
A Modular Analysis of the Fujisaki-Okamoto
Transformation

Dennis Hofheinz 1 Kathrin Hövelmanns 2 Eike Kiltz 2

June 23, 2017

1 Karlsruhe Institute of Technology
Dennis.Hofheinz@kit.edu

2 Ruhr Universität Bochum
{Kathrin.Hoevelmanns,Eike.Kiltz}@rub.de

Abstract
The Fujisaki-Okamoto (FO) transformation (CRYPTO 1999 and Journal of Cryptology 2013)

turns any weakly secure public-key encryption scheme into a strongly (i.e., IND-CCA) secure one in
the random oracle model. Unfortunately, the FO analysis suffers from several drawbacks, such as a
non-tight security reduction, and the need for a perfectly correct scheme. While several alternatives
to the FO transformation have been proposed, they have stronger requirements, or do not obtain all
desired properties.

In this work, we provide a fine-grained and modular toolkit of transformations for turning weakly
secure into strongly secure public-key encryption schemes. All of our transformations are robust
against schemes with correctness errors, and their combination leads to several tradeoffs among
tightness of the reduction, efficiency, and the required security level of the used encryption scheme. For
instance, one variant of the FO transformation constructs an IND-CCA secure scheme from an IND-CPA
secure one with a tight reduction and very small efficiency overhead. Another variant assumes only
an OW-CPA secure scheme, but leads to an IND-CCA secure scheme with larger ciphertexts.

We note that we also analyze our transformations in the quantum random oracle model, which
yields security guarantees in a post-quantum setting.

Keywords: public-key encryption, Fujisaki-Okamoto transformation, tight reductions, quantum
random oracle model

1 Introduction
The notion of INDistinguishability against Chosen-Ciphertext Attacks (IND-CCA) [RS92] is now widely
accepted as the standard security notion for asymmetric encryption schemes. Intuitively, IND-CCA
security requires that no efficient adversary can recognize which of two messages is encrypted in a given
ciphertext, even if the two candidate messages are chosen by the adversary himself. In contrast to
the similar but weaker notion of INDistinguishability against Chosen-Plaintext Attacks (IND-CPA), an
IND-CCA adversary is given access to a decryption oracle throughout the attack.
Generic Transformations achieving IND-CCA Security. While IND-CCA security is in many
applications the desired notion of security, it is usually much more difficult to prove than IND-CPA
security. Thus, several transformations have been suggested that turn a public-key encryption (PKE)
scheme with weaker security properties into an IND-CCA one generically. For instance, in a seminal paper,
Fujisaki and Okamoto [FO99, FO13] proposed a generic transformation (FO transformation) combining
any One-Way (OW-CPA) secure asymmetric encryption scheme with any one-time secure symmetric
encryption scheme into a Hybrid encryption scheme that is (IND-CCA) secure in the random oracle
model [BR93]. Subsequently, Okamoto and Pointcheval [OP01] and Coron et al. [CHJ+02] proposed two
more generic transformations (called REACT and GEM) that are considerably simpler but require the
underlying asymmetric scheme to be One-Way against Plaintext Checking Attacks (OW-PCA). OW-PCA
security is a non-standard security notion that provides the adversary with a plaintext checking oracle

Pco(c,m) that returns 1 iff decryption of ciphertext c yields message m. A similar transformation was
also implicitly used in the “Hashed ElGamal” encryption scheme by Abdalla et al. [ABR01].
KEMs. In his “A Designer’s Guide to KEMs” paper, Dent [Den03] provides “more modern” versions
of the FO [Den03, Table 5] and the REACT/GEM [Den03, Table 2] transformations that result in
IND-CCA secure key-encapsulation mechanisms (KEMs). Recall that any IND-CCA secure KEM can
be combined with any (one-time) chosen-ciphertext secure symmetric encryption scheme to obtain a
IND-CCA secure PKE scheme [CS03]. Due to their efficiency and versatility, in practice one often works
with such hybrid encryption schemes derived from a KEM. For that reason the primary goal of our paper
will be constructing IND-CCA secure KEMs.

We remark that all previous variants of the FO transformation require the underlying PKE scheme to
be γ-spread [FO99], which essentially means that ciphertexts (generated by the probabilistic encryption
algorithm) have sufficiently large entropy.
Security against Quantum Adversaries. Recently, the above mentioned generic transformations
have gathered renewed interest in the quest of finding an IND-CCA secure asymmetric encryption scheme
that is secure against quantum adversaries, i.e., adversaries equipped with a quantum computer. In
particular, the NIST announced a competition with the goal to standardize new asymmetric encryption
systems [NIS17] with security against quantum adversaries. Natural candidates base their IND-CPA
security on the hardness of certain problems over lattices and codes, which are generally believed to resists
quantum adversaries. Furthermore, quantum computers may execute all “offline primitives” such as
hash functions on arbitrary superpositions, which motivated the introduction of the quantum (accessible)
random oracle model [BDF+11]. Targhi and Unruh recently proved a variant of the FO transformation
secure in the quantum random oracle model [TU16]. Helping to find IND-CCA secure KEM with provable
(post-quantum) security will thus be an important goal in this paper.
Discussion. Despite their versatility, the above FO and REACT/GEM transformations have a couple of
small but important disadvantages.

• Tightness. The security reduction of the FO transformation [FO99, FO13] in the random oracle
model is not tight, i.e., it loses a factor of qG, the number of random oracle queries. A non-tight
security proof requires to adapt the system parameters accordingly, which results in considerably
less efficient schemes. The REACT/GEM transformations have a tight security reduction, but
they require the underlying encryption scheme to be OW-PCA secure. As observed by Peikert
[Pei14], due to their decision/search equivalence, many natural lattice-based encryption scheme are
not OW-PCA secure and it is not clear how to modify them to be so. In fact, the main technical
difficulty is to build an IND-CPA or OW-PCA secure encryption scheme from an OW-CPA secure
one, with a tight security reduction.

• Correctness error. The FO, as well as the REACT/GEM transformation require the underlying
asymmetric encryption scheme to be perfectly correct, i.e., not having a decryption error. In general,
one cannot exclude the fact that even a (negligibly) small decryption error could be exploited by an
IND-CCA attack against FO-like transformed schemes.1 As a matter of fact, all known (practical)
lattice-based encryption schemes have a small correctness error.2

These deficiencies were of little or no concern when the FO and REACT/GEM transformations were
originally devised. Due to the emergence of large-scale scenarios (which benefit heavily from tight security
reductions) and the increased popularity of lattice-based schemes (with correctness defects), however, we
view these deficiencies as acute problems.

1.1 Our contribution
Our main contribution is a modular treatment of FO-like transformations. That is, we provide fine-grained
transformations that can be used to turn an OW-CPA secure PKE scheme into an IND-CCA secure one
in several steps. For instance, we provide separate OW-CPA → OW-PCA and OW-PCA → IND-CCA

1It is in fact easy to modify the FO transformation such that it still yields IND-CCA secure encryption but can be
attacked if the underlying OW-CPA secure encryption scheme is not perfectly correct.

2 We remark that while there exist generic transformations (e.g., [DNR04]) that achieve perfect correctness from an
almost correct scheme, they are not very efficient and cannot be considered for practical applications.

2

IND-CPA

{
OW-PCA
OW-PVCA

IND-CCA

OW-CPA

T1[PKE, G]

T1[PKE, G]

T2[PKE′, H],
QT2[PKE′, H, H′]

T⊥2 [PKE′, H]
T`

0[PKE, F]

Transformation Security implication QROM? ROM
Tightness? Requirements

PKE′ = T1[PKE,G] (§3.1) OW-CPA⇒ OW-PCA X — none
PKE′ = T1[PKE,G] (§3.1) IND-CPA⇒ OW-PCA X X none
PKE′ = T1[PKE,G] (§3.1) OW-CPA⇒ OW-PVCA X — γ-spread
PKE′ = T1[PKE,G] (§3.1) IND-CPA⇒ OW-PVCA — X γ-spread
KEM = T2[PKE′,H] (§3.2) OW-PCA⇒ IND-CCA — X none
KEM = T⊥2 [PKE′,H] (§3.3) OW-PVCA⇒ IND-CCA — X none
KEM = QT2[PKE′,H,H′] (§4.3) OW-PCA⇒ IND-CCA X X none
PKE` = T`0[PKE,F] (§3.5) OW-CPA⇒ IND-PCA — X none

Figure 1: Our modular transformations. Top: solid errors indicate tight reductions, dashed arrows
indicate non-tight reductions. Bottom: properties of the transformations. The tightness row only refers
to tightness in the standard random oracle model; all our reduction in the quantum random oracle model
are non-tight.

transformations that, taken together, yield the original FO transformation. However, we also provide
variants of these individual transformations that achieve different security goals and tightness properties.
All of our individual transformations are robust against PKE schemes with correctness errors (in the
sense that the correctness error of the resulting schemes can be bounded by the correctness error of the
original scheme).

The benefit of our modular treatment is not only a conceptual simplification, but also a larger variety of
possible combined transformations (with different requirements and properties). For instance, combining
two results about our transformations T1 and T2, we can show that the original FO transformation yields
IND-CCA security from IND-CPA security with a tight security reduction. Combining T`0 with T1 and
T2, on the other hand, yields tight IND-CCA security from the weaker notion of OW-CPA security, at the
expense of a larger ciphertext. (See Figure 1 for an overview.)
Our transformations in detail. In the following, we give a more detailed overview over our
transformations. We remark that all our transformations require a PKE scheme (and not a KEM). We
view it as an interesting open problem to construct similar transformations that only assume (and yield)
KEMs, since such transformations have the potential of additional efficiency gains.
T1: from OW-CPA to OW-PCA Security (“Derandomization”+“re-encryption”). Starting
from an encryption scheme PKE and a hash function G, we build a deterministic encryption scheme
PKE′ = T1[PKE,G] by defining

Enc′(pk,m) := Enc(pk,m; G(m)),

where G(m) is used as the random coins for Enc. Note that Enc′ is deterministic. Dec′(sk, c) first decrypts
c into m′ and rejects if Enc(pk,m′; G(m′) 6= c (“re-encryption”). Modeling G as a random oracle, OW-PCA
security of PKE′ non-tightly reduces to OW-CPA security of PKE and tightly reduces to IND-CPA security
of PKE. If PKE furthermore is γ-spread (for sufficiently large γ), then PKE′ is even OW-PVCA secure.
OW-PVCA security3 is essentially PCA security, where the adversary is additionally given access to a
validity oracle Val(c) that checks c’s validity (cf. Definition 2.1).

3OW-PVCA security is called OW-CPA+ security with access to a Pco oracle in [Den03].

3

T2 (T⊥2): from OW-PCA (OW-PVCA) to IND-CCA Security (“Hashing”). Starting from an
encryption scheme PKE′ and a hash function H, we build a key encapsulation mechanism KEM =
T2[PKE′,H] with “implicit rejection” by defining

Encaps(pk) := (c ← Enc′(pk,m),K := H(c,m)),

where m is picked at random from the message space.

Decaps(sk, c) =
{

H(c,m′) m′ 6= ⊥
H(c, s) m′ = ⊥

,

where m′ := Dec(sk, c) and s is a random seed which is contained in sk. Modeling H as a random oracle,
IND-CCA of KEM security tightly reduces to OW-PCA security of PKE′.

