
Universal Forgery with Birthday Paradox:
Application to Blockcipher-based Message
Authentication Codes and Authenticated

Encryptions

Fanbao Liu and Fengmei Liu

Science and Technology on Information Assurance Laboratory, Beijing, 10072, China
lfbjantie@163.com

Abstract. Universal forgery attack means that for any given message
M , an adversary without the key can forge the corresponding Message
Authentication Code (MAC) tag τ , and the pair (M, τ) can be verified
with probability 1. For a secure MAC, the universal forgery attack should
be infeasible to be implemented, and the complexity is believed to be
min(2n, 2k) queries, where n is the tag length and k is the key length of
the MAC, respectively.
In this paper, we propose a general universal forgery attack framework
to some blockcipher-based MACs and authenticated encryptions (AEs)
using birthday attack, whose complexity is about O(2n/2) queries in the
classic setting. The attack shows that such MACs and AEs are totally
insecure. However, this attack is not applicable in the quantum model,
since no inclusion of period in the input messages is guaranteed.
We also propose another some generic universal forgery attacks using
collision finding with structural input messages, by birthday paradox in
the classic setting. Since our attacks are based on the collision finding
with fixed but unknown differences (or period), such attack can also
be implemented with only O(n) queries using Simon’s algorithm in the
quantum model, which shows that such MACs and AEs are completely
broken in the quantum model.
Our attacks can be applied to CBC-MAC, XCBC, EMAC, OMAC, CMAC,
PC-MAC, MT-MAC, XOR-MAC, PMAC, PMAC with parity, Light-
MAC and some of their variants. Moreover, such attacks are also ap-
plicable to the authenticated encryptions of the third round CAESAR
candidates: CLOC, SILC, OCB, AEZ, OTR, COLM (including COPA
and ELmD) and Deoxys.

Keywords: Universal forgery, birthday attack, CBC-MAC, PMAC, CAE-
SAR, quantum model.

1 Introduction

Message Authentication Code (MAC) [DK], frequently realized through block-
cipher or hash function, aims to provide data integrity and authenticity, by

allowing the verifier to detect any alternation to the message. A MAC algorithm
takes a secret key and a message of arbitrary length as input, and outputs a
short fixed length tag.

As an important cryptographic primitive, MAC has been widely used. Mainly,
there are two kinds of blockcipher-based MACs, one is CBC-MAC [BKR94] like
and the other is PMAC [BR02] like, where the latter provides parallel processing
of messages.

Informally, a MAC consists of three algorithms: a key generation, a tag gener-
ation and a verifying algorithm. One of the most important security requirements
for a MAC with n-bit output τ is that, given a message M and a k-bit secret
key K, the computation of the MAC value τ = MACK(M) should be easy, how-
ever, it should be computationally infeasible for an adversary to get MACK(M)
without the knowledge of the key K. Mainly, there are three types of forgery:
existential, selective and universal 1.

1. Existential forgery. An adversary can create at least one message/tag pair,
(m, τ), where m has not been produced by the legitimate user. Moreover, the
adversary need not have any control over the message m, hence, the message
may be any meaningless information.

2. Selective forgery. An adversary can create the message/tag pair (m, τ),
for a message m of his choice prior to the attack.

3. Universal forgery. An adversary can create the message/tag pair (m, τ),
for any given message m.

It is widely believed that the computational complexity of existential forgery
is about O(2n/2) queries due to generic birthday attack on iterative MACs
[PvO95]. However, the computational complexity of universal forgery is about
min(2n, 2k) queries [Stab], where n is the tag length and k is the key length of
the MAC, respectively. It means that the adversary has to launch an exclusive
search attack on the tag τ or the key K, to forge the tag for the given message
m, which implies that existential forgery will not immediately cause universal
forgery attack without further complexity. In fact, we can consider an extreme
situation that the complexity of existential forgery is O(1), one can get an ex-
istential forgery with just one online computation. The complexity of universal
forgery from existential forgery is about O(2n), for the input messages are ran-
dom in the existential forgery, to find the forgery for any given message. The
complexity of such attack will not be less than the exhaustive search of universal
forgery.

CBC-MAC computes a MAC tag from a blockcipher through CBC mode,
which can not be handled in parallel. The standardization of CBC-MAC like
MACs are widely applied [(re86,X9.86,I99]. The security of CBC-MAC with fixed
length messages was first formally analyzed in [BKR94,BM01,JPS03,BPR05].
Later, EMAC was proposed to provide the ability to process arbitrary varying

1 The notion of security was first described in [GMR88], for the security of digital
signature.

2

length message using two keys [PR00]. After then, many of variants of CBC-
MAC were proposed, such as XCBC with three keys [BR05], TMAC with two
keys [KI03], OMAC with one key [IK03] standardized as CMAC [fBCMoO05].

Unlike CBC-MAC, PMAC (Parallelizable MAC) [BR02] is a parallelizable
blockcipher-based MAC, whose internal structure is suitable for parallelization.
Parallelization is vital for the Internet of things.

Authenticated encryption (AE) or authenticated encryption with associated
data (AEAD) is a cryptographic primitive [ae]. AE’s encryption scheme simulta-
neously provides confidentiality, integrity assurances on the processed messages,
and its decryption is combined with data integrity verification.

CAESAR competition (Competition for Authenticated Encryption: Secu-
rity, Applicability, and Robustness), announced in 2013, aims at fulfilling the
needs of secure, efficient and robust authenticated encryption schemes. In to-
tal, 57 candidates were submitted to the competition. To process the associated
data, a MAC must be employed in authenticated encryption. CAESAR candi-
date CLOC and SILC uses CBC-MAC to authenticated the associated message
[IMG+]. The PMAC type MACs are widely used in the CAESAR competition,
such as OCB [KR11], AEZ [HKR15,HKR], COPA [ABL+13], OTR [Min14],
POET [AFF+15,Nan14], OMD [CMN+14], ELmD [DN], COLM [ABL+b], De-
oxys [JNPS], and Minalpher [STA+a].

Post-quantum cryptography focuses on providing cryptographic primitives
resisting quantum adversary, under the pressure of quantum computing matura-
tion. In [KLLNP16], a general existential forgery attack to CBC-MAC variants,
PMAC variants MACs and authenticated encryptions with associated data was
proposed, by utilizing the quantum period finding algorithm Simon’s algorithm,
the computational complexity is about O(n) under the quantum computing set-
ting which dramatically speeds up the classical setting of O(2n/2) [PvO95]. Their
attack really threats the security of such symmetric cryptosystems, such as au-
thenticated encryption, however, we know that the existential forgery could not
be easily used to launch meaningful message forgery, since the attacker can not
control the message content.

We wonder if universal forgery attack can be launched with such low com-
plexity O(2n/2) in classic setting and O(n) in quantum model, respectively, which
eventually means that such symmetric cryptosystems are totally broken.

