
CRYSTALS – Dilithium: Digital Signatures from Module Lattices
Léo Ducas

CWI

Netherlands

ducas@cwi.nl

Tancrède Lepoint

SRI International

USA

tancrede.lepoint@sri.com

Vadim Lyubashevsky

IBM Research – Zurich

Switzerland

vad@zurich.ibm.com

Peter Schwabe

Radboud University

Netherlands

peter@cryptojedi.org

Gregor Seiler

IBM Research – Zurich

Switzerland

gse@zurich.ibm.com

Damien Stehlé

ENS de Lyon

France

damien.stehle@ens-lyon.fr

ABSTRACT
This paper presents Dilithium, a lattice-based signature scheme

that is part of the CRYSTALS (Cryptographic Suite for Algebraic

Lattices) package that will be submitted to the NIST call for post-

quantum standards. The scheme is designed to be simple to securely

implement against side-channel attacks and to have comparable

efficiency to the currently best lattice-based signature schemes. Our

implementation results show that Dilithium is competitive with

lattice schemes of the same security level and outperforms digital

signature schemes based on other post-quantum assumptions.

1 INTRODUCTION
Cryptography based on the hardness of lattice problems is seen as

a very promising potential replacement of classical cryptography

after the eventual emergence of quantum computing. In this paper,

we describe a signature scheme that will be submitted as a candidate

to the NIST call for new standards for digital signature, encryption,

and key establishment protocols [19].

The goal for our design is to obtain a scheme that is simple to im-

plement, efficient to run, and that is secure against lattice reduction

attacks based on the same conservative parameter estimations as

in [3]. The currently most efficient lattice-based scheme, BLISS [25],

is based on the hardness of (a variant of) the NTRU problem and cru-

cially uses discrete Gaussian sampling and high-precision rejection

sampling to create compact signatures.

It has been recently shown (e.g., [17, 47]) that Gaussian sampling

can create a lot of potential side-channel vulnerabilities that result

in complete leakage of the secret key. While it is almost certainly

possible to create good implementations which protect against

(some) side-channel attacks (e.g., preventing timing attacks can be

done following the approach in [43]), the intricacies involved make

it an area in which one can very easily make mistakes. Since the

goal is to create a scheme that is to be widely deployed, it would be

highly desirable to have a scheme whose efficiency is comparable

to that of BLISS, yet does not require Gaussian sampling.

It has also been shown that basing the hardness of cryptographic

schemes on the NTRU problem (i.e., breaking the scheme is equiva-

lent to finding a short vector in the NTRU lattice) may be weaker

than expected, at least for large parameters [33].While these attacks

do not currently affect the parameters that are used in encryption

and signature schemes, it does cause some concern that the pro-

blems may be somewhat easier than previously thought. Avoiding

using the assumption that it is hard finding short vectors in the

NTRU lattice is also therefore somewhat desirable if the efficiency

penalty for doing so is not too high.

1.1 Our Proposal
Our scheme proposal, named Dilithium, is based on, and is an im-

provement of, the designs from [30] and [7]. The only sampling that

is required in the scheme is uniform over some bounded domain

and the rejection sampling part simply checks whether the indivi-

dual coefficients of the potential signature are all smaller than a

certain bound. The main improvement of Dilithium over [7, 30] is

that the public key size is shrunk by more than a factor 2. We are

able to do this by adapting the idea from [30] for producing “hints”

about the carries caused by small summands (we in fact greatly

simplify and improve the hint-generation from [30]). In [30], the

idea for using “hints” was applied only to reduce the size of the

signature, but we show that it can be used fairly effectively to also

reduce the size of the public key.

While [7] was an improvement over [30] in that it removed

the need for “hints” and therefore reduced the signature size by

about 10%, reintroducing the hints allows us to significantly decre-

ase the public key size at the expense of increasing the signature

length by less than 5%. Since in many applications, the total sum

of the public key size and the signature length is important, we

believe that this is a very good trade-off. In fact, the total size of

the public key plus signature size is only somewhat larger than

that of BLISS for similar security levels. The parameter sizes for

our signature scheme are presented in Table 1.

If instantiated so as to have similar security, the signature scheme

BLISSwould need to be implemented over a ring of dimension about

double as what was used in [25], thus Zq [X]/(X 1024+1). We would

estimate that BLISS would have a public key and signature sizes

of roughly 2KB and 1.5KB, respectively. The reason that the BLISS

public key size would be larger than in our current construction, is

because we do not see a way in which it can be compressed.

Our scheme was implemented on an Intel Core-i7 4770k (Has-

well) processor and all the results are provided in Table 1. Furt-

her information and comparisons to schemes based on other post-

quantum assumptions are detailed in Section 6.

We also present a variant of Dilithium that requires sampling

from a discrete Gaussian distribution.Wewill refer to this variant as

Dilithium-G. This scheme has slightly better parameters and slightly

more security for the recommended parameter sizes. We designed

Dilithium-G so that it works over the same ring as Dilithium. The

1

importance of this is that, while the signing algorithms of the two

schemes are quite different, the verification algorithm is very similar

and does not require any sampling. Thus it is possible to envision a

scenario in which the signers could choose which signature to use

because the verifiers would be able to verify signatures created by

either signing algorithm. In particular, signers who are sure that

their schemes would not be affected by side-channel attacks could

use Dilithium-G, while those who create signatures in more hostile

environments would use Dilithium.

1.2 Design Considerations
Our scheme, as well as all the ones mentioned above, are built

via the “Fiat-Shamir with Aborts” framework [36] as illustrated in

Fig. 1. The security of schemes built in this manner is based on the

hardness of finding short vectors in lattices over the ring Rq . Past
works have instantiated the scheme in one of two ways. Either they

set the parameters k = ℓ = 1 and Rq = Zq [X]/(Xn + 1) or they set

k, ℓ > 1 and Rq = Zq . The former choice results in a scheme based

on the hardness of the Ring-LWE and Ring-SIS problems (or, in the

case of BLISS, the NTRU problem). The latter choice of parameters

makes the scheme based on the LWE / SIS problem. The general

case where k, ℓ ≥ 1 and R = Zq [X]/(Xn + 1) results in a scheme

based on the Module-LWE / Module-SIS problem.

The main structural requirement that affects the parameter sizes

is that the challenge c must have small norm and come from the

ring Rq . Thus if Rq is a ring that does not have many elements of

small norm (like Zq), one will either have large signatures due to
the fact that c will be extremely large, or will choose a c from a

smaller domain but need to repeat the scheme in parallel to decrease

the soundness error, which will also serve to increase the signature

size.
1

The efficacy of lattice reduction attacks on the scheme is based on

the products kn and ℓn, where n is the degree of the ring Rq . Thus
based on the above, it is most efficient to set k, ℓ = 1 and choose a

large ring Rq . Our approach is to fix the ring Rq = Zq [X]/(X 256+1)
and vary k, ℓ. For the size of the challenge space, this is a little sub-
optimal. If, for example, we would take k, ℓ = 4 , then this is the

same as using k, ℓ = 1 and a ring of dimension 1024. In a ring of

dimension 1024, one could have a subset of size 2
256

all of whose

elements have ℓ2 norm less than 6. In a 256-dimensional ring, the

ℓ2 norm would be a little less than 8. Because the two numbers are

rather close, this has a rather small influence on the parameters,

and we find that the advantages of using a fixed ring outweighs

this disadvantage.

A major advantage of choosing an A ∈ Rk×ℓq is the flexibility of

the scheme. A large portion of the running time of the signing and

the verification algorithms is performed doing multiplications in

the ring Zq [X]/(X 256 + 1). Thus optimizing this part is crucial to

getting the scheme to be efficient. Because the ring is exactly the

same for every k, ℓ, one can easily re-use the critical parts of the

implementation for schemes of various security levels. If one were

to base the schemes on Ring-LWE / Ring-SIS, however, one would

need to change rings in order to change security, which would

1
There is also the option of defining the secret key to be a matrix rather than a vector,

and the challenge c to be a vector [37]. This reduces the signature size, but increases

the size of the secret and public keys.

Key Generation:

1: A← Rk×ℓq

2: s1 ← Sℓ , s2 ← Sk

3: t B As1 + s2 mod q.
4: Public Key B (A, t)
5: Secret Key B (s1, s2)

Sign(µ, ρ, s1, s2, t):
1: y1 ← Y ℓ , y2 ← Yk

2: w B Ay1 + y2 mod q
3: c B H(A, t,w, µ)
4: z1 B y1 + cs1, z2 B y2 + cs2
5: Run RejectionSample(z1, z2, cs1, cs2), and goto 1 if it rejects

6: output (z1, z2, c)

Verify(µ, (z1, z2, c),A, t):
1: w B Az1 + z2 − ct mod q
2: ACCEPT if c = H(A, t,w, µ), and ∥(z1, z2)∥ is small.

Figure 1: Fiat-Shamir with Aborts Framework. The sets S
and Y are subsets of R with small coefficients. H is a crypto-
graphic hash function outputting to a low-norm subset of R
of size at least 2256. The RejectionSample procedure in the
signing algorithm makes the signature part (z1, z2) indepen-
dent of the secret key.

require the re-implementation of all the routines. This could be

especially costly in hardware. By keeping the ring constant and

only varying the parameters k and ℓ, on the other hand, would

make varying the security (whether due to novel cryptanalysis

or for different application requirements) extremely simple. Being

able to easily vary the security could also make it easier to adopt

the scheme prior to the standardization process. Other advantages

include the fact that the scheme has less algebraic structure, thus

reducing the available practical attack avenues, as well as the fact

that one can vary the parameters k and ℓ independently, which

results in schemes that are less wasteful in setting the dimensions.

1.3 Security and Quantum Security
Our schemes are proven secure in the random oracle model, but

we do not have a security proof in the quantum random oracle

model. This is the same state of affairs as for every other somewhat

efficient scheme using the Fiat-Shamir framework. It is possible to

modify the parameters of our scheme to enable a security proof in

the quantum random oracle model as done in [2] using the analy-

sis from [1] for the scheme in [7], but this would increase certain

parameter sizes by at least an order of magnitude. A different ap-

proach to get a lattice-based scheme secure in the quantum random

oracle model would be to use the full-domain-hash design strategy

as in [28]. A particularly efficient instantiation of the preceding

scheme using NTRU lattices was given in [26]. The main problem

is that to get small signatures would require sampling from a high-

precision discrete Gaussian distribution with varying centers. This

is an even more computationally intensive and intricate operation

than the discrete Gaussian sampling required for BLISS. There are

2

work-arounds to not use the Gaussian distribution [41], but the

result ends up significantly increasing the parameter sizes. One

could also consider using lattice-based schemes that do not use any

random oracles (e.g. [16, 27]), but those are even less efficient.

The lack of a security proof for our scheme in the quantum

random oracle model is partially due to the same principle as why

it is not possible to prove many classically-secure computationally-

binding commitment schemes secure against a quantum adversary

(see for example the discussion in [24]). In particular, we do not

know how to discard the scenario in which the adversary produces

a commitment together with some quantum state, which he can

use to open the commitment to any value. Since the quantum state

has been measured during the opening, the adversary cannot be

asked to open the commitment to a second value and thus pro-

duce a collision, thus solving a presumably-hard problem upon

which we wish to base the hardness of the commitment scheme. In

short, a quantum adversary may theoretically be able to open the

commitment only once, but do it to any value.

In Fiat-Shamir signatures, the first step of the protocol can be

thought of as the commitment, the signature is the opening of a

commitment, and the challenge is the committed message. Thus

we cannot formally dismiss the scenario in which the adversary is

able to come up with a commitment that he can open (i.e., sign) for

a random message (the challenge). Nevertheless, as far as we know,

there are no “natural” candidates of classically-secure commitment

schemes that can be broken in this manner by a quantum adversary.

Furthermore, Fiat-Shamir schemes that correspond to perfectly-

binding commitment schemes have been shown to be secure in

the quantum random oracle model [51], and the only examples

of insecure Fiat-Shamir schemes are quite unnatural [4], which

is somewhat similar to the status of the Fiat-Shamir heuristic in

the classical world – it is known that insecure instances exist, but

these instances are specifically tailored to be insecure [13, 29]. It is

therefore also a reasonable assumption that “natural” Fiat-Shamir

signatures that are secure in the random oracle model, and use

“quantum-secure” cryptographic hash functions,
2
are also secure

when the adversary has quantum access to the cryptographic hash

function. Finding a proof for this conjecture, or refuting it with a

counter-example, remains a major open problem.

2 PRELIMINARIES
For a set S , we write s ← S to denote that s is chosen uniformly at

random from S . If S is a probability distribution, then this denotes

that s is chosen according to the distribution S .
All our algorithms are probabilistic. Ifb is a string, then a ← A(b)

denotes the output of algorithm A when run on input b; if A is

deterministic, then a is a fixed value and we write a B A(b).

