
step down the tree, the current Trie node stores the position map pointer of the child
node; the corresponding sequence of nodes are retrieved via the path-nodes helper
function. �e position map pointers for the data WoORAM can be found at the correct
index in the leaf node along the fetched path.

Updating a pointer in the Trie (by calling setpos(a,ptr )) is a bit more involved.
An update of the position map for the data WoORAM requires updating a leaf node in
the Trie within the position WoORAM. Writing that leaf node will change its pointer,
which requires updating the parent node, whose pointer will then also change, and
so on up to the root of the Trie. �at is, each write to the main WoORAM requires

rewriting an entire path of Trie nodes within the position WoORAM.
Recall that in DetWoORAM, each write operation not only writes one block to the

Page 15 of 33



Preprint dated June 9, 2017

holding area, but also performs some refreshes in the main area. �e challenge is, for
each refresh, determining where in the holding area fresher data might be. For the
data WoORAM, this is achieved simply by performing a lookup in the position map.
But for the position WoORAM, there is no position map! Instead, we use the Trie
itself to look up the pointer for fresher data in a position WoORAM refresh operation,
by calling getpos-trie(a, TRIE). �is is possible again because of the heap indexing;
from the index of the Trie node that is being refreshed, we can determine all the
indices of the nodes along the path to that one, and then perform lookups for the
nodes in that path to �nd the position WoORAM holding area location of the node
being refreshed.

Trie WoODS parameters and analysis We start by calculating Np , which is the
number of Trie nodes as well as the size of the position WoORAM main area. �is
needs to be large enough so that there is room for N pointers in the leaf nodes, where
N is the number of logical addresses in the data WOORAM. With branching factor b,
the number of Trie nodes is given by

Np =

⌊
N − 2
b − 1

⌋
∈ O(N /b). (1)

�e height of the Trie is then

h =
⌈
logb Np

⌉
∈ O(logb N ), (2)

which is the number of Trie nodes that need to be wri�en to the holding area of the
position WoORAM on each update (including a potential dummy node).

Each write to the data WoORAM requires rewriting h ∈ O(logb N ) nodes in the
Trie (for a single path). Each of those writes to the holding area of the position
WoORAM needs, on average, Np/Mp number of refreshes to the main area, where
Np is the size of the position WoORAM’s main area and Mp is the size of the position
WoORAM’s holding area.

Looking up a position in the Trie requires readingO(logb N ) blocks in the position
WoORAM, each of which results in up to two physical reads due to having to check
for fresher data. A refresh operation in the position WoORAM also requires a read
of the Trie to determine if fresher data for that node exists in the holding area. If
the sizes of the main area Np and holding area Mp for the position WoORAM are not
set appropriately, this could lead to O(log2 N ) reads to perform an update. However,
consider that we can control the ratio Np/Mp . If we setMp � Np logb N then we need
to perform only O(1) refreshes per position map update, thus requiring O(logNp )
reads per update.

If N is a power of b, then the number of leaf nodes in the Trie N /b is also a power
of b, and the Trie is a complete b-ary tree of height logb (N /b). If N is not a power
of b, then the last level of the Trie is incomplete, and leaf node heights may di�er by
one. In order to preserve write obliviousness, in cases of rewriting a path with smaller
height, we add one additional dummy node write.

Finally, observe that the branching factor b can play a role in the performance.
With b = 2, the size of a Trie path is minimized, but the height and number of nodes

Page 16 of 33



Preprint dated June 9, 2017

Np are maximal. Increasingb will reduce the height of the Trie and the number of Trie
nodes, while increasing the total size of a single path. As we will show next, adjusting
the packing of position map by se�ing the branching factor b can be done carefully to
achieve write communication cost of exactly 2B in a fully sequential write pa�ern.

3.4 Fully Sequential Physical Write Pattern
In this section, we describe how to achieve fully sequential writing of physical storage
and how to minimize the communication cost. �is requires interleaving the various
storage elements of DetWoORAM such that all the writing, regardless of which part
of the construction is being wri�en, occurs sequentially.

To understand the challenge at hand, �rst consider a simple implementation which
aligns the data WoORAM (main and holding areas) adjacent to the storage WoORAM
(main and holding area) forming a single storage data array broken into size-B blocks.
A write to the data WoORAM will result in a write to the holding area plus M/N av-
erage writes to the main area. �e position map is also updated, requiring O(logb N )
nodes in the Trie to be wri�en to the holding area and O(1) refreshes of the position
WoORAM’s main area, provided Mp ∈ Ω(Np logb N ). While all these writes occur se-
quentially within their respective data/position WoORAM main/holding areas, do not

occur sequentially on the underlying storage device as each of the various WoORAM
areas are separated. Furthermore, the writes to the position map are wasteful in that
they may update only a few nodes, constituting just a small fraction of the block, but
in the uniform access model this in fact requires updating the entire block.

