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Abstract. In this paper we tackle the practical challenges of search-
ing encrypted multimodal data (i.e. data containing multiple media for-
mats), stored in public cloud servers, with minimal information leak-
age. To this end we propose MuSE, a Multimodal Searchable Encryp-
tion scheme that, by combining only standard cryptographic primitives
and symmetric-key block ciphers, allows cloud-backed applications to
dynamically store, update, and search multimodal datasets with privacy
and efficiency guarantees. As searching encrypted data requires a trade-
off between privacy and efficiency, we propose a variant of MuSE that
resorts to partially homomorphic encryption to further reduce informa-
tion leakage, but at the cost of additional computational overhead. Both
schemes are formally proven secure and experimentally evaluated re-
garding performance, scalability, and search precision. Experiments with
realistic datasets show that our contributions achieve interesting levels
of efficiency and privacy, making them suitable for practical application
scenarios.
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1 Introduction

Applications nowadays manage increasingly larger data collections [35], includ-
ing data in different media formats (also known as multimodal data1) [2]. This
dataset growth has led to the popularity of cloud services for data and compu-
tation outsourcing [1]. In the referred cloud services, applications outsource the
storage and computations of their data to third-party managed infrastructures,
decreasing operational costs with flexible charging models and leveraging from
highly available geo-replicated servers. Moreover, as datasets increase in size, so
does the importance of supporting efficient search operations that can return
relevant subsets of data in response to multimodal queries [34].

Despite the clear advantages cloud services bring, they also lead to new se-
curity and privacy challenges that must be addressed, as outsourcing data and

1 An example of multimodal applications are those for medical center management,
where patient records can contain both textual data (written by the medical doctor)
and visual data (images obtained from medical equipment).



computations also means outsourcing control over them [12]. Recent incidents
have shown that privacy is not preserved by cloud providers when using their
services [42]. Governmental agencies impose increasing pressure on cloud com-
panies to disclose users’ data and build insecure backdoors [21, 13]. Malicious
or simply careless cloud administrators have been responsible for critical data
disclosures [11, 18]. Last but not least, internet hackers exploiting software vul-
nerabilities in cloud infrastructures must also be considered, as they may gain
remote access to users data even if only for a limited time window [32].

The conventional approach for addressing such privacy issues is to have ap-
plications encrypt all data in transit and at rest [6]. However this leads to expen-
sive computing and communication overheads, as large sets of multimodal data
have to be downloaded (and possibly re-uploaded) when performing operations,
including frequent search operations. Performing computations over encrypted
data, directly in the cloud servers, is possible with recent advances in Fully Ho-
momorphic Encryption [20] and Oblivious RAM [46]. However existing schemes
still impose too much computation, storage, and/or communication overheads
for enabling practical adoption [38].

Nonetheless more fine-grained cryptographic protocols, specifically designed
for supporting search over encrypted data, can be used in practice with good
privacy-efficiency tradeoffs. These protocols are known as Searchable Symmetric
Encryption (SSE) schemes [14, 10, 7] and were originally designed for text data
[44], with a few recent schemes also studying how to search encrypted visual
data (i.e. images) [33, 17, 48]. In this paper we study a more broad topic: how
to support applications dynamically storing, searching, and retrieving encrypted
multimodal data, i.e. data that combines different media formats, including text,
images, audio, and video2.

We call our proposal MuSE - Multimodal Searchable Encryption, and base
it solely on standard cryptographic primitives, including Pseudorandom Func-
tions (PRFs) and Symmetric-Key Block Ciphers [28]. At its core MuSE relies
on inverted index structures [34] and algorithms that represent different media
formats through these structures. Multimodal queries (i.e. queries also composed
of different media formats) can then be answered by searching in each format’s
index and combining results through an appropriate merging function. Using
these techniques, the research challenge that must be addressed is how to se-
curely protect indexing structures while allowing their privacy-preserving and
efficient operation during both multimodal data updating and searching.

Since having both full security (i.e. leaking zero information) and practi-
cal efficiency has been shown to be impossible for SSE schemes [38], MuSE is
required to reveal some (minimal) information patterns when performing opera-
tions (namely search, access, and frequency patterns [9]). This leakage is common
in SSE schemes [7] and results from a tradeoff between security and efficiency
that is required to achieve sub-linear search performance. Nonetheless, further
exploring this tradeoff we propose a variant of MuSE, called PHom-MuSE, that

2 A solution to this problem can also be fine-tuned to support only one media format
at a time, offering the same functionality as existing schemes.



additionally employs Partially Homomorphic Encryption [41] when encrypting
index entries. This second scheme exhibits further reduced leakage by protect-
ing frequency patterns, but at the cost of additional computational overhead.
We formally prove the security properties of both schemes, implement them,
and experimentally evaluate their performance and scalability with a real world
multimodal dataset.

In summary, in this work we make the following contributions:

– We start by revising the state of art on SSE, followed by an empirical anal-
ysis of existing schemes and their leakage. From this analysis we propose a
new framework that will aid both researchers and developers in the charac-
terization of SSE schemes through their leakage (Section 2);

– We propose MuSE, an efficient dynamic multimodal searchable encryption
scheme that allows cloud applications to securely store, update, and search
multimodal datasets, by resorting only to standard and efficient crypto-
graphic primitives. Compared to previous SSE schemes, MuSE provides ad-
ditional functionality (multimodal ranked searching) while displaying similar
efficiency and security (Section 4);

– We propose PHom-MuSE, a variant of MuSE that further reduces its leakage,
namely the leakage of frequency patterns, at the cost of additional compu-
tational overhead by resorting to Partially Homomorphic Encryption (Sec-
tion 4.1);

– We formally prove the security properties of our schemes and implement
them. Our prototype implementations focus on text and image media for-
mats, nonetheless we explain how to extend them to other medias. Using
these prototypes we experimentally evaluate the performance and scalabil-
ity of our schemes. Real world datasets and publicly-available commercial
clouds are used in these experiments (Section 6).

