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Abstract

The modeling of trapdoor permutations has evolved over the years. Indeed, find-
ing an appropriate abstraction that bridges between the existing candidate construc-
tions and the needs of applications has proved to be challenging. In particular, the
notions of certifying permutations (Bellare and Yung, 96), enhanced and doubly en-
hanced trapdoor permutations (Goldreich, 04, 08, 11, Goldreich and Rothblum, 13)
were added to bridge the gap between the modeling of trapdoor permutations and
needs of applications.

We identify an additional gap between the current modeling of trapdoor permuta-
tions and their classic use in non-interactive zero-knowledge (NIZK) proof systems:
Previous works implicitly assumed that it is easy to recognize elements in the domain,
as well as uniformly sample from it, even for illegitimate function indices. To demon-
strate this gap, we instantiate the Feige-Lapidot-Shamir NIZK protocol together with
Bellare-Yung certification using the (Bitansky-Paneth-Wichs, 15) doubly-enhanced
trapdoor permutation family, and show that this results in an unsound proof system.

We propose a general notion of certifiably injective doubly enhanced trapdoor
functions, and show that it suffices for implementing the FLS paradigm. We then
show two very different ways to realize this notion: One is via the traditional method
of RSA/Rabin with the Bellare-Yung certification mechanism, and the other using in-
distinguishability obfuscation and injective pseudorandom generators. In particular
the latter is the first candidate trapdoor permutation from assumptions other than fac-
toring, that suffices for the FLS paradigm.
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1 Introduction
In the late-1970s, Rivest, Shamir and Adelman [RSA78] and Rabin [Rab79] suggested
functions which are easy to evaluate, easy to invert when given a suitable secret trapdoor
key, but are presumably hard to invert when only given the function description without
the trapdoor. Both of these constructions use the same source of computational hardness:
the hardness of factoring. These constructions were later abstracted to a formal notion
of trapdoor function [Yao82], which became one of the pillars of modern cryptography.
In particular, trapdoor permutations were used as building blocks for public key encryp-
tion [Yao82, GM84, BG84], oblivious transfer [EGL85] and zero-knowledge protocols
[FLS90].

Non-interactive zero knowledge (NIZK) protocols [BFM88] is perhaps the quintessen-
tial application for trapdoor permutations, in the sense that trapdoor permutations are the
only general assumption that was known to imply NIZK with certain desirably proper-
ties (public-coin reference string, unconditional soundness), modulo recent developments
sketched in the next paragraph. The idea, proposed by Feige, Lapidot and Shamir [FLS90]
and later formalized by Goldreich [Gol04], is to first construct an unconditional NIZK pro-
tocol in the more abstract hidden-bit model, where both sides are given a random string
which is fully exposed only to the prover. The prover can choose to expose to the verifier
the values at specific indices of the prover’s choice. They then suggest a general trans-
formation, based on trapdoor permutations, which transforms any non-interactive zero-
knowledge proof system in the hidden-bit model to one in the common random string
model. The idea here is to treat the common random string as a sequence of blocks, where
a block represents an image of a trapdoor function provided by the prover. The prover
is able to select a subset of these images and invert them using the secret trapdoor. The
verifier can validate that the pre-images it was given are correct by forward-evaluating the
trapdoor function, but is unable to invert any other image due to the hardness of inverting
the function without the secret trapdoor. Soundness is based on the fact that, for any given
permutation, each block in the reference string defines a unique pre-image. We refer to this
protocol as the FLS protocol. Other NIZK protocols were later proposed, using the same
hidden-bit model, e.g. [KP98].

Recently, [BP14] showed how to construct invariant signatures [BG90] from indis-
tinguishability obfuscation and one-way functions. This, together with the technique of
[GO92], gives a different path for realizing the hidden-bit model from assumptions other
than factoring. (Previously, the only known construction of invariant signatures was from
NIZK.) Still, the trapdoor-permutations-based paradigm of [FLS90] remains the textbook
method for realizing non-interactive zero-knowledge proofs. See more discussion on al-
ternative approaches for constructing non-interactive zero-knowledge proof systems at the
end of the introduction.
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Evolution of the trapdoor permutations abstraction. The work of [FLS90] is based on
the assumption that the underlying trapdoor permutation is ideal, namely its domain is
{0, 1}n for some n, hardness holds with respect to uniformly chosen n-bit strings, and any
key (index) in an efficiently recognizable set describes a permutation. As it turns out, this
model is too idealized - so much so, that no realization of it is known. In particular, the two
factoring-based candidates, which for many years stood as essentially the only candidates
of trapdoor permutations, do not realize this idealistic modeling. Consequently a number
of relaxed notions of trapdoor permutations were proposed.

Bellare and Yung [BY96] consider relaxing the notion of trapdoor permutations to fam-
ilies where the domain is still {0, 1}n, but it is not known how to recognize whether a given
index defines a permutation. They observe that in this case the soundness of the original
FLS transform is no longer guaranteed, and suggest a NIZK protocol for certifying that a
given index describes a permutation. Their protocol is based on the prover providing the
verifier with pre-images of a set of random images, which are taken from the common ref-
erence string. We note that this protocol introduces a positive (albeit negligible) soundness
error, even when the underlying protocol in the hidden-bit model is perfectly sound. We
refer to this protocol as the Bellare-Yung protocol.

Goldreich [Gol04, Gol08] points out that when the domain of the permutation is com-
prised of elements of specific structure (and not just the full domain {0, 1}n), the FLS
protocol might no longer work since, among other issues, it may not be known how to
translate blocks of the reference string to elements in the domain whose pre-image is un-
known. He then defines enhanced and doubly-enhanced trapdoor permutations, which re-
quire existence of an algorithm that samples elements from the domain, such that finding
the pre-image of a sampled element is hard, even given the random coins used by the
sampler. Goldreich and Rothblum [Gol11, GR13] then show how doubly-enhanced trap-
door permutations can be used for the FLS protocol, by letting the prover and verifier treat
the common reference string as a sequence of random coins which they can input into
the domain sampler to obtain random images in the permutation’s domain. Specifically,
they prove that the FLS protocol remains sound and zero-knowledge when using doubly-
enhanced trapdoor permutations — as long as the verifier is able to efficiently detect if the
function described by the key is a permutation. To verify that this is the case, the suggested
using the doubly-enhanced domain sampler for sampling the images needed by the prover
and verifier in the Bellare-Yung protocol. Finally, they observe that the RSA and Rabin
trapdoor permutations are doubly enhanced.

Bitansky et. al. [BPW15] give a doubly-enhanced trapdoor permutation family with
a very different flavor (and is the first one to not assume hardness of factoring). Their
construction, based on sub-exponentially-secure indistinguishability obfuscation and one-
way function, gives the public function index as an obfuscation of a key-dependent program
which evaluates a permutation. The secret trapdoor is the key used by the program. The
permutation’s domain is a sparse subset of {0, 1}n which depends on the permutation key,
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with different keys resulting in different domains.1 While the secret key is encoded in the
permutation program, the verifier is given only an obfuscated version of it, which ”hides”
the key. This results in a partial-domain trapdoor permutation, where identifying whether
a given string is in the domain for a specific choice of permutation key is hard given only
the public index of the permutation. This stands in contrast to the case of RSA and Rabin,
where it is easy to recognize whether a given element is in the domain of the function
defined by a given index.

1.1 Our Contribution
We first provide a more complete treatment of the properties needed from the underlying
trapdoor permutation for sound realization of the FLS paradigm. Next, we re-assert the
adequacy of existing constructions, and propose a new and quite different one.

We start by demonstrating the following gap: We show that, when instantiated with
the [BPW15] doubly enhanced trapdoor permutation family, the FLS protocol is unsound,
even when combined with the [BY96] certification protocol. We attribute the loss of sound-
ness to the fact that the notion of doubly enhanced trapdoor permutations does not make
sufficient requirements on indices that were not legitimately generated.

We then investigate several ways to close this gap: First, we formulate an additional
set of requirements that is met by the existing factoring-based candidates, and suffices for
regaining soundness of the FLS paradigm when combined with the Bellare-Yung certifi-
cation. However, these additional requirements (which we call public domain) are rather
specific. In particular, assuming indistinguishability obfuscations and injective pseudoran-
dom generators, we construct an injective trapdoor function family that suffices for sound
realization of the FLS paradigm but is not public domain.

We then formulate a more general property, called certifiable injectivity, that suffices
for FLS and encompasses all current candidates.

Unsoundness of FLS+BY with the [BPW15] trapdoor permutations: We instantiate
the FLS+BY protocols using the the [BPW15] doubly enhanced trapdoor function family,
whose domain is not efficiently recognizable. We demonstrate how a malicious prover
could choose an index α which describes a many-to-one function, wrongly certify it as a
permutation by having the sampler sample elements only out of a restricted domain Dα

which is completely invertible, but then invert any image in Dα into two pre-images - one
in Dα and another outside of it. The verifier cannot detect the lie since Dα is not efficiently
recognizable.

