
CacheZoom: How SGX Amplifies
The Power of Cache Attacks

Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth

Worcester Polytechnic Institute, Worcester, MA, USA
{amoghimi,girazoki,teisenbarth}@wpi.edu

Abstract. In modern computing environments, hardware resources are
commonly shared, and parallel computation is widely used. Parallel tasks
can cause privacy and security problems if proper isolation is not en-
forced. Intel proposed SGX to create a trusted execution environment
within the processor. SGX relies on the hardware, and claims runtime
protection even if the OS and other software components are malicious.
However, SGX disregards side-channel attacks. We introduce a powerful
cache side-channel attack that provides system adversaries a high resolu-
tion channel. Our attack tool named CacheZoom is able to virtually track
all memory accesses of SGX enclaves with high spatial and temporal pre-
cision. As proof of concept, we demonstrate AES key recovery attacks
on commonly used implementations including those that were believed
to be resistant in previous scenarios. Our results show that SGX can-
not protect critical data sensitive computations, and efficient AES key
recovery is possible in a practical environment. In contrast to previous
works which require hundreds of measurements, this is the first cache
side-channel attack on a real system that can recover AES keys with a
minimal number of measurements. We can successfully recover AES keys
from T-Table based implementations with as few as ten measurements.

1 Motivation

In the parallel computing environment, processes with various trust and critical-
ity levels are allowed to run concurrently and share system resources. Prolifera-
tion of cloud computing technology elevated these phenomena to the next level.
Cloud computers running many different services authored by various providers
process user information on the same hardware. Traditionally, the operating
system (OS) provides security and privacy services. In cloud computing, cloud
providers and the hypervisor also become part of the Trusted Computing Base
(TCB). Due to the high complexity and various attack surfaces in modern com-
puting systems, keeping an entire system secure is usually unrealistic [19,33].

One way to reduce the TCB is to outsource security-critical services to Secure
Elements (SE), a separate trusted hardware which usually undergoes rigorous
auditing. Trusted Platform Modules (TPM), for example, provide services such
as cryptography, secure boot, sealing data and attestation beyond the authority
of the OS [39]. However, SEs come with their own drawbacks: they are static



components and connected to the CPU over an untrusted bus. Trusted Execution
Environments (TEE) are an alternative, which provide similar services within
the CPU. A TEE is an isolated environment to run software with a higher
trust level than the OS. The software running inside a TEE has full access
to the system resources while it is protected from other applications and the
OS. Examples include ARM TrustZone [4] and Intel Software Guard eXtensions
(SGX) [29]. Intel SGX creates a TEE on an untrusted system by only trusting the
hardware in which the code is executed. Trusted code is secured in an enclave,
which is encrypted and authenticated by the hardware. The CPU decrypts and
verifies enclave code and data as it is moved into the cache. That is, enclaves are
logically protected from malicious applications, the OS, and physical adversaries
monitoring system buses. However, Intel SGX is not protected against attacks
that utilize hardware resources as a side channel [28]. And indeed, first proposed
works showing that microarchitectural side channels can be exploited include
attacks using page table faults [52] and the branch prediction unit [34].

Caches have become a very popular side channel in many scenarios, including
mobile [35] and cloud environments [26]. Reasons include that Last Level Cache
(LCC) attacks perform well in cross-core scenarios on Intel machines. Another
advantage of cache attacks are the high spatial resolution they provide. This
high spatial resolution, combined with a good temporal resolution, have enabled
attacks on major asymmetric implementations, unless they are optimized for
constant memory accesses. For symmetric cryptography, the scenario is more
challenging. A software AES implementation can be executed in a few hundred
cycles, while a Prime+Probe cycle on the LLC takes about 2000 cycles to mon-
itor a single set. To avoid the undersampling, synchronized attacks first prime,
trigger a single encryption and then probe, yielding at best one observation per
encryption [37]. Higher resolution is only possible in OS adversarial scenarios.

1.1 Our Contribution

We demonstrate not only that Intel SGX is vulnerable to cache attacks, but show
that with SGX, the quality of information retrieved is significantly improved. The
improved resolution enables attacks that are infeasible in previous scenarios, e.g.,
cloud environments. We utilize all the capabilities that SGX assumes an attacker
has, i.e., full access to OS resources. We construct a tool1 named CacheZoom
that is able to interrupt the victim every few memory accesses, thereby collecting
high-resolution information about all memory accesses that the target enclave
makes by applying Prime+Probe attack in the L1 cache. The usage of core-private
resources does not reduce the applicability of the attack, as the compromised
OS schedules both victim and attacker in the same core.

While tracking memory accesses of enclave with high temporal and spatial
resolution has many adversarial scenarios, we demonstrate the power of this
side channel by attacking several AES implementations. Further, we show that

1 CacheZoom source and data sets: https://github.com/vernamlab/CacheZoom

2



adopted countermeasures in popular cryptographic libraries, like cache prefetch-
ing and implementations with small memory footprint, not only do not prevent
attacks, but can facilitate attacker’s observation. In short, this work:

– Presents a powerful and low-noise side channel implemented through the
L1 cache. We exploit several capabilities corresponding to the compromised
OS. This side channel can be applied against TEEs to recover fine grained
information about memory accesses, which often carry sensitive data.

– Demonstrates the strength of our side channel by recovering AES keys with
fewer traces than ever in previous attacks, and further, by attacking imple-
mentations considered resistant against cache attacks.

– Shows that some of the countermeasures that were supposed to protect AES
implementations, e.g. prefetching and S-box implementations, are not effec-
tive in the context of SGX. In fact, prefetching can even ease the retrieval
of memory traces.

2 Background

This section covers topics that help understand the side channel used to re-
trieve sensitive information. We discuss the basic functionality of Intel SGX and
possible microarchitectural attacks that can be deployed against it.

2.1 How Intel SGX Works

Intel introduced SGX, a new subset of hardware instructions that allows execu-
tion of software inside isolated environments called enclaves with the release of
Skylake generation. Enclaves are isolated from other components running on the
same hardware, including OSs. SGX has recently gained attention of the security
community and various SGX-based solutions have been proposed [5, 7, 44].

Enclave modules can be shipped as part of an untrusted application and can
be utilized by untrusted components of the application. The untrusted compo-
nent interacts with the system software, which dedicates specific trusted memory
regions for the enclave. After that, the authenticity, integrity and confidentiality
of enclave are provided and measured by the hardware. Any untrusted code base,
including the OS, has no control over the trusted memory region. Untrusted
applications can only use specific instructions to call the trusted component
through predefined interfaces. This design helps developers to benefit from the
hardware isolation for security critical applications.