We also define KEM′ = T⊥2 [PKE′,H] with “explicit rejection” which differs from T2 only in decapsula-
tion:

Decaps⊥(sk, c) =
{

H(c,m′) m′ 6= ⊥
⊥ m′ = ⊥

,

where m′ := Dec(sk, c). Modeling H as a random oracle, IND-CCA of KEM security tightly reduces to
OW-PVCA security of PKE′. We remark that transformation T⊥2 is essentially [Den03, Table 2], i.e., a
KEM variant of the REACT/GEM transformations.
FO := T2 ◦ T1 and FO⊥ := T⊥2 ◦ T1: Putting things together. Our final transformations FO (“FO
with implicit rejection”) and FO⊥ (“FO with explicit rejection”) are defined as

FO[PKE,G,H] := T2[T1[PKE,G],H]
FO⊥[PKE,G,H] := T⊥2 [T1[PKE,G],H] .

As corollaries we obtain that IND-CCA security of FO[PKE,G,H] and FO⊥[PKE,G,H] (non-tightly) reduces
to the OW-CPA security of PKE, in the random oracle model. The reductions to IND-CPA security are
tight. We remark that transformation FO⊥ essentially recovers a KEM variant [Den03, Table 5] of
the original FO transformation [FO99]. Whereas FO⊥ requires PKE to be γ-spread, there is no such
requirement on FO.

We stress that all our security reduction also take non-zero correctness error into account. Interestingly,
the concrete bounds of FO and FO⊥ also give guidance on the required correctness error of the underlying
PKE scheme. Concretely for κ bits security, PKE requires a correctness error of 2−κ.
T`0: from OW-CPA to IND-CPA, Tightly. Note that T1 requires PKE to be IND-CPA secure to achieve
a tight reduction. In case one has to rely on OW-CPA security, transformation T`0 offers the following
tradeoff between efficiency and tightness. It transforms an OW-CPA secure PKE into an IND-CPA secure
PKE`, where ` is a parameter. The ciphertext consists of ` independent PKE ciphertexts:

Enc`(pk,m) := (Enc(pk, x1), . . . ,Enc(pk, x`),m ⊕ G(x1, . . . , x`)).

The reduction (to the OW-CPA security of PKE) loses a factor of q1/`
G , where qG is the number of G-queries

an adversary makes.
Observe that the only way to gather information about m is to explicitly query G(x1, . . . , xn), which

requires to find all xi . The reduction can use this observation to embed an OW-CPA challenge as one
Enc(pk, xi∗) and hope to learn xi∗ from the G-queries of a successful IND-CPA adversary. In this, the
reduction will know all xi except xi∗ . The difficulty in this reduction is to identify the “right” G-query
(that reveals xi∗) in all of the adversary’s G-queries. Intuitively, the more instances we have, the easier
it is for the reduction to spot the G-query (x1, . . . , x`) (by comparing the xi for i 6= i∗), and the less
guessing is necessary. Hence, we get a tradeoff between the number of instances ` (and thus the size of
the ciphertext) and the loss of the reduction.
QT2: from OW-PCA to IND-CCA Security in the Quantum ROM. Whereas, as we prove, trans-
formation T1 also works in the quantum random oracle model, to go from OW-PCA to IND-CCA in the
QROM, we build a key encapsulation mechanism KEM = QT2[PKE′,H,H′] with explicit rejection by
defining

Encaps(pk) := ((c ← Enc′(pk,m), d := H′(m)),K := H(c,m)),

4

where m is picked at random from the message space.

Decaps(sk, c, d) =
{

H(c,m′) m′ 6= ⊥
⊥ m′ = ⊥ ∨ H′(m′) 6= d

,

where m′ := Dec(sk, c). QT2 differs from T2 only in the additional value d from the ciphertext, an idea
introduced in [Unr15] and in [TU16] in the context of the FO transformation. Modeling H and H′ as a
quantum random oracles, IND-CCA of KEM security reduces to OW-PCA security of PKE′.

Our transformation QFO (Quantum FO with explicit rejection), is defined as

QFO[PKE,G,H,H′] := QT2[T1[PKE,G],H,H′]

and essentially recovers a KEM variant of the modified FO transformation by Targhi and Unruh [TU16].
As a corollary we obtain that IND-CCA security of QFO[PKE,G,H,H′] reduces to the OW-CPA security of
PKE, in the quantum random oracle model. As it is common in the quantum random oracle model, all
our reductions are non-tight. We leave it as an open problem to derive a tighter security reduction of T1,
for example to IND-CPA security of PKE.
Relation to FO/GEM/REACT. As already pointed out, FO⊥ = T⊥2 ◦ T1 is essentially a KEM
variant [Den03] of the Fujisaki-Okamoto transform [FO99] and T⊥2 is a KEM variant [Den03] of the
GEM/REACT transform [OP01, CHJ+02, ABR01]. Our modular view suggest that the FO transform
implicitly contains the GEM/REACT transform, at least the proof technique. With this more general
view, the FO transform and its variants remains the only known transformation from CPA to CCA
security. It is an interesting open problem to come up with alternative transformations that get rid of
derandomization or that dispense with re-encryption (which preserving efficiency). Note that for the
ElGamal encryption scheme, the “twinning” technique [CKS08, CKS09] does exactly this, but it uses
non-generic zero-knowledge proofs that are currently not available for all schemes (e.g., for lattice-based
schemes).
Example Instantiations. In the context of ElGamal encryption one can apply FO/FO⊥ to obtain
the schemes of [KML03, BLK00, GMMV05] whose IND-CCA security non-tightly reduces to the CDH
assumption, and tightly reduces to the DDH assumption. Alternatively, one can directly use T2/T⊥2 to
obtain the more efficient schemes of [OP01, CHJ+02, ABR01, Sho04a] whose IND-CCA security tightly
reduces to the gap-DH (a.k.a. strong CDH) assumption. In the context of deterministic encryption
schemes such as RSA, Paillier, etc, one can apply T2/T⊥2 to obtain schemes mentioned in [Sho04a, Den03]
whose IND-CCA security tightly reduces to the one-way security. Finally, in the context of lattices-based
encryption (e.g., [Reg05, LPR13]), one can apply FO/FO⊥ to obtain IND-CCA secure variants.

1.2 Other related work
In concurrent and independent work, [AOP+17] also considers the IND-CCA security of LIMA :=
FO⊥[RLWE,G,H], where RLWE is a specific encryption scheme based on lattices associated to poly-
nomial rings from [LPR10], which is IND-CPA secure under the Ring-LWE assumption. As the main
result, [AOP+17] provides a tight reduction of LIMA’s IND-CCA security to the Ring-LWE assumption,
in the random oracle model. The proof exploits “some weakly homomorphic properties enjoyed by the
underlying encryption scheme” and therefore does not seem to be applicable to other schemes. The main
result of [AOP+17] is obtained as a special case of our general security results on FO⊥. Furthermore, the
security reduction of [AOP+17] does not seem to take the correctness error of RLWE into account.

2 Preliminaries
For n ∈ N, let [n] := {1, . . . , n}. For a set S , |S | denotes the cardinality of S. For a finite set S , we denote
the sampling of a uniform random element x by x $← S , while we denote the sampling according to some
distribution D by x ← D. For a polynomial p(X) with integer coefficients, we denote by Roots(p) the
(finite) set of (complex) roots of p. By x =? y we denote the integer that is 1 if x = y, and otherwise 0.
Algorithms. We denote deterministic computation of an algorithm A on input x by y := A(x). We
denote algorithms with access to an oracle O by AO. Unless stated otherwise, we assume all our algorithms
to be probabilistic and denote the computation by y ← A(x).

5

GAME OW-ATK:
01 (pk, sk)← Gen
02 m∗ $←M
03 c∗ ← Enc(pk, m∗)
04 m′ ← AOATK (pk, c)
05 return Pco(m′, c∗)

Pco(m, c)
06 if m 6∈ M
07 return ⊥
08 else return

Dec(sk, c) =? m

Val(c)
09 m := Dec(sk, c)
10 if m ∈M or c = c∗
11 return 1
12 else return 0

⊥
13 return ⊥

Figure 2: Games OW-ATK (ATK ∈ {CPA,PCA,PVCA}) for PKE, where OATK is defined in Definition 2.1.

Random Oracles. We will at times model hash functions H : DH → =(H) as random oracles. To keep
record of the queries issued to H, we will use a hash list LH that contains all tuples (x,H(x)) of arguments
x ∈ DH that H was queried on and the respective answers H(x). We make the convention that H(x) = ⊥
for all x 6∈ DH.
Games. Following [Sho04b, BR06], we use code-based games. We implicitly assume boolean flags to
be initialized to false, numerical types to 0, sets to ∅, and strings to the empty string ε. We make the
convention that a procedure terminates once it has returned an output.

2.1 Public-Key Encryption

Syntax. A public-key encryption scheme PKE = (Gen,Enc,Dec) consists of three algorithms and a
finite message spaceM (which we assume to be efficiently recognizable). The key generation algorithm
Gen outputs a key pair (pk, sk), where pk also defines a randomness space R = R(pk). The encryption
algorithm Enc, on input pk and a message m ∈ M, outputs an encryption c ← Enc(pk,m) of m
under the public key pk. If necessary, we make the used randomness of encryption explicit by writing
c := Enc(pk,m; r), where r $← R and R is the randomness space. The decryption algorithm Dec, on
input sk and a ciphertext c, outputs either a message m = Dec(sk, c) ∈M or a special symbol ⊥ /∈M to
indicate that c is not a valid ciphertext.

We call a public-key encryption scheme PKE δ-correct if for all messages m ∈M,

Pr [Dec(sk, c) 6= m | (pk, sk)← Gen; c ← Enc(pk,m)] ≤ δ .

Min-Entropy. [FO13] For (pk, sk) ← Gen and m ∈ M, we define the min-entropy of Enc(pk,m) by
γ(pk,m) := − log maxc∈C Prr←R [c = Enc(pk,m; r)]. We say that PKE is γ-spread if, for every key pair
(pk, sk)← Gen and every message m ∈M, γ(pk,m) ≥ γ. In particular, this implies that for every possible
ciphertext c ∈ C, Prr←R [c = Enc(pk,m; r)] ≤ 2−γ .
Security. We now define three security notions for public-key encryption: One-Wayness under Chosen
Plaintext Attacks (OW-CPA), One-Wayness under Plaintext Checking Attacks (OW-PCA) and One-
Wayness under Plaintext and Validity Checking Attacks (OW-PVCA).

Definition 2.1 (OW-ATK). Let PKE = (Gen,Enc,Dec) be a public-key encryption scheme with message
spaceM. For ATK ∈ {CPA,PCA,PVCA}, we define OW-ATK games as in Figure 2, where

OATK :=
{ ⊥ ATK = CPA

Pco(·, ·) ATK = PCA
Pco(·, ·),Val(·) ATK = PVCA

.

We define the OW-ATK advantage function of an adversary A against PKE as AdvOW-ATK
PKE (A) :=

Pr[OW-ATKA
PKE ⇒ 1].

A few remarks are in place. We stress that the plaintext checking oracle Pco(m, c) defined in
Figure 3 rejects all queries with m 6∈ M. This restriction is important since otherwise the validity
oracle Val(m)could be simulated as Val(m) = Pco(⊥, c). To simplify our notation we sometimes write
Pco(m 6∈ M, c) to indicate that w.l.o.g. Pco is not queried on m = ⊥. (Recall that M is efficiently
recognizable.) Similarly, we sometimes write Val(c 6= c∗) to indicate that Val is not queried on c∗.