1In fact, the sparseness of the domains in the [BPW15] construction is essential, in order to circumvent
the impossibility result of [AS15].
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Regaining the soundness of BY+FLS using Public-Domain Trapdoor Permutations:
We prove that the BY+FLS combination regains its soundness when the following addi-
tional properties are met by the function family, with respect to any index (in particular
illegitimate ones): First, the domain of the permutation, as well as the forward evaluation
and sampling algorithms, should be well defined for any index. Second, there must exist
an efficient algorithm that decides, given some string, whether it represents an element in
that domain. Last, the domain sampler of the function family should guarantee an almost
uniform sample out of that domain. If all three requirements are met by the trapdoor per-
mutation family, we say that it is public-domain. We note that the RSA and Rabin trapdoor
permutations are indeed public-domain, while the [BPW15] permutation is not.

Certifiable Injective Trapdoor Functions: We formulate a new notion of Certifiable
Injectivity, which captures a general abstraction of certifiability for doubly-enhanced in-
jective trapdoor functions. This notion requires the function family to be accompanied by
algorithms for generation and verification of certificates for indices, along with an algo-
rithm for certification of individual points from the domain. It is guaranteed that if the
index certificate is verified then, except for negligible probability, randomly sampled range
points have only a single pre-image that passes the pointwise certification. We show that
certifiable injectivity suffices for the FLS paradigm.

We additionally suggest a strengthened notion of Perfectly Certifiable Injectivity, which
guarantees that no point generated by the range sampler has two pre-images that pass the
pointwise certification. We show that by implementing FLS using this notion, the resulting
error in soundness is optimal, in that it is equal to the error incurred by implementing the
FLS protocol with ideal trapdoor permutations.

Doubly Enhanced Perfectly Certifiable Trapdoor Functions from iO+: We construct
a doubly-enhanced family of trapdoor functions which is perfectly certifiable injective. Our
construction, inspired by the work of [SW13], is based on indistinguishability obfuscation
and pseudorandom generators, and is perfectly certifiable injective under the additional
assumption that the underlying pseudorandom generator is injective.

The public trapdoor index for our construction is an indistinguishability obfuscation of
a circuit Tk which, on input x ∈ {0, 1}n, outputs (x⊕ fk(g(x)), g(x)), where g is a length-
doubling pseudorandom generator and fk is a puncturable pseudorandom function. The
private key is the PRF key k. We implement a doubly-enhanced range sampler for our con-
struction, based on a simple re-randomization technique. The sampling algorithm evaluates
an obfuscated circuit S̃ = iO(Sk,w), which given random coins r, takes x = hw(r) and out-
puts Tk(x), where hw is a length-preserving PRF. Using another round of re-randomization
we augment our construction into a doubly-enhanced TDF. Our re-randomization tech-
nique can be applied on trapdoor function with an efficiently sampleable domain to add a
doubly-enhanced domain sampler, at the cost of using iO.
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Finally, we show how using the assumption that the pseudorandom generator g is in-
jective, we are able to provide a perfect pointwise certification algorithm for our trapdoor
functions, proving it is perfectly certifiable injective. This makes our construction sufficient
for NIZK.

1.2 More on Trapdoor Permutations and NIZK.
Other Applications of Trapdoor Permutations. The gap between ideal and general
trapdoor permutations imposes a problem in other applications as well. [Rot10, GR13] dis-
cuss the security of the [EGL85] trapdoor-permutations-based 1-out-of-k oblivious transfer
protocol, which breaks in the presence of partial-domain trapdoor functions, and show how
doubly enhanced trapdoor functions can be used to overcome this. The concern of certi-
fying keys is irrelevant in the oblivious transfer applications, as the parties are assumed
to be trusted. Still, certifiability concerns apply whenever dishonesty of one or more of
the parties is considered an issue, such as the case of interactive proofs and multi-party
computation.

Alternative Approaches for Constructing NIZK. Over the years, additional approaches
were suggested to obtaining non-interactive zero-knowledge proofs which are not based
on the hidden-bit model. [GOS06] constructed non-interactive zero-knowledge proofs for
circuit satisfiability with a short reference string, and non-interactive zero-knowledge argu-
ments for any NP language. [GS08] constructed non-interactive zero-knowledge proofs for
assumptions on bilinear groups. [GOS12] and [SW13] constructed non-interactive zero-
knowledge arguments with a short reference string for any NP language. All of these pro-
tocols either use a structured CRS whose generation requires additional randomness that’s
trusted to never be revealed, or achieve zero-knowledge arguments, where the soundness
holds only with respect to computationally bounded adversaries. This leaves the hidden-bit
paradigm the only known way to achieve zero-knowledge proofs for any NP language in
the uniform reference string model.

1.3 Paper Organization
In section 2 we define the basic notions used in the paper, and describe in general the FLS
protocol for NIZK for NP from trapdoor permutations, including the enhancements sug-
gested by Bellare-Yung [BY96] and Goldreich-Rothblum [Gol04, Gol08, Gol11, GR13].
In section 3 we demonstrate how the soundness of the FLS protocol may be compromised
when using general TDPs, and discuss the additional assumptions required to avoid this
problem. In section 4 we suggest the alternative notion of certifiably injective trapdoor
functions, and use it to overcome the limitations of the FLS+BY combination and regain
the soundness of the FLS protocol. In section 5 we construct a doubly-enhanced, certifiable
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injective trapdoor function family based on indistinguishability obfuscation and injective
pseudorandom generators.

2 Preliminaries
The cryptographic definitions in this paper follow the convention of modeling security
against non-uniform adversaries. A protocol P is said to be secure against (non-uniformly)
polynomial adversaries, if it is secure against any adversary A = {Aλ}λ∈N, such that each
circuit Aλ is of size polynomial in λ.

2.1 Notations
For a PPT algorithm A which operates on input x, we sometimes denote A(x; r) as the
(deterministic) evaluation A using random coins r.

We use the notation Pr[E1;E2; ...;En;R] to denote the probability of the resulting
event R given that the series of events E1, ..., En occurred, as an alternative to Pr[R :
E1, E2, ..., En].

2.2 Puncturable Pseudorandom Functions
We consider a simple case of puncturable pseudorandom functions (PPRFs) where any
PRF may be punctured at a single point. The definition is formulated as in [SW13], and is
satisfied by the GGM PRF [GGM86, BW13, KPTZ13, BGI14].

Definition 2.1. (Puncturable PRFs). Let n, k be polynomially bounded length functions.
An efficiently computable family of functions:

PRF = {PRFS : {0, 1}n(λ) → {0, 1}λ : S ∈ {0, 1}k(λ), λ ∈ N}

associated with an efficient (probabilistic) key samplerKPRF , is a puncturable PRF if there
exists a poly-time puncturing algorithm Punc that takes as input a key S and a point x∗

and outputs a punctured key S∗ = S{x∗}, so that the following conditions are satisfied:

1. Functionality is preserved under puncturing: For every x∗ ∈ {0, 1}n(λ),

Pr
S←KPRF (1λ)

[S∗ = Punc(S, x∗);∀x 6= x∗ : PRFS(x) = PRFS∗(x)] = 1

2. Indistinguishability at punctured points: for any polysize distinguisher D there
exists a negligible function µ such that for all λ ∈ N, and any x∗ ∈ {0, 1}n(λ),

Pr[D(x∗, S∗, PRFS(x∗)) = 1]− Pr[D(x∗, S∗, u) = 1] ≤ µ(λ)

where S ← KPRF (1λ), S∗ = Punc(S, x∗), and u← {0, 1}λ.
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2.3 Indistinguishability Obfuscation
We define indistinguishability obfuscation (iO) with respect to a given class of circuits. The
definition is formulated as in [BGI+01].

Definition 2.2. (Indistinguishability Obfuscation [BGI+01]). A PPT algorithm iO is said
to be an indistinguishability obfuscator for a class of circuits C, if it satisfies:

1. Functionality: for any C ∈ C,

Pr
iO

[∀x : iO(C)(x) = C(x)] = 1

2. Indistinguishability: for any poly-size distinguisher D there exists a negligible
function µ, such that for any two circuits C0, C1 ∈ C that compute the same function
and are of the same size λ:

Pr[D(iO(C0)) = 1]− Pr[D(iO(C1)) = 1] ≤ µ(λ)

Where the probability is taken over the coins of D and iO.

2.4 1-1 TDFs and TDPs
Definition 2.3. (Trapdoor Functions). A family of one-way trapdoor functions, or TDFs,
is a collection of finite injective functions, denoted fα : {Dα → Rα}, accompanied by PPT
algorithm I (index), SD (domain sampler), SR (range sampler) and two (deterministic)
polynomial algorithms F (forward evaluator) andB (backward evaluator or inverter) such
that the following condition holds:

1. On input 1n, algorithm I(1n) selects at random an index α of a function fα, along
with a corresponding trapdoor τ . Denote α = I0(1

n) and τ = I1(1
n).