We recall that some iterated blockcipher-based Message Authentication Codes,
for example PMAC [MT06], can be viewed as PMACK(M) = EK(EK(x1⊕∆1)⊕
EK(x2 ⊕∆2)⊕ · · · ⊕EK(xl ⊕∆l)) = EK(f1(x1)⊕ f2(x2)⊕ · · · ⊕ fl(xl)), where
EK is a blockcipher with key K, ∆i is secret offset, l represents the blocks of
message M , and fi is permutation with secret embedded key. If we focus on
the collision of MAC, then only the inner part f1(x1) ⊕ f2(x2) ⊕ · · · ⊕ fl(xl)
should be concerned, since the outer part EK is a permutation. For simplic-
ity, if we assume that PMACK(x1||x2) = PMACK(x′1||x′2), then the equation
f1(x1)⊕ f2(x2) = f1(x′1)⊕ f2(x′2) holds.

It is interesting that a ⊕ b = c ⊕ d always implies c ⊕ b = a ⊕ d, where a,
b, c, d are variables, for the ⊕ operation. We observe that this property can be

3

utilized to transform an existential forgery to an universal one by embedding
the given messages in the colliding messages with the complexity unchanged,
for the iterated blockcipher-based MACs and AEs. For example, to forge the
corresponding PMAC tag τ , for any given 2-block message x||y, we fix the first
block message with x and randomly choose the second message yi in the first
group G1, and fix the second message with y and randomly choose the first
message xj in the second group G2. Then, there should exist a colliding pair
(x||yi, xj ||y) satisfying τi = PMACK(x||yi) = τj = PMACK(xj ||y) for some
i, j, by the generic birthday attack with two groups. We know it is true that
PMACK(x||y) = PMACK(xj ||yi), which means that we get the very tag τ for the
given 2-block message x||y, since the computation of PMAC utilizing the XOR
operation to sum the encrypted messages. However, this attack is not applicable
in the quantum model, since no period guarantee of messages is provided.

We note that once the secret difference ∆ of PMAC variants is revealed,
an universal forgery can be made directly, by carefully choosing the queried
messages. Combined with the attack in [KLLNP16], an universal forgery attack
for PMAC variants with complexity of O(n) can be implemented in the quantum
model. Moreover, the universal forgery for CBC-MAC variants can be handled
in a similar way.

Our contributions: First, We propose a generic universal forgery attack
to most of MACs and AEs, with birthday attack’s complexity O(2n/2), our at-
tack shows that such schemes are insecure in the classical setting. This is the
first generic universal forgery attack for such MACs and AEs to our knowledge.
Our attack violates the instinctive thought of that the universal forgery attack
is infeasible even under the condition that the existential forgery is available.
However, we note that such attack can not be implemented with Simon’s algo-
rithm in the quantum model, since our attack provides no guarantee that the
colliding input messages have any fixed but unknown difference, or period.

Second, based on the existential forgery attack in [KLLNP16], we propose
another some generic universal forgery attacks, exploiting the inner structure
of the messages, with complexity of O(2n/2) in the classic setting. Fortunately,
with fixed but unknown difference or period of the messages, we can mount
universal forgery attacks to such MACs and AEs with complexity about O(n)
in the quantum model, which means that such schemes are completely broken
in the quantum model.

Our attacks can be applied to CBC-MAC, XCBC, EMAC, OMAC, CMAC,
PC-MAC, MT-MAC, XOR-MAC, PMAC, PMAC with parity, LightMAC and
some of their variants. Moreover, such attacks ar also applicable to the authenti-
cated encryptions of the third round CAESAR candidates: CLOC, SILC, OCB,
AEZ, OTR, COLM (including COPA and ELmD) and Deoxys.

Organization of the Paper. The rest of this paper is organized as fol-
lows. We introduce some preliminaries in section 2. In section 3, we present a
generic universal forgery attack to most of MACs and AEs, with complexity of
about O(2n/2), in the classic setting. We show another some generic universal
forgery attacks with complexity of O(2n/2) in the classic setting, which can be

4

implemented in the quantum model with complexity of O(n) in section 4. We
summarize this paper in the last section.

2 Preliminaries

Notations Let EK denote an n-bit blockcipher using k-bit key K, and ET
K

represent a tweakable blockcipher with a tweak T . Let || denote the concatenation
operation, and pad10∗ be the function that applies 10∗ padding on n bits. Let
Σ be the sum of XORed values.

2.1 CBC-MAC variants

CBC-MAC CBC-MAC is one of the most used MAC constructions, which is
based on blockcipher in the CBC mode. However, the basic CBC-MAC is only
secure when the queries are prefix-free. CBC-MAC is defined as follows.

CBC-MACK(M)

y0 = 0,
yi = EK(yi−1 ⊕ xi), for i ≤ m,
τ = f(ym)

where f is a truncation function. The security of CBC-MAC was first analyzed
in [BKR94].

EMAC An early strengthened version of CBC-MAC with two keys [PR00],
aims to provide the ability of handling varying length messages. EMAC further
encrypts the CBC-MAC value by a new key K2 as follows

τ = EMACK1,K2
(M) = EK2

(CBC-MACK1
(M))

XCBC XCBC was proposed to efficiently process messages with arbitrary
lengths [GD02,BR05]. XCBC uses three keys, one key K1 with k-bit for the
blockcipher E, the other two n-bit keys K2 and K3 are used in the last message
block processing with different conditions. If the message length is the multi-
ple of the block length n, set K = K2, and no padding is done. Otherwise, set
K = K3, and pad the last message with 10∗.

XCBCK1,K2,K3
(M)

y0 = 0,
yi = EK1(yi−1 ⊕ xi), for i ≤ m− 1,
τ = EK1(ym−1 ⊕ xi ⊕K)

TMAC TMAC, a two key version of XCBC, was introduced by Kurosawa and
Iwata in [KI03]. TMAC is obtained directly from XCBC by replacing (K2, K3)
with (K2 · u, K2), where u is some non-zero constant.

5

OMAC and CMAC OMAC, a one key version of XCBC, was introduced
by Iwata and Kurosawa in [IK03]. OMAC has two versions for different key
generations. OMAC1 replaces (K2, K3) with (L · u, L · u2), where u is some
constant and L is computed by L = EK(0n). OMAC2 replaces (K2, K3) with
(L · u, L · u−1). OMAC1 was recommended by NIST as CMAC [fBCMoO05].

PC-MAC and MT-MAC PC-MAC and MT-MAC, both proposed by Mine-
matsu and Tsunoo [MT06], aims to provide higher performance. PC-MAC is
an efficient periodic CBC-like construction, and MT-MAC is another provable
secure efficient MAC based on the modified tree hash.

2.2 PMAC variants

PMAC PMAC [BR02] is parallelizable blockcipher-based MAC, whose internal
structure XE with secret offsets ∆i derived from the secret key to turn the block
cipher into a tweakable block cipher, is suitable for parallelization. The PMAC
algorithm is defined as

PMACK(M)

{
ci = EK(xi ⊕∆i),
τ = EK(xm ⊕Σci ⊕∆f)

where ∆f means that the last message block xm is processed differently upon if
the length of the whole message is multiple of the block length n. We omit the
generation of the secret offsets because they are irrelevant to our attack.