SGX is designed to protect enclaves from malicious users that gain root access
to an OS. Memory pages belonging to an enclave are encrypted in DRAM and
protected from a malicious OS snooping on them. Pages are only decrypted when
they are processed by the CPU, e.g., when they are moved to the caches. In short,
SGX assumes only the hardware to be trusted; any other agent is considered
susceptible of being malicious. Upon enclave creation, virtual memory pages
that can only map to a protected DRAM region (called the Enclave Page Cache)

3



are reserved. The OS is in charge of the memory page mapping; however, SGX
detects any malicious mapping performed by it. In fact, any malicious action
from the OS will be stored by SGX and is verifiable by third party agents.

2.2 Microarchitectural Attacks in SGX

Despite all the protection that SGX offers, the documentation specifically claims
that side channel attacks were not considered under the threat scope of its design.
In fact, although dealing with encrypted memory pages, the cache utilization is
performed similar to decrypted mode and concurrently to any other process in
the system. This means that the hardware resources can be utilized as side chan-
nels by both malicious enclaves and OSs. While enclave-to-enclave attacks have
several similarities to cross-VM attacks, malicious OS-to-enclave attacks can give
attackers a new capability not observed before: virtually unlimited temporal res-
olution. The OS can interrupt the execution of enclave processes after every small
number of memory accesses to check the hardware utilization, as just the TLB
(but no other hardware resources) is flushed during context switches. Further,
while cross-core attacks gained huge popularity in others scenarios for not re-
quiring core co-residency, a compromised OS can assign an enclave any affinity
of its choice, and therefore use any core-private resource. Thus, while SGX can
prevent untrusted software to perform Direct Memory Access (DMA) attacks, it
also gives almost full resolution for exploitation by hardware side channels. For
instance, an attacker can exploit page faults to learn about the memory page
usage of the enclave. Further she can create contention and snoop on the utiliza-
tion of any core-private and core-shared resource, including but not limited to
Branch Prediction Units (BPUs), L1 caches or LLCs [1,36,41]. Further, although
applicable in other scenarios [10], enclave execution mode does not update the
Hardware Performance Counters, and these can not provide (at least directly)
information about the isolated process.

From the aforementioned resources, cache gives the most information. Unlike
page faults, which at most will give a granularity of 4 kB, cache hits/misses can
give 64 byte utilization granularity. In addition, while other hardware resources
like Branch Prediction Units (BPU) can only extract branch dependent execu-
tion flow information, cache attacks can extract information from any memory
access. Although most prior work targets the LLC for being shared across cores,
this is not necessary in SGX scenarios, local caches are as applicable as LLC
attacks. Further, because caches are not flushed when the enclave execution is
interrupted, the OS can gain almost unlimited timing resolution.

2.3 The Prime+Probe Attack

The Prime+Probe attack was first introduced as a spy process capable of at-
tacking core-private caches [41]. It was later expanded to recover RSA keys [2],
keystrokes and ElGamal keys across VMs [43,55]. As our attack is carried out in
the L1 caches, we do not face some hurdles (e.g. slices) that an attacker would
have to overcome. The Prime+Probe attack stages include:

4



– Prime: in which the attacker fills the entire cache or a small portion of it
with her own dummy data.

– Victim Access: in which the attacker waits for the victim to make accesses
to particular sets in the cache, hoping to see key dependent cache utilization.
Note that, in any case, victim accesses to primed sets will evict at least one
of the attackers dummy blocks from the set.

– Probe: in which the attacker performs a per-set timed re-access of the pre-
viously primed data. If the attacker observes a high probe time, she deduces
that the cache set was utilized by the victim. On the contrary, if the at-
tacker observes low access times, she deduces that all the previously primed
memory blocks still reside in the cache, i.e., it was not utilized by the victim.

Thus, the Prime+Probe methodology allows an attacker to guess the cache
sets utilized by the victim. This information can be used to mount a full key
recovery attack if the algorithm has key-dependent memory accesses translated
into different cache set accesses.

3 Related Work

Timing side-channel attacks have been studied for many years. On a local
area network, the timing of the decryption operation on a web server could reveal
information about private keys stored on the server [15]. Timing attacks are
capable of breaking important cryptography primitives, such as exponentiation
and factorization operations of Diffie-Hellman and RSA [32]. More specifically,
microarchitectural timing side channels have been explored extensively
[21]. The first attacks proposed were based on the timing difference between
local core-private cache misses and hits. Generally, cache timing attacks are
based on the fact that a spy process can measure the differences in memory
access times. These attacks are proposed to recover cryptography keys of ciphers
such as DES [50], AES [11] and RSA [42]. Although there exist solutions to
make cryptographic implementation resistant to cache attacks [13, 41], most of
these solutions result in worse performance. Further, cache attacks are capable
of extracting information from non-cryptographic applications [56].

More recent proposals applied cache side channels on shared LLC, a
shared resource among all the cores. This is important as, compared to previ-
ous core-private attacks, LLC attacks are applicable even when attacker and
victim reside in different cores. The Flush+Reload [8, 53] attack on LLC is
only applicable to systems with shared memory. These side channels can be im-
proved by performance degradation [3,24]. Flush+Reload can be applied across
VMs [31], in Platform as a service (PaaS) clouds [56] and on smartphones [35].
The Flush+Reload is constrained by the memory deduplication requirement.
On the other hand, Prime+Probe [36], shows that in contrast to the previ-
ous core-private cache side channels and the Flush+Reload attack, practical
attacks can be performed without memory deduplication or a core co-residency
requirement. The Prime+Probe attack can be implemented from virtually any
cloud virtual machines running on the same hardware. The attacker can identify

5



where a particular VM is located on the cloud infrastructure such as Amazon
EC2, create VMs until a co-located one is found [43, 54] and perform cross-VM
Prime+Probe attacks [30]. Prime+Probe can also be mounted from a browser
using JavaScript [40] and as a malicious smartphone application [35]. In addi-
tion to caches, other microarchitectural components such as Branch Target
Buffers (BTB) are vulnerable to side channels [1,34]. BTB can be exploited to
determine if a branch has been taken by a target process or not, e.g. to bypass
Address Space Layout Randomization (ASLR) [20].

Security of Intel SGX has been analyzed based on the available public
resources [17]. A side channel resistant TCB is proposed in the literature [18].
However, the proposed solution requires significant changes to the design of the
processor. Similar to Intel SGX, ARM TrustZone is vulnerable to cache side-
channel attacks [35]. Control-Channel attacks [52] have been proposed using the
page-fault mechanism. An adversarial OS can introduce page faults to a tar-
get application and, based on the timing of the accessed page, the execution
flow of a target can be inferred at page size granularity. Page fault side chan-
nels are effective on SGX and can be defeated using software solutions [48] or
by exploiting Intel Transactional Synchronization Extensions (TSX) [47]. Race
conditions between two running threads inside an enclave can be exploited [51].
SGX-Shield [46] proposes protection by adding ASLR protection and introduces
software diversity inside an enclave. Several Cache attacks on SGX have recently
and concurrently been shown, e.g. on AES [22] and RSA [12]. While those works
also exploit core co-location and L1 cache leakage, they fall short of exposing
the full temporal and spatial resolution and thus focus on known vulnerable im-
plementations and attack styles. An enclave-to-enclave attack through LLC in a
different adversarial scenario [45], as well as methods to detect privileged side-
channel attacks from within an enclave [16] have concurrently been proposed.