2 Related Work

With the increasing popularity of cloud services and its associated security issues,
the topic of searching encrypted data has quickly become an important area of
research in recent years. In this field, Searchable Symmetric Encryption (SSE)
schemes strive for a practical balance between efficiency and security.

First proposed by Song et al. [44], searching encrypted text documents ini-
tially required search time linear in the dataset size. Curtmola et al. [14] used
an inverted index to achieve sub-linear search performance, while also providing
the first security definitions for SSE. While these works were confined to static
datasets, Kamara et al. [27, 26] proposed the first dynamic SSE schemes, where
documents could be added, removed, or updated. Naveed et al. [39] designed a
dynamic SSE scheme that only required storage services from the cloud, instead
of storage and computation as in previous schemes. Cash et al. [10] proposed
the most efficient dynamic SSE scheme to date. Hahn and Kerschbaum [22]
presented a dynamic SSE scheme with more efficient updates but at the cost
of linear search time, amortizing to sub-linear for subsequent queries. Stefanov



Level Leakage Name Patterns Leaked E.g. Schemes

L2 Fully-Revealed Frequency Search, Access, Frequency & Update [17, 16]
L1 Fully-Revealed Occurrence Search, Access & Update [27, 39, 29]

L0=>L2 Query-Revealed Frequency Search, Access & Frequency MuSE, [8, 48]
L0=>L1 Query-Revealed Occurrence Search & Access PHom-MuSE, [3, 7]

L0 Blind (Leakage) – [19]

Table 1. Characterization of SSE schemes according to their leakage.

et al. [45] presented the first forward-private dynamic SSE scheme, where up-
dates reveal no information even when combined with previously issued query
tokens. Raphael Bost [7] revisited the topic, proposing a more efficient scheme
that achieved the same security notion.

The SSE schemes referred so far focused on exact-match searching of text
documents, where all documents containing a keyword are returned when the
keyword is searched. Ranked searching, where documents are returned in a sorted
order of relevance to the query, was addressed by Wang et al. [47] with single
keyword queries and Cao et al. [8] with multi-keyword (conjunctive) queries.
However these works lacked a formal security analysis. Baldimtsi and Ohrimenko
[3] proposed the first ranked SSE scheme with a formal security analysis, however
their scheme required a cryptographic co-processor to be deployed in the cloud,
under the client’s control. Additionally, so far these ranked schemes have been
limited to static document collections, as they depend on pre-computed and
immutable ranking scores that would need to be refreshed and re-encrypted
with each document addition, update, or removal.

Searching encrypted data has also been designed for other media formats,
including visual data (i.e. images). Lu et al. [33] presented the first scheme for
encrypted image search. Xia et al. [48] presented a more recent approach to the
problem. However these works lack formal security treatment and do not sup-
port dynamic updates. In a previous work [17] we presented the first dynamic
SSE scheme for images with a formal security analysis, however it leaked more
information than previous schemes for text data: it leaked frequency and update
patterns for all stored data, including the initial dataset. In [16] we also ad-
dressed, for the first time, the problem of encrypted multimodal searching, sup-
porting dynamic updates and providing a formal security analysis. However our
previous solution also leaked update and frequency patterns for all stored data.
Hence in this work we present the first dynamic, efficient, and provably-secure
multimodal SSE schemes achieving similar security and leakage guarantees as
the state of art literature on SSE for text data.

2.1 SSE Leakage Analysis

As an extension to the related work analysis performed so far, we now present an
empirical study of the leakage of SSE schemes for different media formats. This
study was initiated by Cash et al. [9], who focused on the leakage of exact-match
queries on text data. In contrast, we also consider the leakage when supporting
ranked queries on text data and queries on other media formats.



The efficiency guarantees provided by SSE schemes are only possible by leak-
ing some information patterns with the execution of operations [38]. The most
commonly leaked patterns are search and access patterns [14], both leaked by
search operations. Search patterns reveal the history of a query, i.e. how many
times it has been performed so far. This information is leaked by deterministic
query tokens submitted at search time. Access patterns reveal which documents
are returned by a query, which is leaked by deterministic identifiers of the doc-
uments accessed. These patterns have been revealed by all SSE schemes to date
[7], and have been shown to be necessary leakage for achieving practical efficiency
[38]. The first dynamic SSE schemes [27, 39] additionally leaked update patterns
with the update operation: they resorted to deterministic update tokens, re-
vealing if updates shared contents with previous updates or queried documents.
Nonetheless, update leakage has been solved in more recent dynamic schemes
[26, 22, 10, 45, 7], by making updates non-deterministic. If additionally updates
leak no information at all, even when combined with previously issued queries,
SSE schemes are said to be forward-private [45, 7].