6

GAME IND-CPA
01 (pk, sk)← Gen
02 b $← {0, 1}
03 (m∗0 , m∗1 , st)← A1(pk)
04 c∗ ← Enc(pk, m∗b)
05 b′ ← A2(pk, c∗, st)
06 return b′ =? b

GAME IND-CCA
07 (pk, sk)← Gen
08 b $← {0, 1}
09 (K∗0 , c∗)← Encaps(pk)
10 K∗1 $← K
11 b′ ← ADecaps(c∗, K∗b)
12 return b′ =? b

Decaps(c)
13 if c = c∗
14 return ⊥
15 else
16 K := Decaps(sk, c)
17 return K

Figure 3: Games IND-CPA for PKE and IND-CCA game for KEM.

Usually, the adversary wins the one-way game iff its output m′ equals the challenge message m∗.
Instead, in game OW-ATK the correctness of m′ is checked using the Pco oracle, i.e., it returns 1 iff
Dec(sk, c∗) = m′. The two games have statistical difference δ, if PKE is δ-correct.

Additionally, we define Indistinguishability under Chosen Plaintext Attacks (IND-CPA).

Definition 2.2 (IND-CPA). Let PKE = (Gen,Enc,Dec) be a public-key encryption scheme with message
spaceM. We define the IND-CPA game as in Figure 3, and the IND-CPA advantage function of an adversary
A = (A1,A2) against PKE (such that A2 has binary output) as AdvIND-CPA

PKE (A) := |Pr[IND-CPAA ⇒ 1]−1/2|.

It is well known (see, e.g., [KL07]) that IND-CPA security of PKE with sufficiently large message space
implies its OW-CPA security.

Lemma 2.3 For any adversary B there exists an adversary A with the same running time as that of B
such that AdvOW-PCA

PKE (B) ≤ AdvIND-CPA
PKE (A) + 1/|M|.

2.2 Key Encapsulation

Syntax. A key encapsulation mechanism KEM = (Gen,Encaps,Decaps) consists of three algorithms.
The key generation algorithm Gen outputs a key pair (pk, sk), where pk also defines a finite key space
K. The encapsulation algorithm Encaps, on input pk, outputs a tuple (K , c) where c is said to be an
encapsulation of the key K which is contained in key space K. The deterministic decapsulation algorithm
Decaps, on input sk and an encapsulation c, outputs either a key K := Decaps(sk, c) ∈ K or a special
symbol ⊥ /∈ K to indicate that c is not a valid encapsulation. We call KEM δ-correct if

Pr [Decaps(sk, c) 6= K | (pk, sk)← Gen; (K , c)← Encaps(pk)] ≤ δ .

Security. We now define a security notion for key encapsulation: Indistinguishbility under Chosen
Ciphertext Attacks (IND-CCA).

Definition 2.4 (IND-CCA). We define the IND-CCA game as in Figure 3 and the IND-CCA advantage
function of an adversary A (with binary output) against KEM as AdvIND-CCA

KEM (A) := |Pr[IND-CCAA ⇒
1]− 1/2| .

3 Modular FO Transformation
In Section 3.1, we will introduce T1 that transforms any OW-CPA secure encryption scheme PKE into a
OW-PCA secure encryption scheme PKE′. If PKE is furthermore IND-CPA, then the reduction is tight.
Furthermore, if PKE is λ-spread, then PKE′ even satisfied the stronger security notion of OW-PVCA
security. Next, in Section 3.2 (Section 3.3), we will introduce transformation T2 (T⊥2) that transforms
any OW-PCA (OW-PVCA) secure encryption scheme PKE′ into an IND-CCA secure KEM. The security
reduction is tight. Combining the above transformations, in Section 3.4 we provide concrete bounds for
the IND-CCA security of the resulting KEM = FO[PKE,G,H] and KEM⊥ = FO⊥[PKE,G,H] in the random
oracle model. Finally, in Section 3.5 we introduce T`0 that transforms any OW-CPA secure scheme into an
IND-CPA secure one, offering a tradeoff between tightness and ciphertext size.

7

3.1 T1: from OW-CPA to OW-PCA/PVCA Security
T1 transforms an OW-CPA secure public-key encryption scheme into an OW-PCA secure one.
The Construction. To a public-key encryption scheme PKE = (Gen,Enc,Dec) with message space
M and randomness space R, and a hash function G :M→ R, we associate PKE′ = T1[PKE,G]. The
algorithms of PKE′ = (Gen,Enc′,Dec′) are defined in Figure 4. Note that Enc′ is deterministic.

Enc′(pk, m)
01 c := Enc(pk, m; G(m))
02 return c

Dec′(sk, c)
03 m′ := Dec(sk, c).
04 if m′ = ⊥ or Enc(pk, m′; G(m′)) 6= c
05 return ⊥
06 else return m′

Figure 4: OW-PVCA-secure encryption scheme PKE′ = T1[PKE,G] with deterministic encryption.

Non-tight Security from OW-CPA. The following theorem establishes that OW-PVCA security of
PKE′ (cf. Definition 2.1) non-tightly reduces to the OW-CPA security of PKE, in the random oracle model,
given that PKE is γ-spread (for sufficiently large γ). If PKE is not γ-spread, then PKE′ is still OW-PCA
secure.

Theorem 3.1 (PKE OW-CPA ROM⇒ PKE′ OW-PVCA). If PKE is δ-correct, so is PKE′. Assume PKE to
be γ-spread. Then, for any OW-PVCA adversary B that issues at most qG queries to the random oracle G,
qP queries to a plaintext checking oracle Pco, and qV queries to a validity checking oracle Val, there
exists an OW-CPA adversary A such that

AdvOW-PVCA
PKE′ (B) ≤ qP · δ + qV · 2−γ + (qG + 1) ·AdvOW-CPA

PKE (A)

and the running time of A is about that of B.

Proof. We first prove δ correctness of PKE′. For every fixed m ∈M,

Pr [Dec(sk, c) 6= m | (pk, sk)← Gen; r := G(m); c = Enc(pk,m; r)]
= Pr [Dec(sk, c) 6= m | (pk, sk)← Gen; r $← R; c = Enc(pk,m; r)] ≤ δ ,

where the first equality comes from the fact that G is a random oracle.
Let B be an adversary against the OW-PVCA security of PKE′, issuing at most qG queries to G, at most

qP queries to Pco and at most qV queries to Val. Consider the sequence of games given in Figure 5.
Game G0. This is the original OW-PVCA game. Random oracle queries are stored in set LG with the
convention that G(m) = r iff (m, r) ∈ LG. Hence,

Pr[GB
0 ⇒ 1] = AdvOW-PVCA

PKE′ (B) .

Game G1. In game G1 the plaintext checking oracle Pco(m, c) is replaced with a simulation that does not
make use of the secret key, by returning whether Enc(pk,m,G(m)) = c instead of whether Dec′(sk, c) = m.
Clearly, Pco(m, c) = 1 in game G0 implies Pco(m, c) = 1 in game G1. Moreover, since PKE is δ-correct
and G is a random oracle, Pco(m, c) = 1 in game G1 implies Pco(m, c) = 1 in game G0 with probability
at least 1− δ. By the union bound we obtain

|Pr[GB
1 ⇒ 1]− Pr[GB

0 ⇒ 1]| ≤ qP · δ. (1)

Game G2. In game G2, the validity checking oracle Val(c 6= c∗) is replaced with one that returns 1
iff there exists a previous query m to G such that Enc(pk,m; G(m)) = c. Clearly, Val(c) = 1 in game
G2 implies that Val(c) = 1 in Game G1. Therefore, the games only differ when B queries Val on
c = Enc(pk,m; G(m)) in game G2 without first having queried G on m. For each individual query Val(c)
his can only happen with probability 2−γ , where γ is the parameter from the γ-spreadness of PKE. By
the union bound we obtain

|Pr[GB
2 ⇒ 1]− Pr[GB

1 ⇒ 1]| ≤ qV · 2−γ .

8

GAMES G0-G3
01 (pk, sk)← Gen
02 m∗ $←M
03 c∗ ← Enc(pk, m∗)
04 m′ ← BG,Pco,Val(pk, c∗).
05 return m′ =? m∗

G(m)
06 if ∃r s. th.(m, r) ∈ LG
07 return r
08 if m = m∗ //G3
09 QUERY := true //G3
10 abort //G3
11 r $←R
12 LG := LG ∪ {(m, r)}
13 return r

Pco(m ∈M, c)
14 m′ := Dec(sk, c) //G0
15 if m′ = m and Enc(pk, m′; G(m′)) = c //G0
16 return 1 //G0
17 else return 0 //G0
18 return Enc(pk, m, G(m)) =? c //G1-G3

Val(c 6= c∗) //G0-G1

19 m′ := Dec(sk, c)
20 if m 6∈ M
21 return 0
22 else return 1

Val(c 6= c∗) //G2-G3
23 if ∃r s. th. (m, r) ∈ LG

and Enc(pk, m; G(m)) = c
24 return 1
25 else return 0

Figure 5: Games G0 - G3 for the proof of Theorem 3.1.

D(pk, c∗)
01 m ← BG,Pco(pk, c∗)
02 (m′, r ′) $← LG
03 return m′

C(pk, c∗)
04 m′ ← BG,Pco(pk, c∗)
05 return m′

G(m)
06 if ∃r s. th. (m, r) ∈ LG
07 return r
08 r $← R
09 LG := LG ∪ {(m, r)}
10 return r

Figure 6: Adversaries C and D for the proof of Theorem 3.1. Oracles Pco and Val are defined as in
game G3 of Figure 5.

Game G3. In Game G3, we add a flag QUERY in line 09 and abort when it is raised. Hence, G2 and
G3 only differ if QUERY is raised, meaning that B queried G on m∗, meaning (m∗, ·) ∈ LG. Due to the
difference lemma [Sho04b],

|Pr[GB
3 ⇒ 1]− Pr[GB

2 ⇒ 1]| ≤ Pr[QUERY].

We bound Pr[GB
3 ⇒ 1] by constructing an adversary C in Figure 6 against the OW-CPA security of the

original encryption scheme PKE. C inputs (pk, c∗ ← Enc(pk,m∗)), perfectly simulates game G3 for B,
and finally outputs m′ = m∗ if B wins in game G3.

Pr[GB
3 ⇒ 1] = AdvOW-CPA

PKE (C) .

So far we have established the bound

AdvOW-PVCA
PKE′ (B) ≤ qP · δ + qV · 2−γ + Pr[QUERY] + AdvOW-CPA

PKE (C) . (2)

Finally, in Figure 6 we construct an adversary D against the OW-CPA security of the original encryption
scheme PKE, that inputs (pk, c∗ ← Enc(pk,m∗)), perfectly simulates game G3 for B. If flag QUERY is
set in G3 then there exists en entry (m∗, ·) ∈ LG and D returns the correct m′ = m∗ with probability
1/qG. We just showed

Pr[QUERY] ≤ qG ·AdvOW-CPA
PKE (D) .

Combining the latter bound with Equation (2) and folding C and D into one single adversary A against
OW-CPA yields the required bound.

9

OW-PCA security is OW-PVCA security with qV := 0 queries to the validity checking oracle. Hence,
the bound of Theorem 3.1 shows that PKE′ is in particular OW-PCA secure, without requiring PKE to be
γ-spread.
Tight Security from IND-CPA. Whereas the reduction to OW-CPA security in Theorem 3.1 was
non-tight, the following theorem establishes that OW-PVCA security of PKE′ tightly reduces to the
IND-CPA security of PKE, in the random oracle model, given that PKE is γ-spread. If PKE is not γ-spread,
then PKE′ is still OW-PCA secure.