4 Creating a High-resolution Side Channel on Intel SGX

We explain how to establish a high resolution channel on a compromised OS to
monitor an SGX enclave. We first describe attacker capabilities, then our main
design goals and how our malicious kernel driver is implemented. We finally test
the resolution of our proposed side channel.

4.1 Attacker Capabilities

In our attack, we assume that the adversary has root access to a Linux OS run-
ning SGX. The attacker is capable of installing kernel modules and configuring
boot properties of the machine. As consequence of root access, the attacker can
read the content of static binary on the disk, observe which symmetric cipher
and implementation is used, and identify offset of tables that static data from
the victim binary will occupy.2 Although the attacker can observe the binary,

2 If the enclave binary is obfuscated, position of tables needs to be reconstructed using
reverse engineering methods, e.g. by analyzing cache access patterns [26].

6



she has no knowledge of the cipher key used during the encryption. In addition,
the attacker is capable of synchronizing the enclave execution with CacheZoom.
These assumptions are reasonable, as SGX promises a trusted environment for
execution on untrusted systems. Symmetric keys can be generated at runtime
from a secure random entropy (using RDRAND instruction) and/or transferred
through a public secure channel without the attacker knowledge.

4.2 CacheZoom Design

To create a high bandwidth channel with minimal noise, (1) we need to iso-
late the attackers’ malicious spy process code and the target enclave’s trusted
execution from the rest of the running operations and (2) we need to perform
the attack on small units of execution. By having these two elements, even a
comparably small cache like L1 turns into a high capacity channel. Note that
our spy process monitors the L1D data cache, but can also be implemented to
monitor the L1I instruction cache or LLC. Our spy process is designed to profile
all the sets in the L1D cache with the goal of retrieving maximum leakage. In
order to avoid noise, we dedicate one physical core to our experimental setup,
i.e., to the attacker Prime+Probe code and the victim enclave process. All other
running operations on the system, including OS services and interrupts, run on
the remaining cores. Furthermore, CacheZoom forces the enclave execution to
be interrupted in short time intervals, in order to identify all enclave memory
accesses. Note that, the longer the victim enclave runs without interruption, the
higher the number of accesses made to the cache, implying higher noise and less
temporal resolution. CacheZoom should further reduces other possible sources of
noise, e.g., context switches. The main purpose is that the attacker can retrieve
most of the secret dependent memory accesses made by the target enclave. Since
the L1 cache is virtually addressed, knowing the offset with respect to a page
boundary is enough to know the accessed set.

4.3 CacheZoom Implementation

We explain technical details behind the implementation of CacheZoom, in par-
ticular, how the noise sources are limited and how we increase the time resolution
to obtain clean traces.

Enclave-Attack Process Isolation Linux OS schedules different tasks among
available logical processors by default. The main scheduler function __schedule

is triggered on every tick of the logical processor’s local timer interrupt. One
way to remove a specific logical processor from the default scheduling algorithm
is through the kernel boot configuration isolcpus which accepts a list of logical
cores to be excluded from scheduling. To avoid a logical core from triggering the
scheduling algorithm on its local timer interrupt, we can use nohz_full boot
configuration option. Recall that reconfiguring the boot parameters and restart-
ing the OS is included in our attackers capabilities. However, these capabilities

7



are not necessary, as we can walk through the kernel task tree structure and turn
the PF_NO_SETAFFINITY flag off for all tasks. Then, by dynamically calling the
kernel sched_setaffinity interface for every task, we are able to force all the
running kernel and user tasks to execute on specific cores. In addition to tasks
and kernel threads, interrupts also need to be isolated from the target core. Most
of the interrupts can be restricted to specific cores except for the non-maskable
interrupts (NMIs), which can’t be avoided. However, in our experience, their
occurrence is negligible and does not add considerable amount of noise.

CPU frequency has a more dynamic behavior in modern processors. Our
target processor has Speedstep technology which allows dynamic adjustment
of processor voltage and C-state, which allows different power management
states. These features, in addition to hyper-threading (concurrent execution of
two threads on the same physical core), make the actual measurement of cycles
through rdtsc less reliable. Cache side channel attacks that use this cycle counter
are affected by the dynamic CPU frequency. In non-OS adversarial scenarios,
these noise sources have been neglected thus forcing the attacker to do more
measurements. In our scenario, these processor features can be disabled through
the computer BIOS setup or can be configured by the OS to avoid unpredictable
behavior. In our attack, we simply disable every second logical processor to
practically avoid hyper-threading. To maintain a stable frequency in spite of the
available battery saving and frequency features, we set the CPU scaling governor
to performance and limit the maximum and minimum frequency range.

Increasing the time resolution Aiming at reducing the number of memory
accesses made by the victim between two malicious OS interrupts, we use the
local APIC programmable interrupt, available on phyisical cores. The APIC
timer has different programmable modes but we are only interested in the TSC-
Deadline mode. In TSC deadline mode, the specified TSC value will cause the
local APIC to generate a timer IRQ once the CPU reaches it. In the Linux
kernel, the function lapic_next_deadline is responsible for setting the next
deadline on each interrupt. The actual interrupt handler routine for this IRQ is
local_apic_timer_interrupt. In order to enable/disable our attack, we install
hooks on these two functions. By patching the null function calls, available for
the purpose of live patching, we can redirect these functions to the malicious
routines in our kernel modules at runtime.

ffffffff81050900 lapic_next_deadline
ffffffff81050900: callq null_sub1

ffffffff81050c90 local_apic_timer_interrupt
ffffffff81050c90: callq null_sub2

In the modified lapic_next_deadline function, we set the timer interrupt
to specific values such that the running target enclave is interrupted every short
period of execution time. In the modified local_apic_timer_interrupt, we
first probe the entire 64 sets of the L1D cache to gather information of the
previous execution unit and then prime the entire 64 sets for the next one.
After each probe, we store the retrieved cache information to a separate buffer.
Our kernel driver is capable of performing 50000 circular samplings. To avoid
unnecessarly sampling, we need to synchronize with the target enclave execution.

8



0 1 2 3 4 5 6 7 8
Number of Eviction

30

40

50

60

70

80

90

100

C
yc

le

Fig. 1: Average cycle count per number
of evictions in a set.

0 10 20 30 40 50 60
Set Number

40

50

60

70

80

90

100

C
yc

le
 C

ou
nt

Eviction
Limit

Fig. 2: Average cycle count for each
set. Variations are due to channel
noise: 4 sets are unusable for attacks.

For this purpose, we enable the hooks just before the call to the enclave interface
and disable it right after.