PMAC with parity PMAC with parity is a variant of PMAC with four differ-
ent keys, whose security bound is of the form O(q2/2n +σq/22n) [Yas12]. PMAC
with parity is shown in Fig. 1.

Fig. 1. PMAC with parity [Yas12]

6

LightMAC LightMAC, a MAC mode of operation specifically suited to lightweight
applications [LPTY16]. Its security bound do not depend on the message length,
allowing an order of magnitude more data to be processed per key. LightMAC
is shown in Fig. 2.

Fig. 2. LightMAC [LPTY16]

XOR-MAC XOR-MAC, proposed by Bellare et al. in 1995 [BRR95], is a paral-
lelizable MAC, it is XORed together finite-input-length pseudorandom functions
(PRF) to create stateful and randomized MACs. XOR-MAC is proven secure,
and has bounds with no message length dependence. The lightMAC is similar
to XOR-MAC [BRR95].

2.3 CAESAR candidates of the third round

CAESAR competition (Competition for Authenticated Encryption: Security,
Applicability, and Robustness), announced in 2013, aims at fulfilling the needs of
secure, efficient and robust authenticated encryption schemes. In total, 57 candi-
dates were submitted to the competition. Now, there are 15 candidates remains
in the third round. Mainly, there are two kinds of MACs used, one is based on
CBC-MAC or PMAC, the other is based on sponge construction.

CLOC and SILC [IMG+] both use CBC-MAC to authenticate the associ-
ated data. The PMAC type MACs are widely used in the third round of CAE-
SAR competition, such as OCB [KR11], AEZ [HKR15], COLM [ABL+b] (COPA
[ABL+13], ELmD [DN]), OTR [Min14], Deoxys [JNPS].

CLOC and SILC At abstract level CLOC is a straightforward combination of
CFB and CBC MAC, where CBC MAC is called twice for processing associated
data and a ciphertext, and CFB is called once to generate a ciphertext [IMG+].
SILC is built upon CLOC, and inherits the overall structure. SILC is a combina-
tion of CFB and CBC MAC, where they use functions fix1 and zpp to logically
separate CFB and CBC MAC. The processing of associated data in CLOC and
SILC are shown in Fig. 3 and Fig. 4, respectively.

7

Fig. 3. Processing of Associated data in CLOC authenticated encryption [IMG+]

Fig. 4. Processing of Associated data in SILC authenticated encryption [IMG+]

AEZ One can view AEZ-prf as an approximation of an AES-based PMAC in
which all but the final blockcipher call have the number of AES rounds reduced
from 10 to 4 [HKR].

ELmD ELmD, designed by Datta and Nandi [DN], is fully parallelizable and
online. It is an Encrypt-Linear-mix-Decrypt block cipher authentication mode
accepting associated data, and its structure is similar to some other authenti-
cated encryption schemes such as COPA, Marble, and SHELL. The processing
of associated data in ELmD applies a variant of PMAC, which is shown as Fig. 5

COPA COPA has been designed to allow for high performance in parallel en-
vironments and to maintain security even if nonce is reused [ABL+a]. The pro-
cessing of associated data in COPA applies a variant of PMAC, which is shown
as Fig. 6

COLM At a high level, COLM can be seen as a block cipher based Encrypt-
Linear mix-Encrypt mode, designed with the goal to achieve online misuse re-
sistance, to be fully parallelizable, and to be secure against block-wise adaptive

8

Fig. 5. Processing of Associated data in ELmD authenticated encryption [DN]

Fig. 6. Processing of Associated data in COPA Authenticated Encryption [ABL+a]

adversaries [ABL+b]. COLM resembles the best of both COPA [ABL+a] and
ELmD [DN]. The processing of associated data in COLM applies a variant of
PMAC, which is shown in Fig. 7.

Fig. 7. Processing of Associated data in COLM authenticated encryption [ABL+b]

Deoxys Deoxys is designed to provide a sound ad-hoc tweakable block cipher
based on AES [JNPS]. Indeed, the main idea heavily exploited in the design

9

of Deoxys is the introduction of an efficient tweakable block cipher Deoxys-
BC, belonging to the family of the well-known AES-based primitives. Speed
benchmarks show that Deoxys achieves almost the same speed as OCB while
offering much higher security than OCB. Deoxys has two versions, one Deoxys-
I is nonce-respecting, the other Deoxys-II is nonce-reuse. The processing of
associated data in Deoxys applies a variant of PMAC, which is shown in Fig. 8.

Fig. 8. Processing of Associated data in Deoxys authenticated encryption [JNPS]

OTR Nonce-respecting OTR has two versions depending on associated data
processing, ADP [Min]. For parallel ADP version, the processing of AD is based
on (a variant of) PMAC, and the computation can be done in parallel to the
processing of plaintext/ciphertext. This is to maximize the parallel computation
capability. For serial ADP version, the processing of AD is based on CMAC,
hence is inherently serial. The processing of associated data in OTR with a
CBC-MAC and PMAC variants are shown in Fig. 9 and Fig. 10, respectively.

Fig. 9. Processing of Associated data with CBC-MAC variant in OTR authenticated
encryption [Min]

2.4 Collision Searching in the quantum model

Simon’s problem and algorithm Simon’s problem says that: Given a boolean
function f : {0, 1}n → {0, 1}n and the promise that there exists s ∈ {0, 1}n such

10

Fig. 10. Processing of Associated data with PMAC variant in OTR authenticated
encryption [Min]

that for any (x, y) ∈ {0, 1}n, [f(x) = f(y)] ⇔ [x ⊕ y ∈ {0n, s}], the goal is to
find s [Sim97].

This problem can be solved by searching for collision in the classic setting,
where the input messages have a fixed but unknown difference, with complexity
about O(2n/2). However, this problem can be solved by Simon’s algorithm with
quantum complexity of O(n) in the quantum model, which dramatically speed
up the process.

The original formulation of Simon’s algorithm is for functions whose collisions
happen only at some hidden period, which also means a fixed but unknown
difference. In [KLLNP16], the authors extended it to functions that have more
collisions, which immediately leads to a better analysis of previous applications
of Simon’s algorithm in the quantum model.

How to apply Simon’s algorithm, [KLLNP16]. The strategy is that:
exhibit a new function f for the encryption oracle EK : {0, 1}n → {0, 1}n, that
satisfies Simon’s promise with two additional properties. First, The adversary
can access the EK in the quantum model, which means that he can query func-
tion f in superposition. Second, once the attacker get the information of s, it
is sufficient to break the cryptographic scheme. In particular, the value s will
usually be the difference in the internal state after processing a fixed pair of
messages (α0, α1), i.e. s = EK(α0) ⊕ EK(α1). The input of f will be inserted
into the state with the difference s so that f(x) = f(x⊕ s).

