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Abstract. In this work, we describe an integer version of ring-LWE
over the polynomial rings and prove that its hardness is equivalent to
one of the polynomial ring-LWE. Moreover, we also present a public key
cryptosystem using this variant of the polynomial ring-LWE.
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1 Introduction

Shor [20] described an efficient quantum algorithm that solves both discrete
logarithms and factoring. As a result, many cryptographic schemes based on
these problems are no longer secure once the quantum computer becomes a
reality. Currently, the most promising quantum-safe works are those based on
the hardness of lattice problems like LWE-based cryptosystems [19], Ring-LWE-
based cryptosystems [12] and NTRU [11].

The LWE-based cryptographic schemes have key sizes and computation times
that are at least quadratic in the security parameter. To improve the efficiency of
these schemes, Lyubashevsky, Peikert, and Regev [12] defined a ring-based vari-
ant of LWE (RLWE) that uses algebraic structure, and described a polynomial
time quantum from worst-case problems on ideal lattices to the decisional RL-
WE. The LWE-based schemes can directly adapt to the RLWE-based analogues,
whose key sizes and computation times reduce to almost linear in the security pa-
rameter. Furthermore, in recent years, several new cryptographic schemes have
been proposed around the RLWE problem [4,6,13,14].

However, the RLWE over the polynomial rings also has some shortcomings.
First, we can not compare the hardness relationship between the RLWE prob-
lems over the different polynomial rings. Second, there exist some weak RLWE
instances over the polynomial rings, although these instances do not appear in
RLWE-based applications [8,18,9]. Third, for the RLWE problems over the dif-
ferent polynomial rings, their computational efficiency is different and needs to
be re-optimized implementation for each of them.

This work is the first step in trying to solve the above problems. That is,
we describe an integer version of the ring-LWE over the polynomial rings and
unify the framework of RLWEs over the different polynomial rings. We observe
that the integer version of the hard problem recently appeared in the work [2].
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In [2], Aggarwal, Joux, Prakash, and Santha proposed a new public-key cryp-
tosystem (AJPS) using an integer version of NTRU, whose security relies on
the conjectured hardness of the Mersenne low hamming ratio assumption. How-
ever, Beunardeau, Connolly, Géraud, and Naccache [3] presented an algorithm
that recovers the secret key from the public key much faster than the security
estimates in [2].

1.1 Owur contribution

Our main contribution is to describe an integer variant of ring-LWE over the
polynomial ring and show that its hardness is equivalent to that of the polyno-
mial ring-LWE.

In the RLWE problem, given ¢ a prime integer, and a list of samples (a;,b; =
ajs + e;) € R2, where Ry = Zg[x]/(x™ 4+ 1), s € Ry, ay € Ry are chosen inde-
pendently and uniformly from Zj, and e; is chosen independently according to
the probability distribution x = Dgz» 4, find s. In the first variant of LWE, s
is chosen from the error distribution y rather than uniformly at random, the
choice of other parameters remains unchanged. This variant becomes no easier
to solve than the decisional LWE [16,1].

In this work, we introduce an integer version of RLWE over the polynomial
rings (LRLWE). In the I-RLWE problem, we replace x with ¢ and convert RLWE
into I-RLWE. Given p = ¢" + 1, we draw many samples (a;,b; = a;s +¢;) € Zf,,

n . n .
where a;,s < Ry, € < Dzn,, and a; = E ) Oalﬂ-qz,s = E ) Osiqz, e =
1= 1=

Zé_o e1;q%, the problem is to find s. Similarly, we can also generate a variant
by slz;mpling from the error distribution s <~ x and generating s. For this case,
we also call to sample s from .

Our second contribution is to present a public key cryptosystem (PKC) based
on I-RLWE. Given a sample of I-RLWE (a,b = as + 2¢) € Zf) that samples s, e
from the error distribution y, and plaintext m = Z?—o m;q’ with m € {0,1}",
one first chooses r,e1,es from y, and generates a ciphertext as (¢; = [ar +
2e1]p,ca = [br + 2e2 + m]p). To decrypt the ciphertext (ci,c2), one computes
c=lca — 18], = [2e9 +m — 2e15], = Z”_ ¢iq*, and recovers the plaintext m
from c. This is because all ¢;’s that only dzeiend x are “small”. Concrete details
see Section 4.