4.4 Testing the Performance of CacheZoom

Our experimental setup is a Dell Inspiron 5559 laptop with Intel(R) Skylake
Core(TM) i7-6500U processor running Ubuntu 14.04.5 LTS and SGX SDK 1.7.
Our target processor has 2 hyper-threaded physical cores. Each physical core
has 32 kB of L1D and 32 kB of L1I local cache memory. The L1 cache, used as
our side channel, is 8 way associative and consists of 64 sets.

Even though Skylake processors use an adaptive LRU cache replacement
policy and the adaptive behavior is undocumented [23], our results show that
we can still use the pointer chasing eviction set technique [36] to detect memory
accesses. In the specific case of our L1D cache, the access time for chasing 8
pointers associated to a specific set is about 40 cycles on average. In order to
test the resolution of our side channel, we took an average of 50000 samples
of all the sets and varied the number of evictions from 0 to 8. The results can
be seen in Figure 1, where the access time is increased by roughly 5 cycles for
every additional eviction. Thus, our results show that our eviction set gives us
an accurate measurement on the number of evicted lines from a specific set.

Our isolated CPU core and the L1D eviction set have the minimal possible
noise and avoid noises such as CPU frequency, OS and enclave noise; however,
the actual noise from the context switch between enclave process and attacker
interrupt is mostly unavoidable. The amount of noise that these unwanted mem-
ory accesses add to the observation can be measured by running an enclave with
an empty loop under our attack measurement. Our results, presented in Figure 2,
show that every set has a consistent number of evictions. Among the 64 sets,
there are only 4 sets that get filled as a side effect of the context switch mem-
ory accesses. For the other sets, we observed either 0 or less than 8 unwanted
accesses. Due to the consistency of the number of evictions per set, we can con-
clude that only sets that get completely filled are obscure and do not leak any
information, 4 out of 64 sets in our particular case. An example of the applied
noise ex-filtration process can be observed in Figure 3, in which the enclave pro-
cess was consecutively accessing different sets. The left hand figure shows the
hit access map, without taking into account the appropriate set threshold. The

9



Fig. 3: Cache hit map before (left) and after (right) filtering for context switch
noise. Enclave memory access patterns are clearly visible once standard noise
from context switch has been eliminated

right hand figure shows the access pattern retrieved from the enclave once the
context switch noise access has been taking into account and removed.

5 Attack on AES

The following gives a detailed description of different implementation styles for
AES to help the reader understand the attacks that we later perform:

5.1 Cache Attacks on Different AES Implementations

AES is a widely used block cipher that supports three key sizes from 128 bit to
256 bits. Our description and attacks focus on the 128-bit key version, AES-128,
but most attacks described can be applied to larger-key versions as well. AES
is based on 4 main operations: AddRoundKey, SubBytes, ShiftRows and Mix-
Columns. The main source of leakage in AES comes from the state-dependent
table look ups for the SubBytes operation. These look-ups result in secret-
dependent memory accesses, which can be exploited by cache attacks.

S-box: Software implementations that implement the 4 stages independently
base the SubBytes operation in a 256 entry substitution table, each entry
being 8 bits long. In this implementation, a total of a 160 accesses are per-
formed to the S-box during a 128-bit AES encryption, 16 accesses per round.
We refer to this implementation style as the S-box implementation.

4 T-tables: To achieve a better performance, some implementations combine
the MixColumns and SubBytes in a single table lookup. At the cost of bigger
pre-computed tables (and therefore, more memory usage) the encryption
time can be significantly reduced. The most common type uses 4 T-tables:
256 entry substitution tables, each entry being 32 bits long. The entries of
the four T-tables are the same bytes but rotated by 1, 2 and 3 positions,
depending on the position of the input byte in the column of the AES state.
We refer to this style as T-table implementation. We refer to this as the 4
T-table implementation.

Large T-table Aiming at improving the memory usage of T-table based im-
plementations, some designs utilize a single 256 entries T-table, where each

10



entry is 64 bits long. Each entry contains two copies of the 32 bit values
typically observed with regular size T-tables. This design reads each entry
with a different byte offset, such that the values from the 4 T-tables can be
read from a single bigger T-table. The performance of the implementation
is comparable, but requires efficient non word-aligned memory accesses. We
refer to this as the Large T-table implementation.

Depending on the implementation style, implementations can be more sus-
ceptible to cache attacks or less. The resolution an attacker gets depends on
the cache line size, which is 64 bytes on our target architecture. For the S-box
implementation, the S-box occupies a total of 4 cache lines (256 bytes). That
is, an attacker able to learn for each observed access to a table entry at most
two bits. Attacks relying on probabilistic observations of the S-box entries not
being accessed during an entire encryption [31] would observe such a case with
a probability of 1.02 · 10−20, making a micro-architectural attack nearly infeasi-
ble. For a 4 T-tables implementation, each of the T-tables gets 40 accesses per
encryption, 4 per round, and occupies 16 cache lines. Therefore, the probability
of a table entry not being accessed in an entire encryption is 8%, a fact that
was exploited in [31] to recover the full key. In particular, all these works target
either the first or the last round to avoid the MixColumns operation. In the
first round, the intermediate state before the MixColumns operation is given by
s0i = Ti[pi ⊕ k0i ], where pi and k0i are the plaintext and first round key bytes
i, Ti is the table utilization corresponding to byte i and s0i is the intermediate
state before the MixColumns operation in the first round. We see that, if the
attacker knows the table entry being utilized xi and the plaintext he can derive
equations in the form xi=pi ⊕ k0i to recover the key. A similar approach can
be utilized to mount an attack in the last round where the output is in the
form ci = Ti[s

9
i ] ⊕ k10i . The maximum an attacker can learn, however, is 4 bit

per lookup, if each lookup can be observed separately. The scenario for attacks
looking at accesses to a single cache line for an entire encryption learn a lot less,
hence need significantly more measurements.

For a Large T-table implementation, the T-table occupies 32 cache lines, and
the probability of not accessing an entry is reduced to 0.6%. This, although not
exploited in a realistic attack, could lead to key recovery with sufficiently many
measurements. An adversary observing each memory access separately, however,
can learn 5 bits per access, as each cache line contains only 8 of the larger entries.

Note that an attacker that gets to observe every single access of the aforemen-
tioned AES implementations would succeed to recover the key with significantly
fewer traces, as she gets to know the entry accessed at every point in the execu-
tion. This scenario was analyzed in [6] with simulated cache traces. Their work
focuses on recovering the key based on observations made in the first and second
AES rounds establishing relations between the first and second round keys. As a
result, they succeed on recovering an AES key from a 4 T-table implementation
with as few as six observed encryptions in a noise free environment.

11



Attacker primes Start FinishPrefetch table Attacker probes

AES round

Fig. 4: Prefetching and the timeline effect for a regular Prime+Probe attack.

