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Abstract. The advent of cloud computing offers clients with the opportunity to
outsource storage and processing of large volumes of shared data to third party
service providers, thereby enhancing overall accessibility and operational produc-
tivity. However, security concerns arising from the threat of insider and external
attacks often require the data to be stored in an encrypted manner. Secure and ef-
ficient keyword searching on such large volumes of encrypted data is an important
and yet one of the most challenging services to realize in practice. Even more chal-
lenging is to incorporate fine-grained client-specific access control - a commonly
encountered requirement in cloud applications - in such searchable encryption so-
lutions. Existing searchable encryption schemes in literature tend to focus on the
use of specialized data structures for efficiency, and are not explicitly designed to
address controlled access scenarios. In this paper, we propose a novel controlled
access searchable encryption (CASE) scheme. As the name suggests, CASE inher-
ently embeds access control in its key management process, and scales efficiently
with increase in the volume of encrypted data handled by the system. We provide
a concrete construction for CASE that is privacy-preserving under well-known
cryptographic assumptions. We then present a prototype implementation for our
proposed construction on an ensemble of Artix 7 FPGAs. The architecture for our
implementation exploits the massively parallel capabilities provided by hardware,
especially in the design of data structures for efficient storage and retrieval of
data. The implementation requires a total of 192 FPGAs to support a document
collection comprising of 100 documents with a dictionary of 1000 keywords. In ad-
dition, the hardware implementation of CASE is found to outperform its software
counterpart in terms of both search efficiency and scalability. To the best of our
knowledge, this is the first hardware implementation of a searchable encryption
scheme to be reported in the literature.

Keywords: Searchable Encryption, Access Control, Hardware Implementation,
Parallel Architecture, FPGAs

1 Introduction

Searchable encryption [1, 2] is one of the most important applications today, fueled fur-
ther by the widespread acceptance of the cloud as a platform for storage and analytics on
large volumes of data. While the cloud provides massive opportunities for data sharing
and collaborative ventures across geographical boundaries, it is also plagued with secu-
rity concerns arising from the threat of malicious service providers and external attacks.
Most clients, especially corporations and government organizations, prefer to encrypt
their data before uploading it to the cloud. This leads to the need for cryptographic
solutions that allow privacy-preserving searches on the encrypted data itself without de-
cryption. A major challenge in designing such searchable encryption schemes is to provide



sufficient security without significant compromise in search performance and efficiency.
The schemes should also be scalable enough to accommodate the ever-increasing volumes
of data being shared on the cloud in today’s world.

Searchable encryption schemes can be broadly classified into two categories - symmet-
ric searchable encryption (SSE) [3, 1, 4, 5] and public key searchable encryption (PKSE)
[2, 6, 7]. SSE schemes allow the data owner to efficiently organize her data using a variety
of data structures [5, 8] before encrypting and uploading the same to the remote cloud
server. SSE requires the data owner to set up the entire system and to take full respon-
sibility for key management when answering search queries from clients. Most popular
SSE schemes use efficient crypto-primitives such as block ciphers and pseudo random
functions for improving search performance. PKSE schemes, on the other hand, involve
a central third party who is in charge of system setup and key management, and also in-
teracting with clients submitting search queries. The data owner simply encrypts her data
using the public key and uploads the same to the cloud. PKSE schemes are again of two
major varieties - non-deterministic [2, 6] and deterministic [7]. While non-deterministic
schemes afford greater security, they are sometimes too computationally intensive to be
realized in practice [6]. Deterministic constructions, on the other hand, are generally
more efficient, albeit at the cost of weaker security guarantees [7]. To summarize, most
searchable encryption schemes - both symmetric and public key - are characterized by a
security-versus-efficiency tradeoff, with the exact balance often dependent on the target
application and the requirements of the client.

Background and Motivation. While most searchable encryption schemes today are
tuned for high performance in software [5, 8], there exists little work focusing on hardware
accelerators for searchable encryption. The massively parallel capabilities of hardware of-
fer a way to overcome the biggest hurdle in practically realizing searchable encryption
- efficiency and scalability with increase in data volumes. Field programmable gate ar-
rays (FPGAs) seem to be the ideal platform for implementing such architectures, owing
to their many advantages including low power consumption, low memory bandwidth
requirements and dynamic reconfigurability. In fact, modern designers often prefer FP-
GAs to alternatives such as GPUs for accelerating distributed applications such as search
engines [9]. Thus, designing and implementing efficient hardware architectures for search-
able encryption on FPGAs is a promising field that is yet to be explored.

The other important challenge for searchable encryption, especially in shared data
environments such as the cloud, is access-control. User-specific access rights to shared
data is a commonly encountered scenario in popular services such as Dropbox and Google
Drive. Although natural in its requirement, access-control for searchable encryption is
non-trivial to achieve, especially in the light of dynamically changing nature of the data as
well as user behavior. Most existing searchable encryption schemes [3, 5, 8] in the current
literature assume that a user has search capabilities over the entire document collection,
and are hence not necessarily the most efficient solutions when adapted to controlled-
search scenarios. Efficiently implementing a searchable encryption scheme with access
control is currently an open problem.

Our Contributions. We present a novel public-key searchable encryption algorithm -
controlled access searchable encryption (CASE). As the name suggests, CASE inherently
incorporates access control over encrypted document collections and is hence suitable for
applications targeting shared environments such as the cloud. CASE is efficiently scalable
with optimal storage and processing requirements on part of the data owner as well as
the cloud server hosting the encrypted data. We also present an efficient and highly
parallelized hardware architecture for CASE, which is implemented on an ensemble of



Artix-7 FPGAs. The hardware implementation is found to outperform an equivalent
software counterpart in terms of search performance and scalability with increase in the
size of the document collection. To the best of our knowledge, this is the first hardware
implementation of a searchable encryption scheme to be reported in the literature. Our
results elucidate the potential of hardware accelerators searchable encryption

2 Preliminaries

Searchable Indexes and Trapdoors. The seminal work by Goh et al. [1] introduced
the concept of a secure searchable index - the core data structure for any searchable
encryption scheme that allows keyword searches and retrieval of the list of matching
documents from a document collection. The index essentially stores the membership
information for a keyword in a document, but is suitable encrypted so as not to leak
any sensitive information. This is because the searchable index is usually stored on a
remote server (such as a cloud service provider) who is considered as a semi-honest
party. A semi-honest party does not actively disrupt the functioning of a system; rather
it passively monitors the leakage from the system to try and gain sensitive information.
Searching for a keyword on the index requires a trapdoor - the output of a one-way
function applied to the keyword that requires the knowledge of the master secret key.
A searchable encryption scheme is said to be efficient and secure if it allows the server
to perform keyword searches on the searchable index using system generated trapdoors,
without leaking any information about the underlying plaintext document collection.

The Tate Pairing. We present some background material on the Tate pairing - a
mathematical primitive used extensively in this paper. Let Fp be a field of prime order
p, and let E(Fp) be an elliptic curve of order n over Fp, defined by the Weierstrass [10]
equation. Also, let q be a large prime dividing n, and k be the smallest integer such that
q|pk − 1 and q2 - pk − 1. We refer to k as the embedding degree of q with respect to
the field Fp. It follows that Fpk is the smallest extension field of Fp that contains the
qth roots of unity, and the subgroup of elliptic curve points E(Fpk) contains the set of
q-torsion points E(Fp)[q] (points on the elliptic curve with order q).

