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Abstract. Lizard is a very recently proposed lightweight stream cipher that claims 60 bit security
against distinguishing (related to state recovery) and 80 bit security against key recovery attack. This
cipher has 121 bit state size. In this paper, we first note that using ψ key stream bits one can recover
ψ unknown bits of the state when τ state bits are fixed to a specific pattern. This is made possible
by guessing the remaining state bits. This helps us in mounting a TMDTO attack with preprocessing
complexity 267, and the maximum of Data, Time and Memory complexity during the online phase as
254. The parameters in the online phase are significantly less than 260.

Keywords: Cryptanalysis, Lizard, Lightweight Stream Cipher, Time Memory Data Trade-Off
(TMDTO) Attack.

1 Introduction

Time-Memory Trade-off attack on block ciphers has been first proposed in [13]. Later a generic
TMDTO attack was introduced against stream ciphers in [7] modeling a similar situation as that of
block ciphers. Given a stream cipher with search space N = 2n, the classical TMDTO theory says
that internal state of cipher can be recovered if TM2D2 = N2, where T is the time complexity,
M is the memory required and D is the total amount of data available to the attacker during the
online phase. The pre-computation time is calculated as P = N

D (this complexity is generally more
than the exhaustive key search). The attack involves computing a chain of m pseudo-random states
of size N

D by repeatedly finding its image t times using the non-invertible function f that we like to
attack. Here, a random state ζ is considered as the input to the function, and the output f(ζ) is
the key stream output corresponding to that state equal to the same length as the state. This leads
to formulation of t

D tables, introducing a natural constraint of t ≥ D. By choosing parameters of

T = M = 2
n
2 and D = 2

n
4 for a search space of N = 2n (i.e., state size of n-bits), one can deduce

the internal state. If the state size is less than twice the security-level mentioned for the cipher,
then this is a generic attack, when the secret key can be directly recovered from the state. Hence,
a basic rule of thumb in designing stream ciphers is to keep the state size atleast twice more than
the secret key size. Added to this, one may also note that if the sum of key and IV size is less than
the state size, then the attack is guided by the sum [14]. However, there are some ciphers, where
discovering the secret state does not automatically guarantee obtaining the secret key directly (as in
Lizard [11]) and in such a situation this attack does not immediately follow for secret key recovery.

Presently, new lightweight stream ciphers are being designed where we have state size lesser
than twice the key size. The initial design, Sprout [1] has been attacked soon after the proposal
(see [17,9,18]). Plantlet [16], an improvement over Sprout is also presented very recently and a
generic TMDTO analysis has been presented in [12] very recently (earlier only differential fault



attack [15] had been reported). The idea of Plantlet involves use of secret key bits not only during
the Key Scheduling Algorithm (KSA) but also during the Pseudo Random Generation Algorithm
(PRGA). The design of Lizard [11] is from a different viewpoint, and is similar to classical designs
in which the secret key bits are not used during PRGA. Very recently certain cryptanalytic obser-
vations have been made [5] in connection with related keys of Lizard. This cipher has a state size of
121 bits and a generic TMDTO attack will obtain the state of this cipher in 260 online complexity.
Thus the challenge is to obtain a reduced complexity than this.

Towards that, we try to obtain some information related to the state from the key stream bits.
After carefully studying the PRGA of the cipher, it is found that 13 bits of key stream provide 13
unknown bits of the state. The constraint is that, we need to fix 28 bits of the state to a specific
pattern and then need to guess 80 bits. Thus, the search space becomes 280 and our parameters
are such that we require 267 complexity during the preprocessing. During the online phase, the
parameters are T = M = D = 254. Note that each of the parameters during the online phase is
less than 260 and thus this is the first TMDTO analysis against Lizard other than the designers
themselves. The designers specified that Lizard can be used for generating 218 key stream bits only
for a specific key and IV. However, we like to point out that obtaining a total amount of 254 key
stream bits (corresponding to D) from different sources will work in such a scenario. We will be
able to obtain one state corresponding to a specific Key/IV for which the attack finally succeeds.
Further, from theoretical point of view, our findings show certain weaknesses against this instance
of lightweight stream cipher. The designers of Lizard [11, Appendix B1] indeed acknowledged the
applicability of BSW-sampling [6,7] describing this as highly cipher specific. We should also like to
mention at this point that our observation is not same as the BG attack [3,10]. Indeed we consider
the situation TP = DP = MP = N , which is similar to the condition of BG trade-off. However,
we do not have P = T here as in the BG scenario. Our condition MD = MT = DT < N follows
from the idea of sampling resistance as given in [7] and further, we try to minimize the maximum
of T,M,D by making T = M = D. Thus, this cannot be achieved directly by BG kind of attack
on stream ciphers. In fact, we show that if ψ bits of the secret state can be recovered from key

stream bits (either fixing some state bits or not), then we can achieve the parameters P = 2
ν+ψ
2

and T = M = D = 2
ν−ψ
2 , where the state size is of ν bits. Needless to mention that how a higher

preprocessing complexity will be accepted is a matter of interpretation. At the same time, we note
that identifying the equations for guessing some state bits from key stream bits is important as
well, since this reduces the online complexity significantly.