Theorem 3.2 (PKE IND-CPA ROM⇒ PKE′ OW-PVCA). Assume PKE to be δ-correct and γ-spread. Then,
for any OW-PVCA adversary B that issues at most qG queries to the random oracle G, qP queries to a
plaintext checking oracle Pco, and qV queries to a validity checking oracle Val, there exists an IND-CPA
adversary A such that

AdvOW-PVCA
PKE′ (B) ≤ qP · δ + qV · 2−γ + 2qG + 1

|M|
+ 3 ·AdvIND-CPA

PKE (A)

and the running time of A is about that of B.

Proof. Considering the games of Figure 5 from the proof of Theorem 3.1 we obtain by Equation (2)

AdvOW-PVCA
PKE′ (B) ≤ qP · δ + qV · 2−γ + Pr[QUERY] + AdvOW-CPA

PKE (D)

≤ qP · δ + qV · 2−γ + Pr[QUERY] + 1
|M|

+ AdvIND-CPA
PKE (D) ,

where the last inequation uses Lemma 2.3.
In Figure 7 we construct an adversary D = (D1,D2) against the IND-CPA security of the original

encryption scheme PKE that wins if flag QUERY is set in G3. The first adversary D1 picks two random
messages m∗0 ,m∗1 . The second adversary D2 inputs (pk, c∗ ← Enc(pk,m∗b)), for a random bit b, and runs
B(pk, c∗), simulating its view in game G3. Note that by construction message m∗b is uniformly distributed.

Consider game IND-CPAD. Let BADG be the event that B queries random oracle G on m∗1−b. Since
m∗1−b is uniformly distributed and independent from B’s view, we have Pr[BADG] ≤ qG/|M|. For the
remainder of the proof we assume BADG did not happen, i.e. |LG(m∗1−b)| = 0.

If QUERY happens, then B queried the random oracle G on m∗b , which implies |LG(m∗b)| > 0 =
|LG(m∗1−b)| and therefore b = b′. If QUERY does not happen, then B did not query random oracle G on
m∗b . Hence, |LG(m∗b)| = |LG(m∗1−b)| = 0 and Pr[b = b′] = 1/2 since A picks a random bit b′. Overall, we
have

AdvIND-CPA
PKE (D) + qG

|M|
≥

∣∣∣∣Pr[b = b′]− 1
2

∣∣∣∣
=

∣∣∣∣Pr[QUERY] + 1
2 Pr[¬QUERY]− 1

2

∣∣∣∣
= 1

2 Pr[QUERY].

Folding C and D into one single IND-CPA adversary A yields the required bound.

With the same argument as in Theorem 3.1, a tight reduction to OW-PCA security is implied without
requiring PKE to be γ-spread.

3.2 T2: from OW-PCA to IND-CCA Security
T2 transforms any OW-PCA secure public-key encryption scheme (e.g., one obtained via T1 from Sec-
tion 3.1) into an IND-CCA secure key encapsulation mechanism.
The Construction. To a public-key encryption scheme PKE′ = (Gen′,Enc′,Dec′) with message
space M, and a hash function H : {0, 1}∗ → M we associate KEM = T2[PKE′,H]. The algorithms of
KEM = (Gen,Encaps,Decaps) are defined in Figure 8.
Security. The following theorem establishes that IND-CCA security of KEM tightly reduces to the
OW-PCA security of PKE′, in the random oracle model.

10

D1(pk)
11 st := (m∗0 , m∗1) $←M2

12 return st
D2(pk, c∗, st)
13 m′ ← BG,Pco,Val(pk, c∗)

14 b′ :=


0 |LG(m∗0)| > |LG(m∗1)|
1 |LG(m∗1)| < |LG(m∗0)|

$← {0, 1} otherwise
15 return b′

G(m)
16 if ∃r s. th. (m, r) ∈ LG
17 return r
18 r $← R
19 LG := LG ∪ {(m, r)}
20 return r

Figure 7: Adversary D = (D1,D2) for the proof of Theorem 3.2. For fixed m ∈M, LG(m) is the set of all
(m, r) ∈ LG. Oracles Pco and Val are defined as in game G3 of Figure 5.

Gen
01 (pk′, sk′)← Gen′
02 s $←M
03 sk := (sk′, s)
04 return (pk′, sk)

Encaps(pk)
05 m $←M
06 c ← Enc′(pk, m)
07 K := H(m, c)
08 return (K , c)

Decaps(sk, c)
09 Parse sk = (sk′, s)
10 m′ := Dec′(sk′, c)
11 if m′ 6= ⊥
12 return K := H(m′, c)
13 else return K := H(s, c)

Figure 8: IND-CCA-secure key encapsulation mechanism KEM = T2[PKE′,H].

Theorem 3.3 (PKE′ OW-PCA⇒ KEM IND-CCA). If PKE′ is δ-correct, so is KEM. For any IND-CCA
adversary B against KEM, issuing at most qD queries to the decapsulation oracle Decaps and at most qH
queries to the random oracle H, there exists an OW-PCA adversary A against PKE′ that makes at most
qH queries to the Pco oracle such that

AdvIND-CCA
KEM (B) ≤ qH

|M|
+ AdvOW-PCA

PKE′ (A)

and the running time of A is about that of B.

Proof. It is easy to verify the correctness bound. Let B be an adversary against the IND-CCA security
of KEM, issuing at most qD queries to Dec and at most qH queries to H. Consider the games given in
Figure 9.
Game G0. Since game G0 is the original IND-CCA game,∣∣∣∣Pr[GB

0 ⇒ 1]− 1
2

∣∣∣∣ = AdvIND-CCA
KEM (B) .

Game G1. In game G1 we make two changes. In Decaps, we replace K = H(s, c) by K = H′(c) and
K = H′′(c), respectively, whenever m′ ∈ {⊥, s} (lines 13 and 14), where H′ and H′′ are independent
internal random oracles that cannot be accessed by B. This remains unnoticed by B unless H(s, ·) is
queried, in which case G1 aborts (lines 18 and 19). Since B’s view is independent of (the uniform secret)
s unless G1 aborts,

|Pr[GB
1 ⇒ 1]− Pr[GB

0 ⇒ 1]| ≤ qH
|M|

.

Game G2. In game G2, the oracles H and Decaps are changed such that Decaps does not make use of
the secret key any longer except by testing if Dec′(sk ′, c) = m for given (m, c) in line 20. In game G2 we
will use two lists, LH and LD, for bookkeeping. (m, c,K) ∈ LH indicates that H was queried on (m, c)
and H(m, c) = K holds; (c,K) ∈ LD indicates that Decaps(c) = K holds and either H was queried on
(m := Dec′(sk ′, c), c) or Decaps was queried on c. In order to show that the view of B is identical in
games G1 and G2, consider the following cases for a fixed ciphertext c and m′ := Dec′(sk ′, c).

11

GAMES G0 - G3
01 (pk′, sk′)← Gen′
02 s $←M
03 sk := (sk′, s)
04 m∗ $←M
05 c∗ ← Enc′(pk, m∗)
06 K∗0 := H(m∗, c∗)
07 K∗1 $← {0, 1}n

08 b $← {0, 1}
09 b′ ← BDecaps,H(pk′, c∗, K∗b)
10 return b′ =? b

Decaps(c 6= c∗) //G0-G1

11 m′ := Dec′(sk′, c)
12 if m′ = ⊥ return K := H(s, c) //G0
13 if m′ = ⊥ return K := H′(c) //G1
14 if m′ = s return K := H′′(c) //G1
15 return K := H(m, c)

H(m, c)
16 if ∃K s. th. (m, c, K) ∈ LH return K
17 K $← K
18 if m = s //G1-G3
19 QUERY := true; abort //G1-G3
20 if Dec′(sk′, c) = m //G2-G3
21 if c = c∗ //G3
22 CHAL := true; abort //G3
23 if ∃K ′ such that (c, K ′) ∈ LD //G2-G3
24 K := K ′ //G2-G3
25 else //G2-G3
26 LD := LD ∪ {(c, K)} //G2-G3
27 LH := LH ∪ {(m, c, K)}
28 return K

Decaps(c 6= c∗) //G2-G3
29 if ∃K s. th. (c, K) ∈ LD
30 return K
31 else
32 K $← K
33 LD := LD ∪ {(c, K)}
34 return K

Figure 9: Games G0 - G3 for the proof of Theorem 3.3 . H′ (line 13) and H′′ (14) are independent internal
random oracles that cannot be accessed by B.

• Case 1: m′ ∈ {⊥, s}. Since H cannot be queried on (m′, c) (i.e., H(⊥, ·) is not allowed and H(s, c)
results in abort), there is no message m ∈M such that H(m, c) could have added a tuple (c,K) to
LD. Hence, querying Decaps(c) in game G2 will return a uniformly random key, as in Game G1.

• Case 2: m′ /∈ {⊥, s}. We will now show that H in game G2 is “patched”, meaning that it is ensures
Decaps(c) = H(m′, c), where m′ := Dec′(sk ′, c), for all valid ciphertexts c with Dec′(sk ′, c) 6= s.
We distinguish two sub-cases: B might either first query H on (m′, c), then Decaps on c, or the
other way round.

– If H is queried on (m′, c) first, it is recognized that Dec′(sk ′, c) = m in line 20. Since Decaps
was yet not queried on c, no entry of the form (c,K) already exists in LD. Therefore,
besides adding (m, c,K $← K) to LH , H also adds (c,K) to LD in line 26, thereby defining
Decaps(c) := K = H(m′, c) .

– If Decaps is queried on c first, no entry of the form (c,K) exists in LD yet. Therefore,
Decaps adds (c,K $← K) to LD thereby defining Decaps(c) := K . When queried on (m′, c)
afterwards, H recognizes that Dec′(sk ′, c) = m in line 20 and that an entry of the form
(c,K) already exists in LD in line 23. By adding (m, c,K) to LH and returning K , H defines
H(m′, c) := K = Decaps(c).

We have shown that B’s view is identical in both games and

Pr[GB
2 ⇒ 1] = Pr[GB

1 ⇒ 1]| .

Game G3. In game G3, we abort immediately (and raise flag CHAL) on the event that B queries H on
(m∗, c∗), where m∗ is the challenge message. Due to the difference lemma,

|Pr[GB
3 ⇒ 1]− Pr[GB

2 ⇒ 1]| ≤ Pr[CHAL] .

In game G3, H(m∗, c∗) will not be given to B; neither through a hash nor a decryption query, meaning
bit b is independent from B’s view. Hence,

Pr[GB
3] = 1

2 .

12

APco(pk, c∗)
01 K∗ $← K
02 s $←M
03 b′ ← BDecaps,H(pk, c∗, K∗)
04 if ∃(m′, c′, K ′) ∈ LH
s. th. Pco(m′, c∗) = 1

05 return m′
06 else
07 abort

H(m, c)
08 if ∃K s. th. (m, c, K) ∈ LH return K
09 K $← K
10 if m = s
11 abort
12 if Pco(m, c) = 1
13 if ∃K ′ s. th. (c, K ′) ∈ LD
14 K := K ′
15 else
16 LD := LD ∪ {(c, K)}
17 LH := LH ∪ {(m, c, K)}
18 return K

Figure 10: Adversary A for the proof of Theorem 3.3. Oracle Decaps is defined as in game G3 of Figure 9.