We now introduce the definition of a Miller function [11]. Let P be any point in
E(Fp), and let O ∈ E denote the point at infinity. Also, let q be as defined above. A
Miller function fq,P (·) is a rational function on E with q zeroes at the point P , one pole
at the point qP and q− 1 poles at O. Now, let G = E(Fp)[q] and G2 = E(Fpk)/qE(Fpk)
be two additive cyclic groups of order q, and let GT = F∗pk/(Fpk)q be a multiplicative
cyclic group of the same order. Also, let φ be a distortion from G to G2. The Tate pairing

e′τ : G×G −→ GT is thus defined as e′τ (P1, P2) = fq,P1
(φ(P2))

pk−1
q .

The Tate pairing is very useful for cryptographic applications since it satisfies the fol-
lowing properties:

– Bilinearity : ∀P1, P2, P3 ∈ G and a, b ∈ Zq, we have the following:

e′τ (aP1, bP2) = e′τ (P1, P2)
a·b

e′τ (P1 + P2, P3) = e′τ (P1, P2 + P3) = e′τ (P1, P2) · e′τ (P1, P3)

– Non-degeneracy : If P is the generator for G, then e′τ (P, P ) 6= 1

– Computability : There exists an efficient algorithm to compute e′τ (P1, P2)∀P1, P2 ∈ G



3 Our Proposal: Controlled Access Searchable Encryption
(CASE)

This section presents the definitions and construction idea for our proposed controlled
access searchable encryption scheme (CASE). As is the standard norm for any public-
key searchable encryption algorithm, CASE involves a four way interaction between the
central agent (who is a trusted third party), a data owner, the cloud server (who is a
semi-honest service provider), and the client. The central agent sets up the system by
generating the public parameters, as well the public key-private key pair. The data owner
uses the public key to encrypt and store a searchable index for such a document collection
D = (D1, · · · , DN ) on the cloud server, where each document Dj is associated with a
unique identity string idj and contains a set of keywords. The collection of all keywords
in the entire document collection is referred to as a dictionary for the collection. A client
willing to search for the documents containing a keyword submits a trapdoor request to
the central agent. Note that trapdoor generation requires the knowledge of the secret
key, and hence can only be done by the central agent. Upon receipt of the trapdoor,
the client sends it to the cloud server, who then searches on D using a trapdoor and
return the indices of the documents containing the corresponding keyword. Figure 1(a)
summarizes the interactions between the various parties in the CASE framework.

3.1 The Notion of Controlled Access

The existing searchable encryption schemes in literature [5, 8] use trapdoors that allow
a client unrestricted search access to the entire database. In particular, they do not
consider a scenario where a client may only be allowed to access a specific subset of the
documents in the whole collection. Such client-specific access control is a highly desirable
feature in most applications targeting shared environments such as the cloud. One of the
salient features of CASE is its inherent incorporation of access control in the trapdoor
generation process. CASE assumes that each client is granted access to some subset
S of the documents, and a record of the same is maintained by the central agent for
each registered client in the system. Accordingly, whenever a client submits a trapdoor
request for a keyword w, she receives a controlled-search trapdoor Tw,S , which can be
used to search for w only in the document subset S that she has access to. In additon,
the size of this trapdoor is constant and independent of the |S|. Figure 1(b) illustrates
the controlled trapdoor generation process.

3.2 CASE: Formal Description and Security Overview

We now formalize the working of a CASE scheme in terms of the following polynomial-
time algorithms:

SetUp(1λ, ID, N): Executed by the central agent to set up the overall CASE system.
Takes as input the security parameter λ, the identity space for a document collection,
and the maximum number of documents N in the document collection. It outputs a
set of public parameters params.

KeyGen(params): Executed by the central agent to set up the public key-private key
pair. It takes as input the public parameters params. It outputs a master secret key
msk and a public key PK.

BuildIndex(PK,D): Executed by the data owner to create the searchable index to be
stored on the untrusted cloud server. It takes as input the public key PK and the
document collection D. It outputs the searchable index I.



(a) Interactions between Parties (b) Controlled Search

Fig. 1: The Framework for CASE

GenTrpdr(msk,w,S): Executed by the central agent upon receipt of a trapdoor request
from a client with access to a poly-size subset S of the documents in D. It takes as
input the master secret key msk, the keyword w and the subset S. It outputs the
controlled-search trapdoor Tw,S , which can be used to search for the keyword w only
over the documents in the subset S.

Search(I, Tw,S ,S): Executed by the untrusted cloud server upon receipt of the trap-
door from the client. Takes as input the searchable index I and the controlled-search
trapdoor Tw,S along with the subset S of documents to search. It outputs a list L of
documents.

The CASE system is said to be correct if the list of documents returned by the untrusted
cloud server to the client is precisely the set of documents in the subset S that contain
the keyword w.

Security Requirements. We provide an informal overview of the security requirements
for CASE. We consider adversaries that are bounded by polynomial time and space
complexities. Since CASE is a public key cryptosystem, we assume that the adversary
has access to a searchable index generation oracle, that is, it can generate indices for
document collections of its choice. We also assume that it has access to a trapdoor
generation oracle, that is, it can generate controlled search trapdoors for keywords of its
choice. Since the adversary is poly-time bounded, it can only make polynomially many
queries to either oracle. In the presence of such adversaries, our CASE construction
is said to be secure if it guarantees data privacy. More specifically, given an encrypted
searchable index I corresponding to a document collection D, a adversary making at most
polynomial number of queries to the index generation and trapdoor oracles should learn
nothing about D except for the search patterns corresponding to the trapdoors generated
by the trapdoor generation oracle. Please refer A for a formal indistinguishability-based
definition of data privacy for CASE.

3.3 A Concrete Construction for CASE

We are now introduce a concrete construction for the CASE framework described in
Section 3.2. We start by giving an informal overview of the construction, and follow up
with a more detailed description of the steps in each algorithm.



Construction Overview. We start by giving an informal overview of our CASE con-
struction. The construction has three main phases - system setup, searchable index cre-
ation and keyword search. In the system setup phase, the central agent generates the
public parameters params, the master secret key msk and the public key PK. In the
searchable index creation phase, a data owner uses the public key PK to create an en-
crypted searchable index I for her document collection D, and stores it online on a remote
server. The searchable index I is implemented in our construction as a two-dimensional
look-up table with the following properties:

– Each row of the look-up table I corresponds to a keyword, while each column corre-
sponds to a document in D.

– The row-index i for a keyword wi is computed by applying a collision-resistant hash
function H1 on wi.

– The column-index j for a document with identifier idj is similarly computed by
applying a second collision-resistant hash function H2 on idj .

– The table explicitly stores an encrypted yes or no message at each location (i, j)
depending on whether keyword wi occurs in the document Dj or not. The reason
for storing both the yes and no entries in the searchable index is to hide the relative
frequency distribution of various keywords from the untrusted cloud server.

The search phase is initiated by a client, who submits a keyword w to the central agent,
and receives the corresponding controlled search trapdoor Tw,S as per her access per-
missions. The trapdoor is then transmitted to the untrusted cloud server, who uses it to
decrypt the entries in the row I[H1(w)][·] corresponding to the documents in the subset
S. It returns the list of documents for which the corresponding table entries return yes
upon decryption. Note that the trapdoor hides the knowledge of the keyword w from the
untrusted cloud server.

Construction Details. We now present the details of our construction for CASE. Let
G and GT be additive and multiplicative groups of prime order q respectively, and let
e′τ : G×G −→ GT be a Tate pairing. Also, H1 : {0, 1}∗ −→ Zq, and H2 : {0, 1}∗ −→ Zq
be three collision resistant hash functions. Finally, let Π : Zq −→ Zq be a pseudorandom
function.