This motivates us to study the exact design of Lizard, and identify parameters for which is
referred as conditional BSW-sampling. The term ‘conditional’ comes as we need to fix a few state
bits with a specific pattern. In [11, Section 4.2], the ideas of TMDTO attack has been discussed
clearly, but the applicability of conditional BSW sampling has not been studied in detail. Thus
we apply conditional BSW sampling in this paper to analyze Lizard [11]. We should also like to
mention that the computational power has developed a lot and we should look at the computations
related to Bitcoin for estimating the achievable time complexity in real life. The current hash rate
for Bitcoin is 6 Million Tera-Hash/Sec, which is more than 262 and in a day it is more than 278

operations. This is achieved in a distributed environment over the Bitcoin network [8]. Further,
we have ASIC hardwares that claims around 13.5 Tera-Hash/Sec at USD 3000 [2], which provides
more than 260 operations in a day. Each such operation is almost competitive with the unit of
computation in the TMDTO attack on a lightweight cipher like Lizard [11].



Before proceeding further, let us describe the organization of this paper. A brief description
of Lizard is mentioned in Section 2. Section 3 illustrates the procedure of fixing state bits for a
successful attack in obtaining some unknown state bits by looking at the key stream. Section 4
explains the preparation of offline tables and the description of the attack in detail. Section 5
concludes the paper.

2 Description of Lizard

The 121-bit inner state of Lizard is divided into two NFSRs namely NFSR1 and NFSR2. At time
t, the first NFSR, NFSR1 is denoted by (S(0+i), . . . , S(30+i)) and the second NFSR, NFSR2 by
(B(0+i), . . . , B(89+i)). The clocking of the cipher can be divided into following three functions:

1. NFSR1 Update Function: NFSR1 is of 31 bit size and the update rule of this NFSR is:

S(31+i) = S(0+i) ⊕ S(2+i) ⊕ S(5+i) ⊕ S(6+i) ⊕ S(15+i) ⊕ S(17+i) ⊕ S(18+i) ⊕ S(20+i) ⊕ S(25+i)
⊕ S(8+i)S(18+i) ⊕ S(8+i)S(20+i) ⊕ S(12+i)S(21+i) ⊕ S(14+i)S(19+i) ⊕ S(17+i)S(21+i)
⊕ S(20+i)S(22+i) ⊕ S(4+i)S(12+i)S(22+i) ⊕ S(4+i)S(19+i)S(22+i) ⊕ S(7+i)S(20+i)S(21+i)
⊕ S(8+i)S(18+i)S(22+i) ⊕ S(8+i)S(20+i)S(22+i) ⊕ S(12+i)S(19+i)S(22+i)
⊕ S(20+i)S(21+i)S(22+i) ⊕ S(4+i)S(7+i)S(12+i)S(21+i) ⊕ S(4+i)S(7+i)S(19+i)S(21+i)
⊕ S(4+i)S(12+i)S(21+i)S(22+i) ⊕ S(4+i)S(19+i)S(21+i)S(22+i) ⊕ S(7+i)S(8+i)S(18+i)S(21+i)
⊕ S(7+i)S(8+i)S(20+i)S(21+i) ⊕ S(7+i)S(12+i)S(19+i)S(21+i)
⊕ S(8+i)S(18+i)S(21+i)S(22+i) ⊕ S(8+i)S(20+i)S(21+i)S(22+i) ⊕ S(12+i)S(19+i)S(21+i)S(22+i)

(1)

2. NFSR2 Update Function: The second register NFSR2 is of 90 bit and the update rule is:

B(89+i) = S(0+i) ⊕B(0+i) ⊕B(24+i) ⊕B(49+i) ⊕B(79+i) ⊕B(84+i) ⊕B(3+i)B(59+i)

⊕B(10+i)B(12+i) ⊕B(15+i)B(16+i) ⊕B(25+i)B(53+i) ⊕B(35+i)B(42+i)

⊕B(55+i)B(58+i) ⊕B(60+i)B(74+i) ⊕B(20+i)B(22+i)B(23+i)

⊕B(62+i)B(68+i)B(72+i) ⊕B(77+i)B(80+i)B(81+i)B(83+i) (2)

3. The Output Function: The output bit zi is a function from {0, 1}53 to {0, 1}. For round i,

zi = Li ⊕Qi ⊕ Ti ⊕ T i (3)

where:

Li = B(7+i) ⊕B(11+i) ⊕B(30+i) ⊕B(40+i) ⊕B(45+i) ⊕B(54+i) ⊕B(71+i) (4)

Qi = B(4+i)B(21+i) ⊕B(9+i)B(52+i) ⊕B(18+i)B(37+i) ⊕B(44+i)B(76+i) (5)

Ti = B(5+i) ⊕B(8+i)B(82+i) ⊕B(34+i)B(67+i)B(73+i) ⊕B(2+i)B(28+i)B(41+i)B(65+i)

⊕B(13+i)B(29+i)B(50+i)B(64+i)B(75+i) ⊕B(6+i)B(14+i)B(26+i)B(32+i)B(47+i)B(61+i)



⊕B(1+i)B(19+i)B(27+i)B(43+i)B(57+i)B(66+i)B(78+i) (6)

T i = S(23+i) ⊕ S(3+i)S(16+i) ⊕ S(9+i)S(13+i)B(48+i) ⊕ S(1+i)S(24+i)B(38+i)B(63+i) (7)
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Fig. 1: Lizard: PRGA mode.