For simplicity, we keep in mind that if the colliding input messages have
fixed but unknown difference s, the complexity to find such a difference is about
O(2n/2) in the classic model, and about O(n) in the quantum model, respec-
tively. If find such a difference is critical for the cryptographic scheme, then it
immediately means broken in the quantum model.

3 A generic universal forgery attack in the classic setting

In this paper, we mainly focus on the deterministic message authentication code
and authenticated encryption with nonce-reuse model, there are two reasons,
first, we think that the assumption of nonce-respecting is not immediately avail-
able in practice, for example, for the randomly generated l-bit nonce, there will

11

be a collision after about 2l/2 accessing. Second, we note that the MACs of the
associated data used in authenticated encryptions are basically deterministic,
while the plaintext to be encrypted applying different nonces to be probability,
and the problem of different nonces used in authentication encryption can be
handled well in the quantum model in [KLLNP16].

3.1 Attack strategy

In general, the strategy of a generic existential forgery attack for function f is
shown as follows. First, the attacker finds a colliding input message pair (x, x′)
satisfying f(x) = f(x′), by querying the oracle f with birthday attack complex-
ity. Second, the attacker queries τ = f(x||y), for a message y. Finally, the tag τ
is also valid for the un-queried message x′||y. However, this kind of attack is not
suitable for the generic universal forgery, we must make some changes.

In the following, we show how to launch a generic universal forgery attack
while the existential forgery attack is available with collision searching by birth-
day attack. We recall that the equation f1(x1) ⊕ f2(x2) = f1(x′1) ⊕ f2(x′2) will
always holds, if the equation f1(x′1)⊕ f2(x2) = f1(x1)⊕ f2(x′2) holds, where f1
and f2 are both permutations 2.

For any given message x1||x2, we use the above property to launch a generic
universal forgery attack, for colliding messages with 2-block width. For simplicity,
we search a collision that f(x1||x′2) = f(x′1||x2) with fixed x1 and x2, where
message x′i are randomly generated 1-block messages in collision searching, which
also can be used for existential forgery directly.

Luckily, f(x1||x′2) = f(x′1||x2) can be further handled as f1(x1) ⊕ f2(x′2) =
f1(x′1) ⊕ f2(x2) in most of blockcipher-based iterated MACs, like CBC-MAC
or PMAC. Then, if we fix the 1-block message x1 and message x2, and search
collisions with generic birthday attack in two groups x1||xj2 and xi1||x2 with 2n/2

elements, where i, j ≤ 2n/2. Finally, with high probability, we can find such a
collision pair (x1||x′2, x′1||x2) satisfying f1(x′1)⊕ f2(x2) = f1(x1)⊕ f2(x′2), which
will directly leads to that f1(x1)⊕f2(x2) = f1(x′1)⊕f2(x′2), then finally, we have
another collision pair (x1||x2, x′1||x′2). If we query the oracle f for the tag τ of
message x′1||x′2, then the corresponding tag τ is also valid with probability 1, for
the given message x1||x2, the generic universal forgery succeeds.

3.2 How to launch universal forgery attack with birthday attack

We further use a generic birthday attack with two groups to implement a generic
universal forgery for any given message x1||x2|| · · · ||xl, where l ≥ 2 3.

First, randomly generate 2n/2 1-block messages xi2 in group G1, where the
first message block is the fixed x1 and i ≤ 2n/2, finally, query x1||xi2 to the
oracle MAC, there will be 2n/2 elements of corresponding MAC tags τi =
MACK(x1||xi2) returned in G1;

2 This property was first observed in [JWYX09] to launch the second pre-image attack.
3 If l = 1, there will no collision happens, since f1 and f2 are both permutations.

12

Second, randomly generate 2n/2 1-block messages xj1 in group G2, where

the second message block is the fixed x2 and j ≤ 2n/2, finally, query xj1||x2
to the oracle MAC, there will be 2n/2 elements of corresponding MAC tags
τj = MACK(xj1||x2) returned in G2;

There should exist τi = τj for some i, j with high probability, by the birthday

paradox. So, we will get the key information that f1(x1) ⊕ f2(xi2) = f1(xj1) ⊕
f2(x2), for the iterated blockcipher-based MACs.

Third, query the message xj1||xi2||x3|| · · · ||xl to the oracle MAC, a correspond-
ing tag τ will be returned.

We note that the tag τ is also valid for the given message x1||x2||x3|| · · · ||xl,
which is never queried by the adversary to the oracle MAC.

Finally, the generic universal forgery attack succeeds.

Application to CBC-MAC variants We recall that all variants of CBC-MAC
utilizing the CBC mode operation, here, we focus on the EMAC construction
[PR00] for simplicity, however, this attack is suitable for all variants of CBC-
MAC, including the MAC part of third round CAESAR candidate CLOC and
SILC.

We note that EMAC further encrypts the CBC-MAC value by a new key K2

as follows
τ = EMACK1,K2

(M) = EK2
(CBC-MACK1

(M))

For a colliding message pair (X,X ′) of EMAC, it should be satisfied that
EMACK1,K2(X) = EMACK1,K2(X ′), which eventually means that we have
CBC-MACK1

(X) = CBC-MACK1
(X ′), since EK2

is a permutation. We point
out that f1(x) = EK1

(x ⊕ 0) and f2(x) = x for the first two message blocks in
CBC-MAC variants. If message length l ≥ 2, we can fix the rest of messages as
constant, for simplicity.

Hence, for a 2-block colliding message pair, we should just consider the sit-
uation that EK1

(x1) ⊕ x′2 = EK1
(x′1) ⊕ x2. To implement a generic universal

forgery for any given message x1||x2|| · · · ||xl, we construct the first group G1

with the fixed x1, the group G2 with the fixed x2, and then we should get a
collision that τi = τj with high probability. We know that

EK1(x1)⊕ x′2 = EK1(x′1)⊕ x2 ⇔ EK1(x1)⊕ x2 = EK1(x′1)⊕ x′2

Finally, we query EMAC for the tag τ of the message x′1||x′2||x3||···||xl, where
the returned tag τ is also valid for the un-queried given message x1||x2|| · · · ||xl
with probability 1, the universal forgery attack for EMAC succeeds.

Application to PMAC variants We recall that all variants of PMAC utilizing
the notion of tweakable blockcipher with secret offsets, here, we focus on the
PMAC construction [BR02] for simplicity. However, this attack is also suitable
for all variants of PMAC, including the MAC part of the third round of CAESAR
candidates, like AEZ, OCB, OTR, COLM (including COPA and ELmD) and
Deoxys.

13

We note that PMAC further encrypts the XORed value generated in parallel
by the same key K, here, we focus the 2-block message where the final message
is ignored. We point out that f1(x) = EK(x⊕∆1) and f2(x) = EK(x⊕∆2) for
the first two message blocks in PMAC and its variants.

PMACK(M)

{
ci = EK(xi ⊕∆i),
τ = EK(c1 ⊕ c2)

For a colliding message pair (x1||x′2, x′1||x2) with 2-block, it should be satisfied
that c1⊕c′2 = c′1⊕c2, which eventually means that EK(x1⊕∆1)⊕EK(x2⊕∆2) =
EK(x′1 ⊕∆1)⊕ EK(x′2 ⊕∆2), since EK is a permutation.

