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Abstract

Multivariate Public Key Cryptosystems (MPKCs) are often touted
as future-proofing against Quantum Computers. In 2009, it was shown
that hardware advances do not favor just “traditional” alternatives such
as ECC and RSA, but also makes MPKCs faster and keeps them com-
petitive at 80-bit security when properly implemented. These techniques
became outdated due to emergence of new instruction sets and higher
requirements on security.

In this paper, we review how MPKC signatures changes from 2009
including new parameters (from a newer security level at 128-bit), crypto-
safe implementations, and the impact of new AVX2and AESNI instruc-
tions. We also present new techniques on evaluating multivariate polyno-
mials, multiplications of large finite fields by additive Fast Fourier Trans-
forms, and constant time linear solvers.

1 Introduction

1.1 The Requirements on Post-Quantum Security

Since Shor’s algorithm [Sho97] was invented, it is clear that traditional public
key cryptography(PKCs) based on discrete logarithm and RSA assumptions
are going to be solved in polynomial time once large quantum computers are
built. PKCs that retain sufficient security levels when quantum computers have
arrived are said to be post-quantum. Such cryptosystems are also sometimes
called Postquantum Cryptosystems or PQCs. There are four or five main classes
of PQCs one of which comprise Multivariate public-key cryptosystems (MPKCs)
[CJL+16].

1.2 MPKCs and its Security

MPKCs are PKCs whose public keys represent multivariate polynomials over a
small finite field(GF) K = Fq:

P : w = (w1, . . . , wn) ∈ Kn 7→ z = (p1(w), . . . , pm(w)) ∈ Km.
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Polynomials p1, p2, . . . have (almost always) been quadratic. In public-key cryp-
tography, we can let P(0) = 0.

We need to discuss the security of MPKCs in order to set the parameters
needed for the required security level(s). Public key of MPKCs are instances
of solving multivariate quadratic equations, or instances. One can break all
MPKCs if one is able to efficiently solve MQ problems.

1.2.1 Class MQ(q, n,m) and the MQ Problem

For given q, n,m, the class MQ(q, n,m) consists of all systems of m quadratic
polynomials in Fq with n variables. To choose a random system S fromMQ(q, n,m),
we write each polynomial Pk(x) as

∑
1≤i≤j≤n aijkxixj+

∑
1≤i≤n bikxi+ck, where

every aijk, bik, ck is chosen uniformly in Fq.
Solving S(x) = b for any MQ system S is then known as the “multivariate

quadratic” problem. It is an NP-complete problem [GJ79]. However, it is not
easy to base a proof on worst-case hardness. Often the premise used is the
hereto unchallenged average-case MQ hardness assumption [BGP06,LLY08]:

Assumption MQ

Given any k and prime power q, for parameters n,m satisfying m/n = c+ o(1),
no probabilistic algorithm in subexponential(n)-time can solve S(x) = b with
a non-neglible probability ε > 0, if the systems S are drawn fromMQ(q, n,m),
and a vector b = (b1, b2, . . . , bm) drawn from S(Un), where Un is the uniform
distribution over (Fq)n.

1.2.2 Hardness of generic MQ

The complexity of solving a random instance out of MQ(n,m, q) is estimated
using Gröbner basis methods, often XL with sparse matrices [CKPS00,YCBC07]
or F5 [Fau02,BFSY05]. We simply use prior estimates for complexity of solving
MQ.

1.2.3 Effect of Quantum Computers on MQ signatures

Since we discuss MPKC as post-quantum, we must consider a direct quan-
tum computer attack using Grover’s algorithm [Gro96], which is considered
in [WS16]. The summary of this attack is that a system ofMQ equations with
n-bits of inputs can be solved in 2

n
2 +1n3 quantum operating steps (“gates”).

Note that this is not usually a problem because a signature scheme usually
requires 2b-bit wide hashes for b-bit security, so usually a 128-bit secure digital
signature scheme has 256 bits of input anyway. If we assume that a quantum
step (“gate”) can run at the speed as a CPU cycle (a very very aggressive
assumption about quantum computers), solving a quadratic system with 210
bits of input and output takes an equivalent of 2128 cycles.

1.2.4 Extended Isomorphism of Polynomials (EIP)

Notice MPKCs cannot be randomMQ polynomials, because the legitimate user
would be equally unable to invert P. Usually the public map of an MPKC have
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structure in the “bipolar form”: P = T ◦ Q ◦ S where T and S are affine,

P : w ∈ Kn S7→ MSw + cS := x
Q7→ y

T7→ MTy + cT := z ∈ Km.

The field K = Fq is often called the base field. The requirement for the quadratic
central map Q is that it is easy to “invert” Q but not P. That is, given y ∈ Km,
it is easy to compute x such that Q(x) = y. but find a x such that P(x) = y
is hard. The structure is hidden away by S and T . Given this, the MPKC may
be attacked via what is called structural attacks.

EIP and “Structural Attacks” Given a class C of quadratic maps Kn 7→
Km and a quadratic map P : Kn 7→ Km, an associated EIP instance means to
find S and T such that P = T ◦ Q ◦ S, where Q ∈ C. Defeating a bipolar-form
MPKC through solving an EIP is known as a “structural” or Key-Recovery
attack.

Note that solving an EIP problem is very ad hoc, depending very much on
what Q is like, and again we do not go into the theoretical details but uses
known EIP results in this paper.

1.2.5 Non-bipolar MQ and Proofs of Knowledge

There are MQ public-key schemes which are based only on the security of
hash functions and the MQ problem only, such as [CHR+16] (and the older
[SSH11]). These are based on proofs of knowledge rather than the traditional
MQ paradigm. The key steps of both the public and secret operations involves
only repeated MQ evaluations. The cost is running time and the length of the
signature (many kilobytes).

1.3 The Implementation of MPKCs

1.3.1 The challenge of Cryptographic Implementations

In practice, a security system can be broken due to its implementation instead
of the cryptography, e.g., the cache-timing attack to AES [BM06]. We would
like reasonable implementations which retain as much as possible side channel
resilience. This means that the secret data should be independent of mem-
ory access and table indices. In other words, time constancy is always a basic
requirment when processing secret data. We want such implementations for
generic 32-bit architectures (many of today’s micro-controllers) and for the di-
verse instruction set in mainstream CPUs.

MPKCs were usually advertised for speed, which still needs to be reviewed
according to today’s security requirements. In 2009 MPKCs were shown [CCC+09]
to be easily a match for RSA and ECC at the 80-bit security level. It seems
the basic security requirements has shifted to 128-bit, which can be seen from
the call of new post-quantum cryptographic schemes from NIST [oST16]. We
have to see whether MPKC signature schemes still remain viable in the age of
128-bit security.
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1.3.2 Revisiting the Implementations of MPKCs

We can partition implementation of MPKCs into smaller components most of
which are procedures in basic linear algebra. The efficiency of MPKCs usually
relies on the implementations of these components:

• The evaluation of quadratic polynomials is a key component in implement-
ing multivariate cryptography and had been studied in [BBG07,CCC+09,
CHR+16]. In general, these works studied the most efficient instructions
in the target platforms for evaluating using the minimum number of in-
structions.

• Arithmetic in finite fields is a basic topic in computer science and closely
related to the implementation of MPKCs for fields up to 512 bits. For
these large fields of characteristic 2, the polynomial-multiplication instruc-
tion(PCLMULQDQ) is a perfectly fit for the requirements and had been used
as primary choice for building field multiplications, e.g., in [PCY+15].