2. On input α = I0(1
n), algorithm SD(α) returns a random element from domain Dα.

3. On input α = I0(1
n), algorithm SR(α) returns a random image from the range Rα.

4. On input α = I0(1
n) and any x ∈ Dα, F (α, x) = fα(x).

5. On input τ = I1(1
n) and any y ∈ Rα, B(τ, y) = f−1α (y).

The standard hardness condition refers to the difficulty of inverting fα on a random
image, sampled by SR or by evaluating F (α) on a random pre-image sampled by SD,
when given only the image and the index α but not the trapdoor τ . That is, it is required
that, for every polynomial-time algorithm A, it holds that:
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Pr
α←I0(1n)
x←SD(α)

[A(α, F (α, x)) = x] ≤ µ(n) (1)

Or, when sampling an image directly using the range sampler:

Pr
α←I0(1n)
r←{0,1}n

[A(α, SR(α; r)) = f−1α (SR(α; r))] = µ(n) (2)

for some negligible function µ.
If fα is injective for all α, we say that our collection describes an injective trapdoor

function family, or 1-1 TDFs. If additionally Dα and Rα coincide for any α, the resulting
primitive is a trapdoor permutation.

If the function’s domain is just general string, i.e. Dα = {0, 1}n, we say has a full
domain. Otherwise we say the domain is partial. Full and partial range and keyset are
defined similarly. We say that a TDF (or TDP) is ideal if it has a full range and a full
keyset.

2.4.1 Enhancements

A trivial range-sampler implementation may just sample a domain element x by applying
SD(α), and then evaluate the TDF on it by applying F (α, x). This sampler, while fulfill-
ing the standard one-way hardness condition, is not good enough for some applications.
Specifically, for the case of NIZK, we require the ability to obliviously sample a range ele-
ment in a way that does not expose its pre-image (without using the trapdoor). This trivial
range sampler obviously does not qualify for this case.

Goldreich [Gol04] suggested the notion of enhanced TDPs, which can be used for
cases where sampling is required to be available in a way that does not expose the pre-
image. They then demonstrate how enhanced trapdoor permutations can be used to obtain
NIZK proofs (as we describe later in sections 2.5). We revisit this notion, while extending
it to the case of 1-1 TDF (where the domain and range are not necessarily equal).

Definition 2.4. (Enhanced 1-1 TDF, Goldreich [Gol04]). Let {fα : Dα → Rα} be a
collection of 1-1 TDFs, and let SD be the domain sampler associated with it. We say that
the collection is enhanced if there exists a range sampler SR that returns random samples
out ofRα, and such that, for every polynomial-time algorithm A, it holds that:

Pr
α←I0(1n)
r←{0,1}n

[A(α, r) = f−1α (SR(α; r))] = µ(n) (3)

where µ is some negligible function.

The range sampler of an enhanced 1-1 TDF has the property that its random coins do
not reveal a corresponding pre-image, i.e. an adversary which is given an image along with
the random coins which created it, still cannot inverse it with all but negligible probability.
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Definition 2.5. (Doubly Enhanced 1-1 TDF, Goldreich [Gol08]). Let {fα : Dα → Rα}
be an enhanced collection of 1-1 TDFs, with domain sampler SD and range sampler SR.
We say that this collection is doubly-enhanced if it provides another polynomial-time
algorithm SDR that on input α outputs a pair (x, r) such that the distribution of x is indis-
tinguishable from that of SD(α) and SR(α; r) = fα(x).

SDR provides a way to sample pairs of an element x in the function’s domain, along
with random coins r which explains the sampling of the image y = fα(x) in the function’s
range. Note that since the collection is enhanced, r must not reveal any information of x.

2.5 Non-Interactive Zero-Knowledge
2.5.1 Definition

Definition 2.6. (Non-Interactive Zero Knowledge, Blum-Feldman-Micali [BFM88]) A pair
of algorithms (P, V ) provides a None-Interactive Zero Knowledge (NIZK) proof system
for language L ∈ NP with relation RL in the Common Reference String (CRS) Model if it
provides:

• Completeness: for every (x,w) ∈ RL we have that:

Pr
P,crs

[π ← P (x,w, crs);V (x, crs, π) = 0] < µ(|x|)

where the probability is taken over the coins of P and the choice of the CRS, and
µ(n) is some negligible function.

• Soundness: for every x /∈ L:

Pr
crs

[∃π : V (x, crs, π) = 1] < µ(|x|)

where the probability is taken over the choice of the CRS, and µ(n) is some negligible
function.

• Zero-Knowledge: there exists a simulator S such that:

{(crs, π) : crs← U, π ← P (x,w, crs)}(x,w)∈RL ≈c {S(x)}(x,w)∈RL

The common reference string is considered the practical one for NIZK proof systems,
and is the one widely accepted as the appropriate abstraction. When discussing NIZK proof
systems, we sometime omit the specific model being assumed, in which case we mean the
CRS model.
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2.5.2 NIZK in the Hidden-Bit Model

A fictitious abstraction, which is nevertheless very helpful for the design of NIZK proof
systems, is the hidden-bits model. In this model the common reference-string is uniformly
selected as before, but only the prover can see all of it. The prover generates, along with a
proof π, a subset I of indices in the CRS, and pass them both to the verifier. The verifier
may only inspect the bits of the CRS that reside in the locations that have been specified by
the prover in I , while all other bits of the CRS are hidden to the verifier.

Definition 2.7. (NIZK in the Hidden-Bit Model [FLS90, Gol98]). For a bit-string s and an
index set I denote sI the set of values of s in the indexes given by I: sI := {(i, s[i]) : i ∈ I}.
A pair of algorithms (P, V ) provides a NIZK proof system for language L ∈ NP with
relation RL in the Hidden-Bit (HB) Model if it provides:

• Completeness: for every (x,w) ∈ RL we have that:

Pr
P,crs

[(π, I)← P (x,w, crs);V (x, I, crsI , π) = 0] < µ(|x|)

where the probability is taken over the coins of P and the choice of the CRS, and
µ(n) is some negligible function.

• Soundness: for every x /∈ L:

Pr
crs

[∃π, I : V (x, I, crsI , π) = 1] < µ(|x|)

where the probability is taken over the choice of the CRS, and µ(n) is some negligible
function.

• Zero-Knowledge: there exists a simulator S such that:

{(crsI , π) : crs← U, π, I ← P (x,w, crs)}(x,w)∈RL ≈c {S(x)}(x,w)∈RL

While the hidden-bit model is an unrealistic one, its importance lies in two facts. Firstly,
it provides a clean abstraction for NIZK systems, which facilities the design of ”clean”
proof systems. Efficient NIZK proof systems for NP-hard languages exist unconditionally
in the hidden-bit model [FLS90, Gol98]. Secondly, proof systems in the hidden-bit model
can be easily transformed into proof systems in the more realistic CRS model, using general
hardness assumptions. Feige, Lapidot and Shamir [FLS90] suggests such a transformation.

We remark that in the hidden-bit model, we can obtain both perfect soundness (with
a negligible completeness error) and perfect completeness (with a negligible soundness
error).

In the rest of this section, we describe their construction and the subtle details of the
underlying hardness assumptions.
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2.5.3 From Hidden-Bit to CRS: The FLS and BY Protocols

Assuming the existence of one-way permutations, Feige, Lapidot and Shamir [FLS90] con-
structed a NIZK proof-system in the CRS model for any NP language. They also offer an
efficient implementation of the prescribed prover, using trapdoor permutations. We refer to
this construction, described next, as the FLS protocol.

The Construction: Let:

• (PHB, VHB) be a hidden-bit proof system for language L (which exists uncondition-
ally)

• f : {0, 1}n → {0, 1}n is an injective one-way function, and b a hard-core predicate
for it.

Let (P, V ) be the following proof system for input x:

• CRS: a sequence of m random items y1, ..., ym where each yi ∈ {0, 1}n.

• Prover (P ):

1. Compute xi := f−1(yi) and ri = b(xi) for i ∈ [m].

2. Emulate PHB to obtain (I, π) = PHB(x, r1 · · · rm)

3. Output (π,Σ), where Σ := {(i, xi) : i ∈ I}.

• Verifier (V ): given the proof (π,Σ = {(i, xi) : i ∈ I}):

1. check that xi = f(yi) for each i ∈ I . Otherwise reject.

2. compute ri = b(xi) for i ∈ I , let rI = {(i, rI) : i ∈ I}
3. emulate VHB on (x, rI , π) , and accept if and only if it accepts.

[FLS90] showed that the resulting construction is a NIZK proof system for L in the
CRS model:

Theorem 2.1. ([FLS90]) Assuming the existence of one-way permutations, there exists a
NIZK proof system in the CRS model with an inefficient prover for any NP language.
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Implementing an Efficient Prover using Ideal Trapdoor Permutations: In order for
the prover P in the FLS system to be efficient, it must be able to efficiently invert f . On the
other hand, the verifier V must not be able to efficiently invert f in order to preserve the
zero-knowledge property of the system. The obvious solution is to use a family of trapdoor
permutations, and let the prover choose the permutation. The prover invokes the generation
algorithm of the TDP to receive an index α and a trapdoor τ . It then uses τ to invert the yi’s.
The verifier receives α from the prover and uses it to evaluate f and b. As we can no longer
assume that the permutation key chosen by the prover is truly random, we consider the
probability of success of the prover for any specific choice of permutation, and then union
bound over all possible permutations. This means that in order to guarantee soundness,
the initial soundness error must be smaller than inverse the number of permutations. We
guarantee that by enhancing the soundness error via repetition. We omit the rest of the
details.