2
Proving security of Fiat-Shamir protocols based on the hardness of some problem

P involves proving a statement of the form “If the Adversary succeeds, then either

problem P is easy or finding a 2
nd

pre-image in the cryptographic hash function H is

easy.” Thus we will be assuming that the H function used in the Fiat-Shamir signature

is 2
nd

pre-image-resistant against quantum algorithms. This requires doubling the

output range of a “classically-secure” cryptographic hash function (e.g. SHA-3) to

protect against Grover’s algorithm.

2.1 Cryptographic Definitions
A signature scheme SIG = (KeyGen, Sign,Verify) is a triple of pro-
babilistic polynomial-time algorithms together with a message

space M. The key-generation algorithm KeyGen returns a pair

(pk, sk) consisting of a public key and a secret key. The signing

algorithm Sign takes a secret key sk and a messagem ∈ M to pro-

duce a signature Σ. Finally, the deterministic verification algorithm

Verify takes a public key pk, a messagem ∈ M and a signature Σ,
and outputs either 0 (reject) or 1 (accept). We say that SIG is correct

if for all messagem ∈ M and all (pk, sk) ← KeyGen(), we have
Verify(pk,m, Sign(sk,m)) = 1.

We recall the standard security notion for signature of strong ex-

istential unforgeability under chosen-message attacks (seu-CMA).
The advantage of an adversary A is defined as Advcma

SIG (A) =

Pr

b = 1 :

(sk, pk) ← KeyGen();
(m⋆, Σ⋆) ← ASign(·)(pk);
b B Verify(pk,m⋆, Σ⋆)

 ,
where the signing oracle is defined as Sign(·) B Sign(sk, ·). We

further require that (m⋆, Σ⋆) is none of the input-output pairs A
obtained through the Sign(·) queries. The scheme SIG is said to be

(t ,qS , ϵ) seu-CMA secure if no adversary running in time at most t
and making at most qS queries to the signing oracle has advantage

Advcma

SIG (A) greater than ϵ .
In the random oracle model [9], the adversary A is additionally

given access to a random oracle H(·) that it can query up to qH
times.

2.2 Rings and Distributions
We let R and Rq respectively denote the rings Z[X]/(Xn + 1) and
Zq [X]/(Xn + 1), for q an integer. Throughout this paper, the value

ofnwill always be 256 andqwill be the prime 8380417 = 2
23−213+1.

Regular font letters denote elements in R or Rq (which includes

elements in Z and Zq) and bold lower-case letters represent column

vectors with coefficients in R or Rq . By default, all vectors will be

column vectors. Bold upper-case letters are matrices. For a vector v,
we denote by vT its transpose.

Modular reductions. For an even (resp. odd) positive integer α ,
we define r ′ = r mod

± α to be the unique element r ′ in the range

−α
2
< r ′ ≤ α

2
(resp. −α−1

2
≤ r ′ ≤ α−1

2
) such that r ′ = r mod α .

We will sometimes refer to this as a centered reduction modulo q.
For any positive integer α , we define r ′ = r mod

+α to be the unique

element r ′ in the range 0 ≤ r ′ < α such that r ′ = r mod α . When

the exact representation is not important, we simply write r mod α .

Sizes of elements. For an element w ∈ Zq , we write ∥w ∥∞ to

mean |w mod
± q |. We now define the ℓ∞ and ℓ2 norms for w =

w0 +w1X + . . . +wn−1Xn−1 ∈ R:

∥w ∥∞ = max

i
∥wi ∥∞, ∥w ∥ =

√
∥w0∥2∞ + . . . + ∥wn−1∥2∞.

Similarly, for w = (w1, . . . ,wk) ∈ Rk , we define

∥w∥∞ = max

i
∥wi ∥∞, ∥w∥ =

√
∥w1∥2 + . . . + ∥wk ∥2.

We will write Sη to denote all elementsw ∈ R such that ∥w ∥∞ ≤ η.

3

Extendable output function. Suppose that Sam is an extendable

output function, that is a function on bit strings in which the out-

put can be extended to any desired length. If we would like Sam
to take as input x and then produce a value y that is distributed

according to distribution S (or uniformly over a set S), we write
y ∼ S B Sam(x). It is important to note that this procedure is com-

pletely deterministic: a given x will always produce the same y. For
simplicity we assume that the output distribution of Sam is perfect,

whereas in practice Sam will be implemented using random ora-

cles and produce an output that is statistically close to the perfect

distribution.

Hashing. Let Bh denote the set of elements of R that have h
coefficients that are either −1 or 1 and the rest are 0. We have

|Bh | = 2
h ·

(n
h
)
.

For our signature scheme, we will need a cryptographic hash

function that hashes onto B60 (which has more than 2
256

elements).

The algorithm we will use to create a random element in B60 is

sometimes referred to as an “inside-out” version of the Fisher-Yates

shuffle.
3

Algorithm 1 Create a random 256-element array with 60 ±1’s and
196 0

′s
1: Initialize c = c0c1 . . . c255 = 00 . . . 0

2: for i := 196 to 255 do
3: j ← {0, 1, . . . , i}
4: s ← {0, 1}
5: ci := c j
6: c j := (−1)s
7: end for
8: return c

Therefore to create a function H : {0, 1}∗ → B60, one would

use the XOF Sam to expand the input to produce the randomness

needed by Algorithm 1 – that is produce 60 j’s, where ji is uniformly

random between 0 and i , and 60 bits for the s .

2.3 Module-LWE and Module-SIS
Let ℓ be a positive integer parameter. The hard problems under-

lying the security of our schemes are Module-LWE and Module-SIS,

which were studied in [35], and are a generalization of the Ring-

LWE [40] and Ring-SIS problems [38, 46].

Module-LWE distribution. The Module-LWE distribution is the

distribution on Rkq × Rq induced by pairs (ai ,bi) where ai ← Rℓq is

uniform and b = aTi s + ei with s← Sℓη common to all samples and

ei ← Sη fresh for every sample.

Module-LWE.Module-LWE consists in recovering s from polyno-

mially many samples chosen from the Module-LWE distribution.

More precisely, for an algorithm A, we define Advmlwe

k, ℓ,η (A) =

Pr

[
x = s :

A← Rk×ℓq ; (s, e) ← Sℓη × Skη ;
b← As + e; x← A(A, b);

]
.

3
Normally, the algorithm should begin at i = 0, but since there are 196 0’s, the first

195 iterations would just be setting components of c to 0.

We say that the (t , ϵ)Module-LWEk, ℓ,η hardness assumption holds

if no algorithm A running in time at most t has an advantage greater
than ϵ .

(Inhomogeneous) Module-SIS. The Inhomogeneous Module-SIS

problem consists in finding a pre-image x satisfying [A | I] · x = t,
where t← Rkq , A← Rk×ℓq and I is the k × k identity matrix.

4
More

precisely, for an algorithm A, we define Advmsis

k,k+ℓ,β (A) =

Pr

b = 1 :

A← Rk×ℓq ;

t← Rkq ;

x← A(A);
b B (x ∈ Rk+ℓ) ∧ ([A | I] · x = t) ∧ (∥x∥ ≤ β)

 .
We say that the (t , ϵ)Module-SISk,k+ℓ,β hardness assumption holds

if no algorithm A running in time at most t has an advantage greater
than ϵ . We define Module-SIS

∞
k,k+ℓ,β as the direct adaptation to

the infinity norm. The homogeneous version of the Module-SIS

problem is defined with the target t = 0 and the solution x = 0
being disallowed.

3 ROUNDING ALGORITHMS
In this section, we introduce the rounding algorithms that we will

use to compress the public key and signature in Dilithium.

3.1 High-order and Low-order Bits
We will break up elements in Zq into their “high-order” bits and

“low-order” bits in two ways. The first algorithm Power2Roundq
is the straightforward bit-wise way to break up an element r =

r1 · 2d + r0 where r0 = r mod
±
2
d
and r1 = (r − r0)/2d , and is

presented in Algorithm 2.

Algorithm 2 Power2Roundq (r ,d)

1: r B r mod
+ q

2: r0 B r mod
±
2
d

3: return (r − r0)/2d

Notice that if we choose the representatives of r1 to be non-

negative integers between 0 and ⌊q/2d ⌋, then the distance (mo-

dulo q) between any two r1 · 2d and r ′
1
· 2d is usually ≥ 2

d
, except

for the border case. In particular, the distance modulo q between

⌊q/2d ⌋ · 2d and 0 could be very small. For our applications, we

would like to have a rounding procedure that keeps this distance

bounded from below by ≈ 2
d
; this will allow us to have 1-bit hints

for the uniform digital signature scheme and slightly decrease the

hint size for the Gaussian one.

We accomplish this by selecting an α that is a divisor of q−1 and
write r = r1 · α + r0 in the same way as before. For the sake of sim-

plicity, we assume that α is even (which is possible, as q is odd). The

possible r1 ·α ’s are now {0,α , 2α , . . . ,q − 1}. Note that the distance
between q− 1 and 0 is 1, and so we remove q− 1 from the set of pos-

sible r1 · α ’s, and simply round the corresponding r ’s to 0. Because

q−1 and 0 differ by 1, all this does is possibly increase themagnitude

4
This is often referred to as the “Hermite Normal Form” of the problem. It is equivalent

to the Module-SIS problem where the matrix [A | I] is replaced by a completely

random matrix A′ ← Rk×(k+ℓ)q .

4

of the remainder r0 by 1. This procedure is called Decomposeq and

is presented in Algorithm 3. For notational convenience, we also

define HighBitsq and LowBitsq routines that simply extract r1 and

r0, respectively, from the output of Decomposeq ; cf. Algorithms 4

and 5.

Algorithm 3 Decomposeq (r ,α)

1: r B r mod
+ q

2: r0 B r mod
± α

3: if r − r0 = q − 1 then
4: r1 B 0

5: r0 B r0 − 1
6: else
7: r1 B (r − r0)/α
8: end if
9: return (r1, r0)

Algorithm 4 HighBitsq (r ,α)

1: (r1, r0) := Decomposeq (r ,α)
2: return r1

Algorithm 5 LowBitsq (r ,α)
1: (r1, r0) := Decomposeq (r ,α)
2: return r0

Finally, when these algorithms are called with r ∈ Rq or r ∈ Rkq ,
the rounding procedure is applied to each coefficient individually.

3.2 Producing “Hints” for Dilithium
Let q and α be positive integers with q > 2α and q ≡ 1 (mod α)
(and α even). Given r , z ∈ Zq with ∥z∥∞ ≤ α/2, we would like

to produce a 1-bit hint y, such that one can derive HighBitsq (r +
z,α) from r ,q,α and y. We propose a procedure MakeHintq in

Algorithm 6 to produce such a hint, and a procedure UseHintq in

Algorithm 7 that shows how to use the hint y to recover the higher

order bits of r + z. When these algorithms are called with r , z ∈ Rq
or r, z ∈ Rkq , the rounding procedure is applied to each coefficient

individually.

Algorithm 6MakeHintq (z, r ,α)
1: r1 := HighBitsq (r ,α)
2: v1 := HighBitsq (r + z,α)
3: if r1 = v1 then
4: return 0

5: else
6: return 1

7: end if

Lemma 3.1. Let r , z ∈ Zq with ∥z∥∞ ≤ α/2. Then
UseHintq

(
MakeHintq (z, r ,α), r ,α

)
= HighBitsq (r + z,α).

Algorithm 7 UseHintq (y, r ,α)
1: m B (q − 1)/α
2: (r1, r0) := Decomposeq (r ,α)
3: if y = 1 and r0 > 0 then
4: return (r1 + 1) mod

+m
5: else if y = 1 and r0 ≤ 0 then
6: return (r1 − 1) mod

+m
7: else
8: return r1
9: end if

Proof. The output of Decomposeq is an integer r1 such that

0 ≤ r1 < (q − 1)/α and another integer r0 such that ∥r0∥∞ ≤ α/2.
Because ∥z∥∞ ≤ α/2, the integer v1 B HighBitsq (r + z,α) either
stays the same as r1 or becomes r1 ± 1modulom = (q − 1)/α .More

precisely, if r0 > 0, then −α/2 < r0 + z ≤ α . This implies that v1 is
either r1 or r1+1 modm. If r0 ≤ 0, then we have −α ≤ r0+z ≤ α/2.
In this case, we have v1 = r1 or r1 − 1 modm.

TheMakeHintq routine checks whether r1 = v1 and outputs 0 if
this is so, and 1 if r1 , v1. The UseHintq routine uses the “hint” y
to either output r1 (if y = 0) or, depending on whether r0 > 0 or

not, output either r1 + 1 mod
+m or r1 − 1 mod

+m. �

The lemma below shows that r is not too far away from the

output of the UseHintq algorithm. This will be necessary for the

security of the scheme.

Lemma 3.2. Let (y, r) ∈ {0, 1}×Zq and letv1 = UseHintq (y, r ,α).
If y = 0, then ∥r −v1 · α ∥∞ ≤ α/2; else ∥r −v1 · α ∥∞ ≤ α + 1.