To perform the multiplications for the platform without PCLMULQDQ, some
implementations build a multiplication from vector instructions using Karat-
suba or similar algorithms, e.g,., in [CCC+09, PCY+15]. In 2014, Bern-
stein and Chou [BC14] presented the multiplications by applying addi-
tive FFT [GM10] and bit-slicing when implementing for generic platforms
without SIMD instruction sets. Motivated by [BC14], we present a multi-
plication for general SIMD platforms using a new additive FFT [LCH14]
in this paper.

• The secret maps of some MPKCs are mainly root-finding of high degree
univariate polynomials using Berlekamp’s algorithm [PCY+15]. Since the
success of signing is dependent on the existence a root in some MPKCs, we
can parallelize the signing process with different randomness for increasing
the probability of a successful signing. We achieve the parallelization of
big GF arithmetic using SIMD in this paper.

• Solving linear equations is also a key component in some MPKC schemes
[DS05]. In 2014 [BC14] demonstrated a constant time Gauss eliminations
for F2. We extend the method to F16 and F31 in this paper. The key is
to remove branching on zero pivots and instead use conditional move.

Throughout this paper, we will revisit these key components of MPKCs while
taking into consideration side-channel resilience and a 128-bit security level.

2 Backgrounds on MPKC Signatures

2.1 Recap of MPKC Signatures

An Multivariate Public Key Cryptosystem has a public map P = T ◦ Q ◦ S
where T and S are affine,

P : w ∈ Kn S7→ MSw + cS := x
Q7→ y

T7→ MTy + cT := z ∈ Km.

The field K = Fq is often called the base field. The quadratic central map Q
(but not P) must by easy to “invert” . The structure of Q is hidden away by S

4



and T and the various MPKCs are characterized by the struction of their Q’s.
When evaluating the private map, the legitimate user inverts T , Q, and S in
that order.

It is almost universally accepted that it is difficult to design multivariate
encryption schemes. Most such schemes are either already been broken or have
much larger sizes than signature schemes. We enumerate the main MPKC signa-
tures considered secure today and modify their parameters for 128-bit security
in this section. We will discuss the implementation of these schemes in the later
sections.

According to whether Q involves a mapping in a much larger field L ⊃ K,
the scheme is called “big” or “small” field respectively. The size of big field L
is usually somewhere from 264 to 2512 and multiplications in L are usually the
time consuming steps of the secret map in big field schemes.

2.2 Rainbow/TTS

Rainbow [DS05] is the stereotypical “small field” MPKC, where we work on the
same F16, F31, or F256 throughout. Although TTS [DYC+08] had been proposed
earlier, it can be considered as Rainbow with a sparse Q in today’s terminology.
The definitive analysis of security for Rainbow/TTS and the formulation of
current instances can be found in the 2008 paper [DYC+08]. 80-bit secure
parameters are chosen in [PBB10].

2.2.1 The central map in Rainbow/TTS

Rainbow(Fq, v1, o1, . . . , ou) is characterized as follows as a u-stage UOV [DS05,
DYC+08].

• The segment structure is given by a sequence 0 < v1 < v2 < · · · <
vu+1 = n. For l = 1, . . . , u+ 1, set labels for “vinegar” variables as
Vl := {1, 2, . . . , vl} so that |Vl| = vl and V0 ⊂ V1 ⊂ · · · ⊂ Vu+1 = V .
Denote sets of “oil” variables by ol := vl+1 − vl and Ol := Vl+1 \ Vl for
l = 1 · · ·u.

• The central map Q comprises m structurized quadratic equations y =
(yv1+1, . . . , yn) = (qv1+1(x), . . . , qn(x)), where

yk = qk(x) =

vl∑
i=1

vl+1∑
j=i

α
(k)
ij xixj +

∑
i<vl+1

β
(k)
i xi ,

for k ∈ Ol := {vl + 1 · · · vl+1}.

• Note that in every qk, where k ∈ Ol, there is no cross-term xixj where
both i and j are in Ol. So given all the yi with vl < i ≤ vl+1, and all the
xj with j ≤ vl, we can easily compute xvl+1, . . . , xvl+1

.

2.2.2 Signatures in Rainbow/TTS

To sign a message, the signer calculate the hash digest z of message and inverts
P with the secret key T , S, and Q by

z ∈ Km T−1

7−→ y
Q−1

7−→ x
S−1

7−→ w ∈ Kn ,
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where w is the signature. The key step here is inverting the central map Q.
While inverting Q with given y, the signer randomly guesses vinegar variables
x̄ = (x1, . . . xv1) and solve (xv1+1, . . . , xv1+o1) by

yv1+1 = ᾱ
(v1+1)
v1+1 xv1+1 + · · ·+ ᾱ

(v1+1)
v1+o1 xv1+o1 + β̄

(v1+1)
V1

...

yv1+o1 = ᾱ
(v1+o1)
v1+1 xv1+1 + · · ·+ ᾱ

(v1+o1)
v1+o1 xv1+o1 + β̄

(v1+o1)
V1

.

(1)

Here (β̄
(v1+1)
V1

, . . . , β̄
(v1+o1)
V1

) is an evaluation of secret-quadratic equations with
secret values x̄ and the matrix

ᾱ
(k)
i · · · ᾱ

(k)
i′

. . .

ᾱ
(k′)
i ᾱ

(k′)
i′

 , where i, i′ and k, k′ ∈ O1 ,

denoted by matVO(x̄), is evaluated as linear forms in x̄. All xi where i ∈ Ol
is solved with a linear solver and there are total u linear systems to be solved.
The signer may have to repeat the process if any matVO(x̄) is a singular matrix.
Hence, the main computation cost of signing is solving linear equations and
computing the matrices matVO(x̄) from vinegar variables x̄.

2.2.3 Parameters of Modern Rainbow/TTS

In current Rainbow/TTS, u is always 2, with parameters (v, o, o), and at b-bit
security qo & 2b (rank attacks [YC05]). The number of variables and equations
are (n,m) = (v+2o, 2o). We require 2b . min(CFXL(m,m), CFXL(n,m+n−1))
[DYC+08]. Ding et al. [DYC+08, CCC+08] suggest for 80-bit design security
Rainbow/TTS with parameters (F24 , 24, 20, 20) and (F28 , 18, 12, 12). We modify
the parameters for modern security requirements in Table 1.

Table 1: Parameters of Rainbow.
security parameters F16 F31 F256

128 bits (v1, o1, o2) 32,32,32 28,28,28 28,20,20
n→ m 96→ 64 84→ 56 68→ 40

192 bits (v1, o1, o2) 48,48,48 53,40,40 52,32,32
n→ m 144→ 96 133→ 80 116→ 64

256 bits (v1, o1, o2) 64,64,64 74,56,56 73,48,48
n→ m 192→ 128 186→ 112 169→ 96

2.3 pFLASH

C∗-p or pFLASH [DDY+08] was a 2008 prefix modification of the earlier SFLASH
by Patarin [PCG01a].
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2.3.1 The central map Q in pFLASH

pFLASH(K = Fq, n − π,m) is a large field scheme. We identify L, a degree-n
extension of the base field K = Fq with (Fq)n via an implicit bijective map
φ : (Fq)n ∈ Kn → Fqn ∈ L. Thus we consider x ∈ Fnq . In this view, the central
map Q :

x ∈ Kn φ7→ X ∈ L Q7−→ Y = Xqα+1 φ−1

7−→ y ,

which is quadratic in the components of x, because X 7→ Xqα is linear in (the
components of) x. We need gcd(qn − 1, qα + 1) = 1, so there exists an h such
that h · (qα + 1) = 1 + g · (qn − 1) and thus

Q−1 : Y 7→ Y h = X1+g·(qn−1) = X . (2)

2.3.2 The signing process

For generating a signature, two modifications are designed in pFLASH for im-
proving the security. The first special feature is that pFLASH is “prefixed”
meaning the first π (almost always = 1) components of the input variables w
are fixed to be zero. No coefficients relating to them are released with the
public key because they are not needed. The other is a “minus” scheme where
a = n −m equations are not released. In other words, the user first computes
P ′ = T ′ ◦Q ◦ S with invertible S and T , then remove all coefficients of the first
variable (or more, if π > 1), and the last n−m equations to find a P with n−m
equations in n− π variables. The secret key still contains the entirety of S and
T .