Theorem 2.2. ([FLS90]) Assuming the existence of an ideal trapdoor permutation family,
there exists a NIZK proof system in the CRS model (with an efficient prover) for any NP
language.

As shown by [FLS90], the FLS protocol provides a NIZK proof system assuming that
the underlying TDP is ideal. However, existing instantiations of TDPs are not ideal, and in
fact are far from it. Most reasonable constructions of TDPs have both partial keysets and
partial domains. This leads to two gaps which arise when using general TDPs, in place of
ideal ones.

Ideal Domains + General Keys: The Bellare-Yung Protocol: The first hurdle, discov-
ered by Bellare and Yung [BY96], involves the use of general trapdoor keys (rather than
ideal ones). The problem is that the soundness of the FLS protocol relies on the feasibility
of recognizing permutations in the collection. If the permutation is ideal then every key
describes a permutation, and therefore detecting a permutation is trivial. However, existing
instantiations of TDPs require sampling keys from a certain form using a specific proto-
col. This brings us to the problem of certifying permutations, which aims to answer the
question of how to certify that a given key indeed describes a valid permutation. Bellare
and Yung [BY96] suggested a certification procedure for permutations, assuming nothing
of the keyset, but requiring that the range remains full. We refer to this procedure as the
Bellare-Yung protocol. The following is an overview of the construction and proof given
in section 4 of [BY96].

Definition 2.8. (Almost-Permutations). Let C(f), the Collision Set of f , be the set of all
n-bit strings which have more than one pre-image:

C(f) := {y ∈ {0, 1}n : ∃x1 6= x2 ∈ {0, 1}n.f(x1) = f(x2) = y} (4)
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We say that f is an ε-permutation (for 0 ≤ ε ≤ 1) if its collision set is at most an
ε-fraction of the entire domain, i.e. |C(f)| ≤ ε2n. If f is a 0-permutation then it is by
definition a permutation. We say that f is an almost permutation if it is an ε(n)-permutation
for some negligible ε(n).

For general functions (with different domain and range), we define almost injectivity
in a similar way: if Range(f) ⊆ {0, 1}m, then the collision set is defined as the set of all
m-bit strings which have more than one pre-image. Next, we say that f is ε-injective if
|C(f)| ≤ ε · |Domain(f)|, and that it is almost injective if it is ε(n)-injective for some
negligible ε(n).

The main observation is that f is an ε-permutation if and only if at most ε-fraction of
{0, 1}n has no pre-image. Given a trapdoor permutation family described by (I, SD, F, B)
(where SD just samples a string from {0, 1}n), Bellare-Yung described the following proto-
col for certifying that some (α, τ) describe an almost-permutation. The prover and verifier
treat the CRS as a sequence of some l range items y1, ...., yl (where yi ∈ {0, 1}n). The
prover provides the verifier with a list of pre-images x1, ..., xl such that xi = B(τ, yi)
(where B is the backwards-evaluation or inversion algorithm of the TDP family). The
verifier accepts if yi = F (α, xi) for all i (where F is the forward evaluator). By asking
the prover to invert sufficiently many random domain element, the verifier is convinced
that the collision set is small enough, meaning that the given index describes an almost-
permutation. Finally, as it turns out, being an almost-permutation is sufficient for the pur-
pose of the FLS protocol.

Theorem 2.3. ([BY96]) Assuming the existence of a full-domain trapdoor permutation
family (whose keys may be hard to recognize), there exists a NIZK proof system in the CRS
model for any NP language (with an efficient prover).

General Domains: Doubly Enhanced TDPs: The second gap concerns the case of par-
tial domains, where the function’s domain is comprised of elements of specific structure
(and not just {0, 1}n). The FLS protocol treats the CRS as a sequence of range elements.
In the case of the general abstraction of trapdoor permutations, an additional domain sam-
pling algorithm is required. This problem is solved by requiring the use of doubly enhanced
trapdoor permutations. Given the permutation index α, both the prover and the verifier use
the enhanced sampling algorithm SR(α) to sample elements from the permutation’s range.
They treat the CRS as a sequence r1, ..., rl, where each rl ∈ {0, 1}n is handled as random
coins for the range sampler. They create a list of range items yi = SR(α; ri) and use them
for the rest of FLS protocol. Using an enhanced range sampler solves the completeness
issue of NIZK in the CRS model for permutations with general domains. However, the
resulting protocol may no longer be zero-knowledge, as the verifier now obtains a list of
random pairs (xi, ri) such that fα(xi) = Sα(ri), but it is not clear that it could have gener-
ated such pairs itself. The second enhancement solved just that, and allows the verifier to
obtain such pairs on its own.
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Theorem 2.4. ([GR13]) Assuming the existence of a general doubly-enhanced trapdoor
permutation family with efficiently recognizable keys, there exists a NIZK proof system in
the CRS model for any NP language (with an efficient prover).

Moreover, in order to certify general keys, [Gol11, GR13] suggested combining be-
tween doubly enhanced permutations and the Bellare-Yung protocol, by using the doubly-
enhanced domain sampler to sample images by the Bellare-Yung prover and verifier. We
reexamine this suggestion in section 3.

Basing FLS on Injective Trapdoor Functions: Before moving on, we mention that
while the FLS protocol is originally described using (trapdoor) permutations, it may just as
well be described and implemented using general injective trapdoor functions. In this case,
since the CRS is used to generate range elements, there is no useful notion of ”ideal” injec-
tive trapdoor functions; if f maps n-bit strings into m-bit strings, where m > n, then there
must exists some m-bit strings which do not have a pre-image under f . However, using
a doubly-enhanced general injective trapdoor function, the FLS protocol and the gener-
alization into general TDPs will work without any changes, under assuming the keys are
efficiently recognizable. In section 5 we will show an example for such a 1-1 TDF and it’s
application to NIZK proof systems.

3 On the Unsoundness of FLS with General Doubly En-
hanced TDPs

We begin with a careful reexamination of the FLS protocol, in light of the work of [Gol11,
GR13]. We discuss a crucial problem yet to be detected when applying the Bellare-Yung
protocol on general TDPs, which have both partial domains and partial keysets. Specifi-
cally, we identify that the soundness of the FLS protocol may be compromised when using
such trapdoor functions.

3.1 The Counter Example
We once again sketch the full details of the Bellare-Yung protocol, this time allowing both
partial range and partial keyset for our TDPs, as suggested by [GR13]. To simplify matters,
we limit this part of the discussion to the case of trapdoor permutations (rather than any
injective trapdoor functions), which is consistent with the efforts done by previous work.

Recall that we are provided with a doubly-enhanced TDP family, described using the
algorithms I(1n)→ (α, τ), F (α, x)→ y,B(τ, y)→ x, S(α; r)→ x. We treat the CRS as
a sequence of random coins for the sampler S, and apply S both on the prover and on the
verifier side to obtain range elements.
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• Input: (α, τ)← I(1n)

• CRS: a sequence of l random strings r1, ..., rl, each acts as random coins for S

• Prover: is given (α, τ) and does the following:

1. Calculate yi := S(α; ri) for each 1 ≤ i ≤ l.

2. Calculate xi := B(τ, yi) for each 1 ≤ i ≤ l.

3. Output {(i, xi) : 1 ≤ i ≤ l}

• Verifier: is given α and {(i, xi) : 1 ≤ i ≤ l}, and does the following

1. Calculate yi := S(α; ri) for each 1 ≤ i ≤ l.

2. Validate that yi = F (α, xi) for each 1 ≤ i ≤ l. If any of the validations fail,
reject the proof. Otherwise, accept it.

Looking into the details of the protocol, we detect a potential problem. We demon-
strate it by instantiating the FLS+BY protocols using a specific family of doubly-enhanced
trapdoor permutations, which was proposed by [BPW15]:

Let PRFk be a pseudorandom function family, and iO an indistinguishability obfusca-
tor. Let Ck be the circuit that, on input (i, t), if t = PRFk(i) outputs (i+ 1, PRFk(i+ 1))
(where i + 1 is computed modulo some T ) and otherwise outputs ⊥. Denote by C̃ :=
iO(Ck) the obfuscation of Ck. The BPW construction gives C̃ as the public permutation
index, and keeps k as the trapdoor. To evaluate the permutation on a domain element
(i, PRFk(i)), just apply C̃. To invert (i + 1, PRFk(i + 1)) given k, return (i, PRFk(i)).
The range sampler is given as an obfuscation of a circuit which samples out of a (sparse)
subset of the function’s range. One-wayness holds due to a hybrid puncturing argument:
the obfuscation of the cycle (i, PRFk(i))→ (i+1, PRFk(i+1)) (where i+1 is computed
module T ) is indistinguishable from that of the same cycle when punctured on a single spot
i∗, by replacing the edge (i∗, PRFk(i

∗)) → (i∗ + 1, PRFk(i
∗ + 1)) with a self loop from

(i∗, PRFk(i
∗)) to itself. By repeating the self-loops technique we obtain a punctured ob-

fuscated cycle where arriving from (i, PRFk(i)) to its predecessor (i − 1, PRFk(i − 1))
cannot be done efficiently without knowing k itself.2

Suppose that the [BPW15] construction is used to instantiate the FLS+BY protocols,
and consider the following malicious prover: Let C ′k be a circuit which, given input (i, t),
does the following: if t = PRFk(i) or t = PRFk(i − 1), output (i + 1, PRFk(i + 1)).