Proof. Let (r1, r0) := Decomposeq (r ,α). We go through all

three cases of the UseHintq procedure.

Case 1 (y = 0): We have v1 = r1 and

r −v1 · α = r1 · α + r0 − r1 · α = r0 ,

which by definition has absolute value at most α/2.
Case 2 (y = 1 and r0 > 0): We have v1 = r1 + 1 − κ · (q − 1)/α

for κ = 0 or 1. Thus

r −v1 · α = r1 · α + r0 − (r1 + 1 − κ · (q − 1)/α) · α
= −α + r0 + κ · (q − 1).

After centered reduction modulo q, the latter has magnitude ≤ α .

Case 3 (y = 1 and r0 ≤ 0): We have v1 = r1 − 1 + κ · (q − 1)/α
for κ = 0 or 1. Thus

r −v1 · α = r1 · α + r0 − (r1 − 1 + κ · (q − 1)/α) · α
= α + r0 − κ · (q − 1).

After centered reduction modulo q, the latter quantity has magni-

tude ≤ α + 1. �

The next lemma will play a role in proving the strong existential

unforgeability of our signature scheme. It states that two different

y,y′ cannot lead to UseHintq (y, r ,α) = UseHintq (y′, r ,α).

Lemma 3.3. Let r ∈ Zq and y,y′ ∈ {0, 1}. If UseHintq (y, r ,α) =
UseHintq (y′, r ,α), then y = y′.

5

Proof. Note that UseHintq (0, r ,α) = r1 and UseHintq (1, r ,α)
is equal to (r1 ± 1) mod

+(q − 1)/α . Since (q − 1)/α ≥ 2, we have

that r1 , (r1 ± 1) mod
+(q − 1)/α . �

The following lemma is a direct consequence of Lemmas 3.1

to 3.3.

Lemma 3.4. Suppose that q and α are positive integers satisfying
q > 2α , q ≡ 1 (mod α) and α even. Let r and z be vectors of ele-
ments in Rq where ∥z∥∞ ≤ α/2, and let y, y′ be vectors of bits. Then
the HighBitsq , MakeHintq , and UseHintq algorithms satisfy the
following properties:

(1) UseHintq (MakeHintq (z, r,α), r,α) = HighBitsq (r + z,α).
(2) Let v1 = UseHintq (y, r,α). Then ∥r − v1 · α ∥∞ ≤ α + 1.

Furthermore, if the number of 1’s in y is ω, then all except at
most ω coefficients of r − v1 · α will have magnitude at most
α/2 after centered reduction modulo q.

(3) For any y, y′, ifUseHintq (y, r,α) = UseHintq (y′, r,α), then
y = y′.

4 DILITHIUM
The scheme is built via the “Fiat-Shamir with Aborts” idea [36] and

resembles the Bai-Galbraith scheme [7]. The main difference is that

we compress the public key by a factor of a little larger than 2 and

this requires using the algorithms from Section 3 to create and use

hints for reconstructing high order bits of polynomials.

The parameters. The secret keys are chosen to have coefficients

of magnitude at most η. We set β integer so that we have ∥s ·
c ∥∞ < β with high probability (around 1 − 2−80) over the choices
of s ← Sη and c ← B60. The parameters γ1 and γ2 dictate the

rejection probability (see Equation (3)) and the size of the signatures:

the larger the γi ’s, the larger the signature, but the smaller the

probability of rejection.

4.1 The Signature Scheme
Our signature algorithm is described in Algorithms 8 to 10.

Algorithm 8 KeyGen()

1: ρ, ρ ′ ← {0, 1}256
2: A ∼ Rk×ℓq B Sam(ρ)
3: (s1, s2) ∼ Sℓη × Skη B Sam(ρ ′)
4: t B As1 + s2
5: t1 B Power2Roundq (t,d)
6: return (pk = (ρ, t1), sk = (ρ, s1, s2, t))

The key generation proceeds by choosing a random 256-bit

seed ρ and expanding into a matrix A ∈ Rk×ℓq by an extendable

output function Sam modeled as a random oracle. The secret keys

s1, s2 are generated from Sam expanding a random seed ρ ′ and
have uniformly random coefficients between −η and η (inclusively).

The value t = As1 + s2 is computed. The secret key is ρ, s1, s2, t,
while the public key is ρ, t1 with t1 output by Algorithm 2 (we have

t = t1 · 2d + t0 for some small t0).
The signing procedure starts by splitting the entire t = As1 + s2

into t1 and t0 such that t1 · 2d + t0 = t, where ∥t0∥∞ ≤ 2
d−1

.

Algorithm 9 Sign(sk = (ρ, s1, s2, t), µ ∈ M)

1: A ∼ Rk×ℓq B Sam(ρ)
2: t1 := Power2Roundq (t,d)
3: t0 B t − t1 · 2d
4: r ← {0, 1}256
5: y ∼ Sℓγ1−1 B Sam(r)
6: w B Ay
7: w1 B HighBitsq (w, 2γ2)
8: c B H(ρ, t1,w1, µ)
9: z B y + cs1
10: (r1, r0) := Decomposeq(w − cs2, 2γ2)
11: if ∥z∥∞ ≥ γ1 − β or ∥r0∥∞ ≥ γ2 − β or r1 , w1 then goto 4

12: h B MakeHintq (−ct0,w − cs2 + ct0, 2γ2)
13: if ∥ct0∥∞ ≥ γ2 or the number of 1’s in h is greater thanω then

goto 4

14: return σ B (z, h, c)

The next step of the signing algorithm has the signer sample y
with coefficients in Sγ1−1 (using the extendable output function

Sam and a random seed r) and then compute w = Ay. Then the

signer writes w = 2γ2 · w1 + w0, with w0 between −γ2 and γ2
(inclusively), and computes c = H(ρ, t1,w1, µ) ∈ B60 using the

function introduced in Section 2.2.
5
After obtaining c , the signer

computes z = y + cs. If some coefficient of z is at least γ1 − β ,
then the signing procedure restarts. The process also restarts if the

magnitude of some coefficient of r0 = LowBitsq (w − cs2, 2γ2) is
at least γ2 − β . This part of the protocol is necessary for security—

it makes sure that nothing about the secret key s1, s2 is leaked.

The last check makes sure that r1 = w1 and this is necessary for

correctness. We should point out that if ∥cs2∥∞ ≤ β , then ∥r0∥∞
being less than γ2 − β immediately implies that r1 = w1. Since

we want ∥cs2∥∞ ≤ β to be true with overwhelming probability

for security, the probability that this last check will be useful is

negligible. Still, we include it just to make the probability of a

verifier accepting a valid signature being 1, rather than negligibly

close to 1.

If all the checks pass and a restart is not necessary, then it can

be shown (see Section 4.2) that HighBitsq (Az − ct, 2γ2) = w1. At

this point, if the verifier knew the entire element t and (z, c), he
could have recovered w1 and checked that ∥z∥∞ < γ1 − β and

c = H(ρ, t1,w1, µ). However, since we want to compress the public

key, the verifier only knows t1. Hence, the signer needs to provide

a “hint” which will allow the verifier to compute HighBitsq (Az −
ct, 2γ2). This is done in Step 12. In Step 13, the verifier performs

some checks that will fail very rarely (much less than 1% of the time)

that do not really affect the total running time. Most importantly,

Step 12 is for compression and has no effect on the security of the

scheme under the assumption that the verifier has the entire key t
(thus the actual scheme may even be more secure in practice).

5
Note that all these operations feature some trade-off between storage and computation

time. For example, to optimize the computation time, one can store t0 in the secret

key and can “partially compute” H(ρ, t1, w1, µ) by storing the part that depends on ρ
and t1 as part of the signing key (and this way storing t1 is no longer necessary). On the
other hand, if one is concerned about the secret key size, one can define sk = (ρ, ρ′)
and recompute everything when signing.

6

Algorithm 10 Verify(pk = (ρ, t1), µ ∈ M,σ = (z, h, c))
1: A B Sam(ρ)
2: w1 B UseHintq (h,Az − ct1 · 2d , 2γ2)
3: if c = H (ρ, t1,w1, µ) and ∥z∥∞ < γ1 − β and the number of 1’s

in h is ≤ ω then
4: return 1

5: else
6: return 0

7: end if

Finally, verification works by using the signature and the public

key to reconstruct the w1 and then check that c = H(ρ, t1,w1, µ)
and that all the coefficients of z1 are less than γ1 − β , and that the

number of 1’s in h is no greater than ω. The number of ones in h
is determined by how many values of ct0 cause a carry to occur.

Since ct0 is not too large, there is a significantly larger probability

that a carry does not occur. Experimentally with the parameters we

recommend in Table 1, we computed the upper-bounds such that

the number of carries is not larger thanω with very high probability

(much larger than 99%).

Concrete parameters. We provide concrete parameters and secu-

rity estimates in Table 1.

The public key consists of ρ and t1, which are 32 and 32 · k ·
(⌈log(q)⌉ −d) bytes, respectively. The signature consists of z, which
is 32 · ℓ · ⌈log(2γ1)⌉ bytes, the polynomial c which can be repre-

sented with 40 bytes (32 bytes to give the position of the non-zero

coefficients and 8 bytes to distinguish between the 1’s and the −1’s).
The vector h contains 256 · k binary coefficients, ω of which are 1’s.

The information-theoretic lower bound for the number of bits to

represent such a vector is log

(
256·k
ω

)
bits, but such a representation

would be costly to obtain.

Instead, we store h as follows. We break up h into k vectors

h1, . . . , hk of dimension 256. The position of the 1’s in each hi
can be represented with 1 byte each. Since there are ω 1’s, this

amounts toω bytes. Furthermore, we need to specify the separation

between the k vectors. Since there are k vectors, there are k − 1

separator. One needs ⌈logω⌉ bits to represent each separation. Since
ω < 128 in all our instantiations, this amounts to 7 bits, which

we round up to 1 byte for convenience. Thus the total cost (in

bytes) to represent h is ω + k − 1. One could use slightly more

compact representations and possibly save around 20 bytes in the

representation of h. Nevertheless, we use the method above for the

convenience of having each position be represented by exactly 1

byte.

4.2 Correctness
In this section, we prove the correctness of the signature scheme.

We use the notation of Algorithms 8 to 10.

If ∥ct0∥∞ < γ2, then by Lemma 3.4 we know that

UseHintq (h,w − cs2 + ct0, 2γ2) = HighBitsq (w − cs2, 2γ2) .

Since w = Ay and t = As1 + s2, we have that

w − cs2 = Ay − cs2 = A(z − cs1) − cs2 = Az − ct, (1)

and w − cs2 + ct0 = Az − ct1 · 2d . Therefore the verifier computes

UseHintq (h,Az − ct1 · 2d , 2γ2)
= HighBitsq (w − cs2, 2γ2) .

Furthermore, because the Signer also checks in Line 11 that

r1 = w1, this is equivalent to

HighBitsq (w − cs2, 2γ2) = HighBitsq (w, 2γ2). (2)

Therefore, the w1 computed by the verifier is the same as that

of the signer, and the verification procedure will always accept.

4.3 Zero-Knowledge and Simulation
For the sake of simplicity, in this proof (as well as in the reduction

in Section 4.5), we will be assuming that the public key is t rather
than t1. The fact that t0 is not part of the genuine public key is not

used anywhere in the proof.

We want to first compute the probability that some particular

(z, c) is generated in Step 9 taken over the randomness of y and the

random oracle H which is modeled as a random function. We have

Pr[z, c] = Pr[c] · Pr[y = z − cs1 | c].
Whenever z has all its coefficients less than γ1−β then the above

probability is exactly the same for every such tuple (z, c). This is
because ∥csi ∥∞ ≤ β (with overwhelming probability), and thus

∥z − cs1∥∞ ≤ γ1 − 1, which is a valid value of y. Therefore, if we
only output z when all its coefficients have magnitudes less than

γ1 − β , then the resulting distribution will be uniformly random

over Sℓγ1−β−1 × B60.
The simulation of the signature follows [7, 37]. The simulator

picks a uniformly random (z, c) in Sℓγ1−β−1 ×B60, after which it also

makes sure that

∥r0∥∞ = ∥LowBitsq (w − cs2, 2γ2)∥∞ < γ2 − β .
By Equation (1), we know that w− cs2 = Az− ct, and therefore the
simulator can perfectly simulate this as well.

If z does indeed satisfy ∥LowBitsq (w−cs2, 2γ2)∥∞ < γ2−β , then
as long as ∥cs2∥∞ ≤ β , we will have

r1 = HighBitsq (w − cs2, 2γ2) = HighBitsq (w, 2γ2) = w1.

Since our β was chosen such that the probability (over the choice

of c, s2) that ∥cs2∥∞ < β is very close to 1, the simulator does not

need to perform the check that r1 = w1 and can always assume

that it passes (we discuss the effect that this has on actual security

in Section 4.4).

We can then program

H(ρ, t1,w1, µ) ← c .