5.2 Non-vulnerable AES Implementations

There are further efficient implementations of AES that are not automatically
susceptible to cache attacks, as they avoid secret-dependent memory accesses.
These implementation styles include bit-sliced implementations [38], implemen-
tations using vector instructions [25], constant memory access implementations
and implementations using AES instruction set extensions on modern Intel
CPUs [27]. However, they all come with their separate drawbacks. The bit-
sliced implementations need data to be reformatted before and after encryption
and usually show good performance only if data is processed in large chunks [9].
Constant memory access implementations also suffer from performance as the
number of memory accesses during an encryption significantly increases. While
hardware support like AES-NI combines absence of leakage with highest perfor-
mance, it is only an option if implemented and if the hardware can be trusted [49],
and further might be disabled in BIOS configuration options.

5.3 Cache Prefetching as a Countermeasure

In response to cache attacks in general and AES attacks in particular, several
cryptographic library designers implement cache prefetching approaches, which
just load the key dependent data or instructions to the cache prior to their possi-
ble utilization. In the case of AES, this simply means loading all the substitution
tables to the cache, either once during the encryption (at the beginning) or before
each round of AES. Prefetching takes advantage of the low temporal resolution
that an attacker obtains when performing a regular non-OS controlled attack, as
it assumes that an attacker cannot probe faster than the prefetching. Translated
to AES, prefetching assumes that a cache attack does not have enough tempo-
ral granularity to determine which positions in the substitution table have been
used if they are prefetched, e.g., at the beginning of each round.

An example of the implications that such a countermeasure will have on a typ-
ical cache attack can be observed in Figure 4. The Prime+Probe process cannot
be executed within the execution of a single AES round. Thanks to prefetching,
the attacker is only able to see cache hits on all the Table entries. We analyze
whether those countermeasures, implemented in many cryptographic libraries,
resist the scenario in which an attacker fully controls the OS and can interrupt
the AES process after every small number of accesses. As it was explained in
Section 2, attacking SGX gives a malicious OS advarsary almost full temporal
resolution, which can reverse the effect of prefetching mechanisms.

12



3.948 3.95 3.952 3.954 3.956 3.958 3.96 3.962

Measurement 10 4

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

S
et

 N
um

be
r

Round 1
Round 2
Round 3

Fig. 5: Memory footprint of the AES execution inside enclave.

6 CacheZooming SGX-based AES

We use CacheZoom to retrieve secret keys of different implementations of AES
running inside an enclave. As mentioned in section 4.1, we assume no knowledge
of the encryption key, but to have access to the enclave binary, and thus to the
offset of the substitution tables. We further assume the enclave is performing
encryptions over a set of known plaintext bytes or ciphertext bytes.

6.1 T-table Implementations

Our first attacks target the T-table implementations. To recover the AES key
from as few traces as possible, we recover the memory access pattern of the
first 2 rounds of the AES function. A perfect single trace first round attack
reveals at most the least significant 4 and 5 bits of each key byte in 4 T-table
(16 entries/cache line) and Large T-table implementations (8 entries/cache line)
respectively. As we want to retrieve the key with the minimal number of traces,
we also retrieve the information from the accesses in the second round and use
the relation between the first and second round key. In particular, we utilize
the relations described in [6], who utilized simulated data to demonstrate the
effectiveness of their AES key recovery algorithm.

In our specific practical attack, we face three problems: (1) Even in our high
resolution attack, we have noise that adds false positives and negatives to our
observed memory access patterns. (2) Our experiments show that the out-of-
order execution and parallel processing of memory accesses does not allow for
a full serialization of the observed memory accesses. (3) Separating memory
accesses belonging to different rounds can be challenging. These first two facts
can be observed in Figure 5, which shows 16 memory accesses to each round
of a 4 T-table (4 access per table) AES. Due to our high resolution channel
and the out-of-order execution of instructions, we observe that we interrupt the
out-of-order execution pipeline while a future memory access is being fetched.
Thus, interrupting the processor and evicting the entire L1D cache on each

13



0 5 10 15 20 25 30 35
Number of samples

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

 r
at

e

Unordered 4 T
Ordered 4 T
Unordered Large T
Ordered Large T

Fig. 6: Key recovery success rate.

Implementation 4 T-table Large T-table

True Positive 55% 75%
False Positive 44% 24%
False Negative 56% 12%

Ordered 77% 67%

Table 1: Statistics on recovered memory
accesses for T-table implementations.

measurement forces the processor to repeatedly load the cache line memory until
the target read instruction execution completes. Hence, attributing observed
accesses to actual memory accesses in the code is not trivial. Although this
behavior adds some confusion, we show that observed accesses still have minimal
order that we can take into account. As for the third fact, it involves thorough
visual inspection of the collected trace. In particular, we realized that every
round start involves the utilization of a substantially higher number of sets than
the rest, also observable in Figure 5.

In the first implementation of our key recovery algorithm, we just use the
set access information without taking into account the ordering of our observed
accesses. Recall that we have access to the binary executed by the enclave, and
thus, we can map each set number to its corresponding T-table entry. This means
that all our accesses can be grouped on a T-table basis. Duplicated accesses to a
set within a round are not separated and are considered part of the same access.
After applying this filter to the first and second round traces, we apply the key
recovery algorithm, as explained in [6]. The accuracy of our measurements with
respect to the aforementioned issues can be seen in Table 1. For the 4 T-table
implementation, 55% of the accesses correspond to true accesses (77% of them
were ordered), 44% of them were noisy accesses and 56% of the true accesses
were missed. For the single Large T-table implementation, 75% of the T-table
accesses corresponded to true accesses (67% ordered), 24% were noisy accesses
and 12% of the true accesses were missed. The quality of the data is worse in
the 4 T-table case because they occupy larger number of sets and thus include
more noisy lines, as explained in Figure 2.

With these statistics and after applying our key recovery algorithms with
varying number of traces we obtained the results presented in Figure 6. If we do
not consider the order in our experiments, we need roughly 20 traces (crosses
and diamonds) to get the entire correct key with 90% probability in both the 4
T-table and single T-table implementations.

To further improve our results, we attempt to utilize the partial order of the
observed accesses. We obtain the average position for all the observed accesses
to a set within one round. These positions are, on average, close to the order

14



2.945 2.95 2.955 2.96 2.965 2.97 2.975

Measurement 10 4

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

S
et

 N
um

be
r

Prefetch
Round 1
Round 2

Fig. 7: Memory footprint of the AES execution inside an enclave with prefetch
countermeasure. The prefetch is clearly distinguishable and helps to identify
the start of each round. Further, it also highlights out-of-order execution and
in-order completion.

in which sets were accessed. The observed order is then mapped to the order
in which each T-table should have been utilized. Since this information is not
very reliable, we apply a score and make sure misorderings are not automatically
discarded. After applying this method, the result for our key recovery algorithm
can be observed again in Figure 6, for which we needed around 15 traces for the
4 T-table implementation (represented with stars) and 12 traces for the single
Large T-table implementation (represented circles) to get the key with 90%
probability. Thus, we can conclude that using the approximate order helped us
to recover the key with fewer traces.