SetUp(1λ, ID, N): Let G be a description of the Tate-pairing tuple (G,GT , e′τ ) and let
ID = {id1, · · · , idN}, where N is the number of documents in the collection. Pick

P1, P2
R←− G and a, b, f

R←− Zq. Set P3 ← bP1 and P4 ← bP2. Output:

params←
({(

(f −Π (H2 (idj))) · (a−H2 (idj))
−1
)
P1

}
j∈{0,··· ,N}

,{(
(f −Π (H2 (idj))) · (a−H2 (idj))

−1
)
P3

}
j∈{0,··· ,N}

,

{
ajP2, a

kP4

}
j∈{0,··· ,N},k∈{0,··· ,N−2} , P1, aP1, fP1, (a · f)P1

)
KeyGen(params): Pick χ, y

R←− Zq. Output:

msk ← (χ, y)

PK ← (params, χP1, (f · χ)P1, (a · χ)P1, (a · f · χ)P1, yP4)



BuildIndex(PK,D): Initialize the searchable index I to empty. For each keyword wi
in the dictionary corresponding to the document collection D, and each document
Dj ∈ D with identity idj , do the following:

(a) Choose t
R←− Zq.

(b) Set c0 ←
(

(f −Π (H2 (idj))) · (a−H2 (idj))
−1 · t

)
P3.

(c) Set c1 ← (χ · t · (f −Π (H2 (idj))))P1.

(d) Set c2 ← e′τ

((
(f −Π (H2 (idj))) · (a−H2 (idj))

−1 · t
)
P1, (y ·H1 (wi))P4

)
.

(e) If Dj contains the keyword wi, set:

c3 ← e′τ
(
(a · χ · (f −Π (H2 (idj))))P1, a

N−2P4

)t
Otherwise, set c3

R←− GT .

(f) Let addr = (H1 (wi) , H2 (idj)). Set I[addr]← (c0, c1, c2, c3).

GenTrpdr(msk,w,S): Parse msk as (χ, y) and S as (id1, · · · , idn) for some n ≤ N .
Set Ij ← H2 (idj) for j ∈ {1, · · · , n} and Ij ← L +H2({1}j) for j ∈ {n+ 1, · · · , N},
where L is an integer greater than 2λ. Now, let FS(x) =

∏N
j=1(x−Ij). Quite evidently,

the set {I1, · · · , IN} is a unique signature for the subset S, which in turn ensures that
for two different subsets S and S ′, we have FS(x) 6≡ FS′(x). Next, set T1 ← H1(w)
and T2 ← (χ · FS(a) + yH1(w))P2. Clearly, the first component allows the untrusted
cloud server to locate the row index corresponding to the keyword w, while the second
component enforces controlled-search. This is exactly as discussed in the construction
overview. Output Tw,S = (T1, T2).

Note that since FS(x) has degree N , FS(a)P2 can be computed from the public pa-
rameters. Also, the fact that the polynomial FS(x) is unique to the subset S ensures
that the trapdoor for a subset S cannot be used for searching over another subset S ′.

Search(I, Tw,S ,S): Parse Tw,S as (T1, T2). Construct the set {I1, · · · , IN} for the subset
S as described above. Initialize the list L to empty. For each idj ∈ S:

(a) Parse I[T1][H2(idj)] as (c0, c1, c2, c3).

(b) Define F ?S(x) = xN−1 − (x−H2(idj))
−1 ·

∏N
l=1(x− Il) and set:

d0 ← e′τ (T2, c0) , d1 ← e′τ (F ?S(a)P4, c1)

Once again, since F ?S(x) has degree at most N − 2, FS(a)P4 can be computed
from the public parameters.

(c) If c2 · c3 = d0 · d1, add idj to L.

Finally, return the list L.

Quite eviently, the size of the trapdoor Tw,S is constant irrespective of the number of
documents N as well as the size of the subset S. This in turn contributes to the scalability
of CASE, and sets it apart from other searchable encryption schemes in the literature
that have trapdoors with overhead linear in the number of documents/keywords [5, 8].



Fig. 2: An Architectural Overview for CASE

Correctness and Security. The formal correctness proof of our CASE construction
is presented in Appendix B. Our construction is provably secure against data privacy
attacks under a well-known cryptographic assumption. We avoid explicitly presenting
the detailed proof for the same in the main content since it is not the main focus of this
paper. The detailed proof is presented in Appendix C.

The remaining part of the paper discusses a prototype implementation for the aforemen-
tioned CASE construction in hardware. We begin by presenting architectural descriptions
of various modules that functionally simulate the five algorithms in CASE. We also lay
special focus on designing a hardware equivalent of the searchable index I - the primary
data structure used by our CASE construction. Subsequently, we present implementation
details for these architectures on a platform comprising of multiple FPGAs working in
parallel.

4 Hardware Implementation for CASE: The Architecture

This section presents a schematic overview of our proposed hardware implementation for
CASE. In particular, we elucidate a translation of the algorithmic description of CASE
presented in Section 3.2 into an architectural framework comprising of dedicated modules
for performing the various operations. We begin with a broad description of the overall
framework, followed by more specific descriptions of each module. Finer details about ac-
tual RTL implementations, overhead and performance issues are presented subsequently
in Section 5.

4.1 Architecture Overview

We illustrate the overall architecture of CASE using Figure 2. The architecture consists
of six major modules - five algorithmic modules and one storage module, that are hosted
in a distributed manner across three parties - the central agent who is trusted, the data



owner who is responsible for building the searchable index and uploading the same on
the cloud server, and the untrusted cloud server itself. The central and perhaps the most
important module is the storage module RAM, which is hosted by the untrusted cloud,
and forms the bridge between the algorithmic modules. The RAM module realizes the
searchable index I described in Section 3.2, and allows for fast and efficient insert, delete,
update and search operations. In accordance with the algorithmic description in Section
3.2 the central agent hosts the Setup and Keygen modules, that are responsible for setting
up the CASE system by publishing the public parameters params, and the public and
private key pair - PK and msk, respectively. The central agent also hosts the GenTrpdr
module that generates a controlled search trapdoor Tw,S upon receipt of a keyword w
from a client with access to a subset S of documents in the document collection. The
data owner is given access to the BuildIndex module that takes as input the public
parameters params and the public key PK. Observe that the BuildIndex module is
depicted as generating a single ciphertext C (along with its corresponding address in the
overall searchable index) corresponding to an input keyword w and a document with
identity id. Such an architecture essentially depicts populating the searchable index seri-
ally (one keyword-document id pair at a time); however this process may be parallelized
at the cost of greater area footprint by diving the RAM module into separate partitions,
and creating multiple instances of the BuildIndex module to populate these partitions
in parallel. The task of searching is performed by the Search module, hosted by the
untrusted server. It takes as input the trapdoor Tw,S , a ciphertext C corresponding to
w and the document with identifier id in S, and outputs a search outcome (yes/no).
Once again, this architecture depicts a serial search over each individual document in S.
Suitable partitioning of the RAM module will allow multiple instances of the Search
module to run in parallel in order to improve search efficiency, albeit at the cost of greater
area footprint. Note that since CASE uses a public key infrastructure, modules hosted by
different parties do not require secure channels for inter-communication; any authentic
communication channel over the network suffices in this regard. We now describe the
architectural nuances of each of the aforementioned modules in greater detail.