Organization. Section 2 recalls some background. Section 3 describes an
integer variant of RLWE and shows its hardness. Section 4 presents a public key
cryptosystem using this variant of RLWE.

2 Preliminaries

2.1 Notations

Let Z,Q,R denote the ring of integers, the field of rational numbers, and the
field of real numbers. Let n be a positive integer and power of 2. Notation
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[n] denotes the set {1,2,...,n}. Let R = Z[z]/{z™ + 1), Ry = Z4[x]/{z™ + 1),
and K = Qlz]/(z™ + 1). Vectors are denoted in bold lowercase (e.g. a), and
matrices in bold uppercase (e.g. A). We denote by a; the j-th entry of a vector
a, and a; ; the element of the i-th row and j-th column of A. We denote by
|all2 (abbreviated as ||a||) the Euclidian norm of a. For A € R¥*? we define
|A|l = max{||a; ||, 7, j € [d]}, where ||a; ;|| is the Euclidian norm corresponding
to the coefficient vector of a; ;.

We denote [a], = a mod ¢ € [0,¢ — 1] throughout this work. Similarly, for
ac€Z" (ora € R), [a], denotes each entry (or each coefficient) [a;], € [0, — 1]
of a (or a).

2.2 Lattices and Ideal Lattices

An n-dimensional full-rank lattice L C R™ is the set of all integer linear com-
n

binations g - y;b; of n linearly independent vectors b; € R". If we arrange
=

the vectors b; as the columns of matrix B € R"*", then L = {By : y € Z"}.
We say that B spans L if B is a basis for L. Given a basis B of L, we define
P(B) ={Byly € R" and y; € [-1/2,1/2)} as the parallelization corresponding
to B. We let det(B) be the determinant of B.

Given g € R, we let I = (g) be the principal ideal lattice in R generated by
g, whose Z-basis is Rot(g) = (g,7 - g,..., 2"~ - g).

Given ¢ € R™ |, 0 > 0, the Gaussian distribution of a lattice L is defined
as D g.c = po.c(X)/poc(L) for x € L , where p,o(x) = exp(—n||x — c||*/0?)),
Poc(L) = erL Po,c(x). In the following, we will write Dy, ;0 as Dr, . We

denote a Gaussian sample as x < Dp, (or d < Dy, ) over the lattice L (or
ideal lattice T ).

Micciancio and Regev [15] introduced the smoothing parameter of lattices.
For an n-dimensional lattice L, and positive real € > 0, we define its smoothing
parameter 7¢(L) to be the smallest s such that p;,s(L*\{0}) < ¢, where L* is
the dual lattice of L.

Lemma 2.1 (Lemma 3.3 [15]). For any n-dimensional lattice L and posi-
tive real € > 0, ne(L) < /In(2n(1 + 1/e)) /7 - An(L).

Lemma 2.2 (Lemma 4.4 [15]). For any n-dimensional lattice L, vector
ceR™ and reals 0 < € < 1, s > (L), we have

1
Pr {lx—c > sV} o2
— €

XHDL,S,C

2.3 Ring-LWE in Polynomial Rings

Throughout this paper, we only consider the integer version of ring-LWE for the
special ring R. However, we notice if the expansion factor of a polynomial ring
R = Zy[z]/(f(x)) is small, then one can directly generate the integer version of
this ring using our method. For the ring-LWE defined by the number fields [12],
we will further study their integer versions.
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For simplicity, we define the ring-LWE over the polynomial rings. We sample
a secret s € R from some Gaussian distribution instead of uniform distribution
over Ry, since the latter is easily be transformed into the former [16,1].

Definition 2.3 (Ring-LWE Distribution). Let ¥ be a Gaussian distri-
bution with parameter o over R. Given a secret s <— Dzn ,, a sample from the
ring-LWE distribution Ag, over R, x R, is generated by choosing a < Ry,
e < Dz» ,, and outputting (a,b =as +e) € R, X Ry.

Definition 2.4 (Computational Ring-LWE). The computational ring-
LWE problem, denoted RLWE, ., is defined as follows: given arbitrary many
independent samples from A ,, find s.