2In order to add an enhanced domain sampler, the BPW construction returns elements of the form
(PRG(r), PRFk(PRG(r))), where PRG is a pseudorandom generator which lengthens the input by a
significant factor. The domain sampler is just an obfuscation of a circuit which outputs the above pair on
some random r. By augmenting the sampler even more, they were able to doubly-enhance their TDP, at the
cost of creating a very sparse part of the domain which is sampleable. We leave the rest of the details to the
reader.
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Otherwise, output ⊥. Denote C̃ ′ := iO(C ′k). We give out C̃ ′ as the public key and keep
k as the trapdoor. We keep the domain sampler as it is, that is, it returns only items of the
form (i, PRFk(i)).

Denote Dk = {(i, PRFk(i) : i ∈ [1...T ])} and D̃k = {(i, PRFk(i)) : i ∈ [1...T ]} ∪
(i, PRFk(i − 1)) : i ∈ [1...T ]}. It is easy to see that C ′k is a permutation when restricted
to the the domain Dk, but it many-to-one when evaluated on the domain D̃k: each item
(i + 1, PRFk(i + 1)) ∈ Dk has 2 pre-images: (i, PRFk(i)) and (i, PRFk(i − 1)). Note
that the one-wayness of the trapdoor function is maintained even when extended to the
domain D̃k: For each image (i + 1, PRFk(i + 1)) we now have two pre-images, one
is (i, PRFk(i)) which is hard to invert to due to the same puncturing argument as in the
original BPW paper, and the second is (i, PRFk(i−1)) which has no pre-image of its own,
and therefore no path on the cycle can lead to it (keeping the same one-wayness argument
intact).

Finally, our cheating prover can wrongly ”certify” the function as a permutation. The
domain sampler will always give an image in Dk as it was not altered. During the Bellare-
Yung certification protocol, the prover can invert y = (i + 1, PRFk(i + 1)) ∈ Dk to,
say, (i, PRFk(i)), which will pass the validation. However, during the FLS protocol, the
verifier can choose to invert any y ∈ Dk to one of its two distinct pre-images, one from Dk

and another from D̃k \Dk.

3.2 Discussion
We attribute the loss in soundness when applying the FLS+BY combination on the [BPW15]
construction to a few major issues.

First, we observe that both the sampling and forward evaluation algorithms are required
to operate even on illegitimate keys. However, the basic definition of trapdoor permutations
(c.f. [Gol98]) does not address this case at all. Ignoring this case may make sense in settings
where the party generating the index is trusted, but this is not so in the case of NIZK proof
systems. We therefore generalize the basic definition of trapdoor permutations so that the
forward evaluation and domain sampling definitions generalize to any α, rather than just
those which were generated by running the index-generation algorithm. That is, for every
α, Dα is some domain over which F (α, ·) is well defined, and S(α; r) returns elements
from that domain.

We next claim that in order for the soundness of the complete FLS+BY protocol to
be preserved, two additional requirements are needed: First, membership in Dα should be
efficiently recognizable given α. That is, there should exist an efficient algorithm which,
given α and some string x, decides if x represents an element in Dα or not. Second, the
domain sampler S should be guaranteed to sample (almost) uniformly out of Dα. We
stress that both these requirements should hold with respect to any index α, in particular
indices that were not generated truthfully. Furthermore, they are made on top of the existing
requirements from doubly-enhanced trapdoor permutations.
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We call doubly enhanced trapdoor permutations that have these properties public do-
main. We formalize this notion in Definition 4.2 and prove that it indeed suffices for re-
gaining the soundness of the FLS+BY combination in theorem 4.2 (see section 4.3).

In the rest of this section, we show that these two requirements are indeed necessary,
by demonstrating that if either of the two do not hold then the resulting proof system is not
sound.

First, consider the case where S does not sample almost uniformly from Dα. The
soundness of Bellare-Yung depends on the observation that if the function is not an almost-
permutation, then by sampling enough random images from the function’s domain, there
must be a sample with cannot be inverted (with all but negligible probability). However,
if the sampler does not guarantee uniformity this claim no longer holds, as the prover may
give out a sampler which samples only out of that portion of the range which is invertible.

Secondly, assume S indeed samples uniformly from the domain, and consider the case
where Dα is not efficiently recognizable. As it turns out, both the Bellare-Yung protocol
and the original FLS protocol require the verifier to determine whether pre-images provided
by the prover are indeed inDα. Otherwise, a malicious prover could certify the permutation
under a specific domain, but later provide pre-images taken out of an entirely different
domain, thus enabling it to invert some images to two or more pre-images of its choice.

Indeed, the attack described in section 3.1 takes advantage of the loophole resulting
from the fact that the domain of the [BPW15] is neither efficiently recognizable nor ef-
ficiently sampleable. The exact reason for the failure depends on how the domain of
[BPW15] is defined with respect to illegitimate indices. Say for α = C̃, we give out
Dα which includes only pairs (i, x) such that x = PRFk(i) (for the specific k used to
construct C̃). In that case, S indeed samples uniformly from Dα. However since Dα is not
efficiently recognizable, the prover cannot check that the pre-image it was given is from
Dα. In particular it cannot tell if it is from Dk = Dα or from D̃k. On the other hand, if
Dα = {0, 1}∗, then Dα may be trivially recognizable for any index, but S does not guaran-
tee a uniform sample from Dα. Indeed, S may sample only from that subset of Dα which
is invertible, thus harming the soundness.

4 Certifying Injectivity of Trapdoor Functions
We go back to the original problem of certifying permutations in a way that is sufficient
for the FLS protocol, while addressing the more general problem of certifying injectivity
of trapdoor functions (which may or may not be permutations). We note that although this
problem is motivated by the need to fill in the gaps in the FLS protocol, a solution for it
might be interesting on its own.

In section 4.1 we define the notion of Certifiable Injectivity as a general abstraction of
certifiability for doubly-enhanced injective trapdoor functions. In section 4.2 we prove that
this notion indeed suffices for regaining the soundness of the FLS protocol. In section 4.3
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we show how certifiable injectivity can be realized by any trapdoor permutations whose
domain provides certain additional properties, by using the Bellare-Yung certification pro-
tocol. In section 4.4 we suggest the notion of Perfectly Certifiable Injectivity as a specific
variant of certifiable injectivity, where there is no longer need for a certification protocol
and the resulting soundness is optimal.

4.1 Certifiable Injectivity - Definition
We define a general notion of certifiability for injective trapdoor functions, which requires
the existence of a general prover and verifier protocol for the function family. The purpose
of this protocol is to guarantee that if the verifier accepts the proof given by the prover on
a certain index α, then with all but negligible probability (over the coins of the range sam-
pler), the range sampler cannot sample images which can be inverted to any two pre-images
which are both acceptable by the verifier. We formulate the notion of ”acceptable” pre-
images by requiring an additional efficient pointwise certification algorithm ICert where,
given an index α and an image y, with all but negligible probability over the choice of y,
there exists only one pre-image x such that ICert accepts on (α, x).

Definition 4.1. (Certifiable Injective Trapdoor Functions (CITDFs)). Let F = {fα : Dα →
Rα} be a collection of doubly enhanced injective trapdoor functions, given using algo-
rithms I, F,B, SD, SR. We say that F is certifiably injective (in the common reference
string model) if there exists an efficient algorithm ICert and a pair of efficient probabilis-
tic algorithms (P, V ), which provides the following properties:

• Completeness: for any α, τ ← I(1n) we have:

1. PrP,V,crs[π ← P (α, τ, crs);V (α, crs, π) = 1] = 1, where the probability is
taken over the coins of P and V and the choice of the CRS, and

2. For any x ∈ Dα, ICert(α, x) = 1.

• Soundness: there exists a negligible function µ such that for any α the following
holds:

Pr
crs,V,r

[∃π, x1, x2 : V (α, crs, π) = 1,F (α, x1) = F (α, x2) = SR(α, r),

ICert(α, x1) = ICert(α, x2) = 1] ≤ µ(n)

where the probability is taken over the coins of V the choice of the CRS, and the ran-
dom coins given to the range sampler. Note that this must hold for any α, including
those that I cannot output, and that π can be chosen adaptively given the common
reference string.