4.2 The RAM Module in the CASE Architecture

We begin with a description of the RAM module, which is essentially a hardware equiv-
alent of the data structure I corresponding to the searchable index. As discussed in
Section 3.3, each entry of the searchable index has two parts - an address addr and
the encrypted data C. Our aim is to design an efficient searchable index that supports
constant time insert, delete, modify and search operations. Note that the only data
structure in software supporting such efficient operations on an average is a hash table
[12, 13]. Unfortunately, the address entry addr in the searchable index for CASE has
length polynomial in the security parameter λ, implying that a hash table-based imple-
mentation would either require exponentially large storage or suffer from collisions with
non-negligible probability, leading to a degradation in search performance. A linked-list
like data structure [14], on the other hand, offers efficient storage (linear in the number
of entries), and also avoids the risk of collisions; albeit at the cost of the search time
being linear in the number of entries. Hence, a software based implementation of the
RAM module that achieves all the aforementioned properties seems difficult to achieve.
A hardware based implementation, on the other hand, allows us to combine the best
features of both these data structures via parallelization, as described next. We present
such a hardware based implementation of the RAM module in Figure 3(a). It has four
input ports - the addr in and data in ports are used to insert a new entry in the RAM,



(a) Overall Structure of RAM (b) The Data Path of RAM

(c) Internal Structure of a RAM Cell (d) Enabling a RAM Cell

Fig. 3: Architectural Overview of the RAM Module

the addr target port is used to take the target address for a search operation as input,
while the op port (width of two bits) takes one of the four operations (among insert,
delete, modify and search) to be performed as input.

While the RAM functionally simulates a software linked list, it structurally resembles
a linear array, with efficient movement of data facilitated by the parallel capabilities
of hardware. The data path essentially contains a block of cells, each representing a
unique entry, while the control block generates the necessary signals for data movement
and retrieval. The internal structure of each cell is depicted in Figure 3(c), while their
interconnections are depicted in Figure 3(b). Each cell contains an address register and
a data register to hold addr and C respectively. Besides receiving the external address-
data pair as input, each cell is also connected to the output data and address buses of
its preceding and succeeding cell. This helps shifting data up and down in the event of
insertion and deletion operations respectively. Each cell is additionally connected to a
buffer to hold its data output. In the event of a search operation, the buffer corresponding
to the cell with the matching address entry is enabled, and the corresponding data entry
is passed on to the data output bus. The control block ensures that at any instant of
time, at most one buffer is enabled. Note that the addr entry serves as a virtual identifier
to a cell, and is independent of the actual cell number in the RAM data path where it
resides.

The control block takes the operation code op and the target address as input, and
generates the control signals sel (width of two bits) and en (width of one bit) for each cell.
The operation code determines which of the four operations to be performed, while the



target address identifies the matching cell in case of a delete/modify/search operation.
We illustrate the working of the control block for the different operations below:

– Insert: In case of an insert operation, the control block sets the sel signal for the
first cell to 2′b10 such that it takes on the value of the external address-data pair,
while the sel signal for all succeeding cells is set to 2′b01, thereby instructing them
to take on the address-data entry pairs of their preceding cells. Thus effectively, the
existing data moves down and the new data enters the top of the list.

– Delete: In this case, the control block first identifies the target cell by matching each
address entry with the target address. Suppose the matching cell has index p. The
control block sets the sel signal for all cells from p onwards to 2′b11, implying they
must take on the values of their successors, while the sel signal for all cells from 1
to p− 1 are set to 2′b00, implying that they do not alter.

– Modify: In this case, the control block sets the sel signal for the target cell to 2′b10,
thus ensuring it takes on the value of the external address-data pair, while the sel
signal for all other cells are set to 2′b00, such that they do not alter.

– Search: In this case, the sel signal for all other cells is set to 2′b00, while the en
signal for the target cell is set to 1. The en signal for all other cells is set to 0. This
ensures that the data content of the target cell is forwarded on to the target bus.
Figure 3(d) illustrates how the enable signal is set for each cell.

4.3 Some Necessary Building Blocks

Before describing the architecture for the algorithmic modules in CASE, we briefly discuss
some necessary building blocks that are used by these modules:

The Elliptic Curve Core. While describing the architecture for the algorithmic mod-
ules, we assume the existence of a hardware-based elliptic curve core with basic blocks
for point inversion, point addition, scalar multiplication and Tate pairing computa-
tions, as well as multiplication in GT (the target group for the Tate pairing). The
point inversion block takes an elliptic curve point P and returns its inverse point
−P . The point addition block takes two elliptic curve points P1 and P2 as input and
returns a third point P3 = P1 + P2. The scalar multiplication block takes as input
a scalar s and a base point P , and returns the point xP . The Tate pairing block
takes two elliptic curve points P1 and P2 as input, and returns e′τ (P1, P2). Finally,
the multiplier block takes as input two elements in GT and returns their product.
We also assume the existence of a random number generator block RNG that ran-
domly instantiates elements in in the scalar field Zq, as well as the elliptic curve
group G. In this section, we deliberately treat these blocks as black boxes since the
design of their internal architecture is not a contribution of this paper. Details such as
area footprint and minimum operating frequency of these blocks is provided later in
Section 5 when discussing an actual implementation of the overall CASE architecture.

The Hash Function Cores. We also assume the existence of black-box hardware cores
for the hash functions H, H1 and H2 introduced in Section 3.2. The actual CASE
implementation realizes these hash cores by simple tweaks on the output of SHA-256
- the popularly used hash function standard [15] with reported hardware implemen-
tations [16–18]. Again, actual implementation details of the hash function cores are
presented in Section 5.
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Fig. 4: Architectural Overview of the Setup and Keygen Modules

4.4 The Algorithmic Modules in the CASE Architecture

We now present architectural details of the five algorithmic modules introduced in Section
4.1. Recall that the central agent hosts three of these modules, namely Setup, Keygen
and GenTrpdr, while the data owner and the untrusted cloud server host the modules
BuildIndex and Search respectively. We use the shorthand notations Aid and Bid here

to denote the expressions (f −Π (H2 (id))) and
(

(f −Π (H2 (id))) · (a−H2 (id))
−1
)

,

respectively.

Setup and Keygen. The overall architecture of the Setup and Keygen modules are
illustrated in Figure 4. The Setup module generates the secret parameters a and b, as
well as the public points P1 and P2 at random. It essentially uses multiple instances of
the core Gen-i module, which is parameterized by the number of desired exponents i,
to generate the public parameters params. It uses an additional core ID-Gen module
that takes as input the identity space ID = {idj}j∈{1,··· ,N}, as well as a, P1 and P3,
and generates {BidjP1}j∈{1,··· ,N} and {BidjP3}j∈{1,··· ,N}. The Keygen module in turn
takes params as input, and generates the public key PK and the master secret key
msk. The components x and y of msk are again generated at random in Keygen. Both
these modules use multiple instances of the basic blocks for point addition and scalar
multiplication over elliptic curve groups.

BuildIndex. The architecture of the BuildIndex module is depicted in Figure 5. It
takes the public parameters params, the public key PK and a keyword-document id pair
(w, id) as input. The parameter t is generated at random. We again use the shorthand no-

tationsAid andBid to denote the expressions (f −Π (H2 (id))) and
(

(f −Π (H2 (id))) · (a−H2 (id))
−1
)

,

respectively. Besides using the basic blocks for point addition and scalar multiplication,
BuildIndex also uses the Tate pairing block, and the hash function cores for H, H1

and H2. The module outputs the ciphertext C = (C0, C1, C2, C3), as well as the virtual
address addr where the ciphertext is to be stored in the searchable index. These outputs
are in turn passed on as inputs to the data in addr in ports of the RAM module for
insertion, as depicted in Figure 2.