Cache Prefetching, as explained in Section 5, is implemented to prevent pas-
sive attackers from recovering AES keys. CacheZoom, in theory, should bypass
such a countermeasure by being able to prime the cache after the T-tables are
prefetched. The observation of a trace when cache prefetching is implemented
before every round can be observed in Figure 7. We can see how cache prefetch-
ing is far from preventing us to recover the necessary measurements. In fact, it
eases the realization of our attack, as we now can clearly distinguish accesses be-
longing to different rounds, allowing for further automation of our key recovery
step. Thus, CacheZoom not only bypasses but further benefits from mechanisms
that mitigated previous cache attacks.

6.2 S-Box Implementation

S-box implementation is seen as a remedy to cache attacks, as all S-box accesses
use only a very small number of cache lines (typically 4). With 160 S-Box ac-
cesses per encryption, each line is loaded with a very high likelihood and thus
prevents low resolution attackers from gaining information. Adding a prefetch

15



2 4 6 8 10 12 14 16

0

0.05

0.1

0.15

Fig. 8: Correlation between observed
and expected accesses caused by one
byte position. Leakage is stronger for
later bytes. Correlation of observed
(blue) vs. relative accesses (amber).

0 50 100 150 200 250

0

0.05

0.1

0.15

Fig. 9: Correlation of key values for the
best (k15, amber) and worst (k0, blue)
key bytes with 1500 traces. The guess
with the highest correlation (o) and
the correct key (x) match only for k15.

for each round does not introduce much overhead and also prevents previous at-
tacks that attempted interrupting the execution [14, 24]. However, CacheZoom
can easily distinguish S-box accesses during the rounds, but due to the out-of
order execution, it is not possible to distinguish accesses for different byte posi-
tions in a reliable manner. However, one distinguishable feature is the number
of accesses each set sees during a round. We hypothesize that the number of ob-
served accesses correlates with the number of S-box lookups to that cache line.
If so, a classic DPA correlating the observed accesses to the predicted accesses
caused by one state byte should recover the key byte. Hence we followed a classic
DPA-like attack on the last round, assuming known ciphertexts.

The model used is rather simple: for each key byte k, the accessed cache
set during the last round for a given ciphertext byte c is simply given as set =
S−1(x ⊕ k) � 6, i.e. the two MSBs of the corresponding state byte before the
last SubBytes operation. The access profile for a state byte position under an
assumed key k and given ciphertext bytes can be represented by a matrix A
where each row corresponds to a known ciphertext and each column indicates
whether that ciphertext resulted in an access to the cache line with the same
column index. Hence, each row has four entries, one per cache line, where the
cache line with an access is set to one, and the other three columns are set to
zero (since that state byte did not cause an access). Our leakage is given as a
matrix L, where each row corresponds to a known ciphertext and each column to
the number of observed accesses to one of the 4 cache lines. A correlation attack
can then be performed by computing the correlation between A and L, where
A is a function of the key hypothesis. We used synthetic, noise-free simulation
data for the last AES round to validate our approach, where accesses for 16
bytes are accumulated over 4 cache lines for numerous ciphertexts under a set
key. The synthetic data shows a best expectable correlation of about .25 between
noise-free cumulative accesses L and the correct accesses for a single key byte
A. As little as 100 observations yield a first-order success rate of 93%.

Next, we gathered hundreds of measurements using CacheZoom. Note that
due to a lack of alignment, the collection of a large number of observations and
the extraction of the last round information still requires manual intervention.
When performing the key recovery attack, even 200 observations yielded 4-5 key

16



bytes correctly. However, the first-order success rate only increases very slowly
with further measurements. We further observed that (1) more traces always
recover later key bytes first and (2) key ranks for earlier lookups are often very
low, i.e. the correct key does not even yield a high correlation. To analyze this
behavior, we simply correlated the expected leakage A for each byte position to
the observed leakage L. The result is shown in Figure 8. It can be observed that
the correlation for the later key bytes is much stronger than for the earlier key
bytes. This explains why later key bytes are much easier to recover. The plot also
shows a comparison of using the absolute number of observed accesses (ranging
between 10 and 80 observed accesses per round, blue) an the relative number of
accesses per cache set (amber) after removing outliers.

Results for the best and the worst key guess are shown in Figure 9. For
k15 (amber), the correlation for the correct key guess is clearly distinguishable.
For k0 however, the correct key guess does not show any correlation with the
used 1500 observations. In summary, 500 traces are sufficient to recover 64 key
bits, while 1500 recover 80 key bits reliably. While full key recovery will be
challenging, recovering 12 out of 16 key bytes is easily possible with thousands
of observations. The remaining key bytes can either be brute-forced or can be
recovered by exploiting leakage from the second last round.

Next, we explain the reason why we believe bytes processed first are harder
to recover. The Intel core i7 uses deep pipelines and speculative out-of-order
execution. Up to six micro-instructions can be dispatched per clock cycle, and
several instructions can also complete per cycle. As a result, getting order infor-
mation for the accesses is difficult, especially if 16 subsequent S-box reads are
spread over only 4 cache lines. While execution is out-of-order, each instruction
and its completion state are tracked in the CPU’s reorder buffer (ROB). In-
struction results only affect the system state once they are completed and have
reached the top of the ROB. That is, micro-ops retire in-order, even though they
execute out-of-order. The result of micro-ops that have completed hence do not
immediately affect the system. In our case, if the previous load has not yet been
serviced, the subsequent completed accesses cannot retire and affect the system
until the unserviced load is also completed.

Every context switch out of an enclave requires the CPU to flush the out-of
order execution pipeline of the CPU [17]. Hence CacheZoom’s interrupt causes a
pipeline flush in the CPU, all micro-ops on the ROB that are not at the top and
completed will be discarded. Since our scheduler switches tasks very frequently,
many loads cannot retire and thus the same load operation has to be serviced
repeatedly. This explains why we see between 9 and 90 accesses to the S-box
cache lines although there are only 16 different loads to 4 different cache lines.
The loads for the first S-box are, however, the least affected by preceding loads.
Hence, they are the most likely to complete and retire from the ROB after a
single cache access. Later accesses are increasingly likely to be serviced more
than once, as their completion and retirement is dependent on preceding loads.
Since our leakage model assumes such behavior (in fact, we assume one cache
access per load), the model becomes increasingly accurate for later accesses.

17



Table 2: Vulnerable implementations in popular current cryptographic libraries.
These implementations can be configured through compile/runtime settings.