Unless we have already set the value of H(ρ, t1,w1, µ) to something

else, the resulting pair (z, c) has the same distribution as in a genuine

signature of µ. If H(ρ, t1,w1, µ) was previously assigned a value,

then it must be that

HighBitsq (Az − ct, 2γ2) = w1 = w′
1
= HighBitsq (Az′ − c ′t, 2γ2)

for some previously-chosen z′, c ′. The above implies that there exist

vectors e, e′with ∥e∥∞, ∥e′∥∞ ≤ γ2+1, such thatA(z−z′)+(e−e′) =
(c − c ′)t. Thus if z , z′ or c , c ′ (which happens with probability

greater than 1 − 2−10000 even for our smallest parameter set), we

7

Table 1: Parameters for Dilithium.

weak medium recommended very high

q 8380417 8380417 8380417 8380417

d 14 14 14 14

weight of c 60 60 60 60

γ1 = (q − 1)/16 523776 523776 523776 523776

γ2 = γ1/2 261888 261888 261888 261888

(k, ℓ) (3, 2) (4, 3) (5, 4) (6, 5)
η 7 6 5 3

β 330 285 235 145

ω 64 80 96 120

pk size = 32 · k · (⌈log(q)⌉ − d) + 32 bytes 896 1184 1472 1760

sig size = 32 · ℓ · ⌈log(2γ1)⌉ + (ω + k − 1) + 40 bytes 1386 2043 2700 3365

Repetitions (from Eq. (4)) 3.65 4.65 5 3.35

BKZ block-size b to break SIS 235 355 475 605

Best Known Classical bit-cost 68 103 138 176

Best Known Quantum bit-cost 62 94 125 160

Best Plausible bit-cost 48 73 98 125

BKZ block-size b to break LWE 200 340 485 595

Best Known Classical bit-cost 58 100 141 174

Best Known Quantum bit-cost 53 91 128 158

Best Plausible bit-cost 41 71 100 124

KeyGen cycles 173, 100 325, 746 522, 992 723, 974

Sign cycles 741, 844 1, 530, 912 2, 253, 378 1, 856, 048

Verify cycles 239, 572 413, 644 625, 968 871, 190

KeyGen cycles (AVX2 optimized) 97, 544 162, 670 251, 590 323, 112

Sign cycles (AVX2 optimized) 404, 298 637, 994 1, 042, 250 838, 428

Verify cycles (AVX2 optimized) 131, 316 205, 684 297, 590 402, 738

have found the same type of solution (actually, an even slightly

harder-to-find one) as the one in Lemma 4.1 uponwhich the security

of our scheme rests.
6

All the other steps (after Step 11) of the signing algorithm are

performed using public information and are therefore simulatable.

We now want to compute the probability that Step 11 will not

result in a restart. The probability that ∥z∥∞ < γ1−β can be compu-

ted by considering each coefficient separately. For each coefficient σ
of cs1, the corresponding coefficient of zwill be between −γ1+β +1
and γ1 − β − 1 (inclusively) whenever the corresponding coefficient

of yi is between −γ1 + β + 1 − σ and γ1 − β − 1 − σ . The size of
this range is 2(γ1 − β) − 1, and the coefficients of y have 2γ1 − 1
possibilities. Thus the probability that every coefficient of y is in

the good range is(
2(γ1 − β) − 1

2γ1 − 1

)ℓn
=

(
1 − β

γ1 − 1/2

)ℓn
≈ e
−nβℓ/γ1 , (3)

where we used the fact that our values of γ1 are large compared

to 1/2.

6
With a more involved (and most likely messy) analysis, there is a good possibility

that one could unconditionally prove that for any vector r, PrA,z,c [HighBitsq (Az −
ct, γ2) = r] is negligible.

We now move to computing the probability that we have

∥r0∥∞ = ∥LowBitsq (w − cs2, 2γ2)∥∞ < γ2 − β .
If we (heuristically) assume that the low order bits are uniformly

distributed modulo 2γ2, then there is a(
2(γ2 − β) − 1

2γ2

)kn
≈ e
−nβk/γ2

probability that all the coefficients are in the good range (using the

fact that our values of β are large compared to 1/2.
As we already mentioned, if ∥cs2∥∞ ≤ β , then ∥r0∥∞ < γ2 − β

implies that r1 = w1. Thus the last check should succeed with over-

whelming probability when the previous check passed. Therefore,

the probability that Step 11 passes is

≈ e
−nβ (ℓ/γ1+k/γ2) . (4)

4.4 A Discussion on the Role of β .
From (4), we see that the smaller β is, the fewer repetitions will

be needed to output a valid signature. On the other hand, we also

saw in Section 4.3 that having ∥cs2∥∞ ≤ β is necessary in order to

perfectly simulate the distribution of a valid signer. A trivial bound

for ∥csi ∥∞ is 60 · η, which for the recommended parameter set in

8

Table 1 is 300. With such a value for β , the expected number of

repetitions would go up from approximately 5 to 7.8 (using the

formula in (4)), which is an increase of over 50% in the running

time of the signing algorithm.

This is why we instead choose a smaller value for β such that

Prs,c [∥cs∥∞ > β] ≈ 2
−80

. If we assume that the signing algorithm

will perform no more than 2
64

signing operations, this implies that

the signer will expect to encounter the scenario where ∥cs2∥∞ > β
less than once. If this scenario does arise, then the probability distri-

bution (over the choice of y) of the signature changes slightly in that
it makes it impossible for some borderline values in the signature

set Sℓγ1−β−1 to appear. For example, if we encounter ∥cs2∥∞ > β

10 out of 2
64

times, then the expected number of times that the

coefficientγ1−β−1will appear could go down from around 2
64/220

to 2
64/220 − 10. Even if this slight decrease could be detected, it

is unclear what the adversary would do with this information –

he does not even know which of the signatures had the skewed

samples. In this scenario, we remain very confident that the security

of the scheme is not affected by the 2
−80

probability of this bad

event and believe that it is definitely not worthwhile to increase

the value of β from 235 to 300.

Lowering β even further such that, for example, Prs,c [∥cs∥∞ >
β] ≈ 2

−30
(making β ≈ 150) is not advisable. An adversary who

sees 2
64

signatures would observe a noticeable skew. While we do

not see a clear attack, such a discrepancy in probabilities looks, to

us, a little worrisome. On the other hand, if the signature scheme

were used in a scenario where only, say, 2
20

signatures would ever

be given out, then it could make sense to lower the β and decrease

the running time by a factor of 2. We think that exploring the issues

in this section more formally is a very interesting topic for further

research.

4.5 Security Proof
Throughout the proof, we will make the assumption that the ad-

versary gets t = As1 + s2 as the public key. This assumption is

favorable to the adversary, as in the real scheme he only gets the

high order bits of t. In practice, therefore, the scheme may be even

more difficult for the adversary to break.

Lemma 4.1. Forging a signature implies finding u1, u2,u3 such
that ∥u1∥∞ ≤ 2γ1, ∥u2∥∞ ≤ 4γ2+2, ∥u3∥∞ ≤ 2 such thatAu1+u2 =
u3t1 · 2d and (u1, u2,u3) , 0. Furthermore, vector u2 has at most 2ω
coefficients of absolute value greater than 2γ2.

Proof. The public key is set to be pk = (A, t). Signature que-
ries by the adversary are created via the procedure described in

Section 4.3. We now describe our extractor when the Adversary

produces a winning query.

If the Adversary creates a valid signature (z, h, c) for a message µ,
then he must have queried

H(ρ, t1,w1, µ) = c, (5)

where w1 = UseHintq (h,Az − ct1 · 2d , 2γ2), either directly by que-

rying H or indirectly during a signing query.

Case 1: If c was queried during a signing query, then the reduction

already knows another (z′, h′, c) (and the associated w′
1
) for a mes-

sage µ ′ such that H(ρ, t1,w′
1
, µ ′) = c = H(ρ, t1,w1, µ). This implies

that µ = µ ′ and w1 = w′
1
, or else we found a second pre-image

for c . Since w1 = w′
1
, it must be that

UseHintq (h,Az − t1c · 2d , 2γ2) = w1,

UseHintq (h′,Az′ − t1c · 2d , 2γ2) = w1.

If z = z′, then Lemma 3.4 states that we must have h = h′, which is

in contradiction with the assumption that the adversary has found

a new signature. Thus it must be that z , z′. By Lemma 3.4, we

also know that

∥Az − t1c · 2d −w1 · 2γ2∥∞ ≤ 2γ2 + 1,

∥Az′ − t1c · 2d −w1 · 2γ2∥∞ ≤ 2γ2 + 1.

By the triangular inequality, this implies that

∥A(z − z′)∥∞ ≤ 4γ2 + 2 .

This can be rewritten as

A(z − z′) + u = 0

for some u such that ∥u∥∞ ≤ 4γ2 + 2 where z − z′ , 0. Because

h and h′ have all except ω elements equal to 0, we know from

Lemma 3.4 that all but ω coefficients of Az − t1c · 2d − w1 · 2γ2
and Az′ − t1c · 2d −w1 · 2γ2 are less than γ2. Therefore all but 2ω
coefficients of u are less than 2γ2.

Case 2:We now handle the case where the query in Equation (5)

was done directly to H. A standard forking lemma argument shows

that the reduction can then extract two signatures (z, h, c) and
(z′, h′, c ′) for c , c ′ such that

UseHintq (h,Az − t1c · 2d , 2γ2) = w1,

UseHintq (h′,Az′ − t1c ′ · 2d , 2γ2) = w1.

By Lemma 3.4, we know that

∥Az − t1c · 2d −w1 · 2γ2∥∞ ≤ 2γ2 + 1,

∥Az′ − t1c ′ · 2d −w1 · 2γ2∥∞ ≤ 2γ2 + 1.

By the triangular inequality, this implies that

∥A(z − z′) − t1 · 2d · (c − c ′)∥∞ ≤ 4γ2 + 2 .

This can be rewritten as

A(z − z′) + u = t1 · 2d · (c − c ′)
for some u such that ∥u∥∞ ≤ 4γ2 + 2. For the same reason as in the

first case, at most 2ω coefficients of u can be greater than 2γ2. �

5 CONCRETE SECURITY ANALYSIS
We follow the general methodology from [3, 15] to analyze the

security of our signature scheme, with minor adaptations. This

methodology is significantly more conservative than prior ones

used in lattice-based cryptography. In particular, we assume the

adversary can run the asymptotically best algorithms known, with

no overhead compared to the asymptotic run-times. In particular,

we assume the adversary can cheaply handle huge amounts of

(possibly quantum) memory.

We find this approach much sounder than relying on the cur-

rently best codes for the underlying tasks as the practical aspects

of lattice algorithms have received little attention compared to in-

teger factorization and discrete logarithm algorithms. Considering

the gap between theory and practice of lattice reduction, and the

9

attention drawn to it due to potential deployment of lattice-based

cryptography, we conclude that practical improvements are very li-

kely to occur. This conservatism is in line with the goal of long-term

post-quantum security. We note that despite this security analysis

methodology, our schemes remain competitive in practice.

5.1 Lattice Reduction and Core-SVP Hardness
The best known algorithm for finding very short non-zero vectors

in Euclidean lattices is the Block–Korkine–Zolotarev algorithm

(BKZ) [50], proposed by Schnorr and Euchner in 1991. More re-

cently, it was proven to quickly converge to its fix-point [32] and

improved in practice [21]. Yet, what it achieves asymptotically re-

mains unchallenged.

BKZ with block-size b makes calls to an algorithm that solves

the Shortest lattice Vector Problem (SVP) in dimension b. The se-
curity of our scheme relies on the necessity to run BKZ with a

large block-size b and the fact that the cost of solving SVP is ex-

ponential in b. The best known classical SVP solver [8] runs in

time ≈ 2
cC ·b

with cC = log
2

√
3/2 ≈ 0.292. The best known quan-

tum SVP solver [34, Sec. 14.2.10] runs in time ≈ 2
cQ ·b

with cQ =

log
2

√
13/9 ≈ 0.265. One may hope to improve these run-times,

but going below ≈ 2
cP ·b

with cP = log
2

√
4/3 ≈ 0.2075 would

require a theoretical breakthrough. Indeed, the best known SVP

solvers rely on covering the b-dimensional sphere with cones of

center-to-edge angle π/3: this requires 2cP ·b cones. The subscripts

C, Q, P respectively stand for Classical, Quantum and Paranoid.

The strength of BKZ increases with b. More concretely, given

as input a basis (c1, . . . , cn) of an n-dimensional lattice, BKZ repe-

atedly uses the b-dimensional SVP-solver on lattices of the form

(ci+1(i), . . . , cj (i)) where i ≤ n, j = min(n, i + b) and where ck (i)
denotes the projection of ck orthogonally to the vectors (c1, . . . , ci).
The effect of these calls is to flatten the curve of the ℓi = log

2
∥ci (i−

1)∥’s (for i = 1, . . . ,n). At the start of the execution, the ℓi ’s typically
decrease fast, at least locally. As BKZ preserves the determinant

of the ci ’s, the sum of the ℓi ’s remains constant throughout the

execution, and after a (small) polynomial number of SVP calls, BKZ

has made the ℓi ’s decrease less. It can be heuristically estimated

that for sufficiently large b, the local slope of the ℓi ’s converges to

slope(b) = 1

b − 1 log
2

(
b

2πe
(π · b)1/b

)
,

unless the local input ℓi ’s are already too small or too large. The

quantity slope(b) decreases with b, implying that the larger b the

flatter the output ℓi ’s.