Fig. 5: Architectural Overview of the BuildIndex Module

GenTrpdr. The GenTrpdr module takes as input a keyword w and a subset S, which
is realized as a binary vector of length N . The membership of document with serial
index n in the subset is decided by the entry S[n]. The main architectural challenge
in designing the GenTrpdr module is to support the computation of the polynomial
FS(a) described in Section 3.2. Recall that the polynomial FS(x) is a product of N
monomials of the form (x+ In) for n ∈ {1, · · · , N}, where (I1, · · · , IN ) is the unique
signature for the subset S. Our aim is to design a hardware core simulating an algorithm
that can compute the coefficient of each power of x from 0 to N in FS(x). Observe that
the näive approach of computing the coefficients after unrolling the whole polynomial is
extremely inefficient with a time complexity ofO(2N ), since it requires enumerating every
possible subset of (I1, · · · , IN ). The corresponding hardware core would thus require
exponentially many multipliers and adders, which is impractical to realize.However, there
exists a more elegant poly-time dynamic programming based algorithm that computes
the desired coefficients in N iterations. In the nth iteration, the algorithm computes the
coefficients of each power of x from 0 to N in the polynomial

∏n
j=1(x + Ij). Note that∏n

j=1(x+ Ij) = x
∏n−1
j=1 (x+ Ij) + In

∏n−1
j=1 (x+ Ij). This gives a straightforward way of

updating the coefficients from the (n − 1)th iteration to the nth iteration. Finally, the
output at the end of N iterations is the desired set of coefficients corresponding to FS(x).
The overall time complexity of the algorithm is O(N2).

Algorithm 1 summarizes the aforementioned solution. It takes as input the signature
set (I1, · · · , IN ), and outputs the desired coefficient values in the form of an array Coeff.
The hardware core Coeff. Calc. for realizing Algorithm 1 is presented in Figure 6(a).
Observe that each component of the signature set (I1, · · · , IN ) is an element in GF (p)
where p is a prime determined by the choice of the underlying elliptic curve core. Con-
sequently, the addition and multiplication operations depicted in Algorithm 1 are to be
performed in GF (p). Also, the hardware implementation allows us to parallelize the as-
signment steps in the inner loop (line 8) indexed by i, since they are independent of each
other. The outer loop (line 4) indexed by n is simulated in hardware using a circular list
in Figure 6(a) that ensures the correct In value is used for computation in each iteration.
In addition, Figure 6(a) also depicts the computation of the signature set (I1, · · · , IN )
corresponding to the subset S in hardware. The overall architecture for the GenTrpdr
module is build around the Coeff. Calc. core, and is depicted in Figure 6(b).
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Fig. 6: Architectural Overview of the GenTrpdr Module

Algorithm 1: Compute coefficients of xn in FS(x) for n ∈ {1, · · · , N}
input : I1, · · · , IN
output: The array of coefficients Coeff

1 Coeff[0] ← 1
2 for i← 1 to N do
3 Coeff[i] ← 0

4 for n← 1 to N do
5 for i← 0 to N do
6 CoeffPrev[i] ← Coeff[i]

7 Coeff[0] ← CoeffPrev[0]× In
8 for i← 1 to N do
9 Coeff[i] ← (CoeffPrev[i]× In) + CoeffPrev[i− 1]

10 return Coeff

Search. The architecture for the Search module is described in Figure 7(b). It uses a
coefficient calculator core for the polynomial F ∗S(x) that is very similar to the Coeff.
Calc. core described above, as shown in Figure 7(a). It also uses a pair of multipliers
in GT , the first of which multiplies C2 and C3, while the second multiplies d0 and d1.
Note that the trapdoor component T1 is directly passed on as the address output of
the Search module. This address is in turn passed on to the addr target port of the
RAM module to retrieve the desired ciphertext C during a search operation, as depicted
in Figure 2.

5 Implementation Details

We present implementation details for the architectural modules discussed in Section
4.Our target platform is an ensemble of Artix 7 FPGAs (XC7A100T) [19] that are low-
cost and are suitable for low power consuming designs. Our design requires a total of 192
such FPGAs for supporting a document collection with 100 encrypted documents and
a dictionary with 1000 keywords. Note that multi-FPGA based designs have been used
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Fig. 7: Architectural Overview of the Search Module

previously for computation intensive operations such as cryptanalysis. One such example
is the COPACOBANA [20] - a cost optimized parallel cryptanalysis tool consisting of 120
FPGAs. The main advantage of using multiple FPGAs is parallelism, leading to better
performance at a relatively low cost.

5.1 Implementation Details for the Core Building Blocks

We first present implementation details for the elliptic curve core and the hash function
core, that are the principal building blocks for the CASE modules.

Implementation of the Elliptic Curve Core. Our implementation of the elliptic
curve core was aimed at optimizing the overhead for the Tate Pairing block, since it is
an integral part of the overall architecture and is efficient only when implemented with
the right choice of elliptic curve parameters. Several efficient implementations of the
Tate pairing as well as the Tate pairing have been discussed in the literature, starting
from the seminal work of Miller [11], followed by efficiency improvements proposed by
Galbraith et al. [21] and Barreto et al. [22]. Galbraith et al. [21] proposed a triple-and-
add algorithm in characteristic three [23], as well as utilization of the tower fields of
GF (3m) for Tate pairing computation. In this paper, we adopted a well-known FPGA-
based implementation of the Tate pairing on characteristic three fields that was originally
presented in [24] and subsequently optimized even further in [25] and [26]. At the core pf
the implementation is the Duursma-Lee algorithm [27] - an optimal algorithm for Tate
pairing computation on hyperelliptic curves of the form y2 = xp−x+d. The specifications
of the elliptic curve core are presented in Table 1(a). The choice of the elliptic curve is
made to ensure it contains a large subgroup of prime order q (a 151 bit prime in our
implementation), as is necessary for instantiating a Tate pairing. The source group of
the Tate pairing in our chosen core is the set of q-torsion points E[q](GF (3m)), the
target group is GF (36m)∗, and a distortion map φ transforms a point in E[q](GF (3m))



Table 1: Elliptic Curve Core Specifications

(a) Core Specifications

Super-singular Elliptic Curve y2 = x3 − x+ 1

Galois Field GF (3m),m = 97

Prime Order q O(2151)

Irreducible Polynomial x97 + x12 + 1

Distortion map φ : E[q](GF (3m)) −→ E[q](GF (36m)) ρ, σ ∈ GF (36m)
φ((x, y)) = (ρ− x, σy) ρ3 − ρ− 1 = 0

σ2 + 1 = 0

(b) Implementation Details on Artix 7 FPGA

Operational Block LUT Count Register Count Max. Freq. (MHz) Time (in ms) @100 MHz

Point Addition 9667 6125 405.877 3.25× 10−3

Scalar Multiplication 11107 7443 325.642 5.5× 10−1

Tate Pairing 2826 919 330.112 9.27× 10−1

into a point in E[q](GF (36m)). One of the foremost reasons for choosing a base three
representation is the amenability of its tower field representation [21] to efficient hardware
architectures for addition, subtraction, multiplication and cubing in both GF (3m) as
well as GF (36m) [24, 25], which are the primary operations used in the Tate pairing
computation.

The implementation overhead for the operational blocks is presented in Table 1(b).
Note that the point inversion block simply involves re-wiring of the input and hence has
no area overhead. Also note that while other elliptic curve cores affording more optimized
point addition and point doubling operations exist in the literature [28], they are not
necessarily suitable for optimized Tate pairing computations, and are hence not used in
this paper.

Implementation of the Hash Function Core. The hash cores corresponding to H,
H1 and H2 are implemented by extracting the requisite number of bits from the output
of a SHA-256 core. We adopted the FPGA based implementation for SHA-256 described
in [16]. The core has an area overhead comprising of 697 LUTs, 323 registers and a single
block RAM on the Artix 7 FPGA (XC7A100T), with a maximum frequency of 150 MHz.

5.2 Implementation Details for the CASE Modules

We now present the implementation details for the CASE modules described in Section
4. The results are presented for N = 100 documents and a dictionary of 1000 keywords,
implying a maximum of 105 entries in the searchable index. We enumerate the bus widths
for the various ports in our architecture in Table 2(a). Note that in general, all ports
depicting scalars have bus width of 151 bits, all ports depicting elliptic curve points have
bus width of 194 × 2 = 388 bits (for the x and y coordinates) and all ports depicting
outputs of Tate pairing blocks have bus widths of 198× 6 = 1188 bits.