The state initialization process is divided into 4 phases.

Phase 1: Key and IV Loading: Let K = (K0, . . . ,K119) be the 120-bit key and IV = (IV0, . . . ,
IV63) the 64-bit public IV. The state is initialized as follows:

B0
j =

{
Kj ⊕ IVj , for 0 ≤ j ≤ 63
Kj , for 64 ≤ j ≤ 89

S0
j =


K(j+90), for 0 ≤ j ≤ 28

K119, for j = 29
1 for j = 30

Phase 2: Grain-like Mixing: In this phase the output bit zi is fed back into both NFSRs for
0 ≤ t ≤ 127. This type of approach is used in Grain family.

Phase 3: Second Key Addition: In this phase, the 120-bit key is XORed to both NFSRs as
follows:

B129
j = B128

j ⊕Kj , for 0 ≤ j ≤ 89

S129
j =

{
S128
j ⊕K(j+90), for 0 ≤ j ≤ 29

1, for j = 30

Phase 4: Final Diffusion This phase is exactly similar to phase 2 except zt is not fed back into
the NFSRs. In this phase, one has to run both NFSRs 128 rounds. So after this phase, registers are
(S257

0 , . . . , S257
30 ) and (B257

0 , . . . , B257
89 ). Now Lizard is ready to produce output key stream bits.



3 Computation of Conditional Sampling Resistance of Lizard

In this section, we will be discussing the technique of recovering some state bits by cleverly exploiting
Lizard’s output function. We fix certain bits of the state to get rid of nonlinear terms. Some possible
counts of state bits recovered corresponding to the number of state bits fixed in the output equation
are shown in Table 1.

Instances
(j)

Bits fixed
(|Fj |)

Keystream bits used
= Bits recovered

(|Rj |)

Bits Guessed
(121− |Fj | − |Rj |)

1 12 9 100

2 16 10 95

3 20 11 90

4 24 12 85

5 27 13 81

6 30 14 77

Table 1: Possible combinations of bits fixed to bits recovered.

We illustrate the technique with the help of an example. We denote the set of fixed state bits
by Fj . The state bits recovered will be denoted by Rj , which is done by observing the key stream
bits zt, fixing state bits Fj and guessing of remaining state bits appearing in the output equation.
Let us fix |F1| = 12 bits. We aim to recover R1 = {S(3+i) : i = 0, . . . , 8}, which means |R1| = 9
bits.

Let F1 = A1 ∪A2, where A1 = {S(16+i) : i = 0, . . . , 8} and A2 = {B(48+k) : k = 0, . . . , 2}. We
fix the elements of set A1 with 1’s and A2 with 0’s. The equation (7) :

T i = S(23+i) ⊕ S(3+i)S(16+i) ⊕ S(9+i)S(13+i)B(48+i) ⊕ S(1+i)S(24+i)B(38+i)B(63+i)

can now be written as:

T i = S(23+i) ⊕ S(3+i) ⊕ S(1+i)S(24+i)B(38+i)B(63+i). (8)

for i = 0, 1, 2. From equation (3),

zi = Li ⊕Qi ⊕ Ti ⊕ T i

and using equation (8) we have:

S(3+i) = zi ⊕ Li ⊕Qi ⊕ Ti ⊕ S(23+i) ⊕ S(1+i)S(24+i)B(38+i)B(63+i). (9)

Now, we recover bits S3, S4 and S5 by substituting i = 0, 1, 2 (following the order) in equation (9).
This is made possible by guessing the state bits appearing on the right hand side of equation (9),
except S3, S24, B48, B49 and B50, and using the key stream bits z0, z1 and z2 (since S3 is recovered
and rest are already fixed). One may observe that the number of guessed bits required decreases
for every additional bit recovered. For example, when we substitute i = 0, most of the state bits
appearing on the right hand side of equation (9) are guessed which are listed in Table 2. When we



substitute i = 1, we have to guess lesser number of internal state bits as most of them are already
guessed in the previous step.