It remains to bound Pr[CHAL]. To this end, we construct an adversary A against the OW-PCA
security of PKE′ simulating G3 for B as in Figure 10. Note that the simulation is perfect. Since CHAL
implies that B queried H(m∗, c∗) which implies (m∗, c∗,K ′) ∈ LH (for some K ′), A returns m′ = m∗.
Hence,

Pr[CHAL] = AdvOW-PCA
PKE (A) .

Collecting the probabilities yields the required bound.

3.3 T⊥
2 : from OW-PVCA to IND-CCA Security

T⊥2 is a variant of T2 with explicit rejection. It transforms an OW-PVCA secure public-key encryption
scheme (e.g., the ones obtained via T1 from Section 3.1) into an IND-CCA secure key encapsulation
mechanism.
The Construction. To a public-key encryption scheme PKE′ = (Gen′,Enc′,Dec′) with message space
M, and a hash function H : {0, 1}∗ → {0, 1}n, we associate KEM⊥ = T⊥2 [PKE′,H]. The algorithms
of KEM⊥ = (Gen′,Encaps,Decaps⊥) are defined in Figure 11. Note that T⊥2 and T2 essentially differ
in decapsulation: Decaps⊥ from T⊥2 rejects if c decrypts to ⊥, whereas Decaps from T2 returns a
pseudorandom key K .

Encaps(pk)
01 m $←M
02 c ← Enc′(pk, m)
03 K := H(m, c)
04 return (K , c)

Decaps⊥(sk, c)
05 m′ := Dec′(sk, c)
06 if m′ = ⊥ return ⊥
07 else return

K := H(m′, c)

Figure 11: IND-CCA-secure key encapsulation mechanism KEM⊥ = T⊥2 [PKE′,H].

Security. The following theorem establishes that IND-CCA security of KEM⊥ tightly reduces to the
OW-PVCA security of PKE′, in the random oracle model.

Theorem 3.4 (PKE′ OW-PVCA ROM⇒ KEM⊥ IND-CCA). If PKE′ is δ-correct, so is KEM⊥. For any
IND-CCA adversary B against KEM⊥, issuing at most qD queries to the decapsulation oracle Decaps⊥

and at most qH queries to the random oracle H, there exists an OW-PVCA adversary A against PKE′ that
makes at most qH queries both to the Pco oracle and to the Val oracle such that

AdvIND-CCA
KEM⊥ (B) ≤ AdvOW-PVCA

PKE′ (A)

and the running time of A is about that of B.

13

GAMES G0 - G2
01 (pk, sk)← Gen′
02 m∗ $←M
03 c∗ ← Enc′(pk, m∗)
04 K∗0 := H(m∗, c∗)
05 K∗1 $← {0, 1}n

06 b $← {0, 1}
07 b′ ← BDecaps⊥,H(pk, c∗, K∗b)
08 return b′ =? b

Decaps⊥(c 6= c∗) //G0

09 m′ := Dec′(sk, c)
10 if m′ = ⊥ return ⊥
11 return K := H(m′, c)

H(m, c)
12 if ∃K such that (m, c, K) ∈ LH
13 return K
14 K $← K
15 if Dec′(sk, c) = m //G1-G2
16 if c = c∗ //G2
17 CHAL := true //G2
18 abort //G2
19 if ∃K ′ such that (c, K ′) ∈ LD //G1-G2
20 K := K ′ //G1-G2
21 else //G1-G2
22 LD := LD ∪ {(c, K)} //G1-G2
23 LH := LH ∪ {(m, c, K)}
24 return K

Decaps⊥(c 6= c∗) //G1-G2
25 if ∃K s. th. (c, K) ∈ LD
26 return K
27 if Val(c) = 0
28 return ⊥
29 K $← K
30 LD := LD ∪ {(c, K)}
31 return K

Figure 12: Games G0 - G2 for the proof of Theorem 3.4

Proof. It is easy to verify the correctness bound. Let B be an adversary against the IND-CCA security of
KEM⊥, issuing at most qD queries to Decaps⊥ and at most qH queries to H. Consider the games given
in Figure 12.
Game G0. Since game G0 is the original IND-CCA game,∣∣∣∣Pr[GB

0 ⇒ 1]− 1
2

∣∣∣∣ = AdvIND-CCA
KEM⊥ (B) .

Game G1. In game G1, the oracles H and Decaps⊥ are changed such that they make no use of the secret
key any longer except by testing if Dec′(sk ′, c) = m for given (m, c) in line 15 and if Dec′(sk, c) ∈M for
given c in line 27. Game G1 contains two sets: hash list LH that contains all entries (m, c,K) where H
was queried on (m, c), and set LD that contains all entries (c,K) where either H was queried on (m′, c),
m′ := Dec′(sk ′, c), or Decaps⊥ was queried on c. In order to show that the view of B is identical in
games G0 and G1, consider the following cases for a fixed ciphertext c and m′ := Dec′(sk ′, c).

• Case 1: m′ /∈ M. Since Val(c) = 0 is equivalent to m′ = ⊥, Decaps(c) returns ⊥ as in both
games.

• Case 2: m′ ∈ M. We will now show that H in game G1 is “patched”, meaning that it is ensures
Decaps⊥(c) = H(m′, c), where m′ := Dec′(sk, c), for all ciphertexts c with m′ ∈M. We distinguish
two sub-cases: B might either first query H on (m′, c), then Decaps⊥ on c, or the other way round.

– If H is queried on (m′, c) first, it is recognized that Dec′(sk, c) = m in line 15. Since Decaps
was not yet queried on c, no entry of the form (c,K) can already exist in LD. Therefore,
besides adding (m, c,K $← K) to LH , H also adds (c,K) to LD in line 22, thereby defining
Decaps⊥(c) := K = H(m′, c).

– If Decaps⊥ is queried on c first, no entry of the form (c,K) exists in LD yet. Therefore,
Decaps⊥ adds (c,K $← K) to LD, thereby defining Decaps⊥(c) := K . When queried on
(m′, c) afterwards, H recognizes that Dec′(sk, c) = m′ in line 15 and that an entry of the form
(c,K) already exists in LD in line 19. By adding (m, c,K) to LH and returning K , H defines
H(m′, c) := K = Decaps⊥(c).

14

APco(pk, c∗)
01 K∗ $← K
02 b′ ← BDecaps⊥,H(pk, c∗, K∗)
03 if ∃(m′, c′, K ′) ∈ LH

s. th. Pco(m′, c∗) = 1
04 return m′
05 else
06 abort

H(m, c)
07 if ∃K such that (m, c, K) ∈ LH
08 return K
09 K $← K
10 if Pco(m, c) = 1
11 if ∃K ′ such that (c, K ′) ∈ LD
12 K := K ′
13 else
14 LD := LD ∪ {(c, K)}
15 LH := LH ∪ {(m, c, K)}
16 return K

Figure 13: Adversary A for the proof of Theorem 3.4, where Decaps⊥ is defined as in Game G2 of
Figure 12.

We have shown that B’s view is identical in both games and

Pr[GB
1 ⇒ 1] = Pr[GB

0 ⇒ 1]| .

Game G2. In game G2, we abort immediately on the event that B queries H on (m∗, c∗). Denote this
event as CHAL. Due to the difference lemma,

|Pr[GB
2 ⇒ 1]− Pr[GB

1 ⇒ 1]| ≤ Pr[CHAL] .

In game G2, H(m∗, c∗) will not be given to B; neither through a hash nor a decryption query, meaning
bit b is independent from B’s view. Hence,

Pr[GB
2] = 1

2 .

It remains to bound Pr[CHAL]. To this end, we construct an adversary A against the OW-PVCA
security of PKE′ simulating G2 for B as in Figure 13. Note that the simulation is perfect. Since CHAL
implies that B queried H(m∗, c∗) which implies (m∗, c∗,K ′) ∈ LH for some K ′, and A returns m′ = m∗.
Hence,

Pr[CHAL] = AdvOW-PVCA
PKE (A) .

Collecting the probabilities yields the required bound.

3.4 The resulting KEMs
For completeness, we combine transformations T1, T2, and T⊥2 from the previous sections to obtain two
variants of the FO transformation FO := T2 ◦T1 and FO⊥ := T⊥2 ◦T1. To a public-key encryption scheme
PKE = (Gen,Enc,Dec) with message spaceM and randomness space R, and hash functions G :M→R,
H : {0, 1}∗ → {0, 1}n we associate

KEM = FO[PKE,G,H] := T2[T1[PKE,G],H]
KEM⊥ = FO⊥[PKE,G,H] := T⊥2 [T1[PKE,G],H] .

For concreteness, the algorithms of KEM = (Gen′,Encaps,Decaps) and KEM⊥ = (Gen,Encaps,Decaps⊥)
are given in Figure 14. The following two corollaries are directly obtained by combining Theorems 3.1–3.4.

Corollary 3.5 If PKE is δ-correct, so is KEM = FO[PKE,G,H]. Further, for any adversary IND-CCA
B against KEM, issuing at most qD queries to the decapsulation oracle Dec, at most qG queries to the
random oracle G and at most qH queries to the random oracle H, there exist an OW-CPA adversary A
and an IND-CPA adversary A′ against PKE such that

AdvIND-CCA
KEM (B) ≤

{
qH · δ + qH

|M| + (qG + 1) ·AdvOW-CPA
PKE (A)

qH · δ + 2qG+qH+1
|M| + 3 ·AdvIND-CPA

PKE (A′)
,

and the running times of A and A′ are about that of B.

15

Gen′
01 (pk, sk)← Gen
02 s $←M
03 sk′ := (sk, s)
04 return (pk, sk′)

Decaps(sk′ = (sk, s), c)
05 m′ := Dec(sk, c)
06 if c 6= Enc(pk, m′; G(m′)) or m′ = ⊥
07 return K := H(s, c)
08 else return K := H(m′, c)

Encaps(pk)
09 m $←M
10 c := Enc(pk, m; G(m))
11 K := H(m, c)
12 return (K , c)

Decaps⊥(sk, c)
13 m′ := Dec(sk, c)
14 if c 6= Enc(pk, m′; G(m′)) or m′ = ⊥
15 return ⊥
16 else return K := H(m′, c)

Figure 14: IND-CCA secure Key Encapsulation FO[PKE,G,H] = (Gen′,Encaps,Decaps) and
FO⊥[PKE,G,H] = (Gen,Encaps,Decaps⊥) obtained from PKE.

Corollary 3.6 If PKE is δ-correct, so is KEM⊥ = FO⊥[PKE,G,H]. Assume PKE to be γ-spread. Then,
for any IND-CCA adversary B against KEM⊥, issuing at most qD queries to the decapsulation oracle Dec,
at most qG queries to the random oracle G and at most qH queries to the random oracle H, there exist an
OW-CPA adversary A and an IND-CPA adversary A′ against PKE such that

AdvIND-CCA
KEM⊥ (B) ≤

{
qH · (δ + 2−γ) + (qG + 1) ·AdvOW-CPA

PKE (A)
qH · (δ + 2−γ) + 2qG+1

|M| + 3 ·AdvIND-CPA
PKE (A′)

,

and the running time of both A and A′ is about that of B.

3.5 T`
0: from OW-CPA to IND-CPA Security, Tightly

T`0 transforms an OW-CPA secure public-key encryption scheme into an IND-CPA secure scheme. The
security reduction has a parameter ` which allows for a tradeoff between the security loss of the reduction
and the compactness of ciphertexts.
The Construction. Fix an ` ∈ N. To a public-key encryption scheme PKE = (Gen,Enc,Dec) with
message space M = {0, 1}n and a hash function F : M` → R, we associate PKE` = T`0[PKE,F]. The
algorithms of PKE` are defined in Figure 15.