The leakage described so far is characteristic of the most simple type of
queries: exact-match searching. As we move to more complex queries, including
ranked search of text documents, images, and multimodal data in general, there
is an additional data leakage that must be considered: frequency patterns, i.e.
how many times a keyword (or a similar concept in other formats, e.g. a keypoint
or a feature in images) appears in a document. This is a basic metric required
for supporting most forms of ranked search [34], and may be leaked by update
or search operations. As such, it should also be modeled in the formal treatment
of ranked SSE schemes.

Given the previous patterns, Table 1 provides a new framework that helps
characterizing SSE schemes according to their leakage. The framework is divided
in different levels3, with the top level being the least secure (i.e. leaks more
data) and the bottom the more secure (i.e. leaks less). L0 reveals nothing except
basic information like the dataset size; it represents O-RAM based schemes [19].
L0=>L1 represents typical exact-match SSE schemes (on text data) [10, 3, 7] as
a transitory level: at initialization nothing is revealed (as in L0), but with each
search some patterns are leaked (more precisely, search and access patterns),
eventually leading to the equivalent fully-revealed level (L1). This level also
represents the leakage of our PHom-MuSE scheme (which additionally supports
multimodal ranked searching). L0=>L2 represents ranked SSE schemes [8, 48]
(as is the case of our MuSE scheme) that additionally reveal frequency patterns
with queries. L1 represents exact-match schemes (on text data) that leak update
patterns [27, 39, 29], fully revealing the occurrence of keywords even if no queries
are performed (we assume databases can start empty, with all data being added
through updates, possibly in batches). L2 represents schemes that also reveal
frequency patterns with updates and queries [17].

3 Comparing to [9] we omit the leakage of document’s structure for simplicity, since
(as far as we know) there are no known SSE schemes in the literature that reveal it.



3 Technical Overview

This section initiates the technical description of our paper. We start with some
notations and concepts, following with an overview presentation of our system
and adversary models. We call multimodal object to a data object combining
multiple media formats. A multimodal dataset is a collection of multimodal ob-
jects. Multimodal features are distinctive characterizations of a data object in its
different media formats: e.g. a document’s keywords compose its text features,
while an image’s visual keypoints compose its visual features.

Multimodal searching is the operation used to search a multimodal dataset
with a query, where the query is itself a multimodal object. Results of a multi-
modal search are returned ordered by relevance (or similarity) to the query, and
are usually obtained for each media format in separate and aggregated through
a merging function [37].

Multimodal indexing consists in building dictionary-like structures, one for
each different media format, that compactly describe a dataset and where each
entry represents the occurrence of a feature (keyword or similar concept in other
formats) in a data object and stores its frequency. Indexing structures allow
searching in time sub-linear with the dataset size.

Multimodal training is an operation that is usually required in rich, highly
dimensional media formats, including images, audio, and video. It consists in
performing clustering operations (e.g. k-means [23]) on the dataset, particularly
on the referred formats, reducing the data’s dimensionality and allowing it to be
more efficiently indexed. The result of training is a codebook structure [40] that
assists in this more efficient indexing.

3.1 System Model

Figure 1 represents the system model employed in this work. We consider a
client application and one cloud server, where the client is outsourcing the stor-
age (and some computations) of his multimodal dataset to the server. We as-
sume three main operations between the client and the server: setup, update,
and search. The cryptographic protocols subjacent to these operations will be
formally specified in the next section, while for now we focus on describing the
possible interactions between client and server.

The setup operation initiates the system. The client starts by generating the
system’s cryptographic keys. Then, for each rich media format where training
is required (images, audio, and video) the client trains an appropriate training
dataset, storing the resulting codebooks on his side. These will be used in update
operations to allow an efficient indexing of multimodal data. Finally, the client
tells the server to initialize the system’s indexing structures, one for each media
format supported.

As implied by our minimalistic setup, the client’s dataset is initially empty.
This means that all data can be added dynamically through the update opera-
tion. When processing a new multimodal object for storage (or an existing one
for update), the client starts by processing and extracting its relevant features
in each media format. In formats where training is required, these features are
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Fig. 1. System model with the interactions between client and cloud server.

additionally clustered through the respective local codebook. Then each feature
is encrypted and sent to the server through a cryptographic update protocol.
For simplicity we specify this protocol to add a single feature (e.g. a keyword or
a visual keypoint) at a time to an object (along with its frequency). This means
that from a system’s perspective, the storage/update of a whole object is per-
formed through multiple cryptographic update protocols of different features to
the same object. For efficiency these updates can be (arbitrarily) organized and
sent as batch requests to the server. When the server receives update requests,
he stores the encrypted data in the respective indexing structures.

The search operation is performed in a similar fashion as the update. Given
a multimodal object as query, the client extracts its features in each media for-
mat, clustering them with the respective training codebooks if required. Then
each feature is encrypted and the resulting query tokens are sent to the server
through a cryptographic search protocol. Contrarily to the update however, this
search protocol takes as input all query tokens of the multimodal object at once,
returning one set of object identifiers ordered by relevance to the query. This
approach is necessary to achieve optimal communication bandwidth. Query to-
kens are then used by the server to accesses its indexing structures and calculate
search results, which are returned to the client.

All communications between the client and the server must be done through
secure channels (e.g. TLS/SSL [28]), nonetheless we consider these details to be
easily implementable and orthogonal to the main scope of the paper.