19



• Hardness (even) given the Proof: for any polynomial-time algorithm A there exists
a negligible function µ, such that the following holds:

Pr
P,crs

[α, τ ← I(1n);π ← P (α, τ, crs);x← SD(α);A(α, F (α, x), crs, π) = x] ≤ µ(n)

where the probability is taken over the coins of P and the choice of the CRS.

Certifiable injectivity gives a general way to certify that a given key describes an injec-
tive function, even when using general, partial-domain/range functions. The proof gener-
ated by P and verified by F is used to certify that the given key α is indeed injective, in
the sense that if V accepts it then no two acceptable pre-images can map to the same image
(with all but negligible probability).

4.2 Certifiable Injectivity Suffices for the Soundness of FLS
Our key theorem, stated formally next, shows how combining certifiable injectivity with the
FLS protocol and doubly-enhanced permutations, we overcome the existing problems and
obtain NIZK for NP from general permutations. The intuition is simple: we take a doubly-
enhanced, certifiably injective collection of trapdoor permutations, and treat the CRS as two
separate strings. The first string is used to certify the injectivity of the trapdoor function,
using the CI-prover and verifier, while the second is used for the FLS protocol. Moreover,
we add a certification step to the FLS protocol itself, by having the verifier run ICert on
any pre-image provided to it by the prover. The soundness guarantee of CI notion ensures
that a malicious prover must choose a trapdoor index which describes a permutation (or at
least an almost-permutation) over the domain of elements accepted by ICert, or otherwise
the CI verifier would reject the first part of the proof. The hardness guarantee ensures that
the FLS proof remains zero-knowledge, even in the presence of the CI proof.

Theorem 4.1. (DECITDFs→ NIZK) Let F = {fα : Dα → Rα} be a collection of doubly-
enhanced, certifiably injective trapdoor functions, and let L be an NP language. Then there
exists a NIZK proof system for L in the CRS model.

Proof. We treat the common reference string as two separate substrings c1, c2. c1 will be
used by the CI-prover and CI-verifier (PCI , VCI) for F . c2 will be used by the prover-
verifier pair from the FLS protocol, denoted (PFLS, VFLS). For α, τ ∈ I(1n), Denote by
PFLS[α, τ ] and VFLS[α] the evaluation of PFLS, VFLS with α, τ as the trapdoor and index.
Let (P, V ) be the following protocol:

• The prover P is given an instance-witness pair (x,w) ∈ RL. It selects (a, τ) ←
I(1n). It then generates a proof π1 ← PCI(α, τ, c1) for the injectivity of fα. Next,
it generates a proof π2 for x, by taking π2 ← PFLS[α, τ ](x,w, c2). P outputs π =
(π1, π2, α) as the proof.

20



• The verifier V receives π = (π1, π2, α). It first validates π1 by running VCI(α, c1, π1).
Then, it checks π2 by running VFLS[α](x, π2, c2), with the addition the for every pre-
image xi submitted by the prover, the verifier runs ICert(α, xi). V accepts only if
both the validators accepted, and ICert(α, xi) returned one on all the pre-images.

We will show that (P, V ) provide a NIZK proof system for L in the CRS model.
Completeness follows immediately from the completeness of the CI notion and of the

FLS protocol.
Zero Knowledge follows from the zero-knowledge property of the FLS protocol, along

with the hardness given the proof of the CI notion. From the zero-knowledge of the FLS
protocol, we have that there exists a simulator SFLS such that

{(c2, π2) : c2 ← U, π2 ← PFLS(x,w, c2)}(x,w)∈RL ≈ {SFLS(x)}(x,w)∈RL (5)

Adding a simulator for the CI part of the proof is straightforward, as the proof π1 does not
depend on x at all. So, let S be the following algorithm: given an input x, first choose
α, τ ← I(1n) and generate a proof π1 = PCI(α, τ, c1) (with some randomly selected c1).
Next, get π2 by running SFLS[α, τ ](x). S outputs ((c1, c2), (π1, π2, α)). Since c1, π1 are
independent of x, due to equation 5, this is indistinguishable from a proof generated by P .

The Soundness of the overall protocol is straightforward. By following the arguments
presented by [BY96], in order for the FLS protocol to maintain soundness, it suffices that
for, with all but negligible probability over the random coins r used by the range sam-
pler, the image y = SR(α; r) has only one pre-image x which V accepts, i.e. such that
ICert(α, x) = 1. Assuming VCI accepted π1, we use a similar union-bound argument
as that of [BY96], to bound the additional error incurred in the case of a common ref-
erence string σ = σ1, ..., σl such that yi = SR(α, σi) has two pre-images x1i , x

2
i which

both pass ICert(α, ·), by a negligible factor. This is since if VCI accepted the proof, then
the probability over the coins of SR that there exists such a pair of certified pre-image is
negligible.

4.3 Certifiable Injectivity for Public-Domain TDPs using Bellare-Yung
Building on the discussion in section 3.2, we formalize the notion of public-domain trap-
door permutations. We then show that, when applied to public-domain permutation, the
BY certification mechanism suffices for guaranteeing Certifiably Injectivity (and, thus, also
soundness of the FLS paradigm.)

Definition 4.2. (Public-Domain Trapdoor Permutations.) Let fα : {Dα → Dα} be a
trapdoor permutation family, given by (I, S, F,B). We say that it is public-domain if the
following two additional properties hold:

• The domain is efficiently recognizable: that is, there exists an efficient algorithm
Rec which, for any index α and any string x ∈ {0, 1}∗, accepts on (α, x) if x ∈ Dα.
In other words, Dα is defined as the set of all strings x such that Rec(α, x) accepts.
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• The domain is efficiently sampleable: that is, for any index α, S(α) samples almost
uniformly from Dα.

We stress that both properties should hold with respect to any α, including ones that
were not generated by running I .

We show that indeed, for the case of public-domain doubly-enhanced trapdoor permu-
tations, Bellare-Yung can be used to obtain certifiable injectiveness.

Theorem 4.2. Any doubly-enhanced public-domain trapdoor permutation family is certi-
fiably injective.

Proof. Let F be a doubly enhanced public-domain trapdoor permutation. Let (P, V ) the
prover and verifier from the enhanced Bellare-Yung protocol for F , that is, the version of
Bellare-Yung that uses the enhanced range sampler to generate images from the random
coins given in the common reference string, as described in section 3.1. Let Rec be an
efficient domain recognizer for Dα, for any index α (which exists since the permutation
family is public-domain). We claim that F is certifiably injective, with ICert(α, x) =
Rec(α, x) and (P, V ) giving the CI prover and verifier.

As shown by [BY96] for the case of full-domain trapdoor permutations, (P, V ) provide
soundness, certifiable injectivity and zero-knowledge (which implies the hardness require-
ment of CI). Moreover, if V accepts the proof then the size of the collision set is negligible,
which implies that the probability that a random image has two pre-images is indeed neg-
ligible. In the case of general doubly-enhanced trapdoor permutations, the only property
at risk is soundness. We prove that it is indeed maintained for public-domain trapdoor
permutations.

Let α be an index such that F (α, ·) is not almost-injective over Dα. Let Cα be the
collision set of α out of Dα: C(α) = {y ∈ Dα : ∃x1 6= x2 ∈ Dα s.t. F (α, x1) = F (α, x2).
Then |Cα| ≥ ε(n) · |Rα| for some non-negligible ε(n), hence there exist at least ε(n) · |Dα|
range items with no pre-image in Dα. Moreover, ICert(α, x) = Rec(α, x) is efficient and
recognizes Dα, V will not accept any pre-image outside of Dα, hence there exists at least
ε(n) · |Dα| range items with no pre-image that V accepts (in Dα or outside of it). Denote
that uninvertible portion of Dα as U(α).

The prover and the verifier apply S(α; ri) on a series of random coins r1, ..., rl taken
from the common reference string. Using a similar argument to that presented in [BY96],
for a large enough l (polynomial in n), with all but negligible probability (over the CRS),
there must exist at least one yi = S(α; ri) ∈ U(α). This holds since the S(α; ·) is guar-
anteed to generate uniform samples out of Dα, meaning given enough samples, one has to
fall into the non-negligible part U(α). Hence, for a large enough l, V rejects π with all but
negligible probability.
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We note that some existing candidate constructions, such as ones on the line of [BPW15],
are not public-domain, as they inherently need the sampling algorithm to hold secrets. In-
deed, as demonstrated in section 3, Bellare-Yung does not suffice to guarantee soundness
when instantiating FLS with such a candidate. On the other hand, the RSA TDPs are
public-domain: the domain Z∗N is indeed efficiently recognizable for any public index N ,
and an efficient certifiably uniform domain sampler can be described for any public key
N of RSA, by mapping strings in {0, 1}n to Z∗N in a way that obtains (almost) uniform
samples in Z∗N

3. For those constructions the FLS+BY combination is indeed sound.

4.4 Perfectly Certifiable Injectivity
While certifiable injectivity seems to capture the minimal requirement for a trapdoor per-
mutation that suffices for FLS, the requirement of a prover and verifier algorithms are
somewhat cumbersome when viewed purely in the context of trapdoor permutations. We
thus suggest a strengthened notion of Perfectly Certifiable Injectivity, which is a variant
of certifiable injectivity in which the pointwise certification algorithm ICert provides a
stronger guarantee, eliminating the need for an additional prover-verifier protocol.