We can improve on this storage layout and achieve a minimum in write perfor-
mance requiring exactly 2 blocks to be wri�en to physical storage for each block
write, where one block is the new data, a half block worth of main area refresh, and
a half block worth of position map updates. Further, we can interleave the various
WoORAM portions such that those 2 blocks are wri�en sequentially on the physical
device.

DataWoORAMBlock Interleaving Every logical block write to the data WoORAM
results in exactly one block write to the holding area of data WoORAM. Recall that
there are two parameters for se�ing up DetWoORAM: N , the size of the main area,
and M , the size of the holding area. �ese two values need not be the same, and in
fact, to achieve sequential writing, we will setM = 2N . In this case, on average M

N =
1
2

block is refreshed to the main area for each logical write.
With adjacent main and holding areas, this could be achieved by performing one

full block refresh on every other logical write. To make the writing sequential, we
will instead refresh half of a block on every logical write, resulting in the following
storage layout:

h0,
m0

0
�
,h1,

m1
0
�
,h2,

m0
1
�
,h3,

m1
1
�
, . . . ,hM−2,

m0
N−1
�
,hM−1,

m1
N−1
�

where m0
j is the �rst half of the block mj , m1

j is the back half of mj , and � represents
empty space. (�is empty space will be used to store nodes for the position WoORAM,
as we will show next.)
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Figure 4: Interleaving of WoORAMs into a Storage Array with 2B size sequential
writes.

�ere is a slight complication to reading now, as a single main area block is actually
divided between two physical memory locations, resulting in an additional (constant)
overhead for reading operations. �e bene�t is that the writing is fully sequential
now: each logical write requires writing sequentially the data being updated (to the
holding area), and the next half block of data being refreshed (to the main area),
plus another half-block containing position map information as we will detail next.
Also observe that, under this con�guration with M = 2N , the total physical memory
requirement will be 4N blocks.

Position WoORAM Block Interleaving As suggested above, the remaining half-
block of data � in the above construction will be used to store position map informa-
tion. A diagram storage achieving 2 sequential physical block writes per logical write
is shown in Figure 4.

Speci�cally, these B
2 bits will store the Trie nodes wri�en to position WoORAM

holding and main areas during a single logical write operation. �is is (potentially)
possible because the Trie nodes in the position WoORAM are much smaller than the
blocks in the data WoORAM. Fully sequential writing will be achieved if and only if
all of the Trie nodes wri�en during a single step can always �t into B/2 bits.

�ere are many se�ings of parameters M , b, and Mp that may make sequential
writing possible, depending on logical and physical memory requirements and the
physical block size B. We will choose some parameters here and demonstrate that
they would work for any conceivable value of N .

For this purpose, set the branching factor b = 2, and then recall from (1) and
(2) that the number of Trie nodes and the Trie height will be Np = N − 2 and h =
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dlg(N − 2)e, respectively.
Next, set the number of nodes in the position WoORAM holding area to be

Mp = Np · h. (3)

�is ensures that only (at most) one Trie node needs to be refreshed to the position
WoORAM main area when writing an entire path of h Trie nodes during a single
logical write operation. (�e number of Trie nodes wri�en to the holding area for
each operation is always h.) Based on these formulae, we need to have enough space
in the B/2 bits of a half block to �t h + 1 Trie nodes.

What remains is to estimate the size of each Trie node. Each node stores b = 2
DetWoORAM pointers, each of which contains dlgMe bits for the holding area posi-
tion, dlgBe bits for the block o�set, and 1 bit for the bit di� value. �e condition that
h + 1 Trie nodes �t into B/2 bits then becomes

(h + 1) · (dlgMe + dlgBe + 1) ≤ B

2 (4)

Combining this inequality with all of the previous se�ings for b, M , and Mp , and
assuming a block size of 4096 bytes (so B = 4096 · 8 = 215) as is the default in modern
Linux kernels, we have

(dlg (N − 2)e + 1) · (dlgN e + 17) ≤ 214.

�at inequality is satis�ed for values of N up to 6.6 × 1035, which is much more than
any conceivable storage size. Further tuning of theb andM parameters could be dome
to achieve an even tighter packing and/or be�er read performance while maintaining
2 physical block writes per logical write.