Table 2(b) summarizes the placement and routing results for each of the six CASE
modules. Quite evidently, the RAM module requires the maximum number of FPGAs -
74, since it stores searchable index entries corresponding to each keyword-document pair.
The Setup module requires 8 FPGAs for implementation, which is primarily because
of the large number of exponentiations required when generating the public parameters
params. Note that since the public parameters are not expected to change dynamically
during the search operation, an alternative approach could be to generate the params
offline and store it in block RAMs. This would significantly reduce the LUT requirement
for the Setup module requirement. Similar optimizations are also possible for the Gen-
Trpdr and Search modules, where the coefficients of xj for j ∈ {1, · · · , N} in FS(x)

and F ∗S could be pre-computed and stored in block RAMs for certain subsets S that are
most commonly encountered.



Table 2: Implementation Results for CASE on a Artix 7 FPGA for Database of 100 documents and a Dictionary
of 1000 keywords

(a) Bus Widths

Port(s) Bus Width (in bits)

w, id 256

H1(w), H2(id) 256

Π(H2(id)) 151

a, b, f, χ, y 151

ajP1, AidkP3, BidkP3 for j ∈ {0, · · · , N}, k ∈ {1, · · · , N} 388

ajP2, a
kP4 for j ∈ {0, · · · , N}, k ∈ {0, · · · , N − 2} 388

χP1, (f · χ)P1, (a · χ)P1, (a · f · χ)P1 388

BidkP3 for k ∈ {1, · · · , N} 388

C0, C1, H(w) 388

C2, C3 1188

T1 256

T2 388

addr, addr in, addr target 512

data in, data out 3152

(b) Place and Route Results

Module LUT Count Register Count No. of FPGAs Reqd. Max. Freq. (MHz)

RAM 4522640 3999210 74 534.523

Setup 2769608 1335256 51 325.549

Keygen 272267 209160 2 325.464

BuildIndex 32124 12451 1 337.682

GenTrpdr 1884405 1118425 32 145.643

Search 2012945 1225671 32 138.765

Overall 192 > 100MHz

Table 3: Hardware v/s Software: A Performance Comparison for the CASE Modules

Operation Time (in ms) per Operation @100 MHz (Hardware) Time (in ms) per Operation (Software)

RAM(Insert) 9.91× 10−6 6.89× 10−5

RAM(Delete) 9.91× 10−6 5.72× 10−3

RAM(Search) 9.91× 10−6 5.21× 10−3

RAM(Modify) 9.91× 10−6 5.72× 10−3

Setup 40.68 875.24

Keygen 6.05× 10−1 25.23

BuildIndex 1.21 57.21

GenTrpdr 65.86 9121.24

Search 121.32 11225.34

5.3 Performance Comparison with a Software Implementation

In this section, we present a comparative study of the performance of our proposed hard-
ware implementation of CASE with a software implementation of the same on an Intel
Xeon(R) CPU (E5-1650 v4) with a clock frequency of 3.6 GHz. The software imple-
mentation used the open-source pairing based cryptography (PBC) library, which has
optimized internal modules, more specifically the Type I internals for Tate pairing over
supersingular elliptic curves. For a fair comparison, the curve parameters for the software
implementation were chosen to be identical with that for the hardware implementation
(see Table 1(a) for details). The RAM module was implemented using a standard soft-
ware linked list. For N = 100 documents and a dictionary of size 1000, the performance
comparison obtained are summarized in Table 3. We note that each module achieves
superior performance in hardware. In particular, the parallel capabilities of hardware
allow the search operations in the RAM module to be performed much faster than in
software, where each search operation requires a linear traversal of the linked list. The
performance differences in the algorithmic modules are primarily because of two fac-
tors - the first being the superior performance of the elliptic curve core, especially the
pairing computation, in hardware, and the other being the use of parallelization in hard-
ware to reduce the overall time required for independent computations. For example, in
the BuildIndex module, the four ciphertext components are computed in parallel in
hardware, while in software they are computed sequentially. In summary, the hardware
implementation affords us around 10× improvement in data structure management, and
around 20× improvement in search - the two most frequently encountered operations in
any searchable encryption scheme.

Scalability. Figure 8(a) compares the scalability of search performance for the hard-
ware and software implementations of CASE with increase in the number of documents



20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

1.2
·104

Number of Documents N

S
e
a
rc
h

T
im

e
in

m
s

Hardware CASE

Software CASE

(a) Search Time v/s Num-
ber of Documents (Actual)

20 40 60 80 100
2

4

6

8

10

12

14

Number of Documents NL
o
g
a
ri
th

m
ic

(B
a
se

T
w
o
)
o
f
S
e
a
rc
h

T
im

e
in

m
s

Hardware CASE

Software CASE

(b) Search Time v/s Num-
ber of Documents (Logarith-
mic)

20 40 60 80 100

50

100

150

200

Number of Documents N

N
u
m
b
e
r
o
f
F
P
G
A
s
R
e
q
u
ir
e
d

(c) Total FPGA Require-
ment v/s Number of Docu-
ments

Fig. 8: Scalability of the CASE Implementation

N . Since the search time in software is significantly larger that in hardware, we also
compare the logarithmic of the search times in Figure 8(b) for a better understanding.
As expected, the search time increases for both implementations; however, the rate of
increase is much steeper for the software implementation as compared to its hardware
counterpart. This may be explained as follows. The search operation in CASE has two
distinct components - retrieving the target ciphertext from the searchable index, and
then decrypting it using the trapdoor to reveal the yes/no entry. In software, the perfor-
mance of both these components is affected by an increase in the number of documents
N - the search complexity in a software linked list is linear in the number of entries, while
the evaluation complexity of the coefficients for the polynomial F ∗S(x) is O(N2), leading
to a quadratic blow-up in the overall search time with increase in N . On the other hand,
the blow-up in the search time for the hardware implementation is roughly linear in N .
This may be explained as follows. First of all, the ability to access each entry of the
hardware RAM module in parallel without traversing the whole list leads to a constant
retrieval time irrespective of the number of entries. Hence, the increase in search time
for a larger N is primarily due to the increase in the number of clock cycles required
to compute the coefficients for the polynomial F ∗S(x). Secondly, as demonstrated in Fig-
ure 7(a), each of the N coefficients are computed in parallel using dedicated hardware
components, implying that the increase in search complexity in hardware is only linear
and not quadratic in N . Finally, Figure 8(c) shows the scaling of the number of FPGAs
required with increase in the number of documents N , for the same dictionary of 1000
keywords. As anticipated in the aforementioned discussion, the scaling is approximately
linear with increase in N , as opposed to an expected quadratic growth in software.

6 Conclusion

We presented controlled access searchable encryption (CASE) - a novel public key search-
able encryption primitive with in-built access control that is highly suitable for shared
data environments such as the cloud. We presented a concrete construction for CASE
that preserves the privacy of the underlying plaintext data under well-known crypto-
graphic assumptions. The salient feature of the construction is its ability to generate a
controlled search trapdoor that allows a client to search for a keyword over a specific
subset of the documents in the entire encrypted collection. The trapdoor has a constant
overhead, which is independent of the number of documents in the system as well as the
size of the target subset it grants access to. This in turn contributes to the scalability of
CASE, and sets it apart from other searchable encryption schemes in the literature that
have trapdoors with overhead linear in the number of documents.