Definition 2.5 (Decisional Ring-LWE). The decisional ring-LWE prob-
lem, denoted DRLWE, ., is distinguish with non-negligible advantage between
arbitrary many independent samples from As,, and the same number of uni-
formly random and independent samples from R, x R,.

According to [7], the ring-LWE over the polynomial ring R = Z[z]/{z™ + 1)
is equivalent to the hard ring-LWE defined in [12].

Lemma 2.6 (Theorem 3.6 [12]). Let K be the mth cyclotomic number
field having dimension n = @(m) and R = Ok be its ring of integers. Let
a < y/logn/n, and ¢ > 2, ¢ = 1 mod m be a poly(n)-bounded prime such
that ag > w(y/logn). Then there is a polynomial-time quantum reduction from
O(y/n/a)-approximate SIVP (or SVP) on ideal lattices in K to DRLWE, ,,
where o = a(n/logn)/4.

3 Integer Version of Ring-LWE

Here we describe an integer variant of the ring-LWE over the polynomial rings,
and prove that its hardness is equivalent to that of the polynomial RLWE.

For simplicity, let n be the security parameter, ¢ > n> be a prime, p = ¢" +1,
X be a Gaussian distribution with parameter ¢ = /n over R, unless otherwise
stated. o

Definition 3.1 (I-RLWE Distribution). Given a secret s = Z*—o siq*
with s <~ Dz» ,, a sample from the I-RLWE distribution A, , over Z, x Z, is

generated by choosing at random a < Z,, ¢ = Zj_ol eiq" with e < Dzn ,, and
outputting (a,b = as +e) € Z, x Zy,.

Definition 3.2 (Computational I-RLWE). The computational integer
ring-LWE problem, denoted I-RLWE, , is defined as follows: given arbitrary
many independent samples from A; ., find s.

Definition 3.3 (Decisional I-RLWE). The decisional integer ring-LWE
problem, denoted I-DRLWE, ,, is to distinguish with non-negligible advantage
between arbitrary many independent samples from A, ,, and the same number
of uniformly random and independent samples from Z, X Z,,.

Before giving the hardness of I-RLWE, we first prove the following several
lemmas.
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Given an element f € R, if all coefficients f;,i € {0,--- ,n— 1} of f are small,
then we can generate an integer modulo p corresponding to f.

n—1 . n—1 —
Lemma 3.4 Suppose that f = [Zi—O fiq L = Zi:o hiq" with |fi| <
q/2 — 1. Then

fi —hi—a fi—hii1>0
fi—hici+q fi—hi-1 <0

where for ¢ € [n — 1],

- 0 hi—1<q/2
hi—1 = ;
1 hi_q1> q/2

for i =0,

_ — hp_1 <q/2
h—l _ hn—l _ 0 n—1 > q/ ]
-1 hp_q >q/2

Proof. First, we determine h,,_1 by f._1 as follows:

Case 1: f,_1 < 0.

Since hy—1 = [fa_1 — hn_2]q and h,_5 > 0, we have f,_1 — hn_o < 0. So,
Bp_1>q/2and h_y = —1.

Case 2: fp,—1 > 0.

By hp_o <1, weget fru_1 — hp_2>0.S0, hy_1 < q/2 and h,_; = 0.

Case 3: f,—1 =0.

In this case, h,,_; depends on f,_5. h_1 = —1 when f,_o <0, and h,_1 =0
when f,_1 > 0.

Similarly, if f,,_o = 0, then h,_; recursively depends on f,_3,---, f1.

Now we use the induction method to prove the result.

For induction basis, consider i = 0.

—_ n—1 . n—1 .
If h,_y = —1, then h,_; > ¢q/2. So, f = Zizo higt > Zi:o |filg" by
|fil < q/2—1. As a result, f,—1 <0.
n—1 .
Again, by |fi| < ¢/2 — 1, we have —p < Z;O fiq" < 0. Hence,

n—1 .
=3, fid+p
n—1 .
=Y fid+q"+1
=0

n—2 )
— n—1 e
=(far +Q)q" "+ Y i+ fot1

n—2 . —
_ n—1 o _
- (fnfl + q)q + g i=1 fzq + fO hnfl

That is, ho = [fl, = [fo — Enil]q. Hence, if fo — hp—1 < 0, then hy =
fo — hn_1 + q, otherwise hg = fo — hp—1-
_ n—1 . n—1 .
If h,—q = 0, then 0 < h,—1 < ¢q/2. So, f = Zi:o hiq* = Zi:o jiql by
|fil < g/2 — 1. Consequence, f,_1 > 0. Hence, ho = [f]; = [folg = [fo — hn—1]q4-
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By induction step, we assume that h; is correct for ¢ < k.
Now, we prove i = k + 1.