Library Vulnerable Implementations
OpenSSL 1.1.0f aes core.c T-table, aes x86core.c Large

T-table, S-box and prefetching config-
urable through AES COMPACT IN INNER ROUNDS,
AES COMPACT IN OUTER ROUNDS

WolfCrypt 3.11.0 aes.c T-Table with prefetching before the first round.
Mozilla NSS 3.30.2 rijndael.c T-Table and S-box configurable through RIJN-

DAEL GENERATE VALUES MACRO

Nettle 3.3 aes-encrypt-internal.asm T-table.
Libtomcrypt 1.17 aes.c T-table.
Libgcrypt 1.7.7 rijndael.c T-table, S-box for the last round with prefetch-

ing.
MbedTLS 2.4.2 aes.c T-table, S-box for the last round.

7 Conclusion

This work presented CacheZoom, a new tool to analyze memory accesses of
SGX enclaves. To gain maximal resolution, CacheZoom combines a L1 cache
Prime+Probe attack with OS modifications that greatly enhance the time res-
olution. SGX makes this scenario realistic, as both a modified OS and knowl-
edge of the unencrypted binary are realistic for enclaves. We demonstrate that
CacheZoom can be used to recover key bits from all major software AES imple-
mentations, including ones that use prefetches for each round as a cache-attack
countermeasure. Furthermore, keys can be recovered with as few as 10 observa-
tions for T-table based implementations. For the trickier S-box implementation
style, 100s of observations reveal sufficient key information to make full key re-
covery possible. Prefetching is in this scenario beneficial to the adversary, as
it helps identifying and separating the accesses for different rounds. A list of
libraries that contain vulnerable implementations can be found at table 2.

CacheZoom serves as evidence that security-critical code needs constant ex-
ecution flows and secret-independent memory accesses. As SGX’s intended use
is the protection of sensitive information, enclave developers must thus use the
necessary care when developing code and avoid microarchitectural leakages. For
AES specifically, SGX implementations must feature constant memory accesses.
Possible implementation styles are thus bit-sliced or vectorized-instruction-based
implementations or implementations that access all cache lines for each look-up.

Acknowledgments This work is supported by the National Science Founda-
tion, under the grant CNS-1618837. CacheZoom source repository and data sets
are available at https://github.com/vernamlab/CacheZoom.

References

1. Aciiçmez, O., Koç, Ç.K., Seifert, J.P.: On the power of simple branch prediction
analysis. In: Proceedings of the 2nd ACM symposium on Information, computer

18



and communications security. pp. 312–320. ACM (2007)
2. Acıiçmez, O., Schindler, W.: A vulnerability in rsa implementations due to instruc-

tion cache analysis and its demonstration on openssl. In: Topics in Cryptology–
CT-RSA 2008, pp. 256–273. Springer (2008)

3. Allan, T., Brumley, B.B., Falkner, K., van de Pol, J., Yarom, Y.: Amplifying side
channels through performance degradation. In: Proceedings of the 32nd Annual
Conference on Computer Security Applications. pp. 422–435. ACM (2016)

4. ARM TrustZone. https://www.arm.com/products/security-on-arm/trustzone,
accessed: June 25, 2017

5. Arnautov, S., Trach, B., Gregor, F., Knauth, T., Martin, A., Priebe, C., Lind,
J., Muthukumaran, D., OKeeffe, D., Stillwell, M.L., et al.: SCONE: Secure linux
containers with Intel SGX. In: 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16). USENIX Association (2016)

6. Ashokkumar, C., Giri, R.P., Menezes, B.: Highly Efficient Algorithms for AES
Key Retrieval in Cache Access Attacks. In: Security and Privacy (EuroS&P), 2016
IEEE European Symposium on. pp. 261–275. IEEE (2016)

7. Baumann, A., Peinado, M., Hunt, G.: Shielding applications from an untrusted
cloud with haven. ACM Transactions on Computer Systems (TOCS) 33(3) (2015)

8. Benger, N., van de Pol, J., Smart, N.P., Yarom, Y.: Ooh Aah... Just a Little Bit:
A small amount of side channel can go a long way. In: International Workshop on
Cryptographic Hardware and Embedded Systems. pp. 75–92. Springer (2014)

9. Bernstein, D.J., Schwabe, P.: New AES software speed records. In: International
Conference on Cryptology in India. pp. 322–336. Springer (2008)

10. Bhattacharya, S., Mukhopadhyay, D.: Who watches the watchmen?: Utilizing Per-
formance Monitors for Compromising keys of RSA on Intel Platforms. In: Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems. pp. 248–266.
Springer (2015)

11. Bonneau, J., Mironov, I.: Cache-collision timing attacks against AES. In: Inter-
national Workshop on Cryptographic Hardware and Embedded Systems. Springer
(2006)

12. Brasser, F., Müller, U., Dmitrienko, A., Kostiainen, K., Capkun, S., Sadeghi,
A.R.: Software Grand Exposure: SGX Cache Attacks Are Practical. arXiv preprint
arXiv:1702.07521 (2017)

13. Brickell, E., Graunke, G., Neve, M., Seifert, J.P.: Software mitigations to hedge
AES against cache-based software side channel vulnerabilities. IACR Cryptology
ePrint Archive 2006, 52 (2006)

14. Briongos, S., Malagón, P., Risco-Mart́ın, J.L., Moya, J.M.: Modeling side-channel
cache attacks on aes. In: Proceedings of the Summer Computer Simulation Con-
ference. p. 37. Society for Computer Simulation International (2016)

15. Brumley, D., Boneh, D.: Remote timing attacks are practical. Computer Networks
48(5) (2005)

16. Chen, S., Zhang, X., Reiter, M.K., Zhang, Y.: Detecting privileged side-channel at-
tacks in shielded execution with déjá vu. In: Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security. pp. 7–18. ACM (2017)

17. Costan, V., Devadas, S.: Intel SGX explained. Tech. rep., Cryptology ePrint
Archive, Report 2016/086, 2016. https://eprint. iacr. org/2016/086 (2016)

18. Costan, V., Lebedev, I., Devadas, S.: Sanctum: Minimal hardware extensions for
strong software isolation. In: USENIX Security. vol. 16, pp. 857–874 (2016)

19. Dahbur, K., Mohammad, B., Tarakji, A.B.: A survey of risks, threats and vulner-
abilities in cloud computing. In: Proceedings of the 2011 International conference
on intelligent semantic Web-services and applications. p. 12. ACM (2011)

19



20. Evtyushkin, D., Ponomarev, D., Abu-Ghazaleh, N.: Jump Over ASLR: Attacking
Branch PredShared Cache Attictors to Bypass ASLR. In: IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO) (2016)

21. Ge, Q., Yarom, Y., Cock, D., Heiser, G.: A Survey of Microarchitectural Timing
Attacks and Countermeasures on Contemporary Hardware. IACR Eprint (2016)

22. Götzfried, J., Eckert, M., Schinzel, S., Müller, T.: Cache Attacks on Intel SGX. In:
EUROSEC. pp. 2–1 (2017)

23. Gruss, D., Maurice, C., Mangard, S.: Rowhammer. js: A remote software-induced
fault attack in javascript. In: Detection of Intrusions and Malware, and Vulnera-
bility Assessment, pp. 300–321. Springer (2016)