From A1, we rewrite equation (7) as:

T i = S(23+i) ⊕ S(3+i) ⊕ S(19+i)B(48+i) ⊕ S(1+i)S(24+i)B(38+i)B(63+i) (10)

for i = 3, . . . , 8. Hence, S6, S7, S8, S9, S10 and S11 can be recovered by using equation (10) with
the help of equation (3). Further simplification gives the following equation:

S(3+i) = zi ⊕ Li ⊕Qi ⊕ Ti ⊕ S(23+i) ⊕ S(19+i)B(48+i) ⊕ S(1+i)S(24+i)B(38+i)B(63+i) (11)

For i = 3 in equation 11, we need to guess very few bits as most bits have been already fixed or
guessed earlier. For the case of i = 7 and i = 8 we need to know the values of S31, S32 and B90,
which are nothing but the feedback bits. All the tap positions necessary to generate the feedback
bits are already known at this stage, except B0 and S0 which need to be guessed as well. Thus, we
have successfully recovered the entire set R1, i.e. by fixing |F1| internal state bits with particular
values, using 12 key stream bits and by guessing the remaining 100 internal state bits. The bits
guessed for every bit recovered has been shown in Table 2.

State bit
recovered

State bits guessed
for recovering R1

State bits guessed
for recovering R2

State bits guessed
for recovering R6

S3 B1, B2, B4, B5, B6, B7,
B8, B9, B11, B13, B14, B18,
B19, B21, B26, B27, B28, B29,
B30, B32, B34, B37, B38, B40,
B41, B43, B44, B45, B47,

B52, B54, B57, B61, B63, B64,
B65, B66, B67, B71, B73, B75,

B76, B78, B82, S1

B1, B2, B4, B5, B6, B7,
B9, B13, B14, B18, B19, B21,
B26, B27, B28, B29, B30, B32,
B34, B37, B38, B40, B41, B43,
B44, B45, B47, B52, B54,

B57, B61, B63, B64, B65, B66,
B67, B71, B73, B75, B76, B78,

B82, S1

B1, B2, B4, B5, B6, B7,
B26, B27, B28, B29, B30, B32,
B34, B37, B38, B40, B41, B43,
B44, B45, B47, B52, B61,

B63, B64, B65, B66, B67, B71,
B73, B75, B76, B78, B82, S1

S4 B3, B10, B12, B15, B20, B22, B31,
B33, B35, B39, B42, B46,

B51, B53, B55, B58, B62, B68,
B72, B74, B77, B79, B83, S2, S25

B3, B10, B12, B15, B20, B22, B31,
B33, B35, B39, B42, B46, B51,
B55, B58, B62, B68, B72, B74,

B77, B79, B83, S2, S25

B3, B22, B31, B33, B35, B39, B42,
B46, B51, B58, B62, B68, B72,
B74, B77, B79, B83, S2, S25

S5 B16, B23, B36, B56, B59, B69,
B80, B84, S26

B16, B23, B36, B56, B59, B69,
B80, B84, S26

B16, B23, B36, B59, B69, B80,
B84, S26

S6 B17, B24, B60, B70, B81,
B85, S12, S27

B24, B60, B70, B81, S12, S27 B24, B60, B70, B81, S12, S27

S7 B25, B86, S13, S28 B25, B86, S13, S28 B25, S13, S28

S8 B87, S14, S29 B87, S14, S29 S14, S29

S9 B88, S15, S30 B88, S15, S30 S15, S30

S10 B89, S0 B89, S0 S0

S11 B0 B0 B0

B85 N/A − −
B86 N/A N/A −
B87 N/A N/A −
B88 N/A N/A −
B89 N/A N/A −

Table 2: Recovery of state bits for R1, R2 and R6.



Now, we would like to illustrate the recovery of R2 = R1 ∪ {B85}, i.e. recovering 10 bits
of internal state by fixing 16 bits of state variables. For recovering R2, we first recover R1 by
fixing F1 (following the same method as above) along with fixing 4 additional bits, i.e. F2 =
F1 ∪ {B8, B11, B17, B53}.
From the constraint B(i+44) = 1 and B(i+8) = 0, equation (5) and equation (6) can be written as
follows:

Qi = B(i+4)B(i+21) ⊕B(i+9)B(i+52) ⊕B(i+18)B(i+37) ⊕B(i+76). (12)

Ti = B(i+5) ⊕B(i+34)B(i+67)B(i+73) ⊕B(i+2)B(i+28)B(i+41)B(i+65)

⊕B(i+13)B(i+29)B(i+50)B(i+64)B(i+75) ⊕B(i+6)B(i+14)B(i+26)B(i+32)B(i+47)B(i+61)

⊕B(i+1)B(i+19)B(i+27)B(i+43)B(i+57)B(i+66)B(i+78). (13)

Thus, equation (3) can be written as:

B(i+76) = zi ⊕ Li ⊕B(i+4)B(i+21) ⊕B(i+9)B(i+52) ⊕B(i+18)B(i+37) ⊕B(i+5)

⊕B(i+34)B(i+67)B(i+73) ⊕B(i+2)B(i+28)B(i+41)B(i+65)

⊕B(i+13)B(i+29)B(i+50)B(i+64)B(i+75) ⊕B(i+6)B(i+14)B(i+26)B(i+32)B(i+47)B(i+61)

⊕B(i+1)B(i+19)B(i+27)B(i+43)B(i+57)B(i+66)B(i+78) ⊕ T i. (14)

By putting i = 9 in equation (14), we get state bit B85 by guessing all state bits on the right hand
side of the equation except S32 and S33, which are feedback bits, that can be simply calculated from
the already guessed bits. Note that fixing B53 = 1 would have been alone enough for recovering B85,
and hence R2. However, when substituting i = 3 in equation (11) (to recover S6), we encounter
B85 · B11 as a product term on the RHS of the equation. If only we fix B11 to 0, we can skip the
guessing of B85 for recovering S6 (which is during recovery of R1 itself). In other words, we either
guess B85 and recover S6 (and attain R1) or fix B11 to 0 and recover S6. Choosing the second
option enables us to recover B85 (and hence R2). A similar reason holds true for fixing B8 and
B17 to 0’s. The only rule is that we do not guess what we need to recover, which can be done by
carefully fixing some bits to 0’s.