To sign, the user finds the (padded) hash z, pad it randomly in the last n−m
positions to form z′, invert T to get y, compute x = yh, then w = S−1(x). This
is considered to be a valid signature if and only if the initial component(s) are
zero, otherwise we repeat the process with different randomness.

The computational cost of pFLASH is mostly in the part of raising Y with
different randomness to a power Y h = X. What this involve are repeated
squarings, raising to a power of q, and multiplications in the big field. The last
is by far the main computational bottleneck.

2.3.3 Parameters of pFLASH

We show the modified the parameters pFLASH from [CSTY15] in Tab. 2. The
initial parameters are (F16,62 − 1,40) which is designed for lightweight devices
at the 80-bit security in [CSTY15]. We include this parameter set in our imple-
mentations because it is still topical.

Table 2: Parameters of pFLASH.
security 80 bits 128 bits 256 bits

(Fq, n− π,m) F16,62-1,40 F16,96-1,64 F16,192-1,128
pub map: n→ m 61→ 40 95→ 64 191→ 128
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2.4 HFEv- and QUARTZ/GUI

HFE or Hidden Field Equations [Pat96] is also a “big-field” variant of MPKC. It
was the most venerable of these schemes (having been proposed nearly 20 years
ago in the last millennium) and in slightly modified form became QUARTZ and
Gui [PCG01b,PCY+15].

2.4.1 The central map of HFEv-

As in other big-field schemes, we identify L, a degree-` extension of the base field
K with (Fq)` and a bijective map φ : (Fq)` ∈ K` 7→ Fq` ∈ L. With a pre-defined

degree d, the central map of HFE(Fq` , d) is defined: Y =
∑qi+qj≤d

0≤i,j αijX
qi+qj +∑qi≤d

0≤i βiX
qi + γ, which is quadratic in x and invertible via the Berlekamp

algorithm in asymptotic complexity O(d1.815 log q`) [KS98] with X and Y as
elements of Fq` . Solving HFE via public equations directly is considered to be
sub-exponential(O(`log d) for q = 2, quasi-polynomial) [GJS06].

To increase the security, we may add v vinegar variables and define HFEv(Fq` , d, v)
as follows

Q(X, x̄) :=

qi+qj≤d∑
0≤i,j

αijX
qi+qj

+

qi≤d∑
0≤i

βi(x̄)Xqi + γ(x̄) ,

(3)

where x̄ = (x`+1, . . . , x`+v) ∈ Fvq are vinegar variables. There are extra injec-
tions from (x`+1, . . . , x`+v) ∈ Kv into Lv. βi(x̄) ∈ L and γ(x̄) ∈ L are linear
and quadratic respectively in x̄ (and thus in x).

Now we have a quadratic central map of x = (x1, . . . , x`+v) to y. This is
efficiently invertible by guessing (x`+1, . . . , x`+v), substituting x̄, then solve the
resulting equation for x by Berlekamp algorithm. Finally, we can add a minus
variation just like in pFLASH, by releasing only `−a of the equations. Now we
have HFEv-(Fq` , d, v, a) with n = `+ v, m = `− a.

2.4.2 The Patarin variation and QUARTZ/GUI

QUARTZ is HFEv-(F2103 , 129, 4, 3) with (n,m) = (107, 100), yet QUARTZ is a
128-bit signature and uses SHA-1. The key is that in QUARTZ/GUI, the public
map is used k times and the result chained together as in Alg. 1–2.

One final important detail about the Patarin variation. The central op-
eration in the signing process of HFEv- is the Berlekamp algorithm, which
about e−1 of the time returns “no solution”. In QUARTZ/GUI when we take

gcd(Xq` −X,Q(X, x̄)) at the beginning and the result isn’t degree one (exactly
one solution), we forego the rest of the process and restart from picking new
padding. In QUARTZ this opens the possibility of there being no solutions.
Since a + v in GUI is fairly large, the possibility of there being no solutions is
negligible.
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Algorithm 1 Signature Generation Process of Gui

Require: Gui private key (S, F , T ) message d, repetition factor k

Ensure: signature σ ∈ F(`−a)+k(a+v)
2

1: h← SHA-256(d)
2: S0 ← 0 = 0`−a (Si are `− a bits, Xi are a+ v bits).
3: for i = 1 to k do
4: Di ← first `− a bits of h
5: (Si, Xi)← HFEv−−1(Di ⊕ Si−1)
6: h← SHA-256(h)
7: end for
8: σ ← (Sk||Xk|| . . . ||X1)
9: return σ

Algorithm 2 Signature Verification Process of Gui

Require: Gui public key P, message d, repetition factor k, signature σ ∈
F(`−a)+k(a+v)
2

Ensure: TRUE or FALSE
1: h← SHA-256(d)
2: (Sk, Xk, . . . , X1)← σ (Si are `− a bits, Xi a+ v bits).
3: for i = 1 to k do
4: Di ← first `− a bits of h
5: h← SHA-256(h)
6: end for
7: for i = k − 1 to 0 do
8: Si ← P(Si+1||Xi+1)⊕Di+1

9: end for
10: if S0 = 0 then
11: return TRUE
12: else
13: return FALSE
14: end if
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2.4.3 The parameters of GUI

The main results about the security of HFEv- (and hence QUARTZ/GUI) is
that the effective rank for MinRank [KS99] is r+a+v, where r = (blogdq −1c+1)
is the rank of the HFE polynomial. An upper bound for the degeneration degree
of a Gröbner Basis attack against HFEv- systems is given by [DY13]

dreg ≤

{
(q−1)·(r−1+a+v)

2 + 2 q even and r + a odd
(q−1)·(r+a+v)

2 + 2 otherwise
,

and we need to evaluate the complexity of the F5 algorithm [Fau02] at this
degree to be at least 2b for b-bit design security.

Parameters for our 128-bit HFEv- variants are given in Tab. 3. Note that
these are both for 256 bit hashes and signatures, repeated 3 times a la QUARTZ/GUI.

Table 3: Parameters of HFEv-/GUI (256bits signatures and hashes).
security parameter F2 F4

128 bits (Fq` , d, v, a, k) (F2240 ,9,16,16,3) (F4120 ,17,8,8,2)
n→ m 256→ 224 128→ 112

2.5 Hidden Medium Field Equations (HmFE) and HmFEv-

HmFEv- where the “m” stands for “medium” is a variant on HFEv- which uses
a smaller “big field” but uses more than one hidden equations.