n—1 . —1 .
Since f = |:Zi—0 fiq’] = Zj:o fiq" + rp for some r € {0,1}, we have
P

[flge+e = {Zj_ol fid + Tp]

gk+2
k+1 .
= [Zi:O fiq" + T] qk+2
k+1

=D hia
_ _ k ,
If hy, > q/2, then hy, = 1 and fr—hy_1 < 0. So, —¢¥T1/2 < Z;O fig"+r <0

k . k .
by |fi| < q/2 — 1. That is, Zi:O higt = ¢ + Zi:o fiq" + . Thus,

k+1 . k .
[Zi:O fiq" + T] gk = [(fk:+1 - l)qk-H + qk+1 + Zi:o fiq" + 7"] qr+2

k :
_ k+1 %
= [(frr1 — D" + Zi:O hiq ]qk+2
b
= Zi:o iq
Hence, we obtain hg1 = [frr1 — g = [frr1 — hilq-

If hy, < q/2, then hy = 0 and fy — hgx_1 > 0. Similarly, we can get hjy 1 =
[fre+1lg = [fr+1 — hilg- i
Given two ring elements f,g € R, if their coefficients are all “small”, then
the corresponding integer of their product is equal to the product of their cor-
responding integers modulo p. )
Lemma 3.5 Suppose that f = [Zizo fiq’]p, g = [Z

n

f< Dy, 8 Dzn . Then h = [fg], = Zi:o hiq®, where

= NI IT .
hl |:Z[-j+k]n_i( 1) f]gk h’l—1:|q7

n—1 i . h
o giq ]p wit

— 0 hi-1<q/2 .
hi—1 = 1_(]/ ,ze[n—l];
1 hi,1>q/2
— — 0 hpo1 < q/2
hi1=hp_1 = n-1<d/ ,i=0
-1 hn_1>q/2

Proof. By f = [ fi], 9= [ 32, seat]» we have
h=1[fglp
= [Z;:: fid % ZZ;; 914"y
= [Z::Ol aiq']p,
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where a; = Z[j-’—k]n:i(_l)l.(j-i-k)/"J f]gkyl =0,1,---,n—1.
By Lemma 2.2, | f;| < n, |gx| < n with overwhelming probability. So, we have
| < : <n?<q/2-1.
ol < D22 Millon <n® < af

Hence, the result is directly obtained by Lemma 3.4. |

In Lemma 3.5, we only consider the product of two ring elements with “small”
coefficients. However, in the RLWE problem, only the coefficients of one element
are “small” , the coeflicients of another element are uniformly distributed modulo
q. So, in the following lemma, we give the relationship between the product of
the corresponding integers of two elements and the corresponding integer of the
product of two elements.

Lemma 3.6 Given a <— Ry, s <+ Dz~ ,, b = as € R, suppose that

. n—1 i . n—1 i . n—1 i
o= | S| o= [ | 5= [ ]
p p P
Then,

n—1 .
[as —b], = Zi:o r:q",

where

Iril <n?—n+3 ri < q/2
Iri —ql <n?>—n+3 r>q/2

Proof. By b = as € Ry, we have

q
- kal, _(-)PMass e

Since s <= Dzn o, |si| < n by Lemma 2.2. By a < Ry, |a;| < g. So

DGR/l | < |
13 gD Mg S 3T gl

< _ .
= DINRC R[]

<n(n—1)q

Hence |cp,| <n(n—1) + 1.
n—1 .