Now, we describe the last instance of our result, in which 14 internal state bits are recovered by
fixing 30 bits i.e. R6 = R2 ∪{B86, B87, B88, B89} since remaining instances can be directly inferred
from the same. For this recovery, we fix F6 = F2∪A3∪A4 where A3 = {B9, B10, B12, B13, B14, B15,
B18, B19, B20, B21} and A4 = {B54, B55, B56, B57}. Initially, we recover R2 by fixing F2 (using our
previous method). We fix A3 by 0’s and A4 by 1’s, for the same reason as mentioned before. We
do not guess bits from A3 and A4 while recovering R2 since they are already fixed. By putting
i = 10, 11, 12, 13 in equation (14), the internal state bits B86, B87, B88 and B89 are recovered by
guessing all state bits on the right hand side of the equation. Note that all state bits on the right
hand side of equation (14) are known beforehand either by guessing, fixing or recovering.

The state bits guessed in case of R1,R2 and R6 are listed in Table 2. We have also mentioned
all the equations required to recover R6 in the Appendix A of the paper.

4 Recovery of State using Conditional TMDTO

It is well known from [7] that BSW sampling allows choice for a wider range of parameters of
T,M,D with lower number of disk operations. We deduce some bits from the secret state by fixing



certain key stream bit pattern. However, in case of Lizard, the output function has several nonlinear
terms. Hence we resort to conditional BSW sampling as mentioned in Section 3. Fixing

– τ = |F | bits of the secret state to a specific pattern,
– assuming a specific key stream bit pattern ψ = |R| bits and
– assigning values to the rest of the state bits ν − ψ − τ (call this as a pattern ζ),

we deduce ψ bits of the secret state. As in TMDTO attack, the steps can be divided into two
sections: (i) offline phase and (ii) online phase. The offline phase is used to compute and store
tables by covering the search space of P ≈ N

D , as usually done for stream ciphers [7]. The online
phase involves the offline data to recover the state from the available data D during the attack.
Note that the adversary can perform preprocessing P only once. While this technique is well known,
we present most of the details for better explanation.

4.1 Preparing Tables for Offline Attack

Consider the state size of ν bits, i.e., the total search space N = 2ν . In conditional BSW sampling,
we need to search for a ψ-bit key stream pattern and we need to fix τ state variables. The total
search space thus decreases by 2ψ+τ . Therefore, the total search space here is N ′ = 2ν−ψ−τ . While
we use the usual parameters P, T,M,D for TMDTO attack, for the reduced state we denote the
parameters by P ′, T ′,M ′, D′ and later connect those to the original parameters P, T,M,D. The
table(s) that we will prepare during the offline phase will have m rows and t columns. As a part of
our pre-computation (offline phase), we prepare t

D′ table(s), and taking t = D′, we can consider only

one table. The preprocessing here is P ′ = N ′

D′ . Now T ′M ′2D′2 = N ′2 and we need to minimize the
maximum of T,M,D finally. Towards this, we may consider T ′ = D′2 and then satisfy T ′M ′2D′2 =

N ′2 by T ′ = 2
ν−ψ−τ

2
−x, M ′ = 2

ν−ψ−τ
2

+x and D′ = 2
ν−ψ−τ

4
−x

2 for some x.
Now we demonstrate the procedure of formulating the table(s) during preprocessing. We take a

random pattern ζ of length ν−ψ− τ bits. This will be stored in the table during pre-computation.
Then we fix τ bits of the state according to a fixed pattern as decided in Section 3. Thus, we now
obtain ν − ψ − τ + τ = ν − ψ bits of the state. Now considering the ψ-bit fixed pattern of the
key stream, we obtain the rest ψ bits of the state, providing the complete information about ν bit
state. Naturally, if we clock this state as in PRGA, we will first obtain ψ key stream bits of the
specific pattern that we have used already. We will keep clocking for next ν − ψ − τ bits and that
pseudo-random pattern will be then considered as the next element in the table, which is referred
as f(ζ). This process will be repeated τ times to obtain a row. Such an action will be repeated for
m such randomly chosen (ν − ψ − τ) bit string to obtain m rows. Thus, mt many elements are
generated in the preprocessing phase, of which we will only store the first and last element of each
row. This makes the memory complexity o(m). According to the birthday paradox, with proper
parameters, this table will have negligible collisions. At the same time, the online data (here key
stream) should be of such an amount so that the attack becomes successful, i.e., we obtain the
intended pattern in the table.