3.5 Encryption Modes
�e deterministic and sequential access pa�ern �ts nicely with encryption of each
block using counter mode. In particular, We encrypt each DetWoORAM block us-
ing AES encryption based on the number i‖064 as a counter. Recall that the client
maintains the global counter i (64-bit long). Assuming the block size B is reasonable
(shorter than 264 · 16 bytes), there will be no collision of IVs, and the security of en-
cryption is guaranteed. We stress that we do not need space for storing IVs due to this
optimization which cannot be applied to previous schemes. For example, the random-
ized procedures in schemes like HiVE-WoORAM, IVs must be stored separately on the
server, adding to the communication cost overhead.

However, the physical blocks that store the position map Trie are encrypted with
AES in CBC mode. When we pack multiple Trie nodes together, such as during in-
terleaving or packing as described previously, we can encrypt a group of Trie nodes
together in one shot using a single IV. Since Trie nodes are much smaller than B, we
can place that IV for that group of nodes at the beginning of the block itself, thus
avoiding an extra memory access on read or write.

We note that a�er packing the Trie nodes into blocks, the number of blocks in the
main DetWoORAM is signi�cantly larger than that in the Position-DetWoORAM, so
that most of the data is encrypted using counter mode.
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4 Analysis of DetWoORAM
We formally state the security (obliviousness), and communication complexity of
DetWoORAM. Fortunately, the simplicity of the construction makes the proofs rel-
atively straightforward in all cases.

Security proof First we state the security in terms of the de�nitions in Section 2.1.

�eorem 4.1. DetWoORAM provides write-only obliviousness.

Let ®x and ®y denote two sequences of operations in DetWoORAM that contain the
same number of write operations.

�e sequence of locations of physical writes is deterministic and does not in any
way depend on the actual locations being wri�en, and the contents of physical writes
are encrypted using an IND-CPA symmetric cipher. �erefore ii it holds that

WOnly(PhysicalAccΠ(®x)) ≈c WOnly(PhysicalAccΠ(®y)),

because the locations in these two access pa�erns are identical, and the contents in
the access pa�erns are indistinguishable from random.

Communication complexity For the complexity analysis, assume that:
• the size ratio M/N is a constant,
• the branching factor b is a constant,
• the block size B is large enough to contain a single path of trie nodes, and
• the position map holding area is at leastO(logN ) times larger than the position

map’s main area.
Asymptotically this means that B ∈ Ω(log2 N ). From a practical standpoint, even

in the extreme case of storing a yo�abyte of data (280 bytes), with holding area size
M = N , branching factor b = 2, and 4KB blocks (i.e., B = 4096), an entire path of trie
nodes is still well below the block size at 1496 bytes.

�eorem 4.2. Under the assumptions above, the number of physical block writes per

logical block write in DetWoORAM is O(1). Furthermore, the number of physical block

reads per logical read or write operation is O(logN ).

Let h ∈ O(logb N ) for the height of the trie that stores the position map. A single
read to DetWoORAM requires at most two block reads and one position map lookup,
which requires fetching all h nodes in the Trie path to that position. Fetching a Trie
node in the position WoORAM requires accessing the parent node as well, requiring
at most 2h nodes need to be fetched. In the worst case every node might be packed
in a di�erent block, so this is O(1 + h) physical block reads per logical read, which is
O(logb N ).

A single write to DetWoORAM requires at most 1+ dM/N e block writes to holding
and main areas and one update to the position map Trie. Each main area refresh re-
quires an additional block read and position map lookup. Because M/N is a constant,
this is O(1) block writes, O(logb N ) reads, and one trie update.
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Updating a single node in the Trie involves �rst fetching the path to that node in
O(logb N ) physical reads, then writing each node on that path, updating the pointers
in the parent nodes from leaf back up to root. �is requires h writes to the position
map WoORAM, which from the assumptions will require h writes to the holding area
plusO(1) refreshes in position map WoORAM’s main area. �eseO(1) refreshes each
require looking up O(logb N ) nodes in the position map WoORAM, for an additional
reading cost of up to O(logN ) physical blocks.

All together we get O(logb N ) physical reads per logical write, and O(1) physical
writes per logical write.

5 Implementation
We have implemented our DetWoORAM system, using the Trie-based position map,
in an open source C++ library available at https://github.com/detworam/detworam.
As we will show in this section, comparison benchmarks validate our theoretical re-
sults on the e�ciency of DetWoORAM, showing it to be many times faster than the
previous scheme of HiVE-WoORAM, and only a few times slower than a non-oblivious
baseline.