In our case, the input ℓi ’s are of the following form (cf. Fig. 2).

The first ones are all equal to log
2
q and the last ones are all equal

to 0. BKZ will flatten the jump, decreasing ℓi ’s with small i’s and
increasing ℓi ’s with large i’s. However, the local slope slope(b)may

not be sufficiently small to make the very first ℓi ’s decrease and the

very last ℓi ’s increase. Indeed, BKZ will not increase (resp. increase)

some ℓi ’s if these are already smaller (resp. larger) than ensured

by the local slope guarantee. In our case, the ℓi ’s are always of the

following form at the end of the execution:

• The first ℓi ’s are constant equal to log2 q (this is the possibly
empty Zone 1).

• Then they decrease linearly, with slope slope(b) (this is the
never-empty Zone 2).

• The last ℓi ’s are constant equal to 0 (this is the possibly

empty Zone 3).

The graph is continuous, i.e., if Zone 1 (resp. Zone 3) is not empty,

then Zone 2 starts with ℓi = log
2
q (resp. ends with ℓi = 0).

5.2 Key-Recovery Attack: Solving Module-LWE
The attacker may attempt to recover the secret key (s1, s2) ∈ Rℓ×Rk
from the public key A, t = As1 + s2. As each of the k + ℓ elements

of the secret key is sampled from Sη , this is exactly an instance of

the Module-LWE problem.

Any such Module-LWE instance with dimensions ℓ,k can be

viewed as an LWE instance of dimensions 256 · ℓ and 256 ·k . Indeed,
the above can be rewritten as finding vec(s1), vec(s2) ∈ Z256·ℓ ×
Z256·k from (rot(A), vec(t)), where vec(·) maps a vector of ring

elements to the vector obtained by concatenating the coefficients of

its coordinates, and rot(A) ∈ Z256·k×256·ℓq is obtained by replacing

all entries ai j ∈ Rq of A by the 256× 256matrix whose z-th column

is vec

(
xz−1 · ai j

)
.

Given an LWE instance, there are two lattice-based attacks. The

primal attack and the dual attack. Here, the primal attack consists

in finding a short non-zero vector in the lattice Λ = {x ∈ Zd : Mx =
0 mod q}whereM = (rot(A)[1:m] |Im |vec(t)[1:m]) is anm×d matrix

where d = 256 · ℓ +m + 1 andm ≤ 256 · k . Indeed, it is sometime

not optimal to use all the given equations in lattice attacks.

We tried all possible numberm of rows, and, for each trial, we in-

creased the blocksize of b until the value ℓd−b obtained as explained

above was deemed sufficiently large. As explained in [3, Sec. 6.3], if

2
ℓd−b is greater than the expected norm of (vec(s1), vec(s2)) after

projection orthogonally to the first d −b vectors, it is likely that the

Module-LWE solution can be easily extracted from the BKZ output.

The dual attack consists in finding a short non-zero vector in

the lattice Λ′ = {(x, y) ∈ Zm × Zd : MT x + y = 0 mod q)}, M =
(rot(A)[1:m]) is anm × d matrix where d = 256 · ℓ andm ≤ 256 · k .
Again, for each value ofm, we increased the value of b until the

value ℓ1 obtained as explained above was deemed sufficiently small

according the analysis of [3, Sec. 6.3].

5.3 Forgery Attack: Solving Module-SIS
The attacker may also attempt to forge a signature. By Lemma 4.1,

this implies finding u1, u2,u3 not all zero such that ∥u1∥∞ ≤ 2γ1,

∥u2∥∞ ≤ 4γ2 + 2, and ∥u3∥∞ ≤ 2 such that Au1 + u2 = u3t1 · 2d .
This amounts to solving homogeneous Module-SIS for the matrix

7

(A|Ik |t1) and infinity norm bounds B = max(2γ1, 4γ2 + 2, 2d+1).
Note that the Module-SIS instance can be mapped to a SIS instance

by considering the matrix rot(A|Ik |t1) ∈ Z
256·k×256·(ℓ+k+1)
q . The

attacker may consider a subset ofw columns, and let the solution

coefficients corresponding to the dismissed columns be zero.

Remark 5.1. An unusual aspect here is that we are considering

the infinity norm, rather than the Euclidean norm. Further, for

7
One could tweak this matrix to (A |Ik |t12d) to enforce stronger bounds ≤ 2 on the

last coefficients, but it severely complicates the analysis. This approximation is made

in favor of the adversary, whose real task is harder than what we analyze: this provides

a lower bound on the cost of such an attack.

10

0 i
0

ℓi

log
2
q

Z
o
n
e
1

Z
o
n
e
3

0 i
0

ℓi

log
2
q

Z
o
n
e
1

Z
o
n
e
2

Z
o
n
e
3

0 i
0

ℓi

log
2
q

Z
o
n
e
2

Z
o
n
e
3

0 i
0

ℓi

log
2
q

Z
o
n
e
2

Before reduction After b-BKZ with small b After b-BKZ with medium b After b-BKZ with large b

Figure 2: Evolution of Gram-Schmidt length in log-scale under BKZ reduction for various blocksizes. The area under the
curves remains constant, and the slope in Zone 2 decrease with the blocksize. Note that Zone 3 may disappear before Zone 1,
depending on the shape of the input basis.

our specific parameters, the Euclidean norms of the solutions are

above q. In particular, the vector (q, 0, . . . , 0)T belongs to the lattice,

has Euclidean norm below that of the solution, but its infinity norm

above the requirement. This raises difficulties in analyzing the

strength of BKZ towards solving our infinity norm SIS instances:

indeed, even with small values of b, the first ℓi ’s are short (they
correspond to q-vectors), even though they are not solutions.

For each numberw of selected columns and for each value of b,
we compute the estimated BKZ output ℓi ’s, as explained above. We

then consider the smallest i such that ℓi is below log
2
q and the

largest j such that ℓj above 0. These correspond to the vectors that

were modified by BKZ, with smallest and largest indices, respecti-

vely. In fact, for the same cost as a call to the SVP-solver, we can

obtain

√
4/3b vectors with Euclidean norm ≈ 2

ℓi
after projection

orthogonally to the first i − 1 basis vectors. Now, let us look closely

at the shape of such a vector. As the first i − 1 basis vectors are the
first i − 1 canonical unit vectors multiplied by q, projecting ortho-
gonally to these consists in zeroing the first i − 1 coordinates. The
remainingw−i+1 coordinates have total Euclidean norm≈ 2

ℓi ≈ q,
and the lastw − j coordinates are 0. We heuristically assume that

these coordinates have similar magnitudes σ ≈ 2
ℓi /
√
j − i + 1; we

model each such coordinate as a Gaussian of standard deviation σ .

We assume that each one of our

√
4/3b vectors has its first i − 1

coordinates independently uniformly distributed modulo q, and
finally compute the probability that all coordinates in both ranges

[0, i−1] and [i, j] are less than B in absolute value. Our cost estimate

is the inverse of that probability multiplied by the run-time of our

b-dimensional SVP-solver.

Forgetting q-vectors. For all the parameter sets proposed in this

paper, the best parametrization of the attack above kept the basis

in a shape with a non-trivial Zone 1. We note that the coordina-

tes in this range have a quite lower probability of passing the ℓ∞
constraint than coordinates in Zone 2. We therefore considered a

strategy consisting of “forgetting” the q-vectors, by re-randomizing

the input basis before running the BKZ algorithm. For the same

blocksize b, this makes Zone 1 of the output basis disappear (BKZ

does not find the q-vectors), at the cost of producing a basis with
first vectors of larger Euclidean norms. This is depicted in Fig. 3.

It turns out that this strategy always improves over the previous

strategy for the parameter ranges considered in this paper. We

therefore used this strategy for our security estimates.

0 i
0

ℓi

log
2
q

Z
o
n
e
1

Z
o
n
e
2

Z
o
n
e
3

0 i
0

ℓi

Z
o
n
e
2

Z
o
n
e
3

Keeping q-vectors Forgetting q-vectors

Figure 3: Effect of forgettingq-vectors by randomization, un-
der the same BKZ-blocksize b.

5.4 On Other Attacks
For our parameters, the BKW [14] and Arora–Ge [5] families of

algorithms are far from competitive.

Algebraic attacks. One specificity of our LWE and SIS instances

is that they are inherited from Module-LWE and Module-SIS in-

stances. One may wonder whether the extra algebraic structure of

the resulting lattices can be exploited by an attacker. The line of

work of [12, 18, 22, 23] did indeed found new cryptanalytic results

on certain algebraic lattices, but [23] mentions serious obstacles

towards breaking cryptographic instances of Ring-LWE. By swit-

ching from Ring-LWE to Module-LWE, we get even further away

from those weak algebraic lattice problems.

Dense sublattice attacks. Kirchner and Fouque [33] showed that

the existence of many linearly independent and unexpectedly short

lattice vectors (much shorter than Minkowski’s bound) helps BKZ

run better than expected in some cases. This could happen for our

primal LWE attack, by extendingM = (rot(A)[1:m] |Im |vec(t)[1:m])
to (rot(A)[1:m] |Im |rot(t)[1:m]): the associated lattice now has 256

linearly independent short vectors rather than a single one. The

Kirchner-Fouque analysis of BKZ works best if both q and the

ratio between the number of unexpectedly short vectors and the

lattice dimension are high. In the NTRU case, for example, the ratio

is 1/2, and, for some schemes derived from NTRU, the modulus q
is also large. We considered this refined analysis of BKZ in our

setup, but, to become relevant for our parameters, it requires a

parameter b which is higher than needed with the usual analysis

of BKZ. Note that [33] also arrived to the conclusion that this

attack is irrelevant in the small modulus regime, and is mostly a

11

threat to fully homomorphic encryption schemes and cryptographic

multilinear maps.

Note that, once again, the switch from Ring-LWE to Module-

LWE takes us further away from lattices admitting unconventional

attacks. Indeed, the dimension ratio of the dense sub-lattice is 1/2
in NTRU, at most 1/3 in lattices derived from Ring-LWE, and at

most 1/(ℓ + 2) in lattices derived from Module-LWE.

Specialized attack against ℓ∞-SIS. At last, we would like to men-

tion that it is not clear whether the attack sketched in Section 5.3

above for SIS in infinity norm is optimal. Indeed, as we have seen,

this approach produces many vectors, with some rather large uni-

form coordinates (at indices 1, . . . , i), and smaller Gaussian ones (at

indices i, . . . , j). In our current analysis, we simply hope that one

of the vector satisfies the ℓ∞ bound. Instead, one could combine

them in ways that decrease the size of the first (large) coefficients,

while letting the other (small) coefficients grow a little bit.

This situation created by the use of ℓ∞-SIS (see Remark 5.1) has

— to the best of our knowledge — not been studied in detail. After a

preliminary analysis, we do not consider such an improved attack a

serious threat to our concrete security claims, especially in the light

of the approximations already made in the favor of the adversary.

Nevertheless, we believe this question deserves a detailed study,

which we leave to future work.

6 IMPLEMENTATION
To illustrate the performance of the Dilithium signature scheme

we implemented the scheme with our parameter sets, using optimi-

zations in Intel’s AVX2 vector instruction set. We benchmark the

implementation on one core of an Intel Core-i7 4770k (Haswell) pro-

cessor. We follow the standard practice of disabling hyperthreading

and TurboBoost.

6.1 Primitives and Reference Implementation
In previous sections, Dilithium was introduced in abstract terms

without fixing concrete instantiations of the function Sam. This

subsection provides concrete detail on our implementation choices.

Symmetric primitives.Wedecided to instantiate Samwith the ex-

pandable output function SHAKE-128, standardized in FIPS 202 [45]

so that Dilithium rely on the Keccak-f 1600 permutation, standar-

dized after years of cryptanalytic scrutiny through the course of

the SHA-3 competition. Obviously, different implementations are

free to use whichever pseudo-random generator is offering the

best performance and security on their respective platform. Other

options include the ChaCha20 stream cipher [10], the BLAKE2X

extendable output function [6], or SHA256 for all hashes (with “out-

put extension for G via MGF1”; see [44, App. B.2.1]), and AES in

counter mode for the expansion of seeds; this latter choice would

certainly be faster than SHAKE-128 on platforms with hardware

AES and SHA256 support.