4.2 Online Phase

As we discussed, the entries of each row from index 2, . . . , t − 1 are removed to save on memory.
The first entry in each row is referred to as SP (start point) and the last element as the EP (end



point), which are the only two elements stored in each row. Now we consider access to data of D
key stream bits. The adversary linearly searches the D-bit stream for the specific pattern of ψ bits.
Upon a hit, the following (ν − ψ − τ) bits (name this string as ζ) are taken as the pattern to be
searched in the offline table. The table is considered to be optimized for searching in constant time.
If there is a match, it means the state is stored in (t−1)th position of that row and one should start
from SP of that row to obtain the (ν − ψ − τ)-bit pattern at the (t − 1)-th location. That is, the
adversary has to operate the function (t− 1) times on the SP of the same row to obtain the state.
If there is no match, the adversary performs an f operation on ζ, i.e., we obtain f(ζ) and search
through the EPs in each table again. The process is repeated till a hit is obtained. Note than in
the worst-case, the adversary has to go through the entire row of length t.

The probability of getting an ψ-bit key stream pattern is 1
2ψ

. Further, once we obtain an
(ν − ψ − τ)-bit ζ, we try to discover the complete ν-bit state. Now, τ bits of the actual state may
not be of the pattern as decided during the preparation of the preprocessing table. Thus, obtaining
the correct state has a probability of 1

2τ . Hence, to make the attack successful, the data complexity
will be D = D′ × 2ψ+τ . Only when a specific ψ bit pattern comes in the key stream, we access the
preprocessing table. Thus, T = T ′ × 2τ .

We have already considered a parameter set with T ′ = 2
ν−ψ−τ

2
−x, M ′ = 2

ν−ψ−τ
2

+x and D′ =

2
ν−ψ−τ

4
−x

2 . Thus, T = T ′ × 2τ = 2
ν−ψ−τ

2
−x+τ , M = M ′ = 2

ν−ψ−τ
2

+x and D = D′ × 2ψ+τ =

2
ν−ψ−τ

4
−x

2
+ψ+τ . Now to minimize the maximum of T,M,D, we need to have T = M = D and

T = M provides x = τ
2 . Now from T = D, we obtain 5ψ + 2τ = ν. This actually provides us

the best parameters for the TMDTO attack under the conditional BSW sampling. The complexity

here is T = M = D = 2
ν−ψ
2 . With these parameters, the size of the preprocessing table will be

P = P ′ = N ′

D′ = 2
ν+ψ
2 .

This is the optimal parameter and thus, for Lizard, we get ν = 121, ψ = 13, τ = 28. This
provides the TMDTO parameters T = M = D = 254 with P = 267. Note that, we could generate
a scenario where ψ = 13, τ = 27. However, in this case, we may fix one more bit in the state to
make τ = 28 for obtaining our parameters that provides 5ψ + 2τ = 5 · 13 + 2 · 28 = 121 = ν.
This actually provides us the result as in * marked row of Table 3. Following the data available
in Table 1, different other possible combinations of parameters of the attack have been shown in
Table 3.

Bits fixed Bits recovered Search Space Time Complexity Memory Data Preprocessing Time

(τ = |F |) (ψ = |R|) (N ′) (T ) (M) (D) (P )

12 9 2100 256 256 243 278

16 10 295 256 255 246 275

20 11 290 256 254 249 272

24 12 285 256 253 252 269

27 13 281 255 253 254 267

* 28 13 280 254 254 254 267

30 14 277 252 255 255 266

Table 3: The possible parameters for each value of |F | and |R|.



It is important to clarify one issue at this point. While considering cryptanalysis we consider
certain unit cost and that may involve several computations related to the cipher operations. In
fact, given a k-bit secret key, the exhaustive attack requires complexity of 2k units, where each
unit may ask for several CPU clocks (might be of the order of 28 or more). While mounting the
TMDTO attack the same situation is valid. However, we like to point out that our assumptions
are as per to existing TMDTO attacks on stream ciphers as per the literature [7,12]. Note that,
towards a generic TMDTO attack for state recovery in Lizard [11], we need to find out the image
f(ζ) given ζ. This requires running the PRGA of Lizard 121 times to obtain the key stream bits
and those 121 key stream bits are considered to be the next state in the chain. In our case, for
the parameters τ = 28, ψ = 13 requires 80-bit patterns to be the elements of the pre-processing
table (instead of full 121 bits). From these 80 bits, we need to generate the full state of 121 bits
according to the equations given in Appendix A. This requires some computation time. However,
then we need to run the PRGA for 13 + 80 = 93 bits instead of 121 bits. One may note that this
advantage here will easily neutralize our computation for obtaining 121 bit state from 80 bit state.
Thus, the time complexity for recovering state bits (using Appendix A) will not affect our online
complexity.

We also like to point out the situation when τ = 0 and ψ = ν
5 . That is, consider that from the

key stream of length ν
5 one may obtain ν

5 unknown bits of the state by guessing rest 4ν
5 state bits.