Our library �e library relies on BUSE (https://github.com/acozzette/BUSE)
in order to write a block device driver in userspace, and uses the mbed TLS library
(https://tls.mbed.org/) for encryption utilities. We also made extensive use of
C++ templates in our implementation, which allows for considerable �exibility in
choosing the parameters for the DetWoORAM and automatically tuning the perfor-
mance at compile-time. For example, based on the size and number of backend stor-
age blocks, the exact byte sizes needed to store pointers, relative proportion of data
WoORAM to position map WoORAM, trie height, and relative main/holding area sizes
will all be seamlessly chosen at compile time.

�e implementation is exactly as described in the previous section, with a default
Trie branching factor of b = 64 unless otherwise noted. �e only exception is that
we did not implement the full interleaving, but rather the packing solution within the
position map WoORAM to pack trie nodes into single blocks. Two blocks at a time
(from the position map holding and position map main areas) are held in memory
while they are being �lled sequentially, and then are wri�en back to disk once �lled. In
total, the result is that rather than having a fully sequential access pa�ern as we would
with full interleaving, we see 4 sequential write pa�erns in sub-regions of memory.

Comparisons We carefully re-implemented the HiVE-WoORAM (only the WoORAM
part, not the hidden volume part), using the same BUSE/mbedTLS library setup. As in
their original paper and implementation, our HiVE-WoORAM implementation uses
k = 3 random physical writes per logical write, and makes use of a recursive position
map. �e original implementation was as a kernel module for a device mapper, but
unfortunately due to Linux kernel changes this module is incompatible with recent
Linux kernels. In fact, this incompatibility was part of our motivation to use only
standards-compliant userspace C++ code for our DetWoORAM implementation.
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Sequential write Sequential read
MB/sec overhead MB/sec overhead

dm-crypt baseline
SSD 505.4 — 615.8 —

HDD 111.6 — 126.1 —
HiVE-WoORAM

SSD 2.6 192x 40.5 15.2x
DetWoORAM

SSD, M = 3N , b = 64 49.7 10.2x 260.0 2.37x
SSD, M = N , b = 64 34.0 14.8x 244.1 2.52x

HDD, M = 3N , b = 64 29.0 3.84x 26.1 4.83x
HDD, M = N , b = 64 25.0 4.46x 24.1 5.24x

Logical disk size 40GB and block size 4KB in all cases.
Overhead is relative to the dm-crypt baseline for that drive type.

Highlighted values indicate the best WoORAM per column.

Table 2: bonnie++ benchmarking of sequential accesses

Solid state SSD Spinning pla�ers HDD
MB/sec overhead MB/sec overhead

dm-crypt baseline 154 — 16.4 —
HiVE-WoORAM 8.49 18x 0.051 325x

DetWoORAM 34.4 4.5x 10.2 1.6x
Logical disk size 40GB and block size 4KB in all cases.

Overhead is relative to the dm-crypt baseline for that drive type.
DetWoORAM used M/N = 3 and b = 64 for all cases.

Highlighted values indicate the best WoORAM per column.

Table 3: �o benchmarking of random reads and writes

For a baseline comparison, we wanted to use the best existing solution with the
same general setup as ours. Our baseline uses the linux kernel module dm-crypt,
which provides an encrypted block device with no obliviousness, connected to simple
“passthrough” device that comes with the BUSE distribution. �ere is no obliviousness
in this option; it simply encrypts/decrypts and stores the resulting ciphertext in the
same location on disk. �is provides a fair baseline to our work, and should help
to eliminate any bo�lenecks or artifacts of the BUSE layer in order to have a clear
comparison with our new DetWoORAM protocol.

Measurement using bonnie++ Table 2 shows the results of running the popu-
lar bonnie++ disk benchmarking tool our the plain encryption as well as di�erent
WoORAM se�ings. All tests were performed with a 40GB logical �lesystem within a
200GB partition, using the btrfs �lesystem.

We tested using 200GB partitions on a 1TB HDD (HGST Travelstar 7200RPM) and
on a 256GB SSD (Samsung 850 Pro). We note that both drives are standard commodity
disks available for around $100 USD. As expected, the SSD drive is considerably faster
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for both reading and writing.
Recall that one novel feature of DetWoORAM is that it can �exibly adapt to di�er-

ent storage ratios between logical and physical storage. We tested both with M = N ,
similar to the HiVE-WoORAM, and with more physical space of M = 3N , and ob-
served a slight (but statistically meaningful) performance improvement from having
more physical disk space (and therefore larger holding area in the DetWoORAM). We
also tested with di�erent branching factors ranging from b = 2 to b = 512, but did
not notice any signi�cant timing di�erences overall, indicating that the position map
plays a smaller role in the overall performance.