3.2 Adversary Model

In this work we consider as main adversary the cloud server, i.e. the cloud
provider company and any system administrators working for it that may have



access to the client’s data and computations. As in previous works [7], we assume
the cloud server to operate in an honest but curious fashion: it is expected to
fulfill its contract agreements and not destroy or temper with data and compu-
tations, but may eavesdrop on their contents at will without detection by the
client. In more detail, the cloud server keeps a log of all operations done and all
information leaked by them, and may resort to any other background informa-
tion available in order to learn the contents of both the dataset stored and the
performed queries.

A second important adversary that should also be considered is the snapshot
attacker, i.e. an adversary that does not have continuous access to the server but
may gain that access for a limited time window and may perform a snapshot
copy of all stored data. This adversary represents the typical Internet hacker. We
informally argue that by addressing the cloud server adversary, our approach is
also implicitly addressing this second adversary, since his capabilities are a subset
of those of the cloud adversary. Hence, we focus our security analysis on the first.

4 Designing a Multimodal SSE Scheme

In this section we detail MuSE, our efficient multimodal SSE scheme, and anal-
yse its security properties. We start by formally defining what is a Dynamic
Multimodal Searchable Encryption scheme.

Definition 1 (Dynamic Multimodal Searchable Encryption). A Dynamic
Multimodal Searchable Encryption scheme consists of three protocols Setup,
Update, and Search executed between a client and a server, such that:
• Setup(1λ;⊥) = (SetupC(1λ),SetupS(⊥)) is the protocol used to initiate

the scheme. The client takes as input the security parameter λ. It performs the
necessary cryptographic, returning a secret master key K for the scheme. The
server takes no inputs and initializes its indexing structures as empty, returning
no outputs.
• Update(w, id, f ;ut) = (UpdateC(w, id, f),UpdateS(ut)) is a protocol

between the client with inputs feature w, data object id, and the frequency f , and
the server with update token ut as input. The client builds ut as a function of w,
id, and f , while the server uses ut to update its indexing structures accordingly.
This protocol can reflect the addition of a new feature w to a (also possibly new)
object id, an update to the frequency f of an existing w in id, or the deletion of
w from id (in which case f has value zero).
• Search({wi, fi}∗i=0; {sti}∗i=0) = (SearchC({wi, fi}∗i=0),SearchS({sti}∗i=0))

is the protocol used to perform a multimodal search. The client takes as in-
put a query object, represented as a collection of features and their frequencies
{wi, fi}∗i=0). The server receives the respective search tokens {sti}∗i=0 and returns
a set of object identifiers ordered by relevance to the query.

We remark again that for simplicity in exposition, our cryptographic defini-
tion is simplified to consider updates of individual features and a single media
format at a time. This means that to achieve our envisioned system model, the
client may need to combine operations in batches (e.g. send multiple updates



with one batch request, and perform a multimodal search by combining queries
for different formats in a batch). Nonetheless, we believe these combinations are
easy to perform given our simplified cryptographic definition.

We now detail the operation of our efficient MuSE scheme. We begin by de-
signing a scheme that only supports exact-match searching in text documents,
expanding its usability by steps until we achieve full multimodal ranked search-
ing.

An Exact-Match Text Searching Scheme. Exact-match searching in text
documents has been extensively researched in the literature [27, 22, 10, 7]. From
the previous works, we found the methodology of Cash et al. [10] for dynamic
SSE to be one of the most efficient and promising for extension to richer queries.
In this approach the client stores D, a dictionary of counters where each unique
keyword in the dataset is mapped to a counter initiated at 0. Counter values are
used during updates to determine where to store keyword/document occurrences
in the server’s index. Index positions (i.e. the counters) are encrypted with a
Pseudo-Random Function (PRF) [28] and a key derived from the respective
keyword, while index values (the documents’ ids) are encrypted with a RCPA
block-cipher encryption scheme [28] and a second key derived from the keyword.
Encrypted index positions and values combined form an update token.

When searching with a query keyword the client derives its two keys, as in
the update protocol, and sends them to the server. By applying a PRF (with
the first key) to an incrementing counter value c, initiated at zero and stopping
when an empty index position is found, the server is able to efficiently find all
relevant index positions. The second key is then used to decrypt these positions
and return results to the client.

From Exact-Match to Ranked Searching. In ranked text searching we need
to store not only keyword-document occurrences, but also their frequencies. Fre-
quency is the basis for most ranked scoring functions, including the popular TF-
IDF [34] (which we will be using in MuSE). Since both informations (occurrence
and frequency) are closely related, we design our extended scheme to concatenate
frequencies with document ids and store their RCPA encryption as index val-
ues. For calculating ranking functions, other repository wide metrics may still be
required, including the whole dataset size (number of documents) and keyword
dataset size (number of documents containing the keyword), nonetheless these
are easy to infer from general information that the server already has access to.

Frequency Updates and Deletions. The scheme described so far efficiently
supports new additions of keywords to documents. However supporting up-
dates of existing keyword/document occurrences, including frequency updates
and deletions, is still challenging. This is a side effect of the counters approach,
since when performing updates there is no way for the client or server to know
if the specified keyword already exists in the document and where in the index
is this information stored. Searching for the keyword before updating the index



would solve this problem, however it would also lead to additional unnecessary
leakage.

We foresee two solutions to this problem. The first consists in incrementing
keyword counters with all updates. When searching, only the most recent fre-
quencies for each document id (given by higher counter values) will be used.
This solution works better for applications with few updates, as it will make
index size grow significantly. Since we expect dynamic SSE schemes to receive
many update operations, we devise a second solution that requires a larger server
storage at setup, but whose storage will not grow further, independently of the
number of updates performed.