Definition 4.3. (Perfectly Certifiable Injective 1-1 TDFs). A doubly-enhanced injective
TDF family is perfectly certifiable injective if, in addition to the standard set of algorithms
I, SD, SR, F, B, it defines a certification algorithm ICert.

ICert is given a permutation index α and a pre-image x, and accepts or rejects, pro-
viding the following two guarantees:

• Completeness: If α← I0(1
n) and x← SD(α) then ICert(α, x) = 1.

• Perfect Soundness: For any index α, there do not exist any x1 6= x2 ∈ {0, 1}∗ such
that F (α, x1) = F (α, x2) and ICert(α, x1) = ICert(α, x2) = 1.

Note that α needs not be generated honestly by I .

The standard hardness condition is required as usual (and must apply even in the pres-
ence of ICert).

Perfect CI is a special case of general CI, where the soundness of ICert is absolute; for
any α, x1, if ICert(α, x1) = 1 then it is guaranteed that there exists no second pre-image
x2 which maps to F (α, x1) and accepted by ICert(α, ·). It turns out that in the specific
case where the trapdoor function family in use is perfectly certifiable injective with, the
index certification protocol can be completely avoided. Indeed, the soundness requirement
of definition 4.1 is trivially fulfilled, as:

Pr
r

[∃x1, x2 : F (α, x1) = F (α, x2) = SR(α, r), ICert(α, x1) = ICert(α, x2) = 1] = 0

3Full details can be found in [BY96] and [GR13], appendix B
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An important property of this technique is that the soundness it provides is perfect,
in that it is identical to the soundness obtained by using ideal trapdoor permutations. No
additional error is incurred, since for every image there exists a single acceptable pre-image
(unconditionally).

5 Doubly Enhanced Perfectly Certifiable Injective Trap-
door Functions from iO+

We construct doubly-enhanced injective trapdoor functions using iO + pseudorandom gen-
erators (which can be constructed from one way functions). Additionally, assuming the
pseudorandom generator is injective, we show that the injectivity of our construction is
perfectly certifiable. Using the additional certification procedure, our construction suffices
for general NIZK proofs for NP-languages. Our construction is motivated by the Sahai-
Waters CPA-secure public key encryption system ([SW13]).

5.1 Construction
Let:

• g : {0, 1}n → {0, 1}2n be a length doubling pseudorandom generator

• {fk : {0, 1}2n → {0, 1}n}k∈K be a puncturable pseudorandom function family

• {hw : {0, 1}n → {0, 1}n}w∈W be a length-preserving puncturable PRF family

• iO be an indistinguishability obfuscation scheme.

Let Tk be the following circuit, which takes as input an n bit string x and outputs a 3n
bit string:

Tk(x):
constants:

puncturable PRF key k
t = g(x)
s = fk(t)
return (x ⊕ s, t)

Let Sk,w be the the following circuit over {0, 1}n → {0, 1}3n:

Sk,w(r):
constants:

puncturable PRF key k for f
puncturable PRF key w for h
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x = hw(r)
return Tk(x)

We define our 1-1 TDF in the following way:

• I(1n): Choose k ← K as a PRF key for f , and w ← W as a PRF key for h. Denote
T̃ := iO(Tk) and S̃ := iO(Sk,w) Output α := (T̃ , S̃) as the public TDP index, and
τ := k as the trapdoor.

• F (α = (T̃ , S̃), x ∈ {0, 1}n): output T̃ (x).

• B(τ = k, y = (c ∈ {0, 1}n, t ∈ {0, 1}2n)): output c⊕ fk(t).

• SD(α = (T̃ , S̃), r ∈ {0, 1}n): output r.

• SR(α = (T̃ , S̃), r ∈ {0, 1}n): output S̃(r).

5.2 Soundness
Theorem 5.1. (Soundness) The above construction describes an injective function family
over {0, 1}n → {0, 1}3n. Furthermore, B calculates the inversion of F over the above
domain and range.

Proof. Suppose (c1, t1) = (c2, t2). Then t1 = t2, hence for s1 = fk(t1) and s2 = fk(t2) we
have s1 = s2. So c1 = s+ x1, c2 = s+ x2, and c1 = c2, hence x1 = x2.

For x ∈ {0, 1}n, F (α, x) outputs y = (x⊕s, t). B(τ, y) outputs x⊕s⊕fk(t) = x.

5.3 Hardness
Theorem 5.2. (Hardness) The function family described by the above construction is one-
way.

Proof. We define the OWF hardness using a game between a game-master GM and an
adversary A:

1. GM invokes I(1n) to obtain (α = (T̃ , S̃), τ = k). It then chooses a random x ←
{0, 1}n, and takes t = g(x); s = fk(t); y = (x⊕ s, t).

2. A receives α = (T̃ , S̃) and y, and outputs x′.

We define the advantage of A as adv(A) = Pr[x′ = x] (where the probability is taken
over the coins of I and the selection of x). We require that for any PPT adversary A,
adv(A) ≤ µ(n) for a negligible function µ. It is easy to see that this definition is equivalent
to the standard hardness definition given in section 2.4.
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We now continue the proof using a hybrid argument. We define a series of hybrids,
each describing a game between the GM and the adversary A. We show that in each pair of
consecutive hybrids, the advantage obtained by the adversary must be negligibly close, or
otherwise some underlying hardness assumption will break. In the last hybrid we will show
that no adversary can win with non-negligible advantage (unconditionally), thus proving
the hardness of the OWF obtained by the construction.

H0: the OWF game is played between A and GM as described above.
H1: the OWF game is played with a slight change: GM replaces t = g(x) with a truly

random t∗ ← {0, 1}2n, i.e.: GM invokes I(1n) to obtain (α = (T̃ , S̃), τ = k) just like
before. It then chooses a random x ← {0, 1}n and a truly random t∗ ← {0, 1}2n. It then
takes y = (x⊕ fk(t∗), t∗).

H2: the OWF game is played as in H1, only we replace T̃ with an obfuscation of the
following program:

T ∗k (x):
constants:

punctured PRF key k∗ = k({t∗})
t = g(x)
s = fk∗(t)
return x ⊕ s, t

and S̃ with an obfuscation of the following program:

S∗k,w(r):
constants:

punctured PRF key k∗ = k({t∗}) for f
puncturable PRF key w for h

x = hw(r)
return T ∗k (x)

GM calculates T̃ ∗ := iO(T ∗k (x)) and S̃∗ = iO(S̃), and outputs α = (T̃ ∗, S̃∗)
H3: the same as H2, only the final range element is y = (x ⊕ s∗, t∗) for randomly

selected s∗ ← {0, 1}n (and t∗ ← {0, 1}2n as before).
We prove that the advantage gained by the adversary in each pair of consecutive hybrids

is negligibly close (denoted for convenience Hi ≈ Hi+1):

• H0 ≈ H1: reduce to the security of the PRG. Suppose A wins H0 with advantage
significantly different then the advantage in H1. We will use A construct an distin-
guisher B for the PRG g. B receives an item t ← {0, 1}2n which is either chosen
uniformly at random or is the result of executing g on a random input r ← {0, 1}n.
It then uses I to obtain α, τ , calculates s = fk(t); y = (x⊕ s, t), and simulates A on
y. If t is chosen truly at random then A is in H1, and if it is the result of the PRG
then A is in H0. B outputs 1 if A wins.
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• H1 ≈ H2: The only functional difference between Tk(r) and T ∗k (r) happens when fk
is executed on t∗. However, for a truly random t∗ ← {0, 1}2n, the probability that t∗

is in the range of g is negligible. Therefore, with overwhelming probability over the
choice of t∗, Tk(r) and T ∗k (r) are functionally equivalent (and hence so are Sk and
S∗k). Therefore, having A as a distinguisher between the two can be used to break the
indistinguishability of iO. The iO adversary will run the game master to obtain the
two programs Tk(r) and T ∗k (r), output them both, receive an obfuscation O of one of
them and will pass it on to A for the rest of the game. If O = iO(Tk(r)) then A is in
H1, otherwise in H2. B returns 1 if A wins.

• H2 ≈ H3: reduce to the selective security of the PPRF at punctured points: B selects
t∗, and is given either a truly random s∗ or s = fk∗(t∗) for k∗ = k({t∗}). It uses s∗

to construct the challenge y and pass it to A. If s = fk∗(t∗) then A is in H2 and if it
is random then A is in H3. B returns 1 if A wins.

• Finally, in hybridH3 the adversary must have statistically negligible advantage, since
all it sees is y = (r ⊕ s∗, t∗) for truly random s∗, t∗. This exposes no information
about r.