Let h = [as], = Z o hiq". Then,
1=

n=1

= _1\LG+R) /] T
hz B |:Z[]+k‘} ( 1) J a]Sk —+ Cbi—l hz—1:|

q

= [b’ —Cp, @+ Ch_y — hi—l]
= [bl +Cooy — Ei—l]

q

q’
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where for i € [n — 1],

0 0<bi1+ch_,—hia<gqg

hi-y =41  bi_1+cp, , —hi—2<0 ;

-1 bi—1+cp,_y —hia>q

for ¢+ =0,

0 0 < bnfl + Ch,, o — hn72 <q

E,1 = En,1 =<¢—-1 bp_1+¢cp, , —hn2<O0

1 bp—1+cp,_ o —hn_2>gq
Thus, we obtain
[as — 0], = [ — bl
= [Z:;(hi —b:)q'],
= [(—cvp_y + hn-1)g" + Z::ll(Cb,_l

T
= Ts
T

Since |cp, | + |hi] <n? —n+2<q/2—-1,i€{0,1,--- ,n— 1}, so by Lemma
3.4

— hi—1)q']

p

P — [_Cbn71 +En71 +?n71]q 7, = 0
T ey = hic = Tamalg i€n—1].

where, for ¢ € [n — 1],

_ 0 71<4q/2
Ti-1 = )
1 ri-1> q/2

for i =0,

_ _ 0 rp_1<gq/2
r—1="Tpn-1= .
—1 Trn—1 > q/2

The result follows by |cy, | + |hs| + [Fi_1| < n? —n + 3. 1

After the above preparations, we now come to the position of the main results
in this work. In the following Lemma 3.7, we convert a sample of RLWE into
a sample of [L[RLWE, whose noise increases a n factor than that of the origin
RLWE sample. In contrast, in Lemma 3.8, we convert a sample of -RLWE into
a sample of RLWE;, also at the expense of increasing noise.

Lemma 3.7 Given a sample of RLWE (a, b = as+ e) € R, x Ry, there
exists a polynomial time algorithm, which transforms this sample into a sample
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of LRLWE (a,b = as +¢) € Z, x Z,,, such that

n—1 ib/ nflb/ p n—1 i
a = a; = ; s = S:q°
> ., wid >, bid's >, sid's

o Zn—l ;o {|ei|<n2+6 e; <q/2

e;q", where ; /
i=o 11 €i—al <n*+6 € >q/2

Proof. We denote b = as € R,, and b =b+ec R,.

n—1 . n—1 .
Let h = [as], = Zi:o hiq", b= |:Zi—0 biqz} :

P
By Lemma 3.6,

b= by = (3 =)l = 3

where b; — h; = r; + kiq with r; € [0,q — 1], |k;| < 1.
By Lemma 2.2, |e;| < n. So, b; = [b; + e;]q = b; + €; + d,;q such that |d;| < 1.

’ n—1_, . n—1 i
That is, b = Zi:O bq" = Zi:o (bi +ei +diq)q".
Hence,

[b/ —aslp = [b/ — hp
= [0 '),
= [Z::Ol(bi + e+ dig — hi)q'p
1 (- ) + e i)y
= [Zz:ol(ri + kig + i + dig)q'],
=[(ro — kn—1+ €0 — dn1)q" + Z::ll(n‘ + ki1 +ei+dim1)d'),
=X,
It is not difficult to verify e; =ri+ki_1+e;+d;_1 —6;71, where for i € [n—1],

0 0<Zri1+kio+e_1+dio +€;_2 <q
€ 1=931 riitkiote1+diote ,<0 ;
-1 riit+kiote1+diat+e_5>0

for i =0,
0 0<mri14+kiot+e_1+d;i_o —‘v‘é;,Q <gq

Tic1 +ki—o +ei1 +di—2 +E;,2 <0
1 rioi+kiote—1+di—o +€;_2 >q

o
S
|
A
\
|
—
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Let 73 = {ri " Sq/z, andE; =71 +ki_1+e +di—1 —é;fl.
Ti—q Ti>q/2
Since |e;| < n, |kica| < 1, |dicy] < 1, |6, < 1, and || < n% —n+3 by
Lemma 3.6, we obtain |&;| < n? + 6.
The proof is complete. |

Lemma 3.8 Given a sample of -RLWE (a,b’ = as + ¢) € Z, x Z,, there
exists a polynomial time algorithm, which transforms this sample into a sample

of RLWE (a, b =as+ e') € R, x Ry, such that

\e;| <n?+3 e; <q/2
le; —ql <n?+3 e >q/2

n—1 . , n—1 , . n—1 .
Proof. By a = Zi:O a;q', b = Zi:() b,q', s = Zi:O $;q", we generate
a= (a07 @y, ,anfl)a
b = (b07b17' e ﬂbn—l)'

n—1

We denote b =as € R, and b = 24_0 biq'.