Our solution consists in dividing index storage in two data structures. In the
first index, which we call IA, we map PRFs on keyword counters to encrypted
document ids. IA represents our previous index and allows efficient searching
through the counters approach. In the second index, called IU , we map PRFs on
document ids to encrypted frequencies. IU allows efficient updates to keyword
frequencies, as well as keyword deletions, without requiring knowledge of the
respective index positions in IA.

In more detail our update protocol will now give the server two update tokens
as input, utA = (lA, dA) and utU = (lU , dU ), where the first represents our
old tokens and is used on index IA, and the second represents our new tokens
(mapping ids to frequencies) and is used on IU . The server starts by accessing
IU with (lU , dU ). If there already exists an entry for it (meaning that this is an
update or deletion of an existing frequency) then it stores the new encrypted
frequency (which will be 0 for deletions) and discards utA. Otherwise, besides
storing dU in IU [lU ], it also stores dA in IA[lA]. Finally, the server outputs to
the client a bit r, where value 0 means that this operation was a new addition
and value 1 means it was an update to an existing frequency. The client now
waits for this response before incrementing c, and only updates it if r is 0.

The search protocol now also needs a second search token for each feature,
and accesses both indexing structures: first the server accesses IA with the old
query token and then, after decrypting the document id fetched from IA, it ac-
cesses IU with it and decrypts the corresponding frequency.

Supporting Multimodality. So far we have an index approach that efficiently
supports the storage, update, and ranked searching of text data. If we can find
similar index representations in other media formats, extending our approach to
multimodal searching will be straightforward to achieve.

Image features of any kind, (e.g. from facial recognition to keypoint detec-
tion [15]) can be clustered and represented as visual words [40], allowing their
efficient indexing in dictionary structures as performed for text features. Similar
approaches can be used for indexing audio [31] and video features [43]. Mul-
timodal searching (i.e. search in multiple formats simultaneously) can then be
achieved by searching in each format in separate and merging search results with
a multimodal merging function [36].



Setup()

Client:
1: K = {KA,KU} $←− {0, 1}λ
2: D ← empty dictionary
3: Send () to the server.

Server:
4: IA, IU ← empty dictionary

Update(w,id,f )

Client:
1: K1A ← F (KA, w||1); K2A ← F (KA, w||2)
2: K1U ← F (KU , w||1); K2U ← F (KU , w||2)
3: c← D[w];
4: if c = ⊥ then
5: c← 0
6: lA ← F (K1A, c); dA ← Enc(K2A, id)
7: lU ← F (K1U , id); dU ← Enc(K2U , f)
8: Send (lA, dA, lU , dU ) to the server.

Server:
9: if IU [lU ] = ⊥ then

10: IA[lA]← dA; r ← 0
11: else
12: r ← 1
13: IU [lU ]← dU

14: Send (r) to the client.
Client:

15: if r = 0 then D[w]← c + 1

Search({wi, fi}ni=0)

Client:
1: L← empty list
2: for all {wi, fi}ni=0 do
3: K1A ← F (KA, wi||1); K2A ← F (KA, wi||2)
4: K1U ← F (KU , wi||1); K2U ← F (KU , wi||2)
5: Add(L,(fi,K1A,K2A,K1U ,K2U ))

6: Send (L,N ) to the server . N is the dataset size
Server:

7: R ← empty map
8: for all (fq,K1A,K2A,K1U ,K2U ) ∈L do
9: Lf ← empty list

10: c← 0
11: lA ← F (K1A, c); dA ← IA[lA]
12: while dA 6= ⊥ do
13: id← Dec(K2A, dA); lU ← F (K1U , id)
14: dU ← IU [lU ]; f ← Dec(K2U , lU )
15: Add(Lf , (id, f)); c← c + 1
16: lA ← F (K1A, c); dA ← IA[lA]

17: idf ← log( N
|Lf | )

18: for all (id, f) ∈ Lf do
19: tf-idf ← f × idf × fq
20: if R[id ] = ⊥ then R[id ]←0

21: R[id ] ← R[id ]+tf-idf

22: R ← Sort(R)
23: Send (R) to the client . After multimodal merge

Fig. 2. The MuSE scheme, based on PRF F and RCPA scheme (Enc,Dec).

Figure 2 presents MuSE, our final efficient dynamic multimodal scheme.

Security and Leakage Analysis. We now sketch a proof of security for MuSE,
postponing the full proof to the Appendix section of this paper. Our security
analysis follows the real/ideal simulation paradigm that is standard in secure
multi-party computations [28]. We define L=(LStp,LUpd,LSrch) as a leakage
function that captures all information MuSE is ideally allowed to leak. Intu-
itively L outputs the following:

– The setup protocol has no leakage, since it gives the server no inputs.
– An update leaks its type (new addition or a frequency update, with deletions

indistinguishable from other updates). Additionally, if the added/updated
feature has already been searched for, it also leaks the corresponding object
identifier id and frequency f .

– Search protocols leak the size N of the dataset (necessary for the ranking
function) and, for all features w contained in a query object, they also leak
search, access, and frequency patterns. Search patterns (i.e. if queries are
being repeated) are due to the deterministic nature of the search tokens
used. Access patterns correspond to the set of object ids that contain each
feature queried for. Frequency patterns means that access patterns not only
include occurrences, but also frequencies.