We also presented a prototype hardware implementation of CASE over an ensemble
of Artix 7 FPGAs functioning in parallel. The overall architecture was divided into five
algorithmic modules and a single storage module. The storage module, referred to as
RAM, comprises of a hardware linked list that supports constant time insert, search,
delete and search operations. This is a major improvement over software linked list struc-
tures that have linear time complexity for search operations. The algorithmic modules
were designed to have highly parallel architectures, and are found to be significantly
faster and more scalable in comparison to their software counterparts. The overall im-
plementation requires a total of 192 Artix-7 FPGAs in order to support a collection of
100 encrypted documents with a dictionary of 1000 keywords. This is, to the best of
our knowledge, the first hardware implementation of any searchable encryption to be re-
ported in the literature. Our results shed light on the hitherto unexplored opportunities
of speeding up searchable encryption by exploiting the massively parallel capabilities of
hardware platforms.
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A Security Definitions for CASE

Formal Security Definitions for CASE. We present formal definitions that capture
the notion of data privacy for CASE. We begin by introducing some auxiliary definitions:

Definition A.1 (Search History). A search history is a tuple of the form H =
(
D, {(wq,Sq)}q∈[1,Q]

)
,

where D is a poly-size document collection and each tuple (wq,Sq) represents a trapdoor
oracle query for a keyword wq over a subset Sq of document identifiers.

Definition A.2 (Access Pattern). Given a search history H =
(
D, {(wq,Sq)}q∈[1,Q]

)
,

the access pattern is defined as τ(H) = {δwq,Sq (D)}q∈[1,Q]. Note that the τ(H) can be

easily deduced by running searches on an encrypted index I
R←−BuildIndex(PK,D)

using the collection of trapdoors {Twq,Sq
R←− GenTrpdr(msk,wq,Sq)}q∈[1,Q].

We are now in a position to formally present the security definitions for CASE. The
definitions for data privacy and trapdoor privacy are presented separately. We assume
adaptive adversaries that can issue trapdoor queries in multiple passes, and can base
subsequent queries upon the responses to previous queries.

Definition A.3 (Adaptive Data Privacy of a CASE system). Let λ be the security
parameter and let A be a probabilistic poly-time (PPT) algorithm that receives λ and the
number of documents N =poly(λ) as input. A plays the following game with a challenger:

SetUp Phase. The challenger generates params
R←−SetUp(1λ, N). It also generates

(msk, PK)
R←−KeyGen(params). It provides params and PK to A.

Trapdoor Query Phase-1. A adaptively issues trapdoor queries of the form (wq,Sq)
for q ∈ [1, Q1] and Sq ⊂ {1, · · · , N}. The challenger responds to each query with

Tq
R←−GenTrpdr(msk,wq,Sq).

Challenge Phase. A provides the challenger with two document collections D0 = (D1,0, · · · , DN,0)
and D1 = (D1,1, · · · , DN,1) subject to the restriction that:

τ
(
D0, {(wq,Sq)}q∈[1,Q1]

)
= τ

(
D1, {(wq,Sq)}q∈[1,Q1]

)
The challenger picks b

R←− {0, 1} and responds with I∗
R←−BuildIndex(PK,Db).

Trapdoor Query Phase-2. A continues to adaptively issue trapdoor queries of the
form (wq,Sq) for q ∈ [Q1, Q], once again subject to the restriction that:

τ
(
D0, {(wq,Sq)}q∈[1,Q]

)
= τ

(
D1, {(wq,Sq)}q∈[1,Q]

)
The challenger responds as in Trapdoor Query Phase-1.

Guess Phase. A outputs a guess b′ for the random bit b chosen by the challenger.

We say that a CASE construction is adaptively data private if for all Q =poly(λ)
and for all PPT algorithms A,

|Pr [b′ = b]− Pr [b′ 6= b]| ≤ negl(λ)

Note that the condition τ
(
D0, {(wq,Sq)}q∈[1,Q]

)
= τ

(
D1, {(wq,Sq)}q∈[1,Q]

)
essentially

models the fact that the search pattern is a trivial leakage and is not a cryptographic
vulnerability of any CASE system; indeed, any searchable encryption scheme is expected
to leak the search pattern. Consequently, the same should not be used to distinguish the
document collection in the data privacy game.



B Correctness Proof for CASE

We check that if some document Dj contains w, then idj ∈ L:

d0 · d1 = e
′
τ (T2, c0) · e′τ

(
F
?
S(a)P4, c1

)
= e
′
τ ((y ·H1(w))P2, c0) · e′τ ((χ · FS(a))P2, c0) · e′τ

(
F
?
S(a)P4, c1

)
= c2 · e′τ

(
(χ · FS(a))P2,

(
(f − Π (H2 (idj))) · (a−H2 (idj))

−1 · t
)
P3

)
· e′τ

((
a
N−1 − (a−H2(idj))

−1 · FS(a)
)
P4, (χ · t · (f − Π (H2 (idj))))P1

)
= c2 · e′τ

(
a
N−1

P4, (χ · t · (f − Π (H2 (idj))))P1

)
= c2 · e′τ

(
(a · χ · (f − Π (H2 (idj))))P1, a

N−2
P4

)t
= c2 · c3

C Proof of Data Privacy for CASE

The Decision (S ,M)-BDHES Problem. Let S ⊂ Z and M ∈ Z \ (S + S ). Set

a
R←− Zq and b

R←− {0, 1}. Set Z0 ← e′τ (P, P )a
M

and Z1
R←− GT . The decision (S ,M)-

bilinear decision Diffie Hellman exponent sum (BDHES) problem is as follows. Given

({aiP}i∈S , Zb)

guess b. The decision (S ,M)-BDHES assumption states that for any probabilistic poly-
nomial time algorithm A, its advantage in solving the decision (S ,M)-BDHES problem
is negligible in the security parameter λ. The decision (S ,M)-BDHES assumption was
introduced in [29] for proving the security of adaptively secure broadcast encryption sys-
tems. While the BDHES Sum problem is not exactly a so-called standard hard problem,
it is narrower than the generalized BDH exponent assumption defined by Boneh et al.
in [30] and is fairly intuitive.

We state the following theorem for the data privacy of our CASE construction:

Theorem C.1 Our CASE construction is adaptively data private under the decision
(S ,M)-BDHES assumption in the random oracle model.

Proof. Let d = 2λ/2 +N for N =poly(λ). Also, let q be a 2λ-bit prime. Quite evidently,
q = Ω(2λ.d). An algorithm B receives an instance of the decision (S ,M)-BDHES prob-
lem :

({aiP}i∈S , Z)

where

S = {0, N−2}∪[d+N, d+2N ]∪[2d+2N, 3d+2N−2]∪[3d+3N, 4d+3N ]∪[4d+4N, 5d+4N+1]

and Z is either e′τ (P, P )M for M = 4d + 4N − 1 (in which case B should output 0) or
a random element in GT (in which case B should output 1). We consider a probabilistic
polynomial time adversary A, such that both A and B receive the identity space ID as
input. It interacts with a data-privacy adversary A as follows.

SetUp Phase. B picks a0, a1, a2, y
R←− Zq and sets:

P1 ←
(
a1 · a4d+4N

)
P , P3 ←

(
a0 · a1 · a3d+3N

)
P

P2 ←
(
a2 · ad+N

)
P , P4 ← (a0 · a2)P



Note that this is implicitly equivalent to setting b ← a0 · a−d−N . Next, B picks a

random polynomial f(x)
R←− Zq[x] of degree d to simulate the pseudo-random function

Π, and samples χ, y
R←− Zq, and sets:

params←
({(

(f(a)− f (H2 (idj))) ·
(
a−H2 (idj)

−1
))

P1

}
j∈{0,··· ,N}

,{(
(f(a)− f (H2 (idj))) ·

(
a−H2 (idj)

−1
))

P3

}
j∈{0,··· ,N}

,

{
ajP2, a

kP4

}
j∈{0,··· ,N},k∈{0,··· ,N−2} , P1, aP1, f(a)P1, (a · f(a))P1

)
PK ← (χP1, (f(a) · χ)P1, (a · χ)P1, (a · f(a) · χ)P1, yP4)

B provides params and PK to A. Note that B can set each of the aforementioned
components for both params and PK from its input instance. Since the choice of
a, f(x), χ, y and a0, a1, a2 are all uniformly random, the distribution of params and
PK are exactly as in the real world.