Let h = [as], = Zn o hiq'. Then by Lemma 3.6,
1=

hi = [ka}

= [bi + cp,_, — Eifl]qy

()L s ey, — T

n=1

n—1 .
By e= Zi:o eiq", we get

/

b =las+¢€],
n—1 .
— 1 it e,
n—1 — .
=D, Witen, —hioy+e)dl

’

o
- Zi:O i
Hence, b, = b; + ¢y, , — hi_1 +€; 4+ b;_,, where for i € [n — 1],

0 0<bi_1+ch ,—hiotei1+b_y<gq
bi1 =41 bi1+cy,_,—hiatei1+b_o<0 ;
=1 bisi+cp ,—hicate1+b_y>q
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for i =0,

0 0<b_1+cp_,—hiote 1+b_5<q
bifl =4 —1 bi—l -+ Chy_o — Ei_g +e;-1 +Bi—2 <0
1 bici+ch, , —hiotei14+b_o>4q

Nowbybl:as+e/:b+el € Ry, we have

6;' = [b; —bilg = leb,_, —hi—1 4 € +b;_1]q.

Since |e;| < n, |cp;| < n(n —1) +1 by Lemma 2.2, 3.6, thus we have,

lep, , —hici4ei+b, | <nn—1)+1+1+n+1=n>+3.

The proof is complete. 1

For simplicity, in the proofs of Lemma 3.7, 3.8, we directly use n as the noise
upper bound of a new sample, instead of O(y/no) by Lemma 2.2. In fact, we have
showed that the Gaussian noise parameter in the converting samples becomes
O(no). Of course, we can also add a Gaussian noise with parameter O(no) to
a converted sample to refresh its noise. Thus, we have obtained the following
results from Lemma 3.7, 3.8.

Theorem 3.9 The decisional ring-LWE problem DRLWE, , is reduced to
the decisional integer ring-LWE problem I-DRLWE, 5(,5). Moreover, the deci-
sional integer ring-LWE problem I-DRLWE, , is reduced to the decisional ring-
LWE problem DRLWE, o(no)-

Proof. By Lemma 3.7, 3.8, the result directly follows from the transformation
of samples between them. |

4 Public Key Cryptosystem

In this section, we first present a public key cryptosystem based on the integer
version of ring-LWE over the polynomial rings (I-RLWE), then show its correct-
ness and security.

4.1 Construction

Let n be the security parameter.
Key Generation: (pk,sk) < KeyGen(1™).
1) Choose a prime g = O(n?), and set p = ¢" + 1.
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Encryption: (¢, c2) + Enc(pk, m).
n—1 .
1) Given a plaintext m € {0,1}", set m = Z o m;q".
i=
2) Sample r <~ Dzn ,, €1,€3 < Dzn 5.

(

( 1 1

(3) Setr =37 riae; =D 2% € [2)
(4) Compute ¢1 = [ar + e1]p, c2 = [br + ea + m],.

(5) Output (e1,¢2) a ciphertext.

Decryption: m < Dec(sk, (c1, c2)).

(1) Given sk and a ciphertext (c¢q,c2), compute tg = [c2 — ¢15]p.

(2) Fori=0,1,--- ,n—1

(2.1) Compute d; = [t;],.
(2.2) Compute t;11 = [t;/q].
(2.3) If d; > q/2, then set d; = d; — q, tiy1 = tiv1 + 1.

(3) Set dg =dg —1if d,,—1 <O.

(4) Set m; = [di}g,i S {0, 1,--- ., n— 1}.

(5) Output the plaintext m.

Remark 4.1 (1) Our scheme uses the parity of noise in a ciphertext to
encode a plaintext. Similar to [12], we can also use |¢/2]| to compute m =
Zj__ol (m;|q/2])q" and generate a ciphertext. In this case, the decryption algo-
rithm seem to be easier. That is, it directly determines the ith plaintext bit by
checking d;. If ¢/4 < d; < (3/4)q, then m; = 1; otherwise m; = 0.