These leakage components, particularly search and access patterns, are un-
avoidable in efficient SSE and considered minimal leakage [38]. Frequency pat-
terns are additional leakage characteristic of ranked SSE schemes [17], nonethe-
less we will address them in our PHom-MuSE scheme at the cost of additional



cryptographic overhead. Forward privacy (i.e. making updates reveal nothing,
including if previous queries match the updated feature) can be orthogonally
addressed, as in [7], by introducing a public-key scheme in the encryption of
keyword counters (we leave this as future work).

Non-adaptive security [14] follows if we can prove that MuSE leaks nothing
beyond what is specified in L. This proof relies on F being a secure PRF and
(Enc,Dec) being RCPA-secure. Additionally if F is modeled as a random oracle
[5], adaptive security can also be proven and we can state that:

Theorem 1. MuSE is correct and L-secure against adaptive attacks.

The proof of this theorem can be found in the Appendix Section of the paper.

4.1 Multimodal SSE without Frequency Leakage

An issue with MuSE, that was not present in previous exact-match SSE schemes,
is the leakage of frequency patterns with search operations. To solve this prob-
lem we propose a variant of MuSE that addresses this leakage, at the cost of
increased cryptographic overhead. Our proposal, called PHom-MuSE, is based
on Partially Homomorphic cryptography, more concretely on an additively ho-
momorphic scheme such as the Paillier cryptosystem [41].

We design PHom-MuSE through simple modifications to MuSE. In the Setup
operation the client now additionally generates a private/public key pair for the
Paillier scheme. Then, in update operations, we replace the RCPA encryption of
keyword frequencies (dU ← Enc(K2U , f), line 7 in the update protocol, Figure 2)
with their public-key Paillier encryption. Only the client, who has the private
key, can decrypt these values.

Given the use of homomorphic encryption, when responding to search oper-
ations the server can calculate search scores through encrypted frequency addi-
tions (and multiplications with public parameters, which can be seen as a series
of homomorphic additions). The result is the protection of both frequency val-
ues and final search scores. In more detail, in the TF-IDF function frequencies
f will be encrypted and multiplied by public parameters idf and fq (line 19
in the Search protocol) and the resulting scores for the same object id will be
homomorphically added (line 21). However it must now be the client to sort
search results (and perform multimodal merging), since order is not preserved
by homomorphic encryption (line 22). The client performs this after receiving
encrypted results from the server and decrypting them with the Paillier private
key.

We now define LPHom , the leakage that PHom-MuSE is ideally allowed to
reveal, as an iteration of our previous leakage function L for MuSE. In more
detail, the only difference between LPHom and L is that frequency patterns are
not revealed when performing search operations, nor when adding/updating a
feature that has already been searched. Furthermore, we can prove that:

Theorem 2. PHom-MuSE is correct and LPHom -secure against adaptive at-
tacks.



The proof for this theorem is straightforward to sketch by extending the full
proof of Theorem 1 given in the Appendix section. The Paillier cryptosystem is
used as a black-box component, and PHom-MuSE involves no additional security
protocols. Hence, a simulator S can simulate all the interactions in the protocol
using the information it obtains from LPHom . Correctness and security against
adaptive attacks follows in the random oracle model and assuming Paillier is a
correct and RCPA Additively-Homomorphic scheme. Details are straightforward
and thus omitted.

5 Implementation

We implemented prototype versions of our MuSE and PHom-MuSE schemes.
These prototypes will be used for experimental evaluation in the next section,
while for now we focus on describing their implementation. We focused our pro-
totypes on supporting multimodal data with text and image media formats. All
code was developed in C++, with little over 2000 lines of original code. Cryp-
tographic computations were implemented using the OpenSSL 1.0.2 library4.
PRFs were implemented with an HMAC function, using SHA1 as the underlying
cryptographic hash function. The (Enc,Dec) RCPA encryption scheme was im-
plemented with AES in CTR mode, using a 256-bit key. For the Paillier scheme,
we used the libpaillier library from the ACSC project5.

Algorithms for processing and indexing text data were implemented by us.
Text feature extraction was performed first by keyword stemming (Porter Stem-
ming Algorithm) and stop-words removal [34]. Indexing was done through the
Single-Pass in Memory Indexing (SPIMI) algorithm and as indexing structures
we used the inverted list index approach [34]. For processing and indexing im-
ages we used the OpenCV 2.4.10 library6. For feature extraction, we used the
SURF keypoint detection [4] and Dense Pyramid descriptor extraction [30] al-
gorithms. As a rich media format, images need to be trained before they can be
efficiently indexed. We used hierarchical k-means and the Bag of Visual Words
model for this [40], saving results in inverted list indexes. For this model we used
a codebook tree with height three and leaf width ten, resulting in 1000 clusters.

Ranking of search results in each media format was done using the TF-IDF
function, as described in Figure 2. Ranked results were then merged into the
final multimodal search results through rank fusion, more concretely the log-
arithmic ISR rank-fusion algorithm [36]. Finally, we remark that our MuSE
and PHom-Muse schemes display a high flexibility of deployment and configura-
tion, meaning that the implementation described is just one possibility and our
schemes can easily be implemented using other algorithms from the state of art
in cryptography and information retrieval.