In that case, the preprocessing complexity will be P = 2
ν+ψ
2 = 2

3ν
5 and T = M = D = 2

ν−ψ
2 = 2

2ν
5 .

Thus, to have proper security against this kind of TMDTO attack based on conditional BSW
sampling, the state size should be 2.5 times the secret key size. However, we are yet to obtain a
recent well known stream cipher for which this can be achieved. Note that a closely related idea
has been presented in [4, Page 10] while presenting the design of MICKEY 2.0.

5 Conclusion

In this paper, we present a TMDTO analysis on Lizard with pre-computation complexity 267 and
online complexity 254 to recover the cipher state of 121 bits. Given that there are very serious
advancement in hardware technology, these kind of complexities may be achieved in reasonable
time. It should be noted that obtaining the state does not mean obtaining the secret key in Lizard
due to its non-invertible KSA. That is, our attack provides only an inner state corresponding to
one out of a large set of packets and there is no specific control for which packet the attacker can
obtain the secret state. Thus, while our observation does not imply breaking Lizard, it should be
considered as an insight towards security evaluation of this lightweight cipher.

Acknowledgments: The authors like to thank Willi Meier and Matthias Hamann for valuable
comments on the initial drafts of this paper.
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Step Key
bits

Equations used for recovery Guessed bits Feedback
bits

calculated

Recovered
bits

0 z0

S3S16 = z0 ⊕B7 ⊕B11 ⊕B30 ⊕B40 ⊕B45 ⊕B54 ⊕B71

⊕B4B21 ⊕B9B52 ⊕B18B37 ⊕B44B76 ⊕B5 ⊕B8B82

⊕B34B67B73 ⊕B2B28B41B65 ⊕B13B29B50B64B75⊕
B6B14B26B32B47B61 ⊕B1B19B27B43B57B66B78⊕
S23 ⊕ S9S13B48 ⊕ S1S24B38B63

B1, B2, B4, B5, B6, B7, B26, B27, B28, B29,

B30, B32, B34, B37, B38, B40, B41, B43,

B44, B45, B47, B52, B61, B63, B64,

B65, B66,

B67, B71, B73, B75, B76, B78, B82, S1,

− S3

1 z1

S4S17 = z1 ⊕B8 ⊕B12 ⊕B31 ⊕B41 ⊕B46 ⊕B55 ⊕B72

⊕B5B22 ⊕B10B53 ⊕B19B38 ⊕B45B77 ⊕B6 ⊕B9B83

⊕B35B68B74 ⊕B3B29B42B66 ⊕B14B30B51B65B76⊕
B7B15B27B33B48B62 ⊕B2B20B28B44B58B67B79⊕
S24 ⊕ S10S14B49 ⊕ S2S25B39B64

B3, B22, B31,

B33, B35, B39, B42, B46, B51,

B58, B62, B68, B72, B74,

B77B79, B83, S2, S25

− S4

2 z2

S5S18 = z2 ⊕B9 ⊕B13 ⊕B32 ⊕B42 ⊕B47 ⊕B56 ⊕B73

⊕B6B23 ⊕B11B54 ⊕B20B39 ⊕B46B78 ⊕B7 ⊕B10B84

⊕B36B69B75 ⊕B4B30B43B67 ⊕B15B31B52B66B77⊕
B8B16B28B34B49B63 ⊕B3B21B29B45B59B68B80⊕
S25 ⊕ S11S15B50 ⊕ S3S26B40B65

B16, B23, B36, B59, B69, B80, B84, S26 − S5

3 z3

S6S19 = z3 ⊕B10 ⊕B14 ⊕B33 ⊕B43 ⊕B44 ⊕B57 ⊕B74

⊕B7B24 ⊕B12B55 ⊕B21B40 ⊕B47B79 ⊕B8 ⊕B11B85

⊕B37B70B76 ⊕B5B31B44B68 ⊕B16B32B53B67B78⊕
B9B17B29B35B50B64 ⊕B4B22B30B46B60B69B81⊕
S26 ⊕ S12S16B51 ⊕ S4S27B41B66