Enc`(pk, m)
01 x := (x1, . . . , x`) $← ({0, 1}n)`

02 c0 := m ⊕ F(x)
03 for i = 1 to ` do
04 ci := Enc(pk, xi)
05 return c := (c0, . . . , c`)

Dec`(sk, c)
06 parse c = (c0, . . . , c`)
07 for i = 1 to ` do
08 xi := Dec(sk, ci)
09 x := (x1, . . . , x`)
10 return c0 ⊕ F(x)

Figure 15: Tightly IND-CPA secure encryption PKE` obtained from PKE

Security. The following theorem shows that PKE` is IND-CPA secure, provided that PKE is OW-CPA
secure.

Theorem 3.7 (PKE OW-CPA ⇒ PKE` IND-CPA). If PKE is δ-correct, then PKE` is ` · δ-correct.
Moreover, for any IND-CPA adversary B that issues at most qF queries to random oracle F, there exists
an OW-CPA adversary A such that

AdvIND-CPA
PKE`

(B) ≤ q1/`
F ·AdvOW-CPA

PKE (A)

and the running time of A is about that of B.

16

Proof. We first sketch correctness. Consider a public key pk and an encryption c = (c0, . . . , c`) of
generated by Enc`. Let xi denote the respective value chosen by Enc` when generating c. Furthermore,
let QUERYi denote the event that, when decrypting c, the partial ciphertext ci is decrypted to a value
x ′i 6= xi . If no QUERYi occurs (for any i), then this implies that c is decrypted correctly. Hence, we have

Pr[c decrypts incorrectly] ≤ Pr[
∨̀
i=1

QUERYi] ≤
∑̀
i=1

Pr[QUERYi]
(∗)= ` · δ,

where the probability is over the random coins of Gen`, Enc`, and Dec`, and (∗) follows from the
δ-correctness of PKE.

As for security, let B = (B1,B2) be an adversary against the IND-CPA security of PKE`, issuing at
most qF queries to F. Consider the games given in Figure 16.

GAMES G0-G1
01 (pk, sk)← Gen()
02 b $← {0, 1}
03 (m0, m1, st) $← B1(pk)
04 x∗ := (x∗1 , . . . , x∗`) $← ({0, 1}n)`

05 c∗0 := mb ⊕ F(x∗)
06 for i = 1 to ` do
07 c∗i := Enc(pk, xi)
08 c∗ := (c∗0 , . . . , c∗`)
09 b′ $← B2(pk, c∗, st)
10 return b′ =? b

F(x)
11 if ∃r s.t. (x, r) ∈ LF
12 return r
13 if x = x∗ //G1
14 QUERY := true //G1
15 abort //G1
16 r $←R
17 LF := LF ∪ {(x, r)}
18 return r

Figure 16: Games G0 - G1 for the proof of Theorem 3.7

Game G0. Since game G0 is the original IND-CPA game,∣∣Pr[GB
0 ⇒ 1]− 1/2

∣∣ = AdvIND-CPA
PKE`

(B) . (3)

Game G1. In Game G1, we add lines 13-15, and in particular a flag QUERY in line 14, and abort
(such that the game outputs an independently random bit) when QUERY is raised. QUERY is raised
whenever random oracle F is queried with the vector x∗ that was chosen during the generation of the
challenge ciphertext c∗. Games G0 and G1 proceed identically until QUERY occurs. Hence, we have∣∣Pr[GB

0 ⇒ 1]− Pr[GB
1 ⇒ 1]

∣∣ ≤ Pr[QUERY] . (4)

Moreover, observe that in Game G1, B’s view is independent of the bit b chosen by the game: b is only
used in the computation of c∗0 , which in turn is blinded by F(x∗). But since the game aborts (with a
random output) as soon as B queries F(x∗), this means that c∗0 is independently random in B’s view.
This means that also B’s output b′ and b are independent, which implies that the game’s output b′ =? b
is a uniformly random bit in case no abort occurs. But since the game also outputs a random bit upon
an abort, we get that

Pr[GB
1 ⇒ 1] = 1/2. (5)

Taking (3-5) together, we thus get

AdvIND-CPA
PKE`

(B) ≤ Pr[QUERY] ,

and the theorem follows from the next lemma.

Lemma 3.8 In the situation of Game G1, we have

Pr[QUERY] ≤ q1/`
F ·AdvOW-CPA

PKE (A)

for an adversary A (of roughly the same complexity as Game G1).

17

A(pk, ĉ):
01 (m0, m1, st) $← BF

1(pk)
02 c∗0 $← {0, 1}n

03 for i = 1 to ` with i 6= i∗
04 x∗i $← {0, 1}n

05 c∗i $← Enc(pk, x∗i)
06 i∗ $← [`]
07 c∗i∗ := ĉ
08 c∗ := (c∗0 , . . . , c∗`)
09 b′ $← BF

2(pk, c∗, st)
10 if Li∗ empty
11 x = ⊥
12 else
13 x $← Li∗

14 return x

F(x)
15 if ∃r s. th.(x, r) ∈ LF
16 return r
17 r $←R
18 LF := LF ∪ {(x, r)}
19 parse x = (x1, . . . , x`)
20 if ∀i < i∗ : xi = x∗i
21 Li∗ := Li∗ ∪ {xi∗}
22 return r

Figure 17: Adversary A against IND-CPA from B against OW-PCA for Lemma 3.8. Note that the sampling
operation in line 13 refers to the list (not the set) Li∗ (such that multiple F queries with the same xi∗

may raise the probability that that xi∗ is sampled).

Proof. We may assume that Pr[QUERY] > 0 (so that it is possible to condition on QUERY). We
describe adversary A in Figure 17.

To analyze B, let x∗ := (x∗1 , . . . , x∗`), where x∗i∗ is the value encrypted in A’s own challenge ĉ, and,
for i 6= i∗, the x∗i are defined in line 4 in Figure 17. (That is, up to decryption errors, x∗i = Dec(sk, c∗i)
for all i.) Now observe that B’s views in Game G1 and in the simulation inside A are identical until B
queries F(x∗). In this latter case, Game G1 would abort, while A would simply continue the simulation.
In particular, if we let QUERY denote the event that B queries F(x∗), then the probability of QUERY
is the same in Game G1 and in A’s simulation. We can thus show the lemma by bounding the probability
for QUERY in A’s simulation.

To this end, for each i ∈ [`], consider the probability

pi := Pr[xi = x∗i | (x1, . . . , xi−1) = (x∗1 , . . . , x∗i−1) ∧ QUERY]

in an execution with A, where the probability is over a uniform choice of x = (x1, . . . , x`) among the
set of all of F-queries from B. (Note that the condition QUERY guarantees that at least one such x
exists.) Intuitively, pi denotes the probability that a F-query matches the challenge message in the i-th
component when they already match in the first i − 1 components (assuming that QUERY occurs).

It will be helpful to first note a useful property of the pi : namely, we have

∏̀
i=1

pi
(i)= Pr[x = x∗ | QUERY] (ii)= 1/qF , (6)

where (i) follows by using Pr[A | B] ·Pr[B] = Pr[A∧B] for arbitrary events A,B (such that B is possible),
and (ii) follows by definition of QUERY.

Furthermore, we can connect the pi to A’s output as follows. Observe that B’s view in A’s simulation
does not depend on i∗, and thus, that the pi do not change when conditioning on a specific choice of i∗.
Now by construction of A and the list Li∗ , for each fixed choice of i∗, and assuming that QUERY occurs,
we have that x = x∗i∗ is sampled in line 13 with probability pi∗ . Note that in this case, A wins its own

18

OW-CPA game. Formally:

AdvOW-CPA
PKE (A) = Pr[A⇒ x∗i∗] = 1

`

∑̀
i=1

Pr[A⇒ x∗i | i∗ = i]

= Pr[QUERY]
`

∑̀
i=1

Pr[A⇒ x∗i∗ | i∗ = i ∧QUERY] = Pr[QUERY]
`

∑̀
i=1

pi

(∗)
≥ Pr[QUERY] ·

(∏̀
i=1

pi

)1/`
(6)= Pr[QUERY] · 1

q1/`
F

,

where (∗) follows by the inequality between the arithmetic and geometric means. Rearranging terms
yields the lemma.

4 Modular FO Transformation in the QROM
In this section, we will revisit our transformations in the quantum random oracle model. In Section 4.1,
we give a short primer on quantum computation and define the quantum random oracle model (QROM).
In Section 4.2, we will prove that transformation T1 from Figure 4 (Section 3.1) is also secure in the
quantum random oracle model. Next, in Section 4.3 we will introduce QT2, a variant of T2, which has
provable security in the quantum random oracle model. Combining the two above transformations, in
Section 4.4 we provide concrete bounds for the IND-CCA security of QKEM = QFO[PKE,G,H,H′] in the
QROM.

4.1 Quantum Computation

Qbits. For simplicity, we will treat a qbit as a vector |b〉 ∈ C2, i.e., a linear combination |b〉 = α ·|0〉+β ·|1〉
of the two basis states (vectors) |0〉 and |1〉 with the additional requirement to the probability amplitudes
α, β ∈ C that |α|2 + |β|2 = 1. The basis {|0〉, |1〉} is called standard orthonormal computational basis. The
qbit |b〉 is said to be in superposition. Classical bits can be interpreted as quantum bits by considering
(b 7→ 1 · |b〉+ 0 · |1− b〉).
Quantum Registers. We will treat a quantum register as a collection of multiple qbits, i.e. a linear
combination

∑
b1,··· ,bn∈{0,1} αb1···bn · |b1 · · · bn〉, where αb1,··· ,bN ∈ Cn, with the additional restriction that∑

b1,··· ,bn∈{0,1} |αb1···bn |2 = 1. As in the one-dimensional case, we call the basis {|b1 · · · bn〉}b1,··· ,bn∈{0,1}
the standard orthonormal computational basis.
Measurements. Qbits can be measured with respect to a basis. In this paper, we will only consider
measurements in the standard orthonormal computational basis, and denote this measurement by
Measure(·), where the outcome of measuring a single qbit |b〉 = α · |0〉+β · |1〉 will be |0〉 with probability
|α|2 and |1〉 with probability |β|2, and the outcome of measuring a qbit register

∑
b1,··· ,bn∈{0,1}

αb1···bn ·

|b1 · · · bn〉 will be |b1 · · · bn〉 with probability |αb1···bn |2. Note that the amplitudes collapse during a
measurement, this means that by measuring α · |0〉 + β · |1〉, α and β are switched to one of the
combinations in {±(1, 0), ±(0, 1)}. Likewise, in the n-dimensional case, all amplitudes are switched to 0
except for the one that belongs to the measurement outcome and which will be switched to 1.
Quantum oracles and quantum Adversaries. Following [BDF+11, BBC+98], we view a quantum
oracle as a mapping

|x〉|y〉 7→ |x〉|y ⊕O(x)〉 ,
where O : {0, 1}n → {0, 1}m, x ∈ {0, 1}n and y ∈ {0, 1}m, and model quantum adversaries A with access
to O by the sequence U ◦O, where U is a unitary operation. We write A|O〉 to indicate that the oracles
are quantum-accessible (contrary to oracles which can only process classical bits).
Quantum random oracle model. We consider security games in the quantum random oracle model
(QROM) as their counterparts in the classical random oracle model, with the difference that we consider
quantum adversaries that are given quantum access to the random oracles involved, and classical access

19

to all other oracles (e.g., plaintext checking or decapsulation oracles). Zhandry [Zha12] proved that
for any quantum algorithm A|f 〉, issuing at most q quantum queries to f , cannot distinguish between a
random function f : {0, 1}m → {0, 1}n or a random 2q-wise independent function. It allows us to view
quantum random oracles as polynomials of sufficient large degree. That is, we define a quantum random
oracle |H〉 as an oracle evaluating a random polynomial of degree 2q over the finite field F2n .
Oneway to Hiding. To a quantum oracle |H〉 and an algorithm A (possibly with access to other oracles)
we associate the following extractor algorithm EXT[A, |H〉] that returns a measurement x ′ of a randomly
chosen query to |H〉.