The idea of hidden medium field equations, or multivariate HFE, first ap-
peared in [BPS08].

p(1)(X1, . . . , Xk) =
k∑
i=1

k∑
j=i

p
(1)
ij ·XiXj+

k∑
i=1

p
(1)
i ·Xi + p

(1)
0

p(2)(X1, . . . , Xk) =

k∑
i=1

k∑
j=i

p
(2)
ij ·XiXj+

k∑
i=1

p
(2)
i ·Xi + p

(2)
0

...

p(k)(X1, . . . , Xk) =

k∑
i=1

k∑
j=i

p
(k)
ij ·XiXj+

k∑
i=1

p
(k)
i ·Xi + p

(k)
0

(4)

With k equations and k unknowns we can eliminate the unknowns to reach ex-
actly one equation of degree at most (and usually equal to) 2k. This elimination
process is a Gröbner basis computation and can be pre-scripted. For k = 2 and
k = 3, the solution process is relatively simple. For k ≥ 4 it starts to be more
work than the eventual univariate equation.

An unmodified HmFE is not secure, just like straight HFE is not secure.
The reason is that the rank of HmFE is equation to k, it is susceptible to the
same MinRank attacks as HFE. Just like we have HFEv-, we can do HmFEv-
to combat this problem. The rank is bounded by k(1+v)+a and is conjectured
to be reasonably taken as k+a+v. Here the number of variables and equations
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are equal to n = k`+v, m = k`−a. For completeness, the HmFEv central map
is, for h = 1 . . . k:

p(h)(X1, . . . , Xk, x̄) =

k∑
i=1

k∑
j=i

p
(h)
ij ·XiXj

+

k∑
i=1

p
(h)
i (x̄) ·Xi + p

(h)
0 (x̄) .

Unlike HFEv-, there is no structure of Patarin variation as in GUI/QUARTZ.
We use the parameter of HmFEv- chosen from recent work [PCD+17] in the
Tab. 4.

Table 4: Parameters of HmFEv-.
security(bits) parameter F256

128 (Fq` , k, v) (F25615 , 3, 16)
n→ m 61→ 45

2.6 Implementation Tools: Useful SIMD instructions

Advanced Vector Extensions 2 (AVX2) instruction set is Intel’s new SIMD(single
instruction multiple data) instruction set in mainstream processors for manip-
ulating integer commands. In the SIMD instruction set, one register can be
treated as a group of 8-bit, 16-bit, 32-bit, or 64-bit data and the instruction
effects paralleled on multiple data. The size of group is dependent on the size
of the machine register. In contrast to previous 128-bit xmm registers in SSE
instruction sets, the size of registers in AVX2 extends to 256-bit ymm registers,
which affords us 32-way parallelism for 8-bit data.

Beside the common SIMD for arithmetic, logic, or data manupulations, there
are some key instructions heavily used in our MQ implementations:

PSHUFB in SSE takes a source considered as a lookup table of 16 bytes,
(x0, x1, . . . , x15), and does a simultaneous lookup using the other operand
register (y0, y1, . . . , y15) as 16 indices, where the result at position i is
xyimod 16 except negative indices result in 0. The AVX2 instruction
VPSHUFB performs PSHUFB 2 times in one instruction.

VPMADDUBSW requires two vectors of 32 8-bit numbers (x0, . . . , x31)
and (y0, . . . , y31) and then computes vector of 16 16-bit words (x0y0 +
x1y1, x2y2 +x3y3, . . . , x30y30 +x31y31). This instruction is very useful for
implementing efficient arithmetic in small prime field.

PMULHRSW performs the multiplication of 16-bit binary fixed point frac-
tions, rounded and signed. This instruction is useful for taking the re-
mainder of 16-bit integers modulo a small prime.

PCLMULQDQ performs the multiplication of two polynomials of degree 63
over F2(F2[x]) and result in a degree 127 polynomials over F2.
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Note that PCLMULQDQ is part of AES instruction set (AES-NI) and is absent in
many Intel Core-i3 processors. The other three instructions are available in all
Intel-compatible processors manufactured today since a few years ago. Most
larger ARMs have a corresponding vector instruction to PSHUFB called TBL. 64-
bit ARM has a corresponding instruction to PCLMULQDQ, but 32-bit ARMs don’t,
and some small 32-bit ARM microprocessors don’t have vector instructions at
all.

3 Evaluating of Quadratics and the Public Map

The evaluation of MQ is an important component in MPKC signatures and
corresponds to the verification of signature or the public map directly. We don’t
require constant-time evaluations in the public map since the computation is
publicly executable. The evaluation of MQ also appears in the secret map of
some MPKC-signature schemes, e.g., generating Eq. 1 in Rainbow. In this case
time constancy is required when evaluating MQ.

In this section, we review arithmetic in various GFs underlying the MQ
equations and followed by the evaluation of MQ with respect constant-time
and non-constant-time cases.

3.1 GF Arithmetic in a small field

A Finite field, or Galois Field (GF), is an algebraic structure, a field containing
a finite number of elements. It plays an important role in the areas of math and
computer science. To perform the arithmetic in GF, the rule of thumb is always
choose equivalent native instruction if it is supported on the platform. However,
there are only few GFs with the multiplications correspond to native hardware
instructions in mainstream CPUs, so the efficient software implementation of
GF arithmetic is a topic of great interest in computer engineering.

3.1.1 Small prime field such as F31

Hardware parallel add and multiply instructions (mostly VPMADDUBSW, see previ-
ous section) are used. However another key to efficient F31 arithmetic is handling
reductions modulo 31. Since 31 = 25− 1, a lazy reduction instead of full reduc-
tion can be done for F31 by shift 5 bits right and adding. The aforementioned
VPMULHRSW helps carrying out Barrett reduction. Having said that, in general
we need to avoid reductions as much as possible and keep the operations as
packed as possible.

3.1.2 F2 and F4

The F2 is probable the only GF with fully HW support, which the multiplica-
tions and additions correspond to AND and XOR respectively. However, there are
usually 32-bit or larger machine words in nowadays CPU instead of one “Bit”
for F2, the main issue in implementing systems over F2 is to utilize the full
width of the machine word. In the case of F4, we believe that the best way to
do multiplication is usually to use bit operations. For this, the 2-bits in one F4

is often stored in separate registers, or “bitsliced”. A multiplication costs 4 AND
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and 1 XOR for un-reduced 3-bits results and 2 more XOR for reducing to 2-bits
form of F4.

3.1.3 The case of F16

Use VPSHUFB/TBL for multiplication tables is the general strategy of multipli-
cations in F16. While multiply a bunch of a ∈ F16 stored in a SIMD register
with a scalar b ∈ F16, we load the table of results of multiplication with b and
follow one (V)PSHUFB for the result a · b. However, the address of table is a
side-channel leakage which reveals the value of b to a cache-time attack [BM06].

When time-constancy is needed, the straightforward method is to use again
VPSHUFB, but for logarithm and exponential tables, and store in log-form if
warranted. That is, we compute a · b = exp(logg a + logg b), and due to the
characteristic of (V)PSHUFB, setting log 0 = −42 is sufficient to make this
operation time-constant even if we multiply three elements. We shall see a
different method below when working on an constant-time MQ evaluation for
F16.

3.1.4 The case of F256

The GF of 256 elements occupies exact one byte in storage and have been
extensively studied, e.g. [CCC+09,CCY13], since it is the basic building elements
of numerous applications in the area of cryptography. Multiplications in F256

can be implemented as 2 table lookup instructions in the mainstream Intel SIMD
instruction set. However, this is not time-constant.

For time-constant multiplications, we adopt the tower field representation
of F256 which formulating an element in F256 as degree-1 polynomial over F16.
The sequence of tower fields from which we build F256 is the following:

F4 := F2[e1]/(e21 + e1 + 1),
F16 := F4[e2]/(e22 + e2 + e1),
F256 := F16[e3]/(e23 + e3 + e2e1) .