Trapdoor Query Phase-1. A adaptively issues trapdoor queries of the form (wq,Sq)
for q ∈ [1, Q1] and Sq ⊂ {1, · · · , N}. Let FS(x) be as described in the construction. B
sets:

T1 ← H1(w)

T2 ← (χ · FS(a) + y ·H1(w))P2

Note that since FS(x) has degree N , FS(a)P2 can be computed from B’s input in-
stance. B responds with Tq = (T1, T2).

Challenge Phase. A provides B with two document collections D0 = (D1,0, · · · , DN,0)
and D1 = (D1,1, · · · , DN,1) with the same identity space ID, subject to the restriction
that:

τ
(
D0, {(wq,Sq)}q∈[1,Q1]

)
= τ

(
D1, {(wq,Sq)}q∈[1,Q1]

)
B picks b

R←− {0, 1}. For each keyword w in the dictionary and each document
Dj,b ∈ Db with identity idj,b ∈ ID, it does the following:

(a) Let i← H2 (idj) and let fi(x) = (x− i)−1 · (f(x)− f(i)). B now picks a random

polynomial t(x)
R←− Zq[x] of degree d+N−1 subject to the restrictions that such

that:

(f(x)− f(i)) t(x) |d= 1

(f(x)− f(i)) t(x) |j= 0 for j ∈ [d+ 1, d+N − 1]

fi(x)t(x) |j= 0 for j ∈ [d− 1, d+N − 1]

where p(x) |j for any polynomial p(x) denotes the coefficient of xj in p(x). Ob-
serve that since the system involves 2N+1 equations and t(x) has degree d+N−1
for d >> N , it is possible to obtain a sufficiently random t(x) satisfying the afore-
mentioned constraints.



(b) Next, let P5 =
(
a−d−N

)
P1 and let P6 =

(
a−d−N

)
P3. B sets :

c∗0 ←
(

(f(a)− f(i)) · (a− i)−1 · t(a)
)
P6

c∗1 ← (χ · t(a) · (f(a)− f(i)))P5

c∗2 ← e′τ (c∗0, (y ·H1(w))P2)

(c) Let r(x) = xN−1 (f(x)− f(i)) t(x)− xd+N−1. If Dj,b contains the keyword w, B
sets:

c∗3 ← Za0·a1·a2·χ · e′τ (P5, P4)
χ·r(a)

= Za0·a1·a2·χ · e′τ
((
a · (f(a)− f(i)) · t(a)− ad+1

)
P5, a

N−2P4

)χ
otherwise it sets c∗3

R←− GT .

(d) B sets I∗[H1(w)][H2(idj,b)]← (c∗0, c
∗
1, c
∗
2, c
∗
3).

Finally, it responds with I∗.

Trapdoor Query Phase-2. A continues to adaptively issue trapdoor queries of the
form (wq,Sq) for q ∈ [Q1, Q], once again subject to the restriction that:

τ
(
D0, {(wq,Sq)}q∈[1,Q]

)
= τ

(
D1, {(wq,Sq)}q∈[1,Q]

)
B responds as in Trapdoor Query Phase-1.

Guess Phase. A outputs a guess b′ for the random bit b chosen by B. If b′ = b, B
returns 0, else B returns 1.

Modeling the Hash Functions as Random Oracles. The hash functions in the
above proof are simulated by B as random oracles that A can query at any time. The
simulation for H1 is as follows: B maintains a list of tuples of the form (wi, xi) called
the H1-table. The table is initially empty. On receipt of a query H1(w′) for w′ ∈ {0, 1}λ,
B first searches for a matching tuple entry in the table. If found, it returns the second

component of the corresponding entry. Otherwise, it samples x′
R←− Zq, adds the tuple

(w′, x′) to the H1-table and returns x′ as response. Since x′ is uniformly random in Zq,
the response is random from A’s view as desired. The simulation for H2 also follows
similarly.

Claim C.1 B can compute c∗0 in the Challenge Phase.

Proof. Observe that fi(x)t(x) is a polynomial of degree 2d + N − 2. Owing to the con-
straints on fi(x)t(x) mentioned earlier and the fact that P6 =

(
a0 · a1 · a2d+2N

)
P , B only

requires the knowledge of ajP for j ∈ {2d+ 2N, · · · , 3d+ 2N − 2} ∪ {3d+ 3N, · · · , 4d+
3N − 2}, which is provided as part of its input instance.

Claim C.2 B can compute c∗1 in the Challenge Phase.

Proof. Observe that f(x)t(x) is a polynomial of degree 2d+N−1. Owing the constraints
on f(x)t(x) mentioned earlier and the fact that P5 =

(
a1 · a3d+3N

)
P , B only requires

the knowledge of ajP for j ∈ {3d + 3N, · · · , 4d + 3N} ∪ {4d + 4N, · · · , 5d + 4N − 1},
which is provided as part of its input instance.



Claim C.3 B can compute c∗3 in the Challenge Phase.

Proof. Observe that since xf(x)t(x) is a polynomial of degree 2d+N , given the constraints
on f(x)t(x) mentioned earlier and the fact that P5 =

(
a1 · a3d+3N

)
P , B only requires

the knowledge of ajP for j ∈ {3d + 3N + 1, · · · , 4d + 3N} ∪ {4d + 4N, · · · , 5d + 4N},
which is provided as part of its input instance.

Claim C.4 For Z = e′τ (P, P )a
4d+4N−1

, A’s view of I∗ is exactly as in the real world and
B’s simulation is perfect.

Proof. Put f = f(a), t = t(a) · a−d−N and Π (H2 (idj)) = f(i). Then we have:

c∗0 =
(

(f −Π (H2 (idj))) · (a−H2 (idj))
−1 · t

)
P3

c∗1 = (χ · t · (f −Π (H2 (idj))))P1

c∗2 = e′τ

((
(f −Π (H2 (idj))) · (a−H2 (idj))

−1 · t
)
P1, (y ·H(w))P4

)
Further, for Z = e(g, g)a

4d+4N−1

, we have:

c∗3 = Za0·a1·a2·χ · e′τ (P5, P4)
χ·r(a)

= Za0·a1·a2·χ · e′τ
((
a · (f(a)− f(i)) · t(a)− ad+1

)
P5, a

N−2P4

)χ
= Za0·a1·a2·χ · e′τ

(
(a · χ · (f −Π (H2 (idj))) · t)P1, a

N−2P4

)
· e′τ

(
ad+1P5, a

N−2P4

)−χ
= e′τ

(
(a · χ · (f −Π (H2 (idj))))P1, a

N−2P4

)t ·
e′τ (P, P )

a0·a1·a2·χ·a4d+4N−1

· e′τ (P, P )
−a0·a1·a2·χ·a4d+4N−1

= e′τ
(
(a · χ · (f −Π (H2 (idj))))P1, a

N−2P4

)t
On the other hand, when Z is random in Zq, I∗ is uniformly random from A’s view
point. From this, we see that B’s advantage in deciding the (S,M)-BDHES instance is
precisely A’s advantage in breaking the adaptive data privacy of our CASE construction.
This completes the proof of Theorem C.1.