5.4 Enhancements
Theorem 5.3. The TDF family describes an enhanced 1-1 TDF.

Proof. We will show that for any PPT adversary A, it holds that:

Pr
α←I0(1n)
r←{0,1}n

[A(α, r) = f−1α (SR(α, r))] ≤ µ(n) (6)

for some negligible function µ.
We describe the first enhancement as a game between a game master GM and an ad-

versary A:

1. GM :

• generates random k ← K,w, u← W

• α = (T̃ = iO(Tk), S̃ = iO(Sk,w) and τ = k

• r∗ ← {0, 1}n

• Give (S̃, T̃ ), r∗ to A

2. A sees (S̃, T̃ ), r∗, outputs x, and wins if T̃ (x) = S̃(r∗).
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We denote by adv(A) = Pr[T̃ (x) = S̃(r∗)] the advantage of A in the above game.
We next describe a series of hybrids. The first hybrid describes the first enhancement
game between GM and A, as above. We show that the advantage on A between each two
consecutive hybrids must be negligibly close, and that the advantage in the last hybrid must
be negligible, which proves our claim.

H0: the 1st enhancement game is played as described above.
H1: The game is the same as inH0, only S̃ is replaced with another obfuscated program,

S̃∗, as described below:

1. GM :

• generates random k ← K,w ← W

• T̃ = iO(Tk)

• r∗ ← {0, 1}n

• w∗ = w({r∗}) is the punctured PRF key w at point r∗.

• x∗ = hw(r∗), y∗ = Tk(x
∗)

• S̃∗ = iO(S∗k,w∗,r∗,y∗) (described below)

• Give (S̃∗, T̃ , r∗) to A

2. A sees S̃∗, T̃ , r∗, outputs x, and wins if T̃ (x) = S̃∗(r∗).

where S∗k,w∗,r∗,y∗ is the following program:1

S∗k,w∗,r∗,y∗:
constants:

puncturable PRF key k for f
punctured PRF key w∗ for h
r∗ ∈ {0, 1}n
y∗ ∈ {0, 1}3n

if r = r∗ then
return y

end if
x = hw∗(r)
return Tk(x)

H2: the same as inH1, only x∗ (the pre-image of y∗) is taken to be a truly random string
(rather than hw(r∗)).

1. GM :

• generates random k ← K,w ← W

• T̃ = iO(Tk)
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• r∗ ← {0, 1}n

• w∗ = w({r∗}) is the punctured PRF key w at point r∗.

• x∗ ← {0, 1}n, y∗ = Tk(x
∗)

• S̃∗ = iO(S∗k,w∗,r∗,y∗)

• Give (S̃∗, T̃ , r∗) to A

2. A sees S̃∗, T̃ , r∗, outputs x, and wins if T̃ (x) = S̃∗(r∗).

• H0 ≈ H1: thanks to the choice of r∗, w∗ and y∗, Sk,w and S∗k,w∗,r∗,y∗ are functionally
equivalent: on all r 6= r∗ they both take x = hw(r) = fw∗(r) and return Tk(x). For
r∗, Sk,w returns Tk(hw(r∗)), and S∗k,w∗,r∗,y∗ returns y∗, which is chosen by GM to be
Tk(hw(r∗)). So, if A’s advantage between the two hybrids is none-negligible, we can
construct an adversary B for the iO scheme.

• H1 ≈ H2: The only difference between the two hybrids is the choice of x∗: in
H1 x

∗ = hw(r∗) and in H2 is it taken to be random. If A’s advantage between
the two hybrids is not negligibly close, we can construct an adversary B for the
selective security of the PRF h at the punctured point r∗. Choose some k, r∗, and
take x∗ = hw(r∗) or x∗ ← {0, 1}n. B is given r∗, w∗ = w{r∗} and x∗. It then selects
k, generates T̃ and S̃∗ using the x∗ it was given, and gives them all to A. B then
outputs 1 if A wins. If x∗ = hw(r∗) then A is in hybrid 1, and if x∗ is random then
A is in hybrid 2. So any non-negligible difference in A’s advantage is translated to a
none-negligible distinguishing probability for B.

• Finally, in hybridH2, the advantage ofAmust be negligible, or otherwise the security
of the PRF T̃ is broken. A receives S̃∗, T̃ and r∗. S̃∗(r∗) returns the hard-wired y∗.
x∗ itself is not given as part of the description of S̃∗ or T̃ ∗, and is not derived from
r∗. So, if A is able to provide a pre-image for y∗, it could brake the PRF, which we
have already shown is secure.

Theorem 5.4. The TDF family describes a doubly-enhanced 1-1 TDF.

Proof. We would like to show that there exists an polynomial-time algorithm that on input
α and random coins r̃ ← {0, 1}n outputs a pair (x, r) such that the distribution of x is
is computationally indistinguishable from {0, 1}n and SR(α; r) = S̃(r) = T̃ (x). In other
words, the algorithm needs to output pairs of (x, r) such that {x} ≈ {0, 1}n and x = hw(r).

If we publish hw (or an obfuscation of it), we would obtain the requirement, but at the
cost of losing the first enhancement, as using e, given r, y such that y = S̃(r), anyone could
calculate a pre-image x of y - just take x = hw(r).
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To solve this problem, we use the re-randomization trick yet again. Let Qw,u be the
circuit which, on input z ∈ {0, 1}n, takes r = hu(z), x = hw(r), and outputs (x, r).

The r values generated by Q̃ are computationally indistinguishable from {0, 1}n (due
to the use of a PRF to generate it), which in turn leads to the same result for the x values.

It remains to show that the publishing of Q̃ does not harm the security of the PRF or the
first enhancement. As per the PRF security, Q̃ does not use k at all and is therefore useless
when trying to invert the PRF.

Since w is used both in S̃ = iO(Sk,w) and in Q̃ = iO(Qw,u), the first enhancement
proof needs re-examination. The main problem is that at the end of the last hybrid in the
first enhancement proof, we claimed that A cannot guess x∗ since it was chosen to be
random and does not appear anywhere in what A sees. After adding Q̃ this is not the case,
as x∗ has to appear in it at some point of the proof. To solve this, we use the puncturing
trick once more on u at a point z∗, which is chosen to be the pre-image of (x∗, r∗) under Q̃.
Then, x∗ in Q is replaced by a random value, thanks to the selective pseudorandomness of
the PRF h with the punctured key u on the punctured point z∗. We omit the details of the
proof as it is mostly long and uses most of the same techniques as the first enhancement.

An interesting point about our construction is that both enhancements do not depend at
all on the structure of our original TDF. In fact, all the enhancements need in order to work
is any full-domain, or even efficiently sampleable domain, TDF, and the proof remains the
same. Hence, our technique of re-randomizing the input via a length-preserving PRF can be
considered as a generic method for doubly-enhancing any efficiently-sampleable-domain
TDF, using iO and one-way functions.

5.5 Certifiable Injectivity
We show that our construction is perfectly certifiable injective, under the assumption that
the PRG g is injective. Moreover, the soundness of the certification protocol is perfect.
This shows that our construction is sufficient for realizing the FLS paradigm.

Assuming one-way permutations with an efficiently recognizable domain, an injective
length-doubling pseudorandom generator can be obtained using the textbook construction
(c.f. [Gol98]). Moreover, some injective pseudorandom generators exist based on specific
number-theoretic assumptions such as the DDH assumption [DH76, Bon98] and quadratic
residuosity [BBS86]. Constructing an injective pseudorandom generator from primitives
weaker then one-way permutations4 remains an open question.

Recall that, on input x, our TDF evaluation returns (x ⊕ s, t), where t = g(x) (and s
is determined by the secret trapdoor). The certifier ICert is given x, obtains y = F (α, x),

4[Rud84, KSS00, MM11] give a black-box separation between one-way permutations and weaker primi-
tives, such as one-way functions
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and compares the last 2n bits of y to g(x). If they are equal, ICert accepts. Otherwise it
rejects.

Theorem 5.5. Assuming g is injective and its domain is efficiently recognizable, our TDF
family, along with ICert, is perfectly certifiable injective.

Proof. For y ∈ {0, 1}3n, denote by y[n+ 1 : ...3n] the last 2n bits of y.

1. Completeness: if y = F (α, x) for an honestly created α, then by the definition of our
TDF we have y = (c, t) for t = g(x) and c = x⊕fk(t). So y[n+1 : ...3n] = t = g(x)
and ICert accepts.

2. Soundness: Suppose x1, x2, y such thatF (α, x1) = F (α, x2) = y and ICert(α, x1) =
ICert(α, x2) = 1. By definition, since ICert(α, xi) = 1 for both x1 and x2, we have
that g(x1) = y[n+ 1 : ...3n] = g(x2). Since g is injective, this means x1 = x2.

The soundness, hardness and enhancements proofs for the TDF are not harmed, as
ICert does not depend on the private key k.

Corollary 5.1. Assuming indistinguishability obfuscation and injective pseudorandom gen-
erators, our construction gives a double-enhanced perfectly certifiable injective trapdoor
function family. This is sufficient for realizing NIZK proof systems in the common reference
string model for any language L in NP.
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