4 https://www.openssl.org/
5 http://acsc.cs.utexas.edu/libpaillier/
6 http://opencv.org/



6 Experimental Evaluation

In this section we perform an experimental evaluation of the performance, scal-
ability, and search precision of our MuSE and PHom-MuSE schemes. We con-
ducted experiments as follows: client implementations were executed in a Mac-
book Pro with Mac OS X 10.11, 4GB of RAM, and 2.3Ghz quad-core Core i7
CPU; server implementations were deployed in the Amazon AWS cloud, using an
EC2 m3.large instance. The average round-trip time between client and server
was 49.586 ms. We used the MIR-Flickr dataset [24] as a multimodal dataset
that contains both image (users’ photos) and text (photo tags) media formats.

We start our experiments by assessing the performance and scalability of the
Update and Search protocols (as perceived by the client) and analysing results of
all sub-operations with different subset sizes of the MIR-Flickr dataset. Then we
analyse the search precision of the two schemes, comparing them with a plaintext
search system.

6.1 Update Performance and Scalability

To evaluate the performance and scalability of the update operation we set up
three experiments, where each time the client initiates the scheme and updates
it with different amounts of data objects: first with one thousand, then with two
thousand, and finally with three thousand multimodal objects. All features of
an object are sent as a unique batch update operation. For each experiment we
captured the time consumed with its sub-operation, including encryption (i.e.
total time spent on cryptographic operations), networking (time to send data
through the network and time to receive the server’s response), indexing (time
to access and store data in all indexing structures), training (time to train the
image format), and total (sum of all sub-operations).

Figure 3 presents the results obtained, i.e. average of five executions for each
experiment. Analysing the results for the MuSE scheme, we can see that after
training is performed, objects can be added very efficiently to the scheme with
minimal overhead (Encrypt, Network, and Index in the figure). The training sub-
operation adds most of the overhead of the scheme, nonetheless we remark that
it only needs to be performed once when the scheme is initiated, meaning that
its cost amortizes over time. Results also show that the cryptographic overhead
of MuSE (Encrypt in the figure) is very small, meaning that MuSE adds very
little overhead in comparison with a plaintext system.

Comparing the MuSE and PHom-MuSE schemes it is clear that PHom-MuSE
is less efficient. This is due to the use of the Paillier cryptosystem, and is re-
flected not only in the encryption but also in the networking sub-operations,
since Paillier produces large ciphertexts that need to be transferred through the
network.

Finally, if we compare results between the three experiments (i.e. for different
dataset sizes) we can see that our schemes are very scalable, especially the MuSE
scheme. Increasing the dataset size to its double (from one to two thousand)
only increases overhead by a factor of 1.11, and increasing it to its triple adds
overhead by a factor of 1.24. This is in part due to the amortization of training
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costs, nonetheless even if we omit these costs, the overhead increase factor is still
only 1.88 for doubling the dataset size, and 2.86 for tripling it. Similar results
can be observed for the PHom-MuSE scheme.

6.2 Search Performance

To evaluate the performance of the search operation, we conducted an exper-
iment where after initiating the system with one thousand objects, the client
queries it with a random multimodal object. Figure 4 shows the results, i.e. the
average of fifty executions. As we can see, most overhead when searching comes
from the Network column of the figure. This is due to most computations in the
search operation being performed at the server, and the Network column reflect-
ing not only the time spent in data transfers, but also these remote executions.

Comparing the two schemes, once again MuSE is more efficient than PHom-
MuSE. This can be explained by the ciphertext expansion of the Paillier scheme,
which leads to a non-negligible increase in data transfer overheads in the Network
column of the figure.



Plaintext MuSE PHom-MuSE

mAP (%) 57.938 57.965 57.881

Table 2. Mean Average Precision (mAP) for the Holidays dataset.

6.3 Search Precision

The final experiment we conducted assessed the search precision of our schemes,
comparing it with a plaintext system. Since the MIR-Flickr dataset, although
a good choice for performance evaluation, did not contain a group of queries
with relevance set that would allow us to assess precision, we used the Inria
Holidays dataset [25] for this experiment. This is an image only dataset, that
shows that our schemes do not affect query precision for this media format, and
similar results are expected for other formats (and hence multimodal searching).
Furthermore the dataset contains an online evaluation package, consisting of 500
pre-chosen queries and their expected responses, that allows a transparent and
independent evaluation of precision results.

Table 2 shows results obtained for our schemes and the baseline plaintext
comparison, with an average of 50 independent executions. As expected results
for the three approaches are very similar, since both our schemes preserve the
search precision of the used algorithms, independently of the cryptographic al-
gorithms employed.

7 Conclusions

In this paper we addressed the problem of multimodal searchable encryption,
allowing client applications to store, update, and search their multimodal data
in remote cloud servers with privacy guarantees. We started by providing a
new framework, based on an empirical analysis of the literature on searchable
encryption and its common leakage, that researchers and developers can use to
characterize their schemes and better understand their security properties. Then
we formally defined dynamic multimodal searchable encryption and designed two
schemes supporting its functionality: an efficient scheme, called MuSE, that ex-
hibits similar performance as previous exact-match schemes for text data, but
that leaks a new type of patterns which we call frequency patterns; and a less
efficient scheme (although still practical) based on partially homomorphic en-
cryption, called PHom-MuSE, that prevents the leakage of frequency patterns
and provides the same security properties as previous text exact-match schemes.
We formally evaluated the security of our schemes and implemented them. Us-
ing our prototypes, we conducted an experimental evaluation of performance,
scalability, and search precision. Results showed that our contributions exhibit
practical performance for real world deployment, making different tradeoffs be-
tween security and performance. Results also revealed that our approaches do
not impact the precision of the searching algorithms used, in comparison with
plaintext searching systems that provide no security guarantees.
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Appendix - Proof of MuSE Security