To implement a generic universal forgery for any given message x1||x2||···||xl,
we construct the first group G1 with the fixed x1, the second group G2 with the
fixed x2, and then we should get a collision that τi = τj with high probability,
by the birthday paradox.

Finally, we query PMAC for the tag τ of the message x′1||x′2||x3||···||xl, where
the returned tag τ is also valid for the un-queried given message x1||x2|| · · · ||xl
with probability 1, the universal forgery attack for PMAC succeeds.

3.3 Discussions

Application to authenticated encryptions with nonce-reuse We know
that the forgery of MAC is the forgery of authenticated encryption schemes,
the above attack can be immediately implemented to the third round CAE-
SAR candidates CLOC, SILC, AEZ, COLM (including COPA and ELmD) and
Deoxys.

Complexity. We know that the queries made to the oracle MAC are about
O(2n/2) in the classic setting, by the birthday paradox, and the success prob-
ability 1 of such universal forgery can also be reached, through enlarging the
capacity of the above two groups.

Drawbacks. First, the above attack learns nothing about the critical secret
information like ∆i used in PMAC variants, which can be used to launch further
existential forgery attack, and sometimes key recovery attack [BEK16]. Second,
such attack can not be implemented by Simon’s algorithm in the quantum model,
since the equation τi = τj , implying f1(xj1)⊕f2(xi2) = f1(x1)⊕f2(x2) = Const,
provides no guarantee of hidden periodicity for the collided messages.

3.4 Further application to AEs with TBC in the nonce-respecting
model

Our attack is also applicable to the AEs with tweakable blockcipher in the nonce-
respecting model in the classic setting, for example, OCB and Deoxys-I. We
recall that OCB or Deoxys-I instantiated with a TBC is provable secure up to
O(2n), however, our attack will show that the claim of security bound of such
schemes is totally based on the ideal “nonce-respecting” model itself, which may
not be realistic in practice, like “one-time pad”. An universal forgery attack will

14

happen with complexity only of O(2n/2), even with one repeated nonce in the
whole system.

Deoxys is designed to provide a sound ad-hoc tweakable block cipher based on
AES [JNPS]. Deoxys-I is for adversaries that are assumed to be nonce-respecting,
as OCB and OTR, meaning that the user must ensure that the nonce valueN will
never be used for encryption twice with the same key. The Message processing
for the nonce-respecting mode in Deoxys-I is shown in Fig. 11.

Fig. 11. Message processing for the nonce-respecting mode in Deoxys-I authenticated
encryption [JNPS]

We know that auth = ⊕la
i=1E

2||i
K (Ai) in both Deoxys-I and Deoxys-II, where

la is the blocks of the associated data. Here we just consider that the associated
data is a multiples of block size n, the other condition can be processed similarly.

The tag generation with message processing that E
1||N ||l
K (⊕l

i=1E
0||N ||i
K (N,Mi))

can be viewed as a whole of f3(N,M) in Deoxys-I, for simplicity. So, the tag τ of

Deoxys-I can be rewritten as τ = Auth⊕f3(N,M) = ⊕la
i=1E

2||i
K (Ai)⊕f3(N,M),

and finally, τ = E
2||1
K (A1) ⊕ E2||2

K (A2) ⊕ f3(N,M), while we just consider the
2-block associated data for simplicity.

To forge the corresponding tag τ for the given message A1||A2|| · · · ||Ala, M ,
where M can be anything fixed, we take actions as follows.

First, randomly generate 2n/2 message blocks Ai
2 in group G1, where i ≤ 2n/2

and A1 is fixed, and query A1||Ai
2||M to the oracle Deoxys-I, there will be 2n/2

elements of corresponding Deoxys-I tags τi returned;

Randomly generate 2n/2 message blocks Aj
1 in group G2, where j ≤ 2n/2

and A2 is fixed, and query Aj
1||A2||M to the oracle Deoxys-I, there will be 2n/2

elements of corresponding Deoxys-I tags τj returned;

There should exist τi = τj for some i, j with high probability, by the birthday
paradox. So, we will get a corresponding information that

E
2||1
K (A1)⊕ E2||2

K (Ai
2)⊕ f3(N i,M) = E

2||1
K (Aj

1)⊕ E2||2
K (A2)⊕ f3(N j ,M)

15

From the above equation we can immediately know that

E
2||1
K (A1)⊕ E2||2

K (A2)⊕ f3(N i,M) = E
2||1
K (Aj

1)⊕ E2||2
K (Ai

2)⊕ f3(N j ,M)

and we also know that

E
2||1
K (A1)⊕ E2||2

K (A2)⊕ f3(N j ,M) = E
2||1
K (Aj

1)⊕ E2||2
K (Ai

2)⊕ f3(N i,M)

It means that we know the very tags of the message A1||A2|| · · · ||Ala, M
with different nonces N i and N j are equal to the tags of Aj

1||Ai
2||A3|| · · · ||Ala, M

with corresponding nonces N j and N i, respectively. If we can query the latter
message with a nonce only repeated once, where only one nonce is reused once
in the whole system, the scheme will be totally broken with birthday attack
complexity.

However, we can not query none of the messages Aj
1||Ai

2||A3|| · · · ||Ala, M
with different nonces N j and N i to the oracle Deoxys, even we know that their
tags are equal with probability 1, since the system assumes that the nonce will
never be reused.

However, we know that the ideal nonce-respecting model is something like
“one-time pad”, which is impractical in reality.

We argue that the security claim of 2n is meaningless, since the randomly
generated nonce as long as n-bit will be reused in any case, by the birthday para-
dox. Moreover, it is obviously a bad idea to develop a dedicated synchronization
protocol to support such AE schemes with nonce-respecting model, in case of
network communication between two users.

3.5 Direct application to CLOC, SILC and Deoxys-II with
nonce-reuse

The universal forgery attack can be also directly applied to the AEs of the third
round of CAESAR candidates: CLOC, SILC and Deoxys-II, under the assump-
tion of that the MAC part of such schemes are fixed or NULL. An universal
forgery attack will happen with complexity of only O(2n/2), in the classic set-
ting. Here, we first discuss Deoxys-II, and leave the more complicated cases
CLOC and SILC in the later.

Deoxys-II Deoxys-II is for adversaries that are assumed to be nonce-reusing.
Unlike one pass AEs, the message processing is divided into two parts: the au-
thentication part for tag generation and the encryption part for ciphertext.
The Message processing in the authentication part and encryption part with-
out padding in Deoxys-II are shown in Fig. 12 and Fig. 13, respectively. Here,
we omit the case of messages with padding, which can be processed similarly.