B24, B60, B70, B81, S12, S27 − S6

4 z4

S7S20 = z4 ⊕B11 ⊕B15 ⊕B34 ⊕B44 ⊕B45 ⊕B58 ⊕B75

⊕B8B25 ⊕B13B56 ⊕B22B41 ⊕B48B80 ⊕B9 ⊕B12B86

⊕B38B71B77 ⊕B6B32B45B69 ⊕B17B33B54B68B79⊕
B10B18B30B36B51B65 ⊕B5B23B31B47B61B70B82⊕
S27 ⊕ S13S17B52 ⊕ S5S28B42B67

B25, B86, S13, S28 − S7

5 z5

S8S21 = z5 ⊕B12 ⊕B16 ⊕B35 ⊕B45 ⊕B46 ⊕B59 ⊕B76

⊕B9B26 ⊕B14B57 ⊕B23B42 ⊕B49B81 ⊕B10 ⊕B13B87

⊕B39B72B78 ⊕B7B33B46B70 ⊕B18B34B55B69B80⊕
B11B19B31B37B52B66 ⊕B6B24B32B48B62B71B83⊕
S28 ⊕ S14S18B53 ⊕ S6S29B43B68

S14, S29 − S8

6 z6

S9S22 = z6 ⊕B13 ⊕B17 ⊕B36 ⊕B46 ⊕B47 ⊕B60 ⊕B77

⊕B10B27 ⊕B15B58 ⊕B24B43 ⊕B50B82 ⊕B11 ⊕B14B88

⊕B40B73B79 ⊕B8B34B47B71 ⊕B19B35B56B60B81⊕
B12B20B32B38B53B67 ⊕B7B25B33B49B63B72B84⊕
S29 ⊕ S15S19B54 ⊕ S7S30B44B69

S15, S30 − S9

(Continued on next page.)



Step Key
bits

Equations used for recovery Guessed bits Feedback
bits

calculated

Recovered
bits

7 z7

S10S23 = z7 ⊕B14 ⊕B18 ⊕B37 ⊕B47 ⊕B48 ⊕B61 ⊕B78

⊕B11B28 ⊕B16B59 ⊕B25B44 ⊕B51B83 ⊕B12 ⊕B15B89

⊕B41B74B80 ⊕B9B35B48B72 ⊕B20B36B57B61B82⊕
B13B21B33B39B54B68 ⊕B8B26B34B50B64B73B85⊕
S30 ⊕ S16S20B55 ⊕ S8S31B45B70

S0 S31 S10

8 z8

S11S24 = z8 ⊕B15 ⊕B19 ⊕B38 ⊕B48 ⊕B49 ⊕B62 ⊕B79

⊕B12B29 ⊕B17B60 ⊕B26B45 ⊕B52B84 ⊕B13 ⊕B16B90

⊕B42B75B81 ⊕B10B36B49B73 ⊕B21B37B58B62B83⊕
B14B22B34B40B55B69 ⊕B9B27B35B51B65B74B86⊕
S31 ⊕ S17S21B56 ⊕ S9S32B46B71

− S31, S32, B90 S11

9 z9

B53B85 = z9 ⊕B16 ⊕B20 ⊕B39 ⊕B49 ⊕B50 ⊕B63 ⊕B80

⊕B13B30 ⊕B18B61 ⊕B27B46 ⊕B14 ⊕B17B91

⊕B43B76B82 ⊕B17B37B54B74 ⊕B22B38B59B63B84⊕
B15B23B35B41B56B70 ⊕B10B28B36B52B66B75B87⊕
S32 ⊕ S12S25 ⊕ S18S22B57 ⊕ S10S33B47B72

− S32, S33, B91 B85

10 z10

B54B86 = z10 ⊕B17 ⊕B21 ⊕B40 ⊕B50 ⊕B10 ⊕B64 ⊕B81

⊕B14B31 ⊕B19B62 ⊕B28B47 ⊕B15 ⊕B18B92

⊕B44B77B83 ⊕B18B38B55B75 ⊕B23B39B60B64B85⊕
B16B24B36B42B57B71 ⊕B11B29B37B53B67B76B88⊕
S33 ⊕ S13S26 ⊕ S19S23B58 ⊕ S11S34B48B73

− S33, S34, B92 B86

11 z11

B55B87 = z11 ⊕B18 ⊕B22 ⊕B41 ⊕B51 ⊕B11 ⊕B65 ⊕B82

⊕B15B32 ⊕B20B63 ⊕B29B48 ⊕B16 ⊕B19B93

⊕B45B78B84 ⊕B19B39B56B76 ⊕B24B40B61B65B86⊕
B17B25B37B43B58B72 ⊕B12B30B38B54B68B77B89⊕
S34 ⊕ S14S27 ⊕ S20S24B59 ⊕ S12S35B49B74

− S34, S35, B93 B87

12 z12

B56B88 = z12 ⊕B19 ⊕B23 ⊕B42 ⊕B52 ⊕B12 ⊕B66 ⊕B83

⊕B16B33 ⊕B21B64 ⊕B30B49 ⊕B17 ⊕B20B94

⊕B46B79B85 ⊕B20B40B57B77 ⊕B25B41B62B66B87⊕
B18B26B38B44B59B73 ⊕B13B31B39B55B69B78B90⊕
S35 ⊕ S15S28 ⊕ S21S25B60 ⊕ S13S36B50B75

− S35, S36, B90, B94 B88

13 z13

B57B89 = z13 ⊕B20 ⊕B24 ⊕B43 ⊕B53 ⊕B13 ⊕B67 ⊕B84

⊕B17B34 ⊕B22B65 ⊕B31B50 ⊕B18 ⊕B21B95

⊕B47B80B86 ⊕B21B41B58B78 ⊕B26B42B63B67B88⊕
B19B27B39B45B60B74 ⊕B14B32B40B56B70B79B91⊕
S36 ⊕ S16S29 ⊕ S22S26B61 ⊕ S14S37B51B76

− S36, S37, B91, B95 B89

Table 4: Recovery of 14 bits of the internal state after fixing 30 bits.
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