EXT[A, |H〉](inp)
01 i $← [qH]
02 Run A|H〉(inp) until the ith query |x̂〉 to |H〉
03 if i > number of queries to |H〉
04 return ⊥
05 else
06 return x ′ := Measure(|x̂〉)

Figure 18: Extractor algorithm EXT[A, |H〉](inp) for OW2H.

The following statement is an adaption of OW2H from [Unr14] and will be used heavily during our
security proofs.

Lemma 4.1 (Algorithmic Oneway to hiding (AOW2H)) Let |H〉 : {0, 1}n → {0, 1}m be a quantum
random oracle, and let A be a quantum algorithm issuing at most qH queries to |H〉 that, on input
x ∈ {0, 1}n, y ∈ {0, 1}m outputs either 0 or 1. Then, for all (probabilistic) algorithms F that input
bit-stings in {0, 1}n+m (and do not make any hash queries to |H〉),∣∣∣Pr

[
1← A|H〉(inp) | x $← {0, 1}n; inp ← F(x,H(x))

]
− Pr

[
1← A|H〉(inp) | (x, y) $← {0, 1}n+m; inp ← F(x, y)

]∣∣∣
≤ 2qH ·

√
Pr[x ← EXT[A, |H〉](inp) | (x, y) $← {0, 1}n+m; inp ← F(x, y)] .

4.2 T1: from OW-CPA to OW-PCA Security in the QROM
Recall transformation T1 from Figure 4 of Section 3.1. The following theorem (whose proof is loosely
based on [TU16]) establishes that IND-PCA security of PKE′ reduces to the OW-CPA security of PKE, in
the quantum random oracle model.

Theorem 4.2 (PKE OW-CPA QROM⇒ PKE′ OW-PCA). Assume PKE to be δ-correct. For any OW-PCA
quantum adversary B that issues at most qG queries to the quantum random oracle |G〉 and qP (classical)
queries to the plaintext checking oracle Pco, there exists an OW-CPA quantum adversary A such that

AdvOW-PCA
PKE′ (B) ≤ qP · δ + (1 + 2qG) ·

√
AdvOW-CPA

PKE (A) ,

and the running time of A is about that of B.

Proof. Let B be an adversary against the OW-PCA security of PKE′, issuing at most qG queries to |G〉
and at most qP queries to Pco. Consider the games given in Figure 19, where G is modeled as a random
2qG-wise independent hash function. Except for G, games G0 and G1 are the same as in the proof of the
classical random oracle (Theorem 3.1), games G2 and H are different.
Game G0. Since game G0 is the original OW-PCA game,

Pr[GB
0 ⇒ 1] = AdvOW-PCA

PKE′ (B) .

Game G1. In game G1 the plaintext checking oracle is replaced with a simulation that doesn’t make
use of the secret key anymore. With the same argument we used to show Equation (1) in the proof of
Theorem 3.1,

|Pr[GB
1 ⇒ 1]− Pr[GB

0 ⇒ 1]| ≤ qP · δ .

20

GAME G0-G2, H
01 (pk, sk)← Gen
02 m∗ $←M
03 r∗ := G(m∗) //G0-G1
04 r∗ $←R //G2, H
05 c∗ := Enc(pk, m∗; r∗)
06 m′ ← B|G〉,Pco(pk, c∗) //G1-G2
07 m′ ← EXT[BPco, |G〉](pk, c∗) //H
08 return m′ =? m∗

Pco(m ∈M, c)
09 m′ := Dec(sk, c) //G0
10 if m′ = m and Enc(pk, m′; G(m′)) = c //G0
11 return 1 //G0
12 else return 0 //G0
13 return Enc(pk, m; G(m)) =? c //G1, G2, H

Figure 19: Games G0,G1,G2,H for the proof of Theorem 4.2

C(pk, c∗)
01 m′ ← B|G〉,Pco(pk, c∗)
02 return m′

D(pk, c∗)
03 m′ ← EXT[BPco, |G〉](pk, c∗)
04 return m′

Figure 20: Adversaries C (left) and D (right) for the proof of Theorem 4.2. Oracle Pco is defined as in
game G2 of Figure 19.

Game G2. In game G2, we replace r∗ := G(m∗) with uniform randomness r∗ in line 03. We apply
Lemma 4.1 (AOW2H) to x := m∗, y := r∗, and algorithm F, where F(m∗, r∗) first computes (pk, sk)← Gen,
then c∗ := Enc(pk,m∗; r∗), and outputs inp := (pk, c∗). We obtain

|Pr[GB
2 ⇒ 1]− Pr[GB

1 ⇒ 1]| ≤ 2 · qG ·
√

Pr[H B ⇒ 1] ,

where the extractor algorithm EXT of game H is defined in Figure 18.
Now that r∗ is uniformly random we trivially construct an adversary C in Figure 20 against the

OW-CPA security of the original encryption scheme PKE simulating game G2 for B that outputs m′ = m∗
if B wins in game G2.

Pr[GB
2 ⇒ 1] = AdvOW-CPA

PKE (C) ≤
√

AdvOW-CPA
PKE (C) .

Finally, we construct another trivial adversary D in Figure 20 against the OW-CPA security of the
original encryption scheme PKE simulating game H for B with Advantage

Pr[GB
3 ⇒ 1] = AdvOW-CPA

PKE (D) .

Collecting the probabilities and combining adversaries C and D into one single adversary A proves the
theorem.

4.3 QT2: from OW-PCA to IND-CCA Security in the QROM
QT2 transforms an OW-PCA secure public-key encryption scheme into an IND-CCA secure key encapsula-
tion mechanism.
The Construction. To a public-key encryption scheme PKE′ = (Gen′,Enc′,Dec′) with message space
M = {0, 1}n, and hash functions H : {0, 1}∗ → {0, 1}n and H′ : {0, 1}n → {0, 1}n, we associate
QKEM = QT2[PKE′,H,H′]. The algorithms of QKEM = (QGen := Gen′,QEncaps,QDecaps) are defined
in Figure 21.
Security. The following theorem (whose proof is again loosely based on [TU16]) establishes that
IND-CCA security of KEM reduces to the OW-PCA security of PKE′, in the quantum random oracle model.

Theorem 4.3 (PKE′ OW-PCA QROM⇒ QKEM IND-CCA). If PKE′ is δ-correct, so is QKEM. For any
IND-CCA quantum adversary B issuing at most qD (classical) queries to the decapsulation oracle QDecaps,

21

QEncaps(pk)
01 m $←M
02 c ← Enc′(pk, m)
03 d := H′(m)
04 K := H(m)
05 return (K , c, d)

QDecaps(sk, c, d)
06 m′ := Dec′(sk, c)
07 if m′ = ⊥ or H′(m′) 6= d
08 return ⊥
09 else return K := H(m′)

Figure 21: IND-CCA-secure key encapsulation mechanism QKEM = QT2[PKE′,H,H′].

at most qH queries to the quantum random oracle |H〉 and at most qH′ queries to the quantum random
oracle |H′〉, there exists an OW-PCA quantum adversary A issuing 2qDqH′ queries to oracle Pco such that

AdvIND-CCA
QKEM (B) ≤ (2qH′ + qH) ·

√
AdvOW-PCA

PKE′ (A) ,

and the running time of A is about that of B.

By convention, the number of random oracle queries of B includes the ones B makes explicitly to the
random oracle, and the ones B makes implicitly via the decryption oracles.

Proof. Let B be an adversary against the IND-CCA security of QKEM, issuing at most qD queries to
QDecaps, at most qH queries to |H〉 and at most qH′ queries to |H′〉. Consider the games G0,b,G1,b,H0,b,H1,b
(b ∈ {0, 1}) given in Figure 22.

GAMES G0,b, G1,b, H0,b, H1,b
01 (pk, sk)← Gen′
02 m∗ $← {0, 1}n ; c∗ ← Enc′(pk, m∗)
03 K∗0 := H(m∗); K∗1 $← {0, 1}n

04 d∗ := H′(m∗); K∗ := K∗b //G0,b
05 d∗ $← {0, 1}n ; K∗ $← {0, 1}n //G1,b, H0,b, H1,b

06 return b′ ← BQDecaps,|H〉,|H′〉(pk, (c∗, d∗), K∗) //G0,b-G1,b
07 m′ $← EXT[BQDecaps, |H× H′〉](pk, (c∗, d∗), K∗) //H0,0,H1,0
08 m′ $← EXT[BQDecaps,|H〉, |H′〉](pk, (c∗, d∗), K∗) //H0,1,H1,1
09 return m′ =? m∗ //H0,b,H1,b

QDecaps((c, d) 6= (c∗, d∗)) //G0,b, G1,b, H0,b

10 m′ := Dec′(sk, c)
11 if m′ 6= ⊥ and H′(m′) = d
12 return K := H(m′)
13 else return ⊥

QDecaps((c, d) 6= (c∗, d∗)) //H1,b

14 R := Roots(H′(X)− d)
15 if ∃ m ∈ R s.t. Dec′(sk, c) = m
16 return K := H(m).
17 else return ⊥

Figure 22: Games G0,b, G1,b, H0,b, H1,b (b ∈ {0, 1}) for the proof of Theorem 4.3.

Games G0,b. We use the IND-CPA game in its equivalent left-or-right form:

AdvIND-CCA
QKEM (B) = 1

2 ·
∣∣∣Pr
[
IND-CCAA ⇒ 0 | b = 0

]
− Pr

[
IND-CCAA ⇒ 1 | b = 1

]∣∣∣
= 1

2
∣∣Pr[GB

0,0 ⇒ 1]− Pr[GB
0,1 ⇒ 1]

∣∣ .
Games G1,b. In games G1,b, we replace (d∗ := H′(m∗),K∗ := K∗b) with uniform randomness (d∗,K∗) in
line 05. Since G1,0 = G1,1, we obtain

|Pr[GB
0,0 ⇒ 1]− Pr[GB

0,1 ⇒ 1]| ≤ |Pr[GB
0,0 ⇒ 1]− Pr[GB

1,0 ⇒ 1]|+ |Pr[GB
0,1 ⇒ 1]− Pr[GB

1,1 ⇒ 1]|

We apply Lemma 4.1 (AOW2H) to x := m∗, and y = (K∗, d∗) for b = 0 and y = d∗ for b = 1, and
algorithm F, where F(m∗, r∗) first computes (pk, sk)← Gen, then c∗ := Enc(pk,m∗; r∗), and additionally
K∗ $← {0, 1}n for b = 1, and outputs inp = (pk, c∗, d∗,K∗). We obtain

|Pr
[
GB

0,0 ⇒ 1
]
− Pr[GB

1,0 ⇒ 1]| ≤ 2(qH′ + qH) ·
√

Pr[H B
0,0 ⇒ 1]

|Pr
[
GB

0,1 ⇒ 1
]
− Pr[GB

1,1 ⇒ 1]| ≤ 2qH′ ·
√

Pr[H B
0,1 ⇒ 1] .