NTT computations. For polynomial multiplication we use an

NTT-based algorithm as is standard in lattice-based cryptography

(see [3, 25, 31, 39, 42, 48, 49], among others). Contrary to previous

implementations that utilized floating point vector instructions

(see, for example, [3, 31]), our vectorized AVX2-code is written

with integer instructions only. For fast constant-time reductions

modulo q we use the Montgomery algorithm, where floating point

implementations typically multiply by a precomputed floating point

inverse of q and round. We make heavy use of lazy reductions and

only reduce values when they do not fit into 32 bit or a standard

representative is needed. A full multiplication of two polynomials

in the ring Zq [X]/(X 256 + 1) comprising two forward NTTs, one

inverse NTT, and pointwise multiplication, requires about 5, 000

cycles.

Generation of noise. Noise polynomials in Dilithium have coeffi-

cients sampled uniformly in [−η,η]. To obtain such a noise polyno-

mial, we first sample a random 32-byte seed r and expand it using

SHAKE-128 (i.e., Sam(r)). We then use rejection sampling on each

output byte. (As stated above, the choice of how the 256 uniformly

random bytes are generated can be a local, platform-dependent

choice.)

6.2 Results and Comparisons with Related
Works

Our results are presented in Table 1. In particular, for our recom-

mended parameter set, we measure a total of 1, 042, 250 cycles for

the complete signature generation. Key generation costs 251, 590

cycles, and verification consumes 297, 590 cycles. Note that our

“very high” parameter set achieves better performance for a larger

signature due to the fact that the manner in which the parameters

were set results in a smaller rejection rate.

In order to compare these results to other post-quantum sig-

nature schemes, we consider the performance figures reported

in [11, 20]. (We note that BLISS [25] did not claim any post-quantum

security.) The MQDSS signature generation is reported to take

8 510 616 cycles on an Intel Core i7-4770K CPU at 3.5GHz (with

an “extensive use of AVX2 instructions”) [20] for a signature of

40 952 Bytes. The hash-based SPHINCS signature generation is re-

ported to take 51 636 372 cycles on an Intel Core i7-4770K CPU

at 3.5GHz (with “focused [...] optimization efforts on [the signing

procedure]”) for a signature of ≈ 41 000 Bytes [11]. These results

provide confidence that our implementation, using AVX2 instructi-

ons, is performing very favourably.

ACKNOWLEDGMENTS
Léo Ducas was supported by a Veni Innovational Research Grant

from NWO under project number 639.021.645. Vadim Lyubashev-

sky and Gregor Seiler were supported by the SNSF ERC Transfer

Starting Grant CRETP2-166734-FELICITY and the H2020 Project

SAFEcrypto. Peter Schwabe was supported by ICT Programme 115

under contract ICT-645622 PQCRYPTO. Damien Stehlé was sup-

ported by the ERC Starting Grant ERC-2013-StG-335086-LATTAC.

REFERENCES
[1] Michel Abdalla, Pierre-Alain Fouque, Vadim Lyubashevsky, and Mehdi Tibouchi.

2012. Tightly-Secure Signatures from Lossy Identification Schemes. In EURO-
CRYPT 2012 (LNCS), David Pointcheval and Thomas Johansson (Eds.), Vol. 7237.

Springer, Heidelberg, 572–590.

[2] Erdem Alkim, Nina Bindel, Johannes Buchmann, Ozgur Dagdelen, Edward Eaton,

Gus Gutoski, Juliane Kramer, and Filip Pawlega. 2015. Revisiting TESLA in the

quantum random oracle model. Cryptology ePrint Archive, Report 2015/755.

(2015). http://eprint.iacr.org/2015/755.

12

http://eprint.iacr.org/2015/755

[3] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. 2016. Post-

quantum key exchange – a new hope. In Proceedings of the 25th USENIX Secu-
rity Symposium. USENIX Association, 327–343. http://cryptojedi.org/papers/

#newhope.

[4] Andris Ambainis, Ansis Rosmanis, and Dominique Unruh. 2014. Quantum

Attacks on Classical Proof Systems: The Hardness of Quantum Rewinding. In

55th FOCS. IEEE Computer Society Press, 474–483. https://doi.org/10.1109/FOCS.

2014.57

[5] Sanjeev Arora and Rong Ge. 2011. New Algorithms for Learning in Presence

of Errors. In ICALP 2011, Part I (LNCS), Luca Aceto, Monika Henzinger, and Jiri

Sgall (Eds.), Vol. 6755. Springer, Heidelberg, 403–415.

[6] Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O’Hearn, and Christian

Winnerlein. 2016. BLAKE2X. (2016). https://blake2.net/blake2x.pdf.

[7] Shi Bai and Steven D. Galbraith. 2014. An Improved Compression Technique

for Signatures Based on Learning with Errors. In CT-RSA 2014 (LNCS), Josh
Benaloh (Ed.), Vol. 8366. Springer, Heidelberg, 28–47. https://doi.org/10.1007/

978-3-319-04852-9_2

[8] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. 2016. New directi-

ons in nearest neighbor searching with applications to lattice sieving. In 27th
SODA, Robert Krauthgamer (Ed.). ACM-SIAM, 10–24. https://doi.org/10.1137/1.

9781611974331.ch2

[9] Mihir Bellare and Phillip Rogaway. 1993. Random Oracles are Practical: A

Paradigm for Designing Efficient Protocols. In ACM CCS 93, V. Ashby (Ed.). ACM
Press, 62–73.

[10] Daniel J. Bernstein. 2008. ChaCha, a variant of Salsa20. InWorkshop Record of
SASC 2008: The State of the Art of Stream Ciphers. http://cr.yp.to/papers.html#

chacha.

[11] Daniel J. Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange, Ruben

Niederhagen, Louiza Papachristodoulou, Michael Schneider, Peter Schwabe,

and Zooko Wilcox-O’Hearn. 2015. SPHINCS: Practical Stateless Hash-Based

Signatures. In EUROCRYPT 2015, Part I (LNCS), Elisabeth Oswald and Marc

Fischlin (Eds.), Vol. 9056. Springer, Heidelberg, 368–397. https://doi.org/10.1007/

978-3-662-46800-5_15

[12] Jean-François Biasse and Fang Song. 2016. Efficient quantum algorithms for

computing class groups and solving the principal ideal problem in arbitrary

degree number fields. In 27th SODA, Robert Krauthgamer (Ed.). ACM-SIAM,

893–902. https://doi.org/10.1137/1.9781611974331.ch64

[13] Nir Bitansky, Dana Dachman-Soled, Sanjam Garg, Abhishek Jain, Yael Tauman

Kalai, Adriana López-Alt, and Daniel Wichs. 2013. Why "Fiat-Shamir for Proofs"

Lacks a Proof. In TCC. 182–201.
[14] Avrim Blum, Adam Kalai, and Hal Wasserman. 2003. Noise-tolerant learning, the

parity problem, and the statistical query model. J. ACM 50, 4 (2003), 506–519.

[15] Joppe W. Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Valeria

Nikolaenko, Ananth Raghunathan, and Douglas Stebila. 2016. Frodo: Take off

the Ring! Practical, Quantum-Secure Key Exchange from LWE. In ACM CCS 16,
Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers,

and Shai Halevi (Eds.). ACM Press, 1006–1018.

[16] Xavier Boyen. 2010. Lattice Mixing and Vanishing Trapdoors: A Framework for

Fully Secure Short Signatures and More. In PKC 2010 (LNCS), Phong Q. Nguyen

and David Pointcheval (Eds.), Vol. 6056. Springer, Heidelberg, 499–517.

[17] Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom. 2016.

Flush, Gauss, and Reload - A Cache Attack on the BLISS Lattice-Based Sig-

nature Scheme. In CHES 2016 (LNCS), Benedikt Gierlichs and Axel Y. Posch-

mann (Eds.), Vol. 9813. Springer, Heidelberg, 323–345. https://doi.org/10.1007/

978-3-662-53140-2_16

[18] Peter Campbell, Michael Groves, and Dan Shepherd. 2014. Soliloquy: A cautio-

nary tale. In ETSI 2nd Quantum-Safe Crypto Workshop. 1–9.
[19] Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody, Rene Peralta, Ray Perlner,

and Daniel Smith-Tone. 2016. Report on Post-Quantum Cryptography. NISTIR

8105. (2016). http://dx.doi.org/10.6028/NIST.IR.8105.

[20] Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona Samardjiska, and

Peter Schwabe. 2016. From 5-Pass MQ-Based Identification to MQ-Based Sig-

natures. In ASIACRYPT 2016, Part II (LNCS), Jung Hee Cheon and Tsuyoshi

Takagi (Eds.), Vol. 10032. Springer, Heidelberg, 135–165. https://doi.org/10.1007/

978-3-662-53890-6_5

[21] Yuanmi Chen and Phong Q. Nguyen. 2011. BKZ 2.0: Better Lattice Security

Estimates. In ASIACRYPT 2011 (LNCS), Dong Hoon Lee and XiaoyunWang (Eds.),

Vol. 7073. Springer, Heidelberg, 1–20.

[22] Ronald Cramer, Léo Ducas, Chris Peikert, and Oded Regev. 2016. Recovering

Short Generators of Principal Ideals in Cyclotomic Rings. In EUROCRYPT 2016,
Part II (LNCS), Marc Fischlin and Jean-Sébastien Coron (Eds.), Vol. 9666. Springer,

Heidelberg, 559–585. https://doi.org/10.1007/978-3-662-49896-5_20

[23] Ronald Cramer, Léo Ducas, and Benjamin Wesolowski. 2017. Short Stickelberger

Class Relations and Application to Ideal-SVP. In EUROCRYPT (1) (Lecture Notes
in Computer Science), Vol. 10210. 324–348.

[24] Ivan Damgård, Serge Fehr, and Louis Salvail. 2004. Zero-Knowledge Proofs and

String Commitments Withstanding Quantum Attacks. In CRYPTO 2004 (LNCS),

Matthew Franklin (Ed.), Vol. 3152. Springer, Heidelberg, 254–272.

[25] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. 2013.

Lattice Signatures and Bimodal Gaussians. In CRYPTO 2013, Part I (LNCS), Ran
Canetti and Juan A. Garay (Eds.), Vol. 8042. Springer, Heidelberg, 40–56. https:

//doi.org/10.1007/978-3-642-40041-4_3

[26] Léo Ducas, Vadim Lyubashevsky, and Thomas Prest. 2014. Efficient Identity-

Based Encryption over NTRU Lattices. In ASIACRYPT 2014, Part II (LNCS), Palash
Sarkar and Tetsu Iwata (Eds.), Vol. 8874. Springer, Heidelberg, 22–41. https:

//doi.org/10.1007/978-3-662-45608-8_2

[27] Léo Ducas and Daniele Micciancio. 2014. Improved Short Lattice Signatures in

the Standard Model. In CRYPTO 2014, Part I (LNCS), Juan A. Garay and Rosario

Gennaro (Eds.), Vol. 8616. Springer, Heidelberg, 335–352. https://doi.org/10.1007/

978-3-662-44371-2_19

[28] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. 2008. Trapdoors for

hard lattices and new cryptographic constructions. In 40th ACM STOC, Richard E.
Ladner and Cynthia Dwork (Eds.). ACM Press, 197–206.

[29] Shafi Goldwasser and Yael Tauman Kalai. 2003. On the (In)security of the Fiat-

Shamir Paradigm. In 44th FOCS. IEEE Computer Society Press, 102–115.

[30] Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. 2012. Practical

Lattice-Based Cryptography: A Signature Scheme for Embedded Systems. In

CHES. 530–547.
[31] Tim Güneysu, Tobias Oder, Thomas Pöppelmann, and Peter Schwabe. 2013.

Software Speed Records for Lattice-Based Signatures. In PQCrypto (Lecture Notes
in Computer Science), Vol. 7932. Springer, 67–82.

[32] Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. 2011. Analyzing Blockwise

Lattice Algorithms Using Dynamical Systems. In CRYPTO 2011 (LNCS), Phillip
Rogaway (Ed.), Vol. 6841. Springer, Heidelberg, 447–464.

[33] Paul Kirchner and Pierre-Alain Fouque. 2017. Revisiting Lattice Attacks on

Overstretched NTRU Parameters. In EUROCRYPT (1) (Lecture Notes in Computer
Science), Vol. 10210. 3–26.

[34] Thijs Laarhoven. 2015. Search problems in cryptography. Ph.D. Dissertation.

Eindhoven University of Technology.

[35] Adeline Langlois and Damien Stehlé. 2015. Worst-case to average-case reductions

for module lattices. Des. Codes Cryptography 75, 3 (2015), 565–599. https:

//doi.org/10.1007/s10623-014-9938-4

[36] Vadim Lyubashevsky. 2009. Fiat-Shamir with Aborts: Applications to Lattice and

Factoring-Based Signatures. In ASIACRYPT 2009 (LNCS), Mitsuru Matsui (Ed.),

Vol. 5912. Springer, Heidelberg, 598–616.

[37] Vadim Lyubashevsky. 2012. Lattice Signatures without Trapdoors. In EURO-
CRYPT 2012 (LNCS), David Pointcheval and Thomas Johansson (Eds.), Vol. 7237.