24. Gullasch, D., Bangerter, E., Krenn, S.: Cache Games–Bringing Access-Based Cache
Attacks on AES to Practice. In: 2011 IEEE Symposium on Security and Privacy.
pp. 490–505. IEEE (2011)

25. Hamburg, M.: Accelerating AES with vector permute instructions. In: Crypto-
graphic Hardware and Embedded Systems-CHES 2009, pp. 18–32. Springer (2009)

26. Inci, M.S., Gulmezoglu, B., Irazoqui, G., Eisenbarth, T., Sunar, B.: Cache attacks
enable bulk key recovery on the cloud. In: International Conference on Crypto-
graphic Hardware and Embedded Systems. pp. 368–388. Springer (2016)

27. Intel: Intel Data Protection Technology with AES-NI
and Secure Key, http://www.intel.com/content/www/us/en/

architecture-and-technology/advanced-encryption-standard--aes-/

data-protection-aes-general-technology.html

28. ISCA 2015 tutorial slides for Intel SGX. https://software.intel.com/sites/

default/files/332680-002.pdf, accessed: June 25, 2017

29. Intel SGX. https://software.intel.com/en-us/sgx, accessed: June 25, 2017

30. Irazoqui, G., Eisenbarth, T., Sunar, B.: S $ A: A Shared Cache Attack That Works
across Cores and Defies VM Sandboxing–and Its Application to AES. In: 2015
IEEE Symposium on Security and Privacy. pp. 591–604. IEEE (2015)

31. Irazoqui, G., İncİ, M.S., Eisenbarth, T., Sunar, B.: Wait a Minute! A fast, Cross-
VM Attack on AES. In: RAID. pp. 299–319 (2014)

32. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Annual International Cryptology Conference. pp. 104–113.
Springer (1996)

33. Langner, R.: Stuxnet: Dissecting a cyberwarfare weapon. IEEE Security & Privacy
9(3), 49–51 (2011)

34. Lee, S., Shih, M.W., Gera, P., Kim, T., Kim, H., Peinado, M.: Inferring Fine-
grained Control Flow Inside SGX Enclaves with Branch Shadowing. Tech. rep.,
arxiv Archive, 2016. https://arxiv.org/pdf/1611.06952.pdf (2017)

35. Lipp, M., Gruss, D., Spreitzer, R., Mangard, S.: Armageddon: Last-level cache
attacks on mobile devices. arXiv preprint arXiv:1511.04897 (2015)

36. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel
attacks are practical. In: IEEE Symposium on Security and Privacy (2015)

37. Liu, W., Di Segni, A., Ding, Y., Zhang, T.: Cache-timing attacks on aes. New York
University (2013)

38. Matsui, M., Nakajima, J.: On the power of bitslice implementation on Intel Core2
processor. In: International Workshop on Cryptographic Hardware and Embedded
Systems. pp. 121–134. Springer (2007)

39. Morris, T.: Trusted platform module. In: Encyclopedia of Cryptography and Se-
curity, pp. 1332–1335. Springer (2011)

20



40. Oren, Y., Kemerlis, V.P., Sethumadhavan, S., Keromytis, A.D.: The spy in the
sandbox: Practical cache attacks in javascript and their implications. In: Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security. pp. 1406–1418. ACM (2015)

41. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the case
of AES. In: Cryptographers Track at the RSA Conference. Springer (2006)

42. Percival, C.: Cache missing for fun and profit (2005)
43. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:

exploring information leakage in third-party compute clouds. In: Proceedings of
the 16th ACM conference on Computer and communications security. pp. 199–
212. ACM (2009)

44. Schuster, F., Costa, M., Fournet, C., Gkantsidis, C., Peinado, M., Mainar-Ruiz,
G., Russinovich, M.: VC3: trustworthy data analytics in the cloud using SGX. In:
2015 IEEE Symposium on Security and Privacy. IEEE (2015)

45. Schwarz, M., Weiser, S., Gruss, D., Maurice, C., Mangard, S.: Malware guard
extension: Using SGX to conceal cache attacks. arXiv preprint arXiv:1702.08719
(2017)

46. Seo, J., Lee, B., Kim, S., Shih, M.W., Shin, I., Han, D., Kim, T.: SGX-Shield:
Enabling address space layout randomization for SGX programs. In: Proceedings
of the 2017 Annual Network and Distributed System Security Symposium (NDSS),
San Diego, CA (2017)

47. Shih, M.W., Lee, S., Kim, T., Peinado, M.: T-SGX: Eradicating controlled-channel
attacks against enclave programs. In: Proceedings of the 2017 Annual Network and
Distributed System Security Symposium (NDSS), San Diego, CA (2017)

48. Shinde, S., Chua, Z.L., Narayanan, V., Saxena, P.: Preventing Page Faults from
Telling Your Secrets. In: Proceedings of the 11th ACM on Asia Conference on
Computer and Communications Security. pp. 317–328. ACM (2016)

49. Takehisa, T., Nogawa, H., Morii, M.: AES Flow Interception: Key Snooping
Method on Virtual Machine-Exception Handling Attack for AES-NI-. IACR Cryp-
tology ePrint Archive 2011, 428 (2011)

50. Tsunoo, Y., Saito, T., Suzaki, T., Shigeri, M., Miyauchi, H.: Cryptanalysis of DES
implemented on computers with cache. In: International Workshop on Crypto-
graphic Hardware and Embedded Systems. pp. 62–76. Springer (2003)

51. Weichbrodt, N., Kurmus, A., Pietzuch, P., Kapitza, R.: AsyncShock: Exploiting
Synchronisation Bugs in Intel SGX Enclaves. In: European Symposium on Re-
search in Computer Security. pp. 440–457. Springer (2016)

52. Xu, Y., Cui, W., Peinado, M.: Controlled-channel attacks: Deterministic side chan-
nels for untrusted operating systems. In: 2015 IEEE Symposium on Security and
Privacy. pp. 640–656. IEEE (2015)

53. Yarom, Y., Falkner, K.: Flush+reload: a high resolution, low noise, L3 cache side-
channel attack. In: 23rd USENIX Security Symposium (USENIX Security 14). pp.
719–732 (2014)

54. Zhang, Y., Juels, A., Oprea, A., Reiter, M.K.: Homealone: Co-residency detection
in the cloud via side-channel analysis. In: 2011 IEEE Symposium on Security and
Privacy. pp. 313–328. IEEE (2011)

55. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-vm side channels and
their use to extract private keys. In: Proceedings of the 2012 ACM conference on
Computer and communications security. pp. 305–316. ACM (2012)

56. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-tenant side-channel at-
tacks in PaaS clouds. In: Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security. pp. 990–1003. ACM (2014)

21