In this appendix we provide the full proof of Theorem 1. Formally L=(LStp,
LUpd, LSrch) is a stateful party in an ideal security game, defined as follows:

Definition 2. Let
∏

=(Setup,Update,Search) be a dynamic multimodal SSE scheme
and L a leakage function. For algorithms A and S, define the following games:

Real
∏
A (λ): The game runs K ← Setup() and gives A(1λ) a timestamp t. Then

A repeatedly invokes Update and Search protocols, picking client inputs in. The
game responds by running Search or Update protocols with client input (K,in)
and server input EDB (the encrypted dataset), giving the transcript to A (the
server is deterministic so this constitutes its entire view). Eventually A returns
a bit used as the game’s output.

Ideal
∏
A,S(λ): The game runs S(L()) and gives A(1λ) a timestamp t. Then A

repeatedly invokes Update and Search protocols, picking client inputs in. The
game responds by giving the output of L(in) to S, which outputs a simulated
transcript that is given to A. Eventually A returns a bit used by the game.∏

is L-secure against adaptive attacks if for all adversaries A there is a
simulator S such that:

Pr [Real
∏
A (λ) = 1] - Pr [Ideal

∏
A,S(λ) = 1] ≤ negl(λ)

Amongst its state L keeps: a set ID initialized to contain all object identifiers
in the dataset; and a list Q describing all operations issued so far, where an entry
takes the form (i,op,. . . ), meaning an operation counter, an operation type, and
then one or more inputs to the operation.

We define sp(w,Q), the search pattern of feature w with respect to Q, to be
the indices of operations that searched for w : sp(w,Q) = {j : (j, srch, w) ∈ Q}.

For object id, feature w, and frequency f, the add pattern of id, w, f with
respect to Q corresponds to the indices that added/updated (w,f ) to id :
ap(w,id,f,Q) = {j : (j, add, w, id, f ) ∈ Q} ∪ {j : (j, updt, w, id, f ) ∈ Q}.

Finally, the add pattern of w with respect to Q and ID is the set of all ids
to which w was ever added, along with the indices showing when it was added:
AP(w,Q,ID) = {(id, ap(w,id,f,Q)) : id ∈ ID, ap(w,id,f,Q) 6= ∅}.

Intuitively, sp captures what we previously called search leakage, while AP
captures what we called access and frequency leakage. Given a set of setup,
update, and search operations, L produces outputs as follows:

– On initial setup, L initiates its state with i ← 0, empty list Q and empty
set ID, providing no outputs.

– For a search operation on w, L appends (i,srch,w) to Q and increments i,
outputting sp(w,Q), DB(w) (the ids of objects containing w), AP(w,Q,ID),
and the current size of the dataset N.



– For an addition/update operation (w,id,f ), L appends (i,add/updt,w,id,f )
to Q, adds id to ID, and increments i. It outputs sp(w,Q) and, if this is
non-empty, it also outputs id and f.

We are now ready to prove Theorem 1.

Proof. We begin by proving correctness and security against non-adaptive at-
tacks. Correctness follows as collisions between the outputs of PRF F will only
happen with negligible probability. Additionally when we model F as a random
oracle H (for proving adaptive security), simulator S can program H so that its
outputs are truly random and hence without collisions.

Proving non-adaptive security implies showing that S, given only the leakage
output of L, can produce the view of the server and the two are indistinguishable
except for a negligible probability in λ. Setup operations are easy to simulate.
Since L outputs nothing when Setup is performed (except for a timestamp of
execution), S can be trivially shown to have the same view as the server.

To simulate search operations, S iterates over the log of queries choosing keys

K1Ai ,K2Ai ,K1Ui ,K2Ui
$←− {0, 1}λ for the i -th query. Then, for each id ∈ DB(wi),

S computes lA, dA, lU , and dU as specified in the real experiment (but using
the keys it chose instead), adding each group of labels to a list L. Additionally
it creates a dataset γ with N entries, filling it with simulated objects picked
uniformly at random (if γ already existed, S adjusts its size with the new N ).

To simulate update operations, S iterates over the log of adds/updates and
decides for each group of labels (lA,dA,lU ,dU ) sent if it is supposed to be random
(and meaningless) or if the pair should be computed with one of the keys used
for search operations. It does this by using both the add pattern leakage AP from
the search queries and the leakage from update operations, which includes the
object id if the keyword was previously searched. Finally S adds the computed
labels to L and, after processing all operations, it outputs the simulated dataset
EDB = Create(γ,L).

A simple hybrid argument shows that the simulator’s output is indistin-
guishable from the real server view. The first hybrid shows that selecting each
K1Ai ,K2Ai ,K1Ui ,K2Ui at random is indistinguishable from deriving them from
KA,KU , by the PRF security of F. The next hybrid shows that the labels lA, lU

and ciphertexts dA, dU for un-queried features are pseudorandom, by the RCPA
security of (Enc,Dec). This proves non-adaptive security.

Finally, security against adaptive attacks can be proven by having S program
a random oracle H to model the behavior of PRF F, outputting truly random
labels in response to adaptive queries. The only defects in this new simulation
occur when an adversary manages to query the random oracle with a key before
it is revealed, which can be shown to happen with negligible probability in λ.