In the rest of this paper, we adopt the following correspondence: our basis is
(1, e1, e2, e1e2, e3, e1e3, e2e3, e1e2e3). The element encoded as 0x2 is e1, 0x4 is
e2, 0x8 is e1e2, 0x10 is e3 etc., and numbers up to 0xff are their combinations,
for example 0x1d = e3 + e1e2 + e2 + 1. In this representation, we can build
constant-time multiplications over F256 from the techniques of F16. A time-
constant F256 multiplication costs about 3 F16 multplications for multiplying 2
degree-1 polynomials over F16 with the Karatsuba method and one extra table
lookup instruction for reducing the degree-2 term.

3.2 The evaluation of MQ

Note on lack of special structures in MQ

For the evaluation of quadratic equations (which is the public map of MPKCs),
there is no real method to reduce the required computations since we expect
to be evaluating a set of random-looking equations unless special patterns were
designed into the equations (which only happens in certain unusual variant
schemes which does not concern us here). Since the amount of required com-
putations is the same across all platforms, the main focus in evaluating MQ
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is to reduce the required number of cycles via choosing the correct instruction
sequences over various platforms to achieve the required computations. Most of
the time, this equates to using the fewest instructions.

3.2.1 Matrix-Vector and Scalar-Vector product

Usually a multivariate quadratic system P is stored as a column-major matrix
with the columns being all monomials up to degree 2 and the rows being the
equations. The evaluation of P can roughly be divided in two parts: the gener-
ation of all monomials, and computation of the resulting polynomials for known
monomials. Generating the quadratic monomials given the variables requires
n · (n + 1)/2 multiplications. The second part requires m · (n + n · n+1

2 ) mul-
tiplications to multiply the coefficients of P with the quadratic monomials and
almost exactly the same number additions to accumulate results. The second
part is clearly more computationally intensive.

The computation proceeds by accumulating the product of a column vector
with a prepared monomial as showed in Fig. 1. This is exactly a matrix-vector
production. So we can thus keep all results in the registers in this representation.

y1

y2

y3

...

=

c11

c21

c31

...

· x1 +

c12

c22

c32

...

· x2 + . . .

Figure 1: An example of parallel evaluation of polynomials. The results x1 ·
(c11, c21, c31, . . .) , x2 · (c12, c22, c32, . . .) , etc. are accumulated to (y1, y2, y3, . . .).

The computational complexity of evaluation is clearly proportional to the
number of monomials multiplied with coefficients of polynomials. In general
this is equal to the number of coefficients which is 1

2n · (n+ 3) ·m multiplication
in total. We cannot optimize the computations by the value according to the
computed monomials (zero) if they are secret data.

There are 2 alternative methods for dealing with quadratic terms. First is
to generate all quadratic monomials and then multiply them to all coefficients.
To generate all monomials, we arrange the variables in registers and follow by
multiplying them by each variable. We need to shift the results to pack them
together. This requires careful handling and is not always straightforward.

The second method generates the quadratic terms through multiplications
by variables (twice). In a degree-reverse-lex order for the monomials of polyno-
mial, the quadratic terms is ordered as c11x1x1 + (c12x1 + c22x2)x2 + (c13x1 +
c23x2 + c33x3)x3 + · · · . One can accumulate all the linear terms in one paren-
theses and follows with a multiplication with second variable. There are n ·m
extra multiplications caused by this method. One can choose the method of
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calculation of quadratic terms with the value of n and m for a lower cost of
computation, except when doing the constant-term evaluation of MQ in F16

(see below) where one has to choose the second method.

3.2.2 Optimization from the viewpoint of streaming data

The evaluation of P is actually depending on how fast one can accumulate all
data of P. No matter what instructions we choose to perform the calculations,
the inevitable fact is the we have to load all data of P. The optimization process
is how to minimize the number of cycles (usually meaning instructions) between
2 load instructions of coefficients of P. We discuss the various cases of evaluation
ofMQ according to the underlying GF. The results of our implementations are
reported in Tab. 5.

3.2.3 MQ over F2 and F4

The main operations in the deepest loop should contain only the accumulation
between load instruction of polynomials since AND and XOR are native HW
instructions for arithmetic in these field. We have to prepare the input data
achieve this situation. For vertical evaluation ofMQ, we broadcast every bit of
F2 to the full SIMD register and store them in stack with their order of variable.
While accumulating the results, we can load the variables by their corresponding
positions and the instructions remained are only on AND and one XOR. In the
Tab. 5, we can see the effect of non-constant acceleration came from skipping
some coefficients of equations from multiplying 0.

3.2.4 MQ over F16 and F256

For truly public-key operations, the multiplications over F16 can be done by sim-
ply (1) loading the multiplication tables(multab) by the value of the multiplier
and (2) performing a VPSHUFB for 32 results simultaneously. The multiplica-
tions over F256 can also be performed with the same technique via 2 VPSHUFB

instructions since one lookup deals 4 bits. Other tricks are multiplying by two
F16 elements to a vector of F16 elements with one VPSHUFB since VPSHUFB can
actually be seen as 2 independent PSHUFB instructions. This method of multi-
plication can easily transform to time-constant version by replacing multab to
log/exp tables as in Sec. 3.1.3.

However, since the log/exp strategy costs many operations on addition, re-
duction of sum, and looking up in the exponential table, we should try to use a
multab strategy in evaluating MQ (since it costs only one VPSHUFB), in order
to increase efficiency, even under the constant-time requirement.

Constant-Time MQ evaluation in F16 We have to avoid loading multab

according to a secret index for preventing cache-time attack. To this, we “gen-
erate” the desired multab instead of “load” by secret value. More precisely,
suppose we are evaluating P with a vector w = (w1, w2, . . . , wn) ∈ Fn16, we can
have a time-constant evaluation if we already have the multab of w, which is
(w1 · 0x0, . . . , w1 · 0xf), . . . , (wn · 0x0, . . . , wn · 0xf), in the registers. 1

1Note that here and in the following, if there is a natural basis (b0 = 1, b1, . . .) in a binary
field Fq , for convenience we represent bj as 2j . So b1 is 2, 1 + b1 as 3, . . . , 1 + b1 + b2 + b3 is
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In other words, we transform the memory access indexed by a secret value to
sequential access by the index of variables to prevent revealing of side-channel
information.

We show the generation of multab for elements of w in Fig. 2. To generate
the desired multab on-the-fly using the 16x16 multab for F16, we first multiply w
by 0x0, then 0x1, then the rest of the elements of F16. Now we have 16 registers
in which are the products of w and all 16 elements of F16. By collecting the
first bytes, second bytes ... etc. of these, we get our desired new multab.

w · 0x0
w · 0x1

...

w · 0xf

7−→

w1 · 0x0
w1 · 0x1

...

w1 · 0xf

,

w2 · 0x0
w2 · 0x1

...

w2 · 0xf

, . . .

w15 · 0x0
w15 · 0x1

...

w15 · 0xf

Figure 2: Generating multab for w = (w1, w2, . . . w16). After w · 0x0, w · 0x1,
. . . , w · 0xf are calculated, each row stores the results of multiplications and
the columns are the multab corresponding to w1, w2, . . . , w15. The multab of
w1, w2, . . . ,w15 can be generated by collecting data in columns.