Springer, Heidelberg, 738–755.

[38] Vadim Lyubashevsky and Daniele Micciancio. 2006. Generalized Compact Knap-

sacks Are Collision Resistant. In ICALP 2006, Part II (LNCS), Michele Bugliesi,

Bart Preneel, Vladimiro Sassone, and Ingo Wegener (Eds.), Vol. 4052. Springer,

Heidelberg, 144–155.

[39] Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, and Alon Rosen. 2008.

SWIFFT: A Modest Proposal for FFT Hashing. In FSE 2008 (LNCS), Kaisa Nyberg
(Ed.), Vol. 5086. Springer, Heidelberg, 54–72.

[40] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. 2010. On Ideal Lattices

and Learning with Errors over Rings. In EUROCRYPT 2010 (LNCS), Henri Gilbert
(Ed.), Vol. 6110. Springer, Heidelberg, 1–23.

[41] Vadim Lyubashevsky and Daniel Wichs. 2015. Simple Lattice Trapdoor Sam-

pling from a Broad Class of Distributions. In PKC 2015 (LNCS), Jonathan
Katz (Ed.), Vol. 9020. Springer, Heidelberg, 716–730. https://doi.org/10.1007/

978-3-662-46447-2_32

[42] Carlos Aguilar Melchor, Joris Barrier, Serge Guelton, Adrien Guinet, Marc-Olivier

Killijian, and Tancrède Lepoint. 2016. NFLlib: NTT-Based Fast Lattice Library. In

CT-RSA 2016 (LNCS), Kazue Sako (Ed.), Vol. 9610. Springer, Heidelberg, 341–356.

https://doi.org/10.1007/978-3-319-29485-8_20

[43] Daniele Micciancio and Michael Walter. 2017. Gaussian Sampling over the

Integers: Efficient, Generic, Constant-Time. IACR Cryptology ePrint Archive 2017
(2017), 259. http://eprint.iacr.org/2017/259

[44] Kathleen M. Moriarty, Burt Kaliski, Jakob Jonsson, and Andreas Rusch. 2016.

PKCS #1: RSA Cryptography Specifications Version 2.2. RFC 8017. (2016). https:

//tools.ietf.org/html/rfc8017.

[45] NIST. 2015. SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions. Technical Report. Available at

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf.
[46] Chris Peikert and Alon Rosen. 2006. Efficient Collision-Resistant Hashing from

Worst-Case Assumptions on Cyclic Lattices. In TCC 2006 (LNCS), Shai Halevi
and Tal Rabin (Eds.), Vol. 3876. Springer, Heidelberg, 145–166.

[47] Peter Pessl. 2016. Analyzing the Shuffling Side-Channel Countermeasure for

Lattice-Based Signatures. In INDOCRYPT 2016 (LNCS), Orr Dunkelman and

Somitra Kumar Sanadhya (Eds.), Vol. 10095. Springer, Heidelberg, 153–170.

https://doi.org/10.1007/978-3-319-49890-4_9

[48] Thomas Pöppelmann, Léo Ducas, and Tim Güneysu. 2014. Enhanced Lattice-

Based Signatures on Reconfigurable Hardware. In CHES 2014 (LNCS), Lejla Batina

13

http://cryptojedi.org/papers/#newhope
http://cryptojedi.org/papers/#newhope
https://doi.org/10.1109/FOCS.2014.57
https://doi.org/10.1109/FOCS.2014.57
https://blake2.net/blake2x.pdf
https://doi.org/10.1007/978-3-319-04852-9_2
https://doi.org/10.1007/978-3-319-04852-9_2
https://doi.org/10.1137/1.9781611974331.ch2
https://doi.org/10.1137/1.9781611974331.ch2
http://cr.yp.to/papers.html#chacha
http://cr.yp.to/papers.html#chacha
https://doi.org/10.1007/978-3-662-46800-5_15
https://doi.org/10.1007/978-3-662-46800-5_15
https://doi.org/10.1137/1.9781611974331.ch64
https://doi.org/10.1007/978-3-662-53140-2_16
https://doi.org/10.1007/978-3-662-53140-2_16
http://dx.doi.org/10.6028/NIST.IR.8105
https://doi.org/10.1007/978-3-662-53890-6_5
https://doi.org/10.1007/978-3-662-53890-6_5
https://doi.org/10.1007/978-3-662-49896-5_20
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-662-45608-8_2
https://doi.org/10.1007/978-3-662-45608-8_2
https://doi.org/10.1007/978-3-662-44371-2_19
https://doi.org/10.1007/978-3-662-44371-2_19
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/978-3-662-46447-2_32
https://doi.org/10.1007/978-3-662-46447-2_32
https://doi.org/10.1007/978-3-319-29485-8_20
http://eprint.iacr.org/2017/259
https://tools.ietf.org/html/rfc8017
https://tools.ietf.org/html/rfc8017
https://doi.org/10.1007/978-3-319-49890-4_9

and Matthew Robshaw (Eds.), Vol. 8731. Springer, Heidelberg, 353–370. https:

//doi.org/10.1007/978-3-662-44709-3_20

[49] Thomas Pöppelmann and Tim Güneysu. 2012. Towards Efficient Arithmetic for

Lattice-Based Cryptography on Reconfigurable Hardware. In LATINCRYPT 2012
(LNCS), Alejandro Hevia and Gregory Neven (Eds.), Vol. 7533. Springer, Heidel-

berg, 139–158.

[50] Claus-Peter Schnorr and M. Euchner. 1994. Lattice basis reduction: Improved

practical algorithms and solving subset sum problems. Math. Program. 66 (1994),
181–199.

[51] Dominique Unruh. 2017. Post-Quantum Security of Fiat-Shamir. IACR Cryptology
ePrint Archive 2017 (2017), 398. http://eprint.iacr.org/2017/398

A PRELIMINARIES FOR DILITHIUM-G
We use the same rings as in Dilithium. In particular, we work over

R and Rq with the same n = 256 and q = 8380417. The main

implementation difference between Dilithium and Dilithium-G is

that in the signing algorithm of the latter we will be performing

sampling from a discrete Gaussian distribution rather than from

the uniform one.

Discrete Gaussian distribution. Since the ring R is isomorphic

to Z256 as an additive group and has the same geometry, rather

than sampling over Z256, we will say that we are sampling over R.

Similarly, the set Rk has the same geometry as Z256·k . For σ ∈ R+
and positive integer k , we define the distribution over Rk ,

Dk
σ (r) = ρσ (r)/ρσ (Rk) where ρσ (Rk) =

∑
r∈Rk

ρσ (r) ,

and ρσ (r) = exp(−∥r∥2/(2σ 2)) for r ∈ Rk .
Producing “hints”. We introduce the procedures MakeGHintq
and UseGHintq for generating and using hints, respectively (see

Algorithms 11 and 12), that will be used in Dilithium-G instead of

MakeHintq and UseHintq .

Algorithm 11MakeGHintq (z, r ,α)
1: m B (q − 1)/α
2: r1 := HighBitsq (r ,α)
3: v1 := HighBitsq (r + z,α)
4: return (v1 − r1) mod

±m

Algorithm 12 UseGHintq (y, r ,α)
1: m B (q − 1)/α
2: r1 := HighBitsq (r ,α)
3: return (r1 + y) mod

+m

Themain differencewithMakeHintq andUseHintq from Section 3

is that the hints are no longer restricted to being one bit. The reason

is that the small integer z is no longer bounded within an inter-

val, but is rather generated according to a Gaussian distribution.

It would be very wasteful to our scheme to pick an interval that

is large enough so that the carry vector can be at most 1. For this

reason, we allow z to cause larger carries.

Lemmas A.1 and A.2 are analogous to Lemmas 3.1 and 3.3 from

Section 3.2. We will not need an equivalent of Lemma 3.2 because

the verification procedure will implicitly check the length of the

solution.

Lemma A.1. Let r , z be integers. Then
UseGHintq (MakeGHintq (z, r ,α), r ,α)

= HighBitsq (z + r ,α).

Proof. Let v1 = HighBitsq (r + z,α). We have that

UseGHintq
(
MakeGHintq (z, r ,α), r ,α

)
= v1 mod

+m.

Thus we just need to show that v1 is always a value between 0

andm − 1. In other words, we need to show that the Decomposeq
routine always outputs (r1, r0)where 0 ≤ r1 < m−1. Note that r1 =
(r − (r mod

± α))/α . The numerator is always between 0 and q − 1
(inclusively), but the procedure sets it to 0 if it is q − 1. We thus

have 0 ≤ r1 < (q − 1)/α =m. �

Lemma A.2. Letm = (q − 1)/α , r ∈ Zq and y,y′ ∈ (−m/2,m/2]
integers. If UseGHintq (y, r ,α) = UseGHintq (y′, r ,α), then y = y′.

Proof. If UseGHintq (y, r ,α) = UseGHintq (y′, r ,α), then y =
y′ mod

+m. Since |y |, |y′ | ≤ m/2, this is only possible if y = y′. �

As in Section 3.2, we deduce the following lemma.

Lemma A.3. Suppose that q and α are positive integers satisfying
q ≡ 1 (mod α). Letm = (q − 1)/α , r and z be vectors of elements
in Rq and y, y′ be integral vectors of elements in (−m/2,m/2]. Then
the Decomposeq , MakeGHintq , and UseGHintq algorithms satisfy
the following properties:

(1) UseGHintq (MakeGHintq (z, r,α), r,α)
= HighBitsq (z + r,α).

(2) If UseGHintq (y, r,α) = UseGHintq (y′, r,α), then y = y′.

B DILITHIUM-G: NORMALLY-DISTRIBUTED
DIGITAL SIGNATURES

In this section, we propose a variant of Dilithium, called Dilithium-

G, that uses a discrete Gaussian distribution instead of the uniform

distribution Sη (Appendix A introduces the new notation used in

this section). Themain conceptual difference between this signature

and Dilithium is in the way that the rejection sampling is done. In

Dilithium, the rejection sampling is used to make the distribution

of z uniform in a hypercube, whereas Dilithium-G uses a different

kind of rejection sampling which makes the vector (z1, z2) take the
discrete Gaussian distribution. As was shown in [37], rejection sam-

pling in this manner can create signatures that are asymptotically

shorter (in the ℓ2-norm) by a factor of O(
√
n · (k + ℓ)).

Other than the difference in the rejection sampling algorithm,

there is also a slight difference in the output of theMakeHintq algo-

rithm. In the previous scheme, the smaller term in the MakeHintq
could only increase or decrease by 1 the higher order coefficient

of the sum. When the coefficients are discrete Gaussians, however,

there is no longer a hard bound, and so the higher order coefficients

of the sum can change by other values. Therefore the hint h is no

longer encoding 0’s or 1’s as before, but rather larger integers.

B.1 The Signature Scheme
Dilithium-G is described in Algorithms 13 to 15.

14

https://doi.org/10.1007/978-3-662-44709-3_20
https://doi.org/10.1007/978-3-662-44709-3_20
http://eprint.iacr.org/2017/398

Algorithm 13 KeyGen()

1: ρ ′ ← {0, 1}256
2: (s1, s2) ∼ Sℓη × Skη B Sam(ρ ′)

3: ifmax singular value of

[
rot(s1)
rot(s2)

]
∈ Z256(k+ℓ)×256 is larger than

S , restart
4: ρ ← {0, 1}256
5: A ∼ Rk×ℓq B Sam(ρ)
6: t B As1 + s2
7: t1 := Power2Roundq (t,d)
8: return (pk B (t1, ρ), sk B (ρ, s1, s2, t))

The key generation proceeds exactly as in Dilithium, except we

now check to make sure that the largest singular value of the inte-

ger matrix

[
rot(s1)
rot(s2)

]
∈ Z256(k+ℓ)×256, where rot(·) is defined as in

Section 5.2,is not too large. The cut-off bound is chosen heuristically

so that there is about a 50% chance that random s1, s2 satisfy the

bound. The singular value bound will assure that ∥c(s1, s1)T ∥ will
not be too large.