Overall we can see that the DetWoORAM su�ers only a 3x-10x slowdown com-
pared to the baseline, whereas the HiVE-WoORAM is almost 200x slower in the case
of writing and 15x slower for reading compared to the same baseline. �e results
for HiVE-WoORAM are consistent with the results reported in their original paper
[BMNO14].

In fact, our DetWoORAM running on an SSD is in most cases faster than the base-
line running on a spinning disk HDD, providing good evidence that our system is fast
enough for practical use. We believe this is largely explained by the sequential write

pa�ern of DetWoORAM, which also makes read operations partially sequential. For
large sequential workloads, the data locality appears to have a very signi�cant e�ect
on performance.

Measurement using�o As has been noted in previous WoORAM works [BMNO14],
performing sequential logical operations can put WoORAMs in an especially bad light,
as the baseline non-oblivious storage will translate the sequential read/write opera-
tions to physically sequential addresses, thereby gaining signi�cantly over WoORAMs
that need to obscure the logical address of each operation.

Interestingly, our DetWoORAM is a somewhat “in-between” case here, as the write
pa�ern is completely sequential, and the read pa�ern is partially sequential: the main
area of storage corresponds exactly to physical addresses, but the holding area and
position map do not. We used a second disk performance measurement tool fio
(https://github.com/axboe/fio) in order to perform random reads and writes, as
opposed to the sequential read/write pa�ern of the bonnie++ benchmarks. �e results
are shown in Table 3, which shows the throughput for random reads and writes of
4KB-4MB sized blocks in direct access to the device without any �lesystem mounted.

As expected, the performance degradation for HDD compared to SSD in all cases
was signi�cant for the random reads and writes. As with the bonnie++ benchmarks,
but more dramatically here, our DetWoORAM running on an SSD outperformed the
baseline running on the HDD. Even more surprisingly, on the HDD our DetWoORAM
was only 1.6x slower than the baseline. �is can be explained in part by the fact that
our scheme actually turns randomwrites into sequential writes, so although it performs
more writes than the baseline, they will be more compact in this experiment.
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6 Insecurity of DataLair and FlatORAM
Two recent papers [CCS17, HvD16] have also proposed to improve the performance
of HiVE-WoORAM. While these papers contain some new and promising ideas, and
in particular [CCS17] proposed the use of a B-tree ODS similar to our Trie ODS for the
position map, unfortunately they both violate the notion of write-only obliviousness.

Intuitively, both of these schemes identify that a bo�leneck in HiVE-WoORAM
is in identifying free blocks from the random blocks chosen, and propose to modify
the random block choosing scheme in order to �nd free blocks more e�ciently with
fewer dummy writes. Unfortunately, this improvement in both cases leaks a small
amount of information about which blocks are free or not, and thereby allows an ad-
versary to distinguish between whether recent writes have been to the same address,
or to di�erent addresses. We formalize this notion and prove the insecurity of these
schemes below.

6.1 Insecurity of DataLair
Let N be the number of logical blocks. DetaLair sets 2N to the number of physical
blocks so that the number of free physical blocks is always N . In DataLair [CCS17,
Section IV], every ORAMWrite considers two disjoint sets of k items:

• Free set S0: A set ofk blocks chosen randomly among theN free physical blocks.
• Random set S1: A set ofk blocks chosen randomly among the entire 2N physical

blocks.
To make sure that S0 and S1 are disjoint, some elements may be removed and

addional steps of sampling may be done. Based on the two sets, the ORAM writes a
data block as follows:

ORAMWrite(d): // d is a data block
1. Insert d in stash
2. Create two sets S0 and S1 as described above.
3. Choose k blocks U = {u1, . . . ,uk } as follows:

For i = 1 to k :
bi←{0, 1}, and fetch (and remove) ui from Sbi .
If bi = 0 and stash is not empty:

Take out a data item from stash and write it in ui .
Otherwise, reencrypt ui .

We assume N > 2k . �e actual scheme chooses a large N and k = 3.

Insecurity of the scheme We note that the access pa�ern of a single ORAMWrite
is hidden. However, that alone is not su�cient to show the write obliviousness. In
particular, security breaks down when one considers multiple ORAMWrite operations.