A further matrix-transposition-like operation is needed to generate the de-
sired multab, since the initial byte from each register forms our first new table,
corresponding to w1, the second byte from each register is the table of multipli-
cation by w2, etc. The obvious way to do this is by shuffle instructions, but this
matrix transposition operation is actually very fast on newer Intel processors
simply by moving bytes into memory, due to some hardware-related scatter-
gather magic in the L1 Cache. One desired table cost 16 PSHUFB to generate
and we can generate 16 or 32 tables simultaneously according to SIMD envi-
ronment. The amortized cost for generating one multab is 1 PSHUFB plus some
data movements.

As a result, the constant-time evaluation of MQ over F16 or F256 is then
only slightly lower than the non-constant time version since the extra cost is low,
with only n tables to be generated before the evaluation begin. In Tab. 5, we can
see only about 5% difference between constant-time and general evaluations.

3.2.5 MQ over F31

The matrix-like coefficients of P are stored as 8-bit values because we heavily
rely on the AVX2 instruction VPMADDUBSW. In one instruction, this computes
two 8-bit SIMD multiplications and a 16-bit SIMD addition(see Sec. 2.6). This
requires a slight variation on the representation of P described above: we put
coefficients in a column major matrix with each 16-bit element corresponding
to two adjacent monomials. All these operations are time-constant.

0xF for elements of F16, and continuing for larger fields; this is analogous to how the AES field
representation of F28 is called 0x11B because its irreducible polynomial is x8 +x4 +x3 +x+1.
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Because VPMADDUBSW takes both a signed and an unsigned operand, one of
the matrix and the monomial vector must be stored as signed bytes and one as
unsigned bytes. Since 64 · 31 · 15 = 29760 < 215, we can handle two YMM register
full of monomials before performing reductions on each individual accumulator.
This is different from [CCC+09] because they were still using SSE2 and PMADDWD,
which produces a 32-bit result and makes the bookkeeping easier.

Field elements during computation are expressed as signed 16-bit values. If
m = 64, we require 1024 bits of storage for each vector, precisely fitting four
256-bit SIMD (YMM) registers. If m = 32, two registers.

To efficiently compute all polynomials for a given set of monomials, we keep
all required data in registers and try to avoid register spilling throughout the
computation, as much as possible.

Table 5: Benchmarks on evaluations of quadratic polyno-
mials on Intel XEON E3-1245 v3 @ 3.40GHz with AVX2
instruction set, in CPU cycles.

system size constant time general
k byte k cycles k cycles

F2, n = 256,m = 256 1020 92.8 51.5
F4, n = 128,m = 128 258 32.3 25.6
F16, n = 64,m = 64 65 9.6 9.1
F31, n = 64,m = 64 130 a 8.7 8.7
F256, n = 64,m = 64 130 16.2 15.6
a Each element over F31 is stored in one byte.

4 Main components in the secret map

In this section, we discuss the key components in various MPKC signatures.

4.1 Solving Linear Equations

Solving linear equations (1) takes up much of the time in the signing process of
Rainbow/TTS as seen in Sec. 2.2.2. In [CCC+09] this was done using Wiede-
mann over F31 and reported to be faster than Gauss Elimination due to not
needing to as many reductions modulo 31. However, since there are no re-
duction issues for the binary GF arithmetic (see Sec. 3.1) and the asymptotic
complexity is actually lower for Gauss Eliminations, we decided to implement
the constant-time solver with a simpler Gauss Elimination in this paper.

We use constant-time Gauss Elimination in the signing process of Rainbow.
Constant-time Gauss Elimination originally presented in [BCS13] for F2 matri-
ces and we extend the method to other GFs. The problem of eliminations is
that the pivot may be zero and one has to swap rows with zero pivots with other
rows, which reveals side-channel information. To test pivots against zero and
switch rows in constant time, we can use the current pivot as a predicate for
conditional moves and switch with every possible row which can possibly con-
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Table 6: Benchamrks on solving linear systems with Gauss elimination on Intel
XEON E3-1245 v3 @ 3.40GHz, in CPU cycles.

system plain elimination constant version

F16, h = 32, w = 32 6,610 9,539
F31, h = 28, w = 28 7,889 10,227
F256, h = 20, w = 20 4,702 9,901

tain non-zero leading terms. This constant-time Gaussian elimination is slower
as reported in Tab. 6, but is still an O(n3) operation.

4.2 GF Arithmetic – large fields

The arithmetic over big GFs is the most important component in big-field MP-
KCs. In this section, we discuss the multiplication over F2n which is almost
equivalent to the multiplication in F2[x]. We divide our discussion into to two
parts by the existence of PCLMULQDQ in the platform.

4.2.1 Platforms with PCLMULQDQ

In the platform with PCLMULQDQ, the obvious thing to do is use the monomial
representation over F2 to implement F2k . When it comes to fields of sizes of
cryptographic interest, choosing the representation for the fastest operations
depends very much on the underlying hardware for implementation. We show
the representations in this paper for PCLMULQDQ in Tab. 7.

Table 7: The field representations for PCLMULQDQ instruction.
F2384 := F2[x]/x384 + x8 + x7 + x6 + x4 + x3 + x2 + x+ 1
F2256 := F2[x]/x256 + x10 + x5 + x2 + 1
F2240 := F2[x]/x240 + x8 + x5 + x3 + 1
F2128 := F2[x]/x128 + x7 + x2 + x+ 1
F2120 := F2[x]/x120 + x4 + x3 + x+ 1

The multiplication in large GFs are implemented as polynomial multiplica-
tion in F2[x] and followed by a reduction, i.e., taking the remainder modulo
the polynomial defining the field extension. For the details of multiplying with
PCLMULQDQ, the data is split in 64-bit limbs. In general we are working on the
polynomial multiplication of 2 to 6 limbs. The multiplication in F2[x] was ac-
complished by recursive 2- or 3-way Karatsuba’s multiplication. For reducing
the results of polynomial multiplication to its original length, this operation is
also accomplished by PCLMULQDQ. We choose the generating polynomial of field
with low-degree second term so the polynomials for reduction won’t exceed x63.
For example of F2240 , we modified the polynomial of x240 + x8 + x5 + x3 + 1 to
x256 + x24 + x21 + x19 + x16 so the polynomial x24 + x21 + x19 + x16 fit into
64-bit range. The reduction is performed by reducing partial polynomial with
degree over x384, x320, x256, and x240 iteratively.
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4.2.2 Big GF multiplications without PCLMULQDQ

For processors with SIMD table lookup instructions but without PCLMULQDQ–
most Core-i3 CPUs don’t have this instruction, and most ARMv7 with Neon
also fits this description, we build the desired big GF from F256[x] (polynomials
over F256). The arithmetic of F256 is described in Sec. 3.1.4.

For general 32-bit platforms, such as the ARM Cortex M series, or other
ARMs without Neon, the base field F256 is built by bit-slicing, i.e., storing the 8
bits of F256 across 8 registers. Starting out with F2[x], the multiplications over
F256 is built as three rounds of Karatsuba multiplications, which is the lowest
bit operations count for F256 in [BC14].

The Constructions of GF and its Multiplication The F2k in this paper
can also be extended from F256. Here are the field extensions we used in this
work:

F264 := F2568 := F256[x]/(x8 + x3 + x+ 0x10)

F2128 := F25616 := F256[x]/(x16 + x5 + x3 + 0x10)

F2256 := F25632 := F256[x]/(x32 + 0x10 · x3 + x+ 1) .

The multiplication of these GF comprise the polynomial multiplications in
F256[x] and a reduction (modulo the irreducible polynomial defining the field).
Since the reduction is performed by some multiplication with constant over F256,
it can be easily accomplished with the SIMD method described in Sec. 3.1.4.
We discuss the polynomial multiplication in F256[x] in the following sections.