To implement a generic universal forgery for any given message m1||m2|| ·
· · ||ml in Deoxys-II, where we assume the MAC part is constant or NULL, we
construct the first group G1 with the fixed m1, the second group G2 with the

16

Fig. 12. Message processing in the authentication part of the nonce-misuse resisting
mode without padding in Deoxys-II [JNPS]

Fig. 13. Message processing in the encryption part of the nonce-misuse resisting mode
without padding in Deoxys-II [JNPS]

fixed m2, and then we should get a collision that τi = τj with high probability,
by the birthday paradox.

Then, we query Deoxys-II for the tag τ of the message N, m′1||m′2||m3|| ·
· · ||ml, where the returned tag τ is also valid for the un-queried given message
m1||m2|| · · · ||ml with probability 1. We also get the corresponding ciphertexts
c′1||c′2||c3|| · · · ||cl for m′1||m′2||m3|| · · · ||ml.

However, the universal forgery attack is not completed, since the ciphertexts
will also be changed for the altered messages m1||m2|| · · · ||ml. Luckily, we can
directly gain the corresponding ciphertexts c1 and c2 as c1 = m1 ⊕ (m′1 ⊕ c′1)
and c2 = m2 ⊕ (m′2 ⊕ c′2).

Finally, c′1||c′2||c3|| · · · ||cl||τ is the universal forgery for the given messages
m1||m2|| · · · ||ml.

The universal forgery attack for Deoxys-II succeeds.

CLOC and SILC CLOC and SILC are designed for adversaries that are as-
sumed to be nonce-reusing. Sine CLOC and SILC are similar, here, we just
describe the attack to CLOC. Like Deoxys-II, the message processing of CLOC

17

is also divided into two parts: the authentication part for tag generation and the
encryption part for ciphertext. The Message processing in the authentication
part and encryption part without padding in CLOC are shown in Fig. 14 and
Fig. 15, respectively. Here, we omit the case of messages with padding, which
can be processed similarly.

Fig. 14. Message processing in the authentication part of the nonce-misuse resisting
mode without padding in CLOC [IMG+]

Fig. 15. Message processing in the encryption part of the nonce-misuse resisting mode
without padding in CLOC [IMG+]

We note that the input of the tag generation of CLOC, with CBC-MAC like
structure shown in Fig. 14, is the ciphertext, instead of plaintext. To implement

18

our universal forgery attack, we have to fix the corresponding values of C[1] and
C[2] for the given message m1||m2. To fix the value of C[1] is easy, we should
just use the encrypted output of the given message m1, by the encryption part
for ciphertext shown in Fig. 15. There is more work to do, to fix the value of
C[2], even we can not query to the CLOC oracle for m1||m2’s encryption result.
However, we can query m1||x for its output C1||C ′2, where x can be anything but
m2. Then we can compute C2 = (m′2 ⊕ C ′2)⊕m2, by utilizing the CFB mode.

To implement a generic universal forgery for any given message m1||m2 in
CLOC, where we assume the MAC part is constant or NULL, we must construct
two groups as usual. We construct the first group G1 with the fixed m1, which
means the fixed C[1] in the authentication part of CLOC. However, it is more
complicated to construct the second group G2 with fixed C[2], since we can
not directly control the content of the second ciphertext to be C[2]. We have
to randomly generate a temp message block temp every time, and first query
mj

1||temp, with the corresponding C[1]j ||C[2]temp||τ temp returned, we compute

the targeted message mj
2 = C[2]⊕ (C[2]temp⊕ temp), where 1 ≥ j ≥ 2n/2. Then,

we query mj
1||m

j
2, with the corresponding C[1]j ||C[2]||τ j returned. So, the total

on-line queries in the second group G2 with fixed C[2] is about 2× 2n/2.

We should get a collision that τi = τj with high probability by the birth-
day paradox, where C[1]||C[2]i with τi and C[1]|j |C[2] with τj , respectively.

Moreover, we note that the messages are m1||mi
2 with τi and mj

1||m
j
2 with τj ,

respectively, and there is no targeted message m2.

Then, we query CLOC for the message mj
1||mi

2, and get the corresponding
C[1]j ||C[2]ji||τ ji, where C[2]ji 6= C[2]i, and we must modify m′′2 = C[2]i⊕(mi

2⊕
C[2]ji) to keep C[2]i unchanged.

Finally, we query CLOC for the message mj
1||m′′2 , where the returned tag

τ is also valid for the un-queried given message m1||m2 with probability 1.
We also get the corresponding ciphertexts C[1]j ||C[2]′′ for mj

1||m′′2 , where we
should replace the ciphertexts C[1]j ||C[2]′′ with C[1]||C[2] for the forgery. Fi-
nally, C[1]||C[2]||τ is a valid forgery for the given message m1||m2.

4 Another generic universal forgery attacks can be
applied in the quantum model

4.1 CBC-MAC variants

We recall that existential forgery attacks succeeds with only complexity of O(n)
in the quantum model [KLLNP16], here, we use the equation f1(x1)⊕ f2(x2) =
f1(x′1)⊕f2(x′2) further with minor modification, to extend their attack to launch
universal forgery attack.

In the following, we show how to use a generic birthday attack with two
groups to implement an universal forgery attack for any given message x1||x2|| ·
· · ||xl, where l ≥ 2. We recall that in CBC like MAC, f1(x) = EK1(x) and
f2(x) = x.

19

Randomly generate 2n/2 1-block messages xi2 in group G1, where i ≤ 2n/2,
and query x1||xi2 to the oracle MAC, there will be 2n/2 elements of corresponding
MAC tags τi returned;

Randomly generate x′1 6= x1, and generate 2n/2 message blocks xj2 in group

G2, where j ≤ 2n/2, and query x′1||x
j
2 to the oracle MAC, there will be 2n/2

elements of corresponding MAC tags τj returned;
There should exist τi = τj for some i, j with high probability, by the birthday

paradox. So, we will get the key information that EK1(x1)⊕xi2 = EK1(x′1)⊕xj2.
Query the message x′1||x2 ⊕ (EK1

(x1) ⊕ EK1
(x′1))||x3|| · · · ||xl to the oracle

MAC, a corresponding tag τ will be returned.
We note that the tag τ is also valid for the given message x1||x2|| · · · ||xl with

probability 1, which is never queried by the adversary to the oracle MAC. The
attack succeeds.

Here, we recall that the existential forgery attack in [KLLNP16] uses random
block messages α0 and α1 to find the key information x⊕ x′ = f1(α0)⊕ f1(α1).
However, we use the fixed x1 directly to launch universal forgery attack, instead
of existential forgery, with the same complexity.

Complexity. We know that the queries made to the oracle MAC are about
O(2n/2), by the birthday paradox, in the classic setting. The success probability
1 of such universal forgery can also be reached, through enlarging the capacity
of the above two groups.

Advantage. Such attack can be implemented by Simon’s algorithm in the
quantum model with complexity O(n), since the equation τi = τj provides

the guarantee of hidden periodicity for the collided messages, with xi2 ⊕ x
j
2 =

EK1(x1)⊕ EK1(x′1).
Drawback. This attack is not applicable to PMAC variants, no inclusion of

hidden periodicity will be provided for the messages of PMAC variants.