Observe that the above algorithm is more likely to choose a free block than a non-
free block; with probability 1/2, a chosen block will be from S0 and thereby always
free, and with probability 1/2, a chosen block will be from S1 and thereby sometimes
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free. �is tendency towards choosing free blocks leaks information. To clarify our
point, consider the following two sequences of logical writes:

seq0 = (write0,write0,write2), seq1 = (write0,write1,write2)
Here,writei denotes writing data to a logical address i . LetUi = (ui,1, . . . ,ui,k ) be the
set of chosen blocks from the ith ORAMWrite. Let d` be the data in logical block `.

�en, in seq0, physical blockγ ∈ U1 containingd0 will be probably freed up thanks
to the second write0, and the last write2 may be able to choose γ as a free block.
However, in seq1, the block γ cannot be freed up by write1, since γ contains d0! So,
the last write2 can choose γ only as a non-free block. Due to the di�erent probablity
weights in choosing free blocks vs. non-free blocks, U1 and U3 have a slightly higher
chance of overlapping in seq0 than in seq1, and security breaks down. To clarify our
point, we give an a�ack in Appendix A.

6.2 Insecurity of FlatORAM
FlatORAM has a similar vulnerability to DataLair. �e system has a new compo-
nent called an occupancy map, Occ. For physical address u, Occ[u] is a bit indicating
whetheru is occupied or not. As with FlatORAM, set 2N to be the number of physical
blocks. �eir ORAM write algorithm proceeds as follows:

ORAMWrite at logical address `:
1. Let old be the old physical block holding data in logical address `.
2. Forever:

(a) Choose a random physical block ID u.
(b) If Occ[u] = 0:

Occ[u] := 1, Occ[old] := 0, Write data in u.
Return.

Else:
Rewrite the same data in u (i.e., dummy write).

Consider the following two sequences of logical writes:

seq0 = (write0,write0,write2), seq1 = (write0,write1,write2)
Let U = (u1,u2,u3 . . .) be the access pa�ern resulting from ORAMWrites. Given an
access pa�ern U , the adversary tries to tell if it is from seq0 or seq1 as follows:

• If |U | = 3 and u1 = u3 output 0; otherwise output a random bit.
Let pb = Pr[|U | = 3,u1 = u3] from seqb . We show that p0 − p1 is non-negligible,

which proves that the adversary is a good distinguisher.
Consider seq0 �rst. We have Pr[|U | = 3] = (1/2)3; that is, u1,u2,u3 are all free

blocks. Note u1 becomes free a�er the second write0 in seq0. �erefore, we have

p0 = 1/8 · Pr[u1 = u3 | |U | = 3] = 1/8N
Now consider seq1. We have Pr[|U | = 3] = (1/2)3. However, u1 can never be freed

here, since subsequent operations are all write1’s. �erefore, we have

p1 = 1/8 · Pr[u1 = u3 | |U | = 3] = 0

Page 25 of 33



Preprint dated June 9, 2017

7 Related Work
Oblivious RAM (ORAM) and applications. ORAM protects the access pa�ern so
that it is infeasible to guess which operation is occurring and on which item. Since
the seminal work by Goldreich and Ostrovsky [GO96], many works have focused on
improving e�ciency and security of ORAM (for example [SvDS+13, RFK+15, MMB15,
SZA+16] just to name a few; see the references therein).

ORAM plays as an important tool to achieve secure cloud storage [SS13b, SS13a,
MBC14] and secure multi-party computation [GKK+12, LHS+14, LWN+15, WCS15,
ZWR+16] and secure processors [FRK+15, LHM+15, NFR+17]. �ere also have been
works to hide the access pa�ern of protocols accessing individual data structures,
e.g., maps, priority queues, stacks, and queues and graph algorithms on the cloud
server [Tof11, BSA13, WNL+14, RAC16]. �e work of [JMTS16] considers oblivious-
ness in the P2P content sharing system.

Write-only obliviousness Blass et al. [BMNO14] considers write-only ORAM (WoORAM),
and gave a WoORAM construction much more e�cient than the traditional ORAM
constructions. �ey applied WoORAM to deniable storage scenarios and gave a WoORAM-
based construction of hidden volume encryption (HiVE). Aviv et al. [ACMR17] gave
a construction of oblivious synchronization and backup for the cloud environment.
�ey observed that write-only obliviousness is su�cient for the scenario, since the
client stores a complete local copy of his data, and therefore read accesses are natu-
rally hidden from the adversary.

Deniable storage Anderson et al. [ANS98] proposed staganography-based approaches,
that is, hiding blocks within cover �les or random data. �ere are works based on his
suggestion [MK99, PTZ03], but they don’t allow deniability against a snapshot adver-
sary.