FFT Polynomial Multiplications over F256 It is well known that poly-
nomial multiplications can be accomplished by FFT algorithm [CLRS09]. To
multiply two degree-(n − 1) polynomials a(x), b(x) ∈ F256[x] with FFT algo-
rithm, one can

1. (FFT) evaluate a(x) and b(x) at 2n points by a FFT algorithm,

2. (pointMul) multiply the evaluated values pairwise together, and

3. (ivsFFT) interpolate back into a polynomial of degree ≤ 2n − 1 by the
inverse FFT algorithm.

However, it was not easy to build a suitable FFT for GF of characteristic
two(F2k), since there is not always an applicable w ∈ F2k such that wm = 1 for
a large range of m. In 2014, Bernstein and Chou [BC14] showed the additive2

FFT [GM10] provides an efficient polynomial multiplications in the circum-
stance of F2k .

For better efficiency, we implement a variation of the Gao-Mateer additive
FFT, which is a generalization of Gao-Mateer FFT proposed by Lin, Chung, and
Han(LCH) [LCH14], in this paper. Using the LCH’s additive FFT, we first carry
out a sequence of additions for converting the polynomial to a polynomial basis,
presented by Cantor [Can89], in Θ(n log n log log n) operations (see Fig. 3) and

2 Following the terminology of Gao-Mateer, “additive” FFT means the evaluation points

are not a multiplicative subgroup generated by w = e2πi/2
k

but in a vector space comprising
GF or its subset.
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follow up with a Θ(n log n) butterfly network much like the standard FFT (in
Fig. 5). We call the first stage of additions “basis conversion” which corresponds
to “bit reversal” exchanges between the coefficients in regular Decimation-in-
Time and in-place FFT.

Note that the butterfly network in the forward transform typically splits into
two smaller butterfly networks, fed with the same input but with different offsets
and multipliers, just like multiplicative FFT’s. Furthermore, we discover that
when using a tower construction in the additive FFT, all the multipliers in the
butterflies have regular and simple forms. There are only some small 3 constants
in the multipliers and the calculation in a butterfly can be accomplished with less
instructions for multiplying these constants. It turns out the general(constant-
time) multiplications in F256 are only performed in the pairwise multiplications
(step (2)). Details of the additive FFT can be found in [GM10,LCH14,BC14]

Truncated Additive Fourier Transform For multiplying polynomials con-
taining terms is not power of two, we can also use a truncated FFT [Mat11,
Har09] for omitting some computations. These previous research focused on
the remaining evaluated points which becomes straightforward in the LCH FFT
since the butterfly network is quiet regular( see Fig. 6).

We simply omit the calculation related to higher degree in the ivsFFT since
we can expect the zero values after ivsFFT from the degree of input polynomials.
If a portion of the coefficients is zero in the polynomial, then

• it is easy to simplify the FFT by omitting the zero in higher degree of
inputs and the outputs related to “larger” evaluated points;

• also easy to simplify (cf. Fig. 3) the basis conversion stage, which only
involves adding from higher degree to lower degree coefficients, both going
forwards and backwards;

• and not very obvious but still true that the inverse butterflies can be
simplified, knowing that a portion (in Fig. 6–8 exactly one quarter) of the
polynomial coefficients are zero.

This turns out to be the case due to the multipliers in the final butterfly stages
of the ivsFFT being particularly simple.

We extend the method in Fig. 8 to polynomials of 96 terms for implementing
F2384 which is represented as

F2384 := F256[x]/x48 + x3 + 0x10 · x2 + 0x4 · x+ 1 .

The details of truncated ivsFFT are similar to Fig. 8 since we omit exactly one
quarter of original ivsFFT results in both case. Aside from completely omitting
the computations of the last-quarter coefficients, we still have to specialize the
last two layers of butterflies. (Since there are no interaction between fourth-
quarter coefficients and others before last two layers of butterflies, only two
layers have to be specialized.)

3Small here means that the encoding of the element as a hexadecimal number is small.

20



Figure 3: The forward basis conversion, 16 coefficients

Figure 4: The forward/inverse butterfly units.

Figure 5: Forward butterfly network for degree-7 polynomials in F256[x].
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Figure 6: Inverse butterfly network for degree-7 polynomials in F256[x].

Figure 7: Same inverse butterfly network with two known zeroes.

Figure 8: Inverse butterfly network for degree-5 polynomials in F256[x].
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Alternative method for multiplications in F2384 For field whose size is not
equal or just below a power of two, we can also choose to extend from different
base fields besides truncated FFT. For example, we may use the polynomial
multiplication of F2563 [x] to implement the F2384 := F(2563)16 :

F224 := F2563 := F256[x]/x3 + 0x2

F2384 := F(224)16 = F224 [x]/x16 + 0x2x3 + x+ 0x10 .

We would then use a Karatsuba algorithm with 3 terms in the pointMul

stage for multiplications in F2563 , which cost 6 multiplications over F256 for one
multiplication over F224 . Note that the multiplications in this stage is constant-
time multiplications(see Sec. 3.1.4) which cost higher than general multiplica-
tions in FFT and ivsFFT stages. In both representation, the hight of FFT are 96
over F256. There are log 32 = 5 layers butterflies in F224 FFT but dlog 96e = 7
layers in F256. The detailed cost of these 2 representations can be found in
Tab. 8. Although the count of multiplications for degree-15 F224 [x] is less than
degree-48 F256[x] in Tab. 8, the implementation of F256[x] multiplications is
actually 6% faster than F224 [x] in our experiment.

Table 8: Cost of polynomial multiplications for degree-15 F224 [x] and degree-48
F256[x], in number of multiplications over F256

32 terms F224 96 terms F256

FFT 98 · 3 450

pointMul a 32 · 6 96

ivsFFT 49 · 3 241

total 633 787
a The cost of constant-time multiplication in
pointMul is actually higher the multiplica-
tions in FFT and ivsFFT.

Although the multiplications cost similarly for these different representa-
tions, the difference in arithmetic are also effected by the construction of GF
and discussed in Sec. 4.2.3.

Benchmarks on GF multiplications We shows the benchmarks of our im-
plementations on GF multiplications over various instruction set in Tab. 9.
Besides PCLMULQDQ, all GFs are represented as F256[x] and implemented in the
SIMD style which many copies of GF multiplications are performed simultane-
ously. The multiplications over F256 are implemented with SSE instructions as in
Sec. 3.1. We also use bit-slice implementations as in [BC14] for platforms with-
out SIMD instructions. For comparing the effect of FFT-related multiplications,
we also list the results for F25616 implemented by school-book multiplications.

The results show PCLMULQDQ outperform all other implementations. For
example, in the case of F2384 , the amortized cost of SSE-FFT implementations
are 5.4 times slower than PCLMULQDQ version. The results also showed there was
a huge gap between FFT and school book implementations.
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Table 9: Benchamrks on multiplications of big GFs on Intel(R) Xeon(R) CPU
E3-1245 v3 @ 3.40GHz, in CPU cycles.

F2128 F2256 F2384

PCLMULQDQ 25 44 76

PSHUFB,FFT 1,462/16 3,679/16 6,582/16

Bit-slice(32-bit),FFT 12,232/32 31,249/32 50,827/32

school book,SSE 519 1,080 2,087

4.2.3 Power of big-GF

In the signing process of pFLASH, we have to raise an element X in big-GF
to a high power h in Eq. (2). The raising process occurs even in calculation
the multiplicative inverse by little-Fermat’s law like process for time constancy.
It is traditionally done by a square-and-multiply process. Since the power is
not a secret value in these scenarios, what we concerns here is only the issue of
efficiency.