Direct application to CLOC and SILC The above attack is also directly
applicable to CLOC and SILC in the nonce-reuse model, instead of the MAC
part, with constant associated data. The application to CLOC and SILC with
fixed message m1||m2 is shown as follows.

Randomly generate 2n/2 1-block messages mi
2 in group G1, where i ≤ 2n/2,

and query m1||mi
2 to the oracle CLOC or SILC, there will be 2n/2 elements of

corresponding outputs C[1]||C[2]i||τi returned;
First randomly generate and fix m′1 6= m1, and then randomly generate

2n/2 1-block messages mj
2 in group G2, where j ≤ 2n/2, and query m′1||m

j
2 to

the oracle, there will be 2n/2 elements of corresponding outputs C[1]′||C[2]j ||τj
returned;

There should exist τi = τj for some i, j with high probability, by the birthday
paradox. So, we will get the key information that ∆ = EK(C[1])⊕EK(C[1]′) =
mi

2 ⊕ m
j
2. We should also compute the corresponding ciphertext C[2] = m2 ⊕

(mi ⊕ C[2]i), to be used in the next step.
Randomly generate 1-block messagemtemp

2 , and query the messagem′1||m
temp
2

to the oracle, a corresponding C[1]′||C[2]temp||τtemp will be returned.

20

Compute m′2 = C[2]⊕∆⊕(C[2]temp⊕mtemp
2), and query the message m′1||m′2

to the oracle, a corresponding C[1]′||C[2]′||τ will be returned.
We note that C[1]||C[2]||τ is also valid for the given message m1||m2 with

probability 1, which is never queried by the adversary. The universal forgery
attack to CLOC or SILC succeeds.

4.2 PMAC variants

In the following, we show how to use birthday attack to implement an universal
forgery attack for any given message x1||x2|| · · · ||xl, where l ≥ 2.

Randomly generate 2n/2 message blocks yi||yi, where i ≤ 2n/2, and query
yi||yi to the oracle MAC, there will be 2n/2 elements of corresponding MAC tags
τi returned, this is the same as in [KLLNP16];

There should exist τi = τ ′i for some i, i′ with high probability, by the birthday

paradox. So, we will get the key information that ∆0 ⊕ ∆1 = yi ⊕ yi′ , where
yi ⊕ yi′ is known.

Query the message x2 ⊕ ∆0 ⊕ ∆1||x1 ⊕ ∆0 ⊕ ∆1||x3|| · · · ||xl to the oracle
MAC, a corresponding tag τ will be returned. Here, we recall that the existential
forgery attack in [KLLNP16] queries the 2-block messages m||m for the existen-
tial forgery. However, we use the 2-block message x2 ⊕∆0 ⊕∆1||x1 ⊕∆0 ⊕∆1

directly to launch universal forgery attack, instead of existential forgery, with
the same complexity.

We note that the tag τ is also valid for the given message x1||x2|| · · · ||xl,
which is never queried by the adversary to the oracle MAC. The attack succeeds.

The MAC part of the third round of CAESAR candidates, like AEZ, OCB,
OTR, COLM (COPA) and Deoxys (except ELmD), suffer this attack.

Complexity. We know that the queries made to the oracle MAC are about
O(2n/2), by the birthday paradox, and the success probability 1 of such universal
forgery can also be reached, through enlarging the capacity of the above two
groups.

Advantage. Such attack can be implemented by Simon’s algorithm in the
quantum model with complexity O(n), since the equation τi = τj provides the

guarantee of hidden periodicity for the collided messages, with ∆0⊕∆1 = yi⊕yi′ .
Moreover, this attack is much powerful, once the difference of the secret offsets is
recovered, further universal forgery attack can be launched with just one oracle
access, with probability 1.

Drawback. This attack can not be applied to such MACs that the compu-
tation is related to their position, for example, CAESAR candidate ELmD. This
attack is applicable to CBC-MAC variants, neither, since CBC-MAC variants
use no secret offset.

Why can not be applied to PMAC variant in ELmD. There should
exist 2-block message pair yi||yi and yj ||yj satisfying yi ⊕ yj = ∆1 ⊕∆2, which
means that EK(yi ⊕ ∆1) = EK(yj ⊕ ∆2) and EK(yj ⊕ ∆1) = EK(yi ⊕ ∆2).
However, the inner 2-block computation is 2 · EK(yi ⊕∆1)⊕ EK(yi ⊕∆2) and
2 · EK(yj ⊕ ∆1) ⊕ EK(yj ⊕ ∆2) by using the ρ function further in ELmD, let

21

a = EK(yi ⊕∆1) and b = EK(yi ⊕∆2), the inner 2-block computation outputs
will be 2·a⊕b and 2·b⊕a, respectively. It means that even if such yi, yj exists, we
can not observe that collision, for the corresponding outputs are totally different.

5 Discussion and Conclusion

This paper discusses how to use an existential forgery attack with birthday
paradox to launch a generic universal forgery attack, for the blockcipher-based
message authentication codes and authenticated encryptions. Our attacks are
also applicable to the third round CAESAR candidates with associated data
protected by CBC-MAC or PMAC variants, they are OCB, CLOC, SILC, AEZ,
OTR, COLM (including COPA and ELmD) and Deoxys. Our results show im-
mediately that an existential forgery means an universal forgery for so many
of blockcipher-based MACs 4, why this happens? We already know that an ex-
istential forgery attack for a hash based MAC will not immediately cause an
universal forgery attack. For example, the existential forgery attack of HMAC
[BCK96] can be launched also by birthday attack, however, an universal forgery
attack to such MAC is believed to be an exhaustive search with complexity of
2n queries. We also note that a variant of HMAC with just one key, named
H2-MAC [Yas09], is too much susceptible to equivalent key recovery attack by
using birthday attack with two groups [LXS12], however, the complexity of the
universal forgery attack is still 2n queries, for any given message.

We conclude that the use of XOR greatly decrease the security of such
blockcipher-based MACs, and we suggest that if the XOR operation is replaced
with modular 2n, an existential forgery attack will not immediately cause an
universal forgery one any more. Hence, we wonder that the design of blockcipher-
based MACs and authenticated encryption should be reevaluated.

Acknowledgments

This work was partially supported by Foundation of Science and Technology on
Information Assurance Laboratory under Grant 6142112010202.

References

[ABL+a] Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Elmar
Tischhauser, and Kan Yasuda. Aes-copa v.2. caesar submission, septem-
ber 2016.

[ABL+b] Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Elmar
Tischhauser, and Kan Yasuda. Colm v1. caesar submission, september
2016.

4 We wonder if such attack is also applicable to Sponge construction, which is similar
to CBC mode to some extent.

22

[ABL+13] Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Elmar
Tischhauser, and Kan Yasuda. Parallelizable and Authenticated Online
Ciphers, pages 424–443. Springer Berlin Heidelberg, Berlin, Heidelberg,
2013.

[ae] Authenticated encryption. retrived april, 2017
https://en.wijipedia.org/wiki/authenticaed encryption.