22

APco
b (pk, c∗)

01 d∗ $← {0, 1}n ; K∗ $← {0, 1}n

02 m′ $← EXT[BQDecaps|H× H′〉](pk, c∗, d∗, K∗) //b = 0
03 m′ $← EXT[BQDecaps,|H〉, |H′〉](pk, c∗, d∗, K∗) //b = 1
04 return m′

Figure 23: Adversaries Ab (b ∈ {0, 1}) for the proof of Theorem 4.3. Oracle QDecaps(c, d) is defined as
in game H1,b of Figure 22.

Game H1,b. In games H1,b, the oracle QDecaps is changed such that it does not make use of the secret
key any longer (except for line 15 by testing if Dec′(sk, c) = m for given c and messages m). Recall that
H′ is a random polynomial of degree 2qH′ over F2n . Therefore, given that (c, d) is a valid encapsulation
(i.e., m′ ∈M and d = H′(m′), where m′ := Dec′(sk, c)), m′ lies within the roots of H′(X)− d. In order
to show that QDecaps returns the same output in games H1,b and H0,b for every query (c, d) 6= (c∗, d∗),
consider the following cases, where we define m′ := Dec′(sk, c).

• Case 1: QDecaps(c, d) returns ⊥ in Game H1,b, meaning that m′ 6∈ Roots(H′(X)− d). That latter
can only happen if H′(m′) 6= d or m′ = ⊥, which is exactly the condition that QDecaps(c, d)
returns ⊥ in Game H0,b.

• Case 2: QDecaps(c, d) does not return ⊥ in Game H1,b, meaning that m′ ∈ Roots(H′(X) − d).
Consequently, H′(m′) = d and QDecaps(c, d) returns K = H(m′) in Games H1,b. The latter is
again exactly the condition that QDecaps(c, d) returns K = H(m′) in Game H0,b.

It is easy to verify that the equivalence of QDecaps in the two games follows by negation and combining
both cases. We have just shown

Pr[H B
1,b ⇒ 1] = Pr[H B

0,b ⇒ 1] .

For b ∈ {0, 1}, we trivial construct adversaries Ab against the OW-PCA security of PKE′ simulating
games H1,b for B as in Figure 23.

Hence,
Pr[H B

1,b ⇒ 1] = AdvOW-PCA
PKE′ (Ab) .

Note that both adversaries issue at most 2qDqH′ Pco-queries: For each query of B to QDecaps on (c, d),
both A0 and A1 compute the set Roots(H′(X)− d) of complex roots, which has 2qH′ − 1 elements since
H′(X)− d is a polynomial of degree 2qH′ − 1. In the worst case, they need to check for every element m′
of Roots(H′(X)− d) whether Pco(m′, c) = 1. Collecting the probabilities and folding adversaries A0 and
A1 into one single adversary A proves the theorem.

4.4 The resulting KEM
For completeness, we combine transformations T1 and QT2 from the previous sections to obtain QFO =
T1 ◦QT2. To a public-key encryption scheme PKE = (Gen,Enc,Dec) with message spaceM = {0, 1}n and
randomness space R, and hash functions G :M→R, H : {0, 1}∗ → {0, 1}n and H′ : {0, 1}n → {0, 1}n,
we associate QKEM = QFO[PKE,G,H,H′] := QT2[T1[PKE,G],H,H′]. The algorithms of QKEM =
(Gen,QEncaps,QDecaps) are given in Figure 24. The following corollary is obtained by combining

QEncaps(pk)
01 m $←M
02 c := Enc(pk, m; G(m))
03 K := H(m)
04 d := H′(m)
05 return (K , c, d)

QDecaps(sk, c, d)
06 m′ := Dec(sk, c)
07 if c = Enc(pk, m′, G(m′)) and H′(m′) = d
08 return K := H(m′)
09 else return ⊥

Figure 24: IND-CCA secure QKEM = QFO[PKE,G,H,H′] obtained from PKE.

Theorems 4.2 and 4.3.

23

Corollary 4.4 If PKE is δ-correct, so is QKEM = QFO[PKE,G,H,H′]. For any quantum adversary B
issuing at most qD (classical) queries to the decapsulation oracle QDecaps, and at most qG (qH, qH′)
queries to the quantum random oracles |G〉 (|H〉, |H′〉), there exists a quantum adversary A such that
AdvIND-CCA

QKEM (B)

≤ 4(qH + qH′) ·
√

qDqH′ · δ + qG ·
√

AdvOW-CPA
PKE (A) ,

and the running time of A is about that of B.

References
[ABR01] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The oracle Diffie-Hellman assumptions

and an analysis of DHIES. In David Naccache, editor, CT-RSA 2001, volume 2020 of LNCS,
pages 143–158. Springer, Heidelberg, April 2001.

[AOP+17] Martin R. Albrecht, Emmanuela Orsini, Kenneth G. Paterson, Guy Peer, and Nigel P. Smart.
Tightly secure ring-lwe based key encapsulation with short ciphertexts. Cryptology ePrint
Archive, Report 2017/354, 2017. http://eprint.iacr.org/2017/354.

[BBC+98] Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de Wolf. Quantum
lower bounds by polynomials. In 39th FOCS, pages 352–361. IEEE Computer Society Press,
November 1998.

[BDF+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and Mark
Zhandry. Random oracles in a quantum world. In Dong Hoon Lee and Xiaoyun Wang, editors,
ASIACRYPT 2011, volume 7073 of LNCS, pages 41–69. Springer, Heidelberg, December
2011.

[BLK00] Joonsang Baek, Byoungcheon Lee, and Kwangjo Kim. Secure length-saving ElGamal
encryption under the computational Diffie-Hellman assumption. In Ed Dawson, Andrew
Clark, and Colin Boyd, editors, ACISP 00, volume 1841 of LNCS, pages 49–58. Springer,
Heidelberg, July 2000.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In V. Ashby, editor, ACM CCS 93, pages 62–73. ACM Press, November
1993.

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for
code-based game-playing proofs. In Serge Vaudenay, editor, EUROCRYPT 2006, volume
4004 of LNCS, pages 409–426. Springer, Heidelberg, May / June 2006.

[CHJ+02] Jean-Sébastien Coron, Helena Handschuh, Marc Joye, Pascal Paillier, David Pointcheval, and
Christophe Tymen. GEM: A generic chosen-ciphertext secure encryption method. In Bart
Preneel, editor, CT-RSA 2002, volume 2271 of LNCS, pages 263–276. Springer, Heidelberg,
February 2002.

[CKS08] David Cash, Eike Kiltz, and Victor Shoup. The twin Diffie-Hellman problem and applications.
In Nigel P. Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 127–145. Springer,
Heidelberg, April 2008.

[CKS09] David Cash, Eike Kiltz, and Victor Shoup. The twin Diffie-Hellman problem and applications.
Journal of Cryptology, 22(4):470–504, October 2009.

[CS03] Ronald Cramer and Victor Shoup. Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Computing,
33(1):167–226, 2003.

[Den03] Alexander W. Dent. A designer’s guide to KEMs. In Kenneth G. Paterson, editor, 9th IMA
International Conference on Cryptography and Coding, volume 2898 of LNCS, pages 133–151.
Springer, Heidelberg, December 2003.

24

http://eprint.iacr.org/2017/354

[DNR04] Cynthia Dwork, Moni Naor, and Omer Reingold. Immunizing encryption schemes from
decryption errors. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004,
volume 3027 of LNCS, pages 342–360. Springer, Heidelberg, May 2004.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. In Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages
537–554. Springer, Heidelberg, August 1999.

[FO13] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. Journal of Cryptology, 26(1):80–101, January 2013.

[GMMV05] David Galindo, Sebastià Martín, Paz Morillo, and Jorge L. Villar. Fujisaki-okamoto hybrid
encryption revisited. Int. J. Inf. Sec., 4(4):228–241, 2005.

[KL07] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. Chapman and
Hall/CRC Press, 2007.

[KML03] Eike Kiltz and John Malone-Lee. A general construction of IND-CCA2 secure public
key encryption. In Kenneth G. Paterson, editor, 9th IMA International Conference on
Cryptography and Coding, volume 2898 of LNCS, pages 152–166. Springer, Heidelberg,
December 2003.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with
errors over rings. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages
1–23. Springer, Heidelberg, May 2010.

[LPR13] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-LWE cryptography.
In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of
LNCS, pages 35–54. Springer, Heidelberg, May 2013.

[NIS17] NIST. National institute for standards and technology. postquantum crypto project, 2017.
http://csrc.nist.gov/groups/ST/post-quantum-crypto/.

[OP01] Tatsuaki Okamoto and David Pointcheval. REACT: Rapid Enhanced-security Asymmetric
Cryptosystem Transform. In David Naccache, editor, CT-RSA 2001, volume 2020 of LNCS,
pages 159–175. Springer, Heidelberg, April 2001.

[Pei14] Chris Peikert. Lattice cryptography for the internet. Cryptology ePrint Archive, Report
2014/070, 2014. http://eprint.iacr.org/2014/070.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Harold N. Gabow and Ronald Fagin, editors, 37th ACM STOC, pages 84–93. ACM Press,
May 2005.

[RS92] Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof of knowledge
and chosen ciphertext attack. In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of
LNCS, pages 433–444. Springer, Heidelberg, August 1992.

[Sho04a] Victor Shoup. ISO 18033-2: An emerging standard for public-key encryption. http:
//shoup.net/iso/std6.pdf, December 2004. Final Committee Draft.

[Sho04b] Victor Shoup. Sequences of games: a tool for taming complexity in security proofs. Cryptology
ePrint Archive, Report 2004/332, 2004. http://eprint.iacr.org/2004/332.

[TU16] Ehsan Ebrahimi Targhi and Dominique Unruh. Post-quantum security of the fujisaki-okamoto
and OAEP transforms. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part II,
volume 9986 of LNCS, pages 192–216. Springer, Heidelberg, October / November 2016.

[Unr14] Dominique Unruh. Revocable quantum timed-release encryption. In Phong Q. Nguyen
and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 129–146.
Springer, Heidelberg, May 2014.

25

http://csrc.nist.gov/groups/ST/post-quantum-crypto/
http://eprint.iacr.org/2014/070
http://shoup.net/iso/std6.pdf
http://shoup.net/iso/std6.pdf
http://eprint.iacr.org/2004/332

[Unr15] Dominique Unruh. Non-interactive zero-knowledge proofs in the quantum random oracle
model. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume
9057 of LNCS, pages 755–784. Springer, Heidelberg, April 2015.

[Zha12] Mark Zhandry. Secure identity-based encryption in the quantum random oracle model. In
Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS,
pages 758–775. Springer, Heidelberg, August 2012.

Acknowledgments
We would like to thank Andreas Hülsing and Dominique Unruh for interesting discussions on the
FO transformation. We are also grateful to Krzysztof Pietrzak and Victor Shoup for discussions on
Section 3.5.

26

	Introduction
	Our contribution
	Other related work

	Preliminaries
	Public-Key Encryption
	Key Encapsulation

	Modular FO Transformation
	T1: from OW-CPA to OW-PCA/PVCA Security
	T2: from OW-PCA to IND-CCA Security
	T2: from OW-PVCA to IND-CCA Security
	The resulting KEMs
	T0: from OW-CPA to IND-CPA Security, Tightly

	Modular FO Transformation in the QROM
	Quantum Computation
	T1: from OW-CPA to OW-PCA Security in the QROM
	QT2: from OW-PCA to IND-CCA Security in the QROM
	The resulting KEM