We generate the pattern of power by a divide-and-conquer process. For
example, if we want to raise a ∈ F2128 to a0xFFFF4. we sequentially generate a0x3,
a0xF, a0xFF, and a0xFFFF by few squares and one multiplication.

The other method to accelerate the process is to bunch some squares into a
linear map. This process is linked to the field representation. For example, if we
construct F2128 := F2[x]/x128 +x7 +x2 +x+ 1, all “raising to the 2j-th powers”
are linear maps (in the vector space F128

2 ). Assuming we know 16 squares takes
more than a linear map by experimentally, we would implement raising to the
216-th power with a linear map instead of squaring 16 times. Alternatively,
if we build the field as F2128 := F256[x]/x16 + x5 + x3 + 0x10, only raising to
the 256j-th powers can be linear maps (in the vector space F16

256). We express
raising to any given power by as a sequence of squares, multiplies and linear
maps interleaved, depending on benchmarking results.

4.2.4 Conversion between field representations

We require a method of changing field representations for the compatibility
between different field representations. The change of field representation is
simply done as multiplying a pre-defined matrix with the data treated as a
vector. The matrix product can be computed by the famous method of four
Russians [AH74]. However, while multiplying with secret values, this requires a
constant-time multiplication which is often done with conditional move instruc-
tion. In this work, we broadcast single bit to full register and followed by AND

and XOR for accumulation when working in SSE or AVX instruction set.

5 The Implementations and Benchmarks

In this section, we give comparisons of benchmarks among various signing
schemes, including different MPKCs and some widely used schemes (though

4 Note the hexadecimal number here is simply for conveniently reading the number in
binary, not for representing elements in GF.
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not post-quantum ones). Almost all the schemes in the comparisons are param-
etered at a 128-bit security level, besides the RSA-2048 is in the 112-bit security
level. Tab. 10 lists the specific parameters for all schemes under comparisons.

Table 10: Specific parameters for 128-bit MPKCs and other
signing schemes.

schemes pub.key sec.key digest signature
kbyte kbyte bit bit

Rainbow(16,32,32,32) 145.5 100.2 256 384
Rainbow(31,28,28,28) 236.5 156.9 256 448
Rainbow(256,28,20,20) 94.3 62.9 320 544

PFLASH(16,96-1,64) 142.5 9.1 256 384
GUI(2,240,9,16,16,3) 899.5 21.2 256 320
GUI(4,120,17,8,8,2) 225.8 9.6 256 288
HmFEv(256,15,3,16) 83.1 14.2 240 488

MQDSS-31-64 a 0.072 0.064 256 327616

ECDSA(NIST P256) 0.064 0.096 256 512
Ed25519 0.032 0.064 256 512

RSA-2048 b 0.256 2.048 2048 2048
RSA-3072 0.384 3.072 3072 3072
a [CHR+16]
b 112-bit security.

5.1 The benchmarks

We list the results of benchmarking in Tab. 11. Our implementations of MPKCs5

were tested in the following environment:

• CPU: Intel XEON E3-1245 v3 (haswell) @ 3.40GHz, turbo boost disabled.

• memory: 32 GB ECC.

• OS: ubutnu 1604, Linux version 4.4.0-78-generic.

• gcc: 5.4.0 20160609 (Ubuntu 5.4.0-6ubuntu1 16.04.4).

All other benchmarks are tested under the same Intel haswell architecture. We
focused on optimizing the signing and verifying processes which are the most
commonly used functions in signature systems.

The results show all MPKCs are indeed very efficient for verifying signa-
tures(public map) in general. For generating signatures, we can observe the
Rainbow over F256 are the most efficient among all schemes in comparisons. All
small field MPKCs(Rainbows) are comparable with Ed25519 [BDL+11], whch is
the most efficient pre-quantum signature in our comparisons. Although MPKCs
over big field are slower than small field schemes, they are still comparable with
commonly used RSAs at similar security level.

5 The software for MPKC experiments can be downloaded from https://github.com/

fast-crypto-lab/mpkc-128bit .
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Table 11: Benchmark of 128-bit MPKCs on In-
tel Haswell Archiecture.

schemes gen-key() sign() verify()
M cycles k cycles k cycles

Rainbow(16,32,32,32) 1,359.7 68.1 22.8
Rainbow(31,28,28,28) 93.4 77.4 70.8
Rainbow(256,28,20,20) 328.9 47.8 18.3

PFLASH(16,96-1,64) 78.8 226.0 22.6
GUI(2,240,9,16,16,3) 484.2 4,445.4 197.6
GUI(4,120,17,8,8,2) 213.2 7,992.8 342.5
HmFEv(256,15,3,16) 201.7 1,497.8 15.7

MQDSS-31-64 a 1.827 8,510.6 5,752.6

ECDSA(NIST P256) b 0.286 377.1 901.5

Ed25519 b 0.066 61.0 185.1

RSA-2048 b 233.7 5,240.2 66.4

RSA-3072 b 844.4 15,400.9 119.3

a MQDSS [CHR+16] is benchmarked on Intel Core i7-
4770K (haswell) at 3.5GHz.

b [BL16] benchmarked ECC and RSA on Intel Xeon E3-
1275 v3 (haswell) at 3.5GHz.

5.2 Alternative implementations for big-field MPKCs

For big-field MPKCs in the platforms without PCLMULQDQ, we show the bench-
marks of our implementation in Tab. 12. The biggest difference between Tab. 11
and Tab. 12 is in the signing process. The arithmetic over big fields are ac-
complished by additive FFT, described in Sec. 4.2.2, in Tab. 12. The other
restriction is that we have only 128-bit registers in SSE platforms in Tab. 12
but 256-bit AVX registers in Tab. 11.

Table 12: Benchmark of 128-bit big-field MPKCs on SSE instruction sets.
schemes gen-key() sign() verify()

M cycles k cycles k cycles

PFLASH(16,96-1,64) 3,264 763.4 29.9
GUI(2,240,9,16,16,3) 2,095 146,164.1 241.0
GUI(4,120,17,8,8,2) 406 133,157.9 346.4

6 Summary

We analyze the main components of MPKC signatures including evaluatingMQ
equations, multiplications over big finite fields, and solving linear equations. We
present techniques for implementing these main components in x86 platforms
using AVX2 instructions with side-channel resilience.

Beside reviewing MPKC signatures at 128-bit security level, we demonstrate
the following techniques for implementing underlying components of signatures.
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1. We use SIMD table lookup and log/exp tables for preventing cache-time
attacks.

2. For the private evaluation ofMQ over F16 and F256, we generate instead of
load the multiplication table with the value of multiplier and thus obtain
a constant-time evaluation of MQ nearly as fast as a public evaluation.

3. We demonstrate how to evaluate multiplications in F2m where m is not a
power of two, for example F2384 , using FFT techniques. The main ideas
include building a tower field from an unusual base such as 224, or a trun-
cated FFT algorithm. The FFT techniques accelerates the multiplications
in big GF for the platforms without instructions to multiply large binary
polynomials (PCLMULQDQ).

4. We demonstrate side-channel resilient elimination over F16 and F31 for
solving systems of linear equations.

From the benchmarks, we conclude that MPKC signatures remain competitive
speedwise under crypto-safe requirements in current mainstream instruction
sets.
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