[AFF+15] Farzaneh Abed, Scott Fluhrer, Christian Forler, Eik List, Stefan Lucks,
David McGrew, and Jakob Wenzel. Pipelineable On-line Encryption,
pages 205–223. Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.

[BCK96] Mihir Bellare, R. Canetti, and Hugo Krawczyk. Keying hash functions for
message authentication, pages 1–15. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1996.

[BEK16] Aslı Bay, Oğuzhan Ersoy, and Ferhat Karakoç. Universal Forgery and Key
Recovery Attacks on ELmD Authenticated Encryption Algorithm, pages
354–368. Springer Berlin Heidelberg, Berlin, Heidelberg, 2016.

[BKR94] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The Security of Cipher
Block Chaining, pages 341–358. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 1994.

[BM01] Karl Brincat and Chris J. Mitchell. New CBC-MAC Forgery Attacks,
pages 3–14. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.

[BPR05] Mihir Bellare, Krzysztof Pietrzak, and Phillip Rogaway. Improved Secu-
rity Analyses for CBC MACs, pages 527–545. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2005.

[BR02] John Black and Phillip Rogaway. A Block-Cipher Mode of Operation for
Parallelizable Message Authentication, pages 384–397. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2002.

[BR05] John Black and Phillip Rogaway. Cbc macs for arbitrary-length messages:
The three-key constructions. Journal of Cryptology, 18(2):111–131, 2005.

[BRR95] Mihir Bellare, Guérin R., and Phillip Rogaway. XOR MACs: new methods
for message authentication using finite pseudorandom functions, pages
15–28. Springer Berlin Heidelberg, Berlin, Heidelberg, 1995.

[CMN+14] Simon Cogliani, Diana-Ştefania MaimuŢ, David Naccache, Ro-
drigo Portella do Canto, Reza Reyhanitabar, Serge Vaudenay, and
Damian Vizár. OMD: A Compression Function Mode of Operation for
Authenticated Encryption, pages 112–128. Springer International Pub-
lishing, Cham, 2014.

[DK] Hans Delfs and Helmut Knebl. Introduction to Cryptography: Principles
and Applications.

[DN] Nilanjan Datta and Mridul Nandi. Elmd v2.0, submission to the caesar
competition, august 2015.

[fBCMoO05] NIST. Recommendation for Block Cipher Modes of Operation. The cmac
mode for authentication. NIST Special Publication 800-38B, 2005.

[GD02] Virgil D. Gligor and Pompiliu Donescu. Fast Encryption and Authentica-
tion: XCBC Encryption and XECB Authentication Modes, pages 92–108.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2002.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature
scheme secure against adaptive chosen-message attacks. SIAM Journal
on Computing, 17(2):3281–308, 1988.

[HKR] Viet Tung Hoang, Ted Krovetz, and Phillip Rogaway. Aez v4.2: Authen-
ticated encryption by enciphering. caesar submission, september 2016.

23

[HKR15] Viet Tung Hoang, Ted Krovetz, and Phillip Rogaway. Robust
Authenticated-Encryption AEZ and the Problem That It Solves, pages 15–
44. Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.

[IK03] Tetsu Iwata and Kaoru Kurosawa. OMAC: One-Key CBC MAC, pages
129–153. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

[IMG+] Tetsu Iwata, Kazuhiko Minematsu, Jian Guo, Sumio Morioka, and Eita
Kobayashi. Cloc and silc v3. caesar submission, september 2016.

[I99] Information technology Security techniques Message Authentication
Codes (MACs) Part 1 ISO/IEC 9797C1. Mechanisms using a block ci-
pher. International Organization for Standardization, Genève, Switzer-
land, 1999.

[JNPS] Jérémy Jean, Ivica Nikolić, Thomas Peyrin, and Yannick Seurin. Deoxys
v1.41. caesar submission, september 2016.

[JPS03] Antoine Joux, Guillaume Poupard, and Jacques Stern. New Attacks
against Standardized MACs, pages 170–181. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2003.

[JWYX09] Keting Jia, Xiaoyun Wang, Zheng Yuan, and Guangwu Xu. Distinguish-
ing and Second-Preimage Attacks on CBC-Like MACs, pages 349–361.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[KI03] Kaoru Kurosawa and Tetsu Iwata. TMAC: Two-Key CBC MAC, pages
33–49. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

[KLLNP16] Marc Kaplan, Gaëtan Leurent, Anthony Leverrier, and Maŕıa Naya-
Plasencia. Breaking Symmetric Cryptosystems Using Quantum Period
Finding, pages 207–237. Springer Berlin Heidelberg, Berlin, Heidelberg,
2016.

[KR11] Ted Krovetz and Phillip Rogaway. The Software Performance of
Authenticated-Encryption Modes, pages 306–327. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2011.

[LPTY16] Atul Luykx, Bart Preneel, Elmar Tischhauser, and Kan Yasuda. A MAC
Mode for Lightweight Block Ciphers, pages 43–59. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2016.

[LXS12] Fanbao Liu, Tao Xie, and Changxiang Shen. Equivalent key recovery
attack to h2-mac. International Journal of Security and Its Applications,
6(2):397–402, 2012.

[Min] Kazuhiko Minematsu. Aes-otr v3.1. caesar submission, september 2016.
[Min14] Kazuhiko Minematsu. Parallelizable Rate-1 Authenticated Encryption

from Pseudorandom Functions, pages 275–292. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2014.

[MT06] Kazuhiko Minematsu and Yukiyasu Tsunoo. Provably secure macs from
differentially-uniform permutations and aes-based implementations. FSE
2006. LNCS 4047, pages 226–241, 2006.

[Nan14] Mridul Nandi. Forging Attacks on Two Authenticated Encryption Schemes
COBRA and POET, pages 126–140. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2014.

[PR00] Erez Petrank and Charles Rackoff. Cbc mac for real-time data sources.
Journal of Cryptology, 13(3):315–338, 2000.

[PvO95] Bart Preneel and Paul C. van Oorschot. MDx-MAC and Building Fast
MACs from Hash Functions, pages 1–14. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1995.

[(re86] ANSI X9.9 (revised). Financial institution messages authentication
(wholesale), american bankers association. 1986.

24

[Sim97] D.R. Simon. On the power of quantum computation. SIAM J. Comput,
26(5):1474–1483, 1997.

[STA+a] Yu Sasaki, Yosuke Todo, Kazumaro Aoki, Yusuke Naito, Takeshi Sug-
awara, Yumiko Murakami, Mitsuru Matsui, and Shoichi Hirose. Minalpher
v1.1. caesar submission, august 2015.

[Stab] William Stallings. Cryptography and Network security: principles and
practice, fifth edition.

[X9.86] ANSI X9.19. Financial institution retail messages authentication, ameri-
can bankers association. 1986.

[Yas09] Kan Yasuda. HMAC without the second key, pages 443–458. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2009.

[Yas12] Kan Yasuda. PMAC with Parity: Minimizing the Query-Length Influence,
pages 203–214. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

25