(2) To improve the efficiency of our scheme, we can use some special number
q = 2! with a positive integer ¢. This is because the encryption and decryption
algorithms take less time. Furthermore, the multiplication between two large
integers can directly apply FFT-based algorithms [10], as a result, our scheme

can use an arbitrary positive integer n instead of n = 2* in RLWE that is to use
FFT-based algorithms.

(3) The NTRU scheme over the polynomial rings [11,21] can be directly
converted into an integer scheme of NTRU. For example, consider the NTRU
scheme in [21]. Let ¢ = 2%,p = ¢" — 1 with a prime n, the public key h =
3f/(3g+1) € Z,[z]/(z™ — 1), and the secret key s = 3g+1 € Z[z]/(z™ — 1).
Then, one can generate an integer scheme of NTRU as follows: the public key is

n—1 . n—1 .
— At — s
h = [ g —o h;q L, and the secret key s [ E o Sid L.

4.2 Correctness

For the correctness of our scheme, we only require to prove that the algorithm
Dec correctly recover the plaintext in a ciphertext.

Lemma 4.2 Given sk and a ciphertext (cy, ¢a), the algorithm Dec correctly
decrypts the plaintext m.
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Proof. By Enc, we have ¢; = [ar+e1]p, c2 = [br+ez+m],. Since b = [as+¢],,
by Dec, we get

to = [C2 — cls]p
=[br+ex+m— (ar+e1)s),

=[er+ex —eis+ml,

S n—1 i n—1 i n 12 i n—12 i
mecer = E T s = E S; e = E €; €e; = E €.
i=0 'Lq 9 i=0 Zq bl i=0 Zq ] i=0 qu b

we obtain

n—1 . . n—1 .
er =3 @Y (D e, = (3 2w,
n—1 . . n—1 .
— _1\LG+k)/n] [ .t
ers [Zi=0 (2Z[j+k~]n=i( 1) e1,5)4'p [Zi=0 20iq'lp

n—1

. n—1 .
to=ler +ex —e1s+ml, = [Zi:o (2u; + 2ea, — 2v; + my)q'], = Zi:o d;q"

Using Lemma 2.2, we get |2u;| < 2n3, |2v;] < 2n3, |2¢1,| < 2n. So,

12u; + 29, — 2v; +my| <4n® 4+ 2n+1<¢q/2—1,i€{0,1,--- ,n—1}.
By Lemma 3.4, d; = [2u; + 2e3, — 2v; +m; fEi_l]q,i e{0,1,--- ,n—1}.
For i = 0, we have

do = [QUO + 2ea, — 2vg + mp — 8»”_1],1

. 2ug + 2620 — 2vg +mg — En—l 2ug + 2620 — 2v9 + mg — En—l >0
2ug + 2620 — 2v9 +mg — En—l +q 2up+ 2620 — 2v9 +mg — En_l <0

By Step (2.3), if dy > /2, then dy = doy — q = 2ug + 2e2, — 2v9 +mg — dp_1,
otherwise dy = 2ug + 2ea, — 2vp + mo — dp.

Using Step (3), the algorithm Dec subtracts d,,_; according to the sign of
dn—1, and obtain dy = 2ug + 2ea, — 2vg + mg. Thus, mg = [dg]2 by Step (4).

Similarly, Dec can correctly recover all other bits of the plaintext m by
mi:[di]g,i€{1,~-~,n—1}. |

4.3 Security

Similar to [12], the semantic security of our scheme follows from two applica-
tions of the pseudorandomness of I-RLWE. So, the security of our public key

cryptosystem depends on the hardness of -RLWE, which is equivalent to the
hardness of RLWE by Theorem 3.9.
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5 Conclusions

In this work, we describe an integer version of RLWE over the polynomial rings
and show that its hardness is equivalent to the polynomial RLWE. This one-
dimensional LWE problem with structural noise is corresponding to the hard one-
dimensional LWE problem with exponential modulus in the security parameter
[5]. This point is also consistent with the result in [5] that shows the tradeoff
between the dimension and the modulus of LWE instances.
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