Algorithm 14 Sign(sk = (ρ, s = (s1, s2)T , t), µ ∈ M)
1: t1 := Power2Roundq (t,d)
2: t0 B t − t1 · 2d
3: r ← {0, 1}256
4: (y1, y2) ∼ Dℓ

σ × Dk
σ B Sam(r)

5: w B Ay1 + y2
6: (w1,w0) := Decomposeq (w,α)
7: c ← H(ρ, t1,w1, µ)

8: z =
[
z1
z2

]
B

[
y1
y2

]
+ c

[
s1
s2

]
9: u ← [0, 1)
10: if u > (1/M) · exp((−2⟨z, cs⟩ + ∥cs∥2)/(2σ 2)) then goto 3

11: z2 B z2 − ct0 −w0

12: if ∥(z1, z2)∥ ≥ B then goto 3

13: h := MakeGHintq (z2,αw1 − z2,α)
14: return Σ B (z1, h, c)

Algorithm 15 Verify(pk = (ρ, t1), µ ∈ M, Σ = (z1, h, c))

1: w1 := UseGHintq (h,Az1 − ct1 · 2d ,α)
2: if c = H (ρ, t1,w1, µ) and ∥(z1,Az1 − ct1 · 2d − αw1)∥ < B and

∥h∥∞ ≤ (q − 1)/2α then
3: return 1

4: else
5: return 0

6: end if

The signing procedure begins by computing t0 in the same man-

ner as in the previous algorithm. The signer then samples y1, y2
from a discrete Gaussian distribution with standard deviation σ
(using an extendable output function Sam expanding a seed r), com-

putes w = Ay1 + y2 and decomposes it into w = αw1 + w0. The

polynomial c is then computed as in the previous signature scheme,

and zi is computed as yi +csi . The signature z1, z2 is accepted with
probability (1/M) · exp (−2⟨z, cs⟩ + ∥cs∥2/(2σ 2)). In order for this

to be a valid probability, one needs to set the constant M so that

the value should always be less than 1. This constantM is also the

expected number of repetitions that will be needed to output one

signature. The precise relationship between M,σ , and ∥cs∥ was
derived in [37] and we state it in Lemma B.1.

If this rejection sampling step passes, then the distribution of z
is a discrete Gaussian centered at 0. With high probability, the ℓ2
norm of this vector should be tightly concentrated around a value

close to σ ·
√
(k + ℓ) · 256. Because we perturb this vector (due to the

dropping of the lower order terms of z2 and t), the norm increases

slightly. Experimentally, we set the bound

B2 =
(
1.05 · σ

√
(k + ℓ) · 256

)
2

+
(
2
d−1 ·

√
60 · 256 · k

)
2

, (6)

such that the ℓ2 norm of the vector in Step 12 is almost always less

than B. If this step passes, then the next step of the algorithm uses

z2 and w1 to construct a hint h that allows one to derive w1 from

αw1 − z2 and this hint. The verification procedure also checks that

every coefficient of h is smaller than (q − 1)/2α . We do this check

so that Lemma A.2 can be applied to show strong unforgeability.

Since α is close to the standard deviation σ and each coefficient of

h essentially represents the number of standard deviations z2 was
larger than σ , with very high probability (greater than 1 − 2−128),
the magnitude of each coefficient of h is less than 15, thus this

verification step will always pass for an honest signer.

Concrete parameters. We provide concrete parameters and secu-

rity estimates in Table 2.

B.2 Correctness
First we show that the norm bound check in Step 12 is the same as

in the verification algorithm.

z2 = y2 + cs2 − ct0 −w0 = αw1 +w0 − Ay1 + cs2 − ct0 −w0

= αw1 − Az1 + c(As1 + s2) − ct0 = αw1 − Az1 + ct1 · 2d .

Then we want to show that the first step in the verification

equation produces w1. From the above equality, we know that

αw1 − z2 = Az1 − ct1 · 2d , (7)

and so Lemma A.3 gives us that w1 = UseGHintq (h,Az1 − ct1 ·
2
d ,α).

B.3 Zero-Knowledge and Simulation
To prove that Dilithium-G does not leak knowledge of the secret

keys s1, s2, we need to show that the distribution of (z1, z2, c) after
Step 10 is independent of s1, s2. For this, we use the following

lemma which is implicit in the main result of [37].

LemmaB.1. LetT = maxc ∥c(s1, s1)T ∥ andM be a positive integer.
If σ = κT and λ is a positive real number such that eλ/κ+1/(2κ

2) ≤ M ,
the statistical distance between (z1, z2, c) and Dℓ

σ × Dk
σ × B60 after

Step 10 is at most 2 exp(−λ2/2) and the expected number of iterations
necessary to output one sample isM .

15

Table 2: Parameters for Dilithium-G.

weak medium recommended very high

modulus q 8380417 8380417 8380417 8380417

d (dropped bits in the public key) 11 11 11 11

weight of c 60 60 60 60

max secret singular value S 230 225 210 145

σ ≈ 11 ∗ S ∗
√
60 19600 19200 17900 12400

α = (q − 1)/512 16368 16368 16368 16368

(k, ℓ) (2, 2) (3, 3) (4, 4) (5, 5)
η 7 6 5 3

B ≈ as in Eq. (6) 750K 904K 990K 870K
M (and # of repetitions) 3 3 3 3

pk size (bytes) 800 1184 1568 1952

sig size (bytes) 1250 1850 2435 2950

BKZ block-size b to break SIS 210 375 555 780

Best Known Classical bit-cost 61 109 162 228

Best Known Quantum bit-cost 55 99 147 206

Best Plausible bit-cost 43 77 115 161

BKZ block-size b to break LWE 205 345 485 595

Best Known Classical bit-cost 59 100 142 174

Best Known Quantum bit-cost 54 91 129 158

Best Plausible bit-cost 42 71 101 124

To see how this lemma is used for setting our parameters, we

will use as an example the “recommended” set of parameters from

Table 2. The secret key (s1, s2) is generated at random with each

coefficient uniformly distributed between −5 and 5 until the max-

imum singular value of

[
rot(s1)
rot(s2)

]
∈ Z256(k+ℓ)×256 is less than 210.

This implies that the T in Lemma B.1 is 210 ·
√
60 ≈ 1626. If we, for

example, set σ = 11T and λ = 12, then we obtain that the statistical

distance is approximately e−72 and eλ/κ+1(2κ
2) < 3. So we can set

M = 3.

To simulate a signature, we sample (z1, z2, c) ← Dℓ
σ ×Dk

σ × B60,
then computew := Az1 + z2 −ct. Once we havew, we can compute

the hint h. We then program c := H(ρ, t1,w1, µ). Unless the value
for H(ρ, t1,w1, µ) has already been set, the programming step is

valid and our simulation is complete. If H(ρ, t1,w1, µ) has been
previously assigned a value, then it must be that

HighBitsq (Az1 + z2 − ct,α) = w1.

Since the codomain of the above equation, as a function of z1, z2, is
extremely large (greater than 2

4000
for all the parameters in Table

2), if HighBitsq (Az1 + z2 − ct,α) hits an already existing value,

it implies that Az1 + z2 is not uniformly-distributed in Rkq when

(z1, z2) ← Dℓ
σ × Dk

σ . Using the search-to-decision reduction for

Module-LWE [35] (which is applicable because our σ is sufficiently

high) it implies that the search Module-LWE problem is hard.
8

Thus we can assume that the programming of H is always valid.

8
The σ is so high that, with a little technical analysis, it should be possible to prove

that Az1 + z2 is indeed statistically-close to uniform.

B.4 Security Proof
Throughout the proof we will make the assumption (which is fa-

vorable to the adversary) that he gets t = As1 + s2 as the public
key. In the real scheme, he only gets the higher order bits of t. In
practice, therefore, the scheme may be even more difficult for the

adversary to break.

Lemma B.2. Forging a signature implies finding u1, u2,u3 such
that ∥u1, u2∥ ≤ 2B and ∥u3∥∞ ≤ 2 such that Au1 + u2 = u3t1 · 2d
and (u1, u2,u3) , 0.

Proof. The public key is set to be (A, t). Signature queries by
the adversary are created via the procedure described in Section 4.3.

We now describe our extractor when the Adversary produces a

winning query. If the Adversary creates a signature (z1, h, c) for a
message µ, then he must have queried

H(ρ, t1,w1, µ) = c, (8)

where w1 = UseGHintq (h,Az1 − t1c · 2d ,α), either directly by

querying H or indirectly during a signing query.

Case 1: If c was queried during a signing query, then the reduction

already knows another (z′
1
, h′, c) (and the associated w′

1
) for a mes-

sage µ ′ such that H(ρ, t1,w′
1
, µ ′) = c = H(ρ, t1,w1, µ). This implies

that µ = µ ′ and w1 = w′
1
, or else we found a second pre-image for

c . Since w1 = w′
1
, it must be that{

UseGHintq (h,Az1 − t1c · 2d ,α) = w1

UseGHintq (h′,Az′
1
− t1c · 2d ,α) = w1

.

If z1 = z′
1
, then Lemma A.3 states that we must have h = h′, and so

the adversary has not found a new signature. Thus it must be that

16

z1 , z′
1
. If we define{

u = Az1 − t1c · 2d −w1 · α
u′ = Az′

1
− t1c · 2d −w1 · α

,

then subtracting we obtain

A(z1 − z′1) − (u − u
′) = 0.

From the verification equation, we know that ∥(z1, u)∥ ≤ B and

∥(z′
1
, u′)∥ ≤ B, and therefore ∥(z1 − z′

1
, u − u′)∥ ≤ 2B.

Case 2: We now handle the case where the query in Eq. (8) was

done directly to H. A standard forking lemma argument shows

that the reduction can then extract two signatures (z1, h, c) and
(z′
1
, h′, c ′) for c , c ′ such that{

UseGHintq (h,Az1 − t1c · 2d ,α) = w1

UseGHintq (h′,Az′
1
− t1c ′ · 2d ,α) = w1

.

If we define {
u = Az1 − t1c · 2d −w1 · α
u′ = Az′

1
− t1c ′ · 2d −w1 · α

,

then subtracting we obtain

A(z1 − z′1) − (u − u
′) = t1 · 2d · (c − c ′).

From the verification equation, we know that ∥(z1, u)∥ ≤ B and

∥(z′
1
, u′)∥ ≤ B, and therefore ∥(z1 − z′

1
, u − u′)∥ ≤ 2B. �

B.5 Representing Gaussians
The output of the signature scheme (Algorithm 14) is a polynomial

vector z1 each of whose coefficients is distributed as a discrete

Gaussian over Z with standard deviation σ , and a “hint” vector

h consisting of “carry” bits when adding a discrete Gaussian to a

uniformly-distributed element in Zq . In both cases, the integers

are distributed according to probability distributions that are more

weighted towards elements with small norms, and therefore it is

not optimal to simply represent integers with their binary represen-

tations. The optimal representation would be via Huffman encoding

(as in [25]), and what we propose is essentially a simplified version

that is nearly optimal.

In the case of coefficients of z1, we write each coefficient

z mod
± q = z1 · 2δ + z0

where z0 = z mod
± q. Since the expected absolute value of z is

approximately σ , when 2
δ
is also approximately σ , then the value

of z0 is close to being uniform between −2δ−1 and 2
δ−1

. The dis-

tribution of z1, however, has tails that decrease very fast. A simple

and close to optimal representation of z is therefore to send z0
uncompressed (which requires δ bits) and then encode z1 using the
prefix-free encoding of Table 3.

When σ = 2
δ
, the above compression requires on average ap-

proximately 2.25 bits to represent each coefficient of z1. Thus the
total representation of z is on average δ + 2.25 bits.

The coefficients of h have a very similar distribution to the coef-

ficients z1 when α ≈ σ . Therefore we can use the same encoding

for this vector as well. To get a rough approximation of the num-

ber of bits required to represent the signature (z1, h, c) is therefore
(2.25 + δ) · 256 · ℓ + 2.5 · 256 · k + 256. The exact number will differ

because we do not necessarily take the value of σ which is equal to

Table 3: Prefix-free Encoding for the high-order integers of
the coefficients of z1 and for the coefficients of h.

Integer Representation Bits

0 00 2

1 01 2

−1 10 2

k (≥ 2) 110
2k−4

1 2k − 1
−k (≤ −2) 110

2k−3
1 2k

α and 2
δ
. The signature sizes in Table 2 represent upper bounds

that are exceeded less than 1% of the time in practice. If one would

like to have a strict limit on the signature size, then the signer could

check to make sure that the signature has length less than this

bound before outputting the signature. If the length is greater, then

the signer can simply restart the procedure anew.

17

	Abstract
	1 Introduction
	1.1 Our Proposal
	1.2 Design Considerations
	1.3 Security and Quantum Security

	2 Preliminaries
	2.1 Cryptographic Definitions
	2.2 Rings and Distributions
	2.3 Module-LWE and Module-SIS

	3 Rounding Algorithms
	3.1 High-order and Low-order Bits
	3.2 Producing ``Hints'' for Dilithium

	4 Dilithium
	4.1 The Signature Scheme
	4.2 Correctness
	4.3 Zero-Knowledge and Simulation
	4.4 A Discussion on the Role of .
	4.5 Security Proof

	5 Concrete Security Analysis
	5.1 Lattice Reduction and Core-SVP Hardness
	5.2 Key-Recovery Attack: Solving Module-LWE
	5.3 Forgery Attack: Solving Module-SIS
	5.4 On Other Attacks

	6 Implementation
	6.1 Primitives and Reference Implementation
	6.2 Results and Comparisons with Related Works

	Acknowledgments
	References
	A Preliminaries for Dilithium-G
	B Dilithium-G: Normally-Distributed Digital Signatures
	B.1 The Signature Scheme
	B.2 Correctness
	B.3 Zero-Knowledge and Simulation
	B.4 Security Proof
	B.5 Representing Gaussians