Another approach is hidden volumes. Unfortunately, existing solutions such as
TrueCrypt (discontinued now) [Tru17], Mobi�age [SM14] and MobiPluto [CWCZ15]
are secure only against a single-snapshot adversary. HIVE [BMNO14] provides secu-
rity even against a multiple-snapshot adversary. DEFY [PGP15] is the deniable log-
structured �le system speci�cally designed for �ash-based, solidstate drives; although
it is secure against a multiple-snapshot adversary, it doesn’t scale well.

8 Conclusion
We presented DetWoORAM, a stash-free, deterministic write-only oblivious ORAM
with sequential write pa�erns. �is scheme achieves asymptotic improvement in
write communication costs, O(B logN ), requiring exactly 2B physical writes per log-
ical write. We further showed that prior schemes to improve on HiVE-WoORAM are
insecure. Finally, we implemented and evaluated DetWoORAM, and, for sequential
writing, it incurs only a 3-4.5x overhead on HDD and 10-14x on SSD compared to
using encryption only. It is 19x faster than HiVE-WoORAM, the previous best, secure
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scheme. It is also practical; the theoretical write complexity is optimal, and DetWo-
ORAM with an SSD backend has similar (sometimes be�er) performance compared
to using encryption only on a spinning-pla�er HDD in a similar price range.
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A Insecurity of DataLair
Let N be the number of logical blocks. DetaLair sets 2N to the number of physical
blocks so that the number of free physical blocks is always N . In DataLair [CCS17,
Section IV], every ORAMWrite considers two disjoint sets of k items:

• Free set S0: A set ofk blocks chosen randomly among theN free physical blocks.
• Random set S1: A set ofk blocks chosen randomly among the entire 2N physical

blocks.
To make sure that S0 and S1 are disjoint, some elements may be removed and

addional steps of sampling may be done. Based on the two sets, the ORAM writes a
data block as follows:

ORAMWrite(d): // d is a data block
1. Insert d in stash
2. Create two sets S0 and S1 as described above.
3. Choose k blocks U = {u1, . . . ,uk } as follows:

For i = 1 to k :
bi←{0, 1}, and fetch (and remove) ui from Sbi .
If bi = 0 and stash is not empty:

Take out a data item from stash and write it in ui .
Otherwise, reencrypt ui .

We assume N > 2k and k ≥ 3. �e actual scheme chooses a large N and k = 3.
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Insecurity of the scheme We note that the access pa�ern of a single ORAMWrite
is hidden. However, that alone is not su�cient to show write obliviousness. In par-
ticular, security breaks down when one considers multiple ORAMWrite operations.

Observe that the above algorithm is more likely to choose a free block than a non-
free block; with probability 1/2, a chosen block will be from S0 and thereby always
free, and with probability 1/2, a chosen block will be from S1 and thereby sometimes
free. �is tendency towards choosing free blocks leaks information. To clarify our
point, consider the following two sequences of logical writes:

seq0 = (init ,w0,w0,w2), seq1 = (init ,w0,w1,w2)

Here,wi denotes writing data to a logical address i , and init is a sequence of operations
that makes the ORAM have exactly N free blocks.2

LetUi = (ui,1, . . . ,ui,k ) be the set of chosen blocks from the ith ORAMWrite a�er
the init sequence. Let d` be the data in logical block `.

�en, in seq0, physical blockγ ∈ U1 containingd0 will be probably freed up thanks
to the second w0, and the last w2 may be able to choose γ as a free block. However,
in seq1, the block γ cannot be freed up by w1, since γ contains d0! So, the last w2 can
choose γ only as a non-free block. Due to the di�erent probablity weights in choosing
free blocks vs. non-free blocks, U1 and U3 are more likely to overlap in seq0 than in
seq1, and security breaks down.

To clarify our point, we give an a�ack. Given an access pa�ern (U1,U2,U3), the
adversary tries to tell if it is from seq0 or seq1. Consider the following events:

• X : u1,1 < U2, Y : u1,1 ∈ U3, E: X ∧ Y

�e adversary works as follows:
Ouptut 0 if E takes place; otherwise output a random bit.

Let pb = Pr[E] from seqb . We show that p0 − p1 is non-negligible, which proves
that the adversary is a good distinguisher.

Let Fi (u) denote a predicate indicating whether a physical block u was free when
the ith ORAMWrite starts. Note that whether u1,1 belongs U3 ultimately depends on
F3(u1,1). In particular, for any u1,1, we have

qy = Pr [Y | Fb3 (u1,1)] =
1
2 ·

k

N
+

1
2 ·

k

2N − k

qn = Pr [Y | ¬Fb3 (u1,1)] =
1
2 ·

k

2N − k
2 �eir ORAM seems to be initialized with exactly N free blocks, in which case init contains no oper-

ation. If that’s not the case, we can set the init sequence as follows:

init = (w0, . . . , wN−1, w0, . . . , w0︸         ︷︷         ︸
λ times

),

where λ is the security parameter. Note that a�er the init sequence, the ORAM will have exactly N non-
free physical blocks and N free physical blocks with probability least 1− negl(λ). So, we can safely ignore
this negligible probability, and proceed our argument assuming that the ORAM has exactly N free blocks
a�er the init sequence.
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�e following table shows how F3(u1,1) depends on the previous events. In the ta-
ble, D2(u) ∈ { f ,d∗0 , . . . ,d∗N−1,d0} denotes a random variable indicating which logical
block a physical block u contains when the second ORAMWrite starts. If the value is
f , it means the block is free, and d∗

`
is the initial data for the logical block ` that the

ORAM initialization procedure used. �e value d0 denotes the data block used in the
�rst w0 operation in seq0 and seq1. Let Si (`) denote a predicate indicating whether a
logical block ` is in the stash when the ith ORAMWrite starts. In addition, FreeSeti
denotes a predicate indicating whether the ith ORAMWrite found a physical block in
the free set S0 (thereby succesfully writing the input logical block in the free physical
block).

case D2(u1,1) S2(d0)
FreeSet2
(cond. on X )

F3(u1,1)
(seq0)

F3(u1,1)
(seq1)

c1 f x x 1 1
c2 d0 0 0 0 0
c3 d0 0 1 1 0
c4 d∗≥0 x 0 0 0
c5 d∗0 1 1 1 1
c6 d∗1 x 1 0 0 or 1
c7 d∗≥2 x 1 0 0

For example, in case c3,
• D2(u1,1) = d0: When the second ORAMWrite begins, the physical block u1,1

contains the logical block d0.
• S2(d0) = 0: When the second ORAMWrite begins, the stash is empty.
• (FreeSet2 |X ) = 1: �e second ORAMWrite found at least one block in the free

set S0.
• For seq0, the second write is w0. From FreeSet2 = 1, a new d0 from w0 will be

wri�en in a free block, and u1,1 containing the old d0 is freed.
• For seq1, the second write is w1. From FreeSet2 = 1, a new d1 from w1 will be

wri�en in a free block, but u1,1 containing d0 is not a�ected.
Note that the �rst ORAMWrite in both seq0 and seq1 is the same with w0, so

D2(u1,1) and S2(d0) is identically distributed for both seq0 and seq1. Moreover, observe
that the distribution of X depends on only u1,1 because the ORAMWrite samples U2
at random. Finally, Pr[FreeSet2] is always the same, since the number of free blocks
in the second ORAMWrite is always the same with N .

Based on the table and the above observation, we have the following:

p0 − p1 ≥ Pr[c3 ∧ X ](qy − qn) − Pr[c6 ∧ X ](qy − qn)

≥ k

2N ·
(
Pr[c3 ∧ X ] − Pr[c6 ∧ X ]

)
=

k

2N · Pr[X ] ·
(
Pr[c3 ∧ X ] − Pr[c6 ∧ X ]

)
≥ k

4N ·
(
Pr[c3|X ] − Pr[c6|X ]

)
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Now, let’s �rst calculate the lowerbound on Pr[c3|X ]. If the �rst ORAMWrite
chooses at least one block from the free set and writes d0 in u1,1, it must be D2(u1,1) =
d0 and S2(d0) = 0. �erefore,

Pr[D2(u1,1) = d0, S2(d0) = 0] ≥ 1
2 ·

1
k
.

Moreover, at least probability 1
2 , the second ORAMWrite will �nd a block from the

freeset, which implies that
Pr[c3|X ] ≥ 1

4k .

To calculate the upperbound on Pr[c6|X ], observe that D2(u1,1) = d∗1 implies that
u1,1 contained d∗1 even before the �rst ORAMWrite w0. �erefore, we have

Pr[c6|X ] ≤ Pr[ u1,1 has d∗1 before the 1st ORAMWrite] = 1
2N .

�erefore, we have

p0 − p1 ≥ k

4N ·
( 1
4k −

1
2N

)
=

N − 2k
4N 2 .
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