
Faster Unbalanced Private Set Intersection

Amanda C. Davi Resende and Diego F. Aranha

Institute of Computing � University of Campinas (UNICAMP)
{amanda.resende,dfaranha}@ic.unicamp.br

Abstract. Protocols for Private Set Intersection (PSI) are important
cryptographic primitives that perform joint operations on datasets in a
privacy-preserving way. They allow two parties to compute the intersec-
tion of their private sets without revealing any additional information be-
yond the intersection itself. PSI implementations in the literature usually
do not use the best possible cryptographic implementation techniques.
This results in protocols presenting computational and communication
complexities that are prohibitive, particularly in the case when one of
the protocol's participant is a low-powered device and there are band-
width restrictions. This paper builds on modern cryptographic engineer-
ing techniques and proposes optimizations for a promising one-way PSI
protocol based on public-key cryptography. For the case when one of the
parties holds a set much smaller than the other (a realistic assumption
in many scenarios) we show that our improvements and optimizations
yield a protocol that over performs the communication complexity and
the run time of previous proposals by up to one thousand times.

Keywords: Cuckoo �lter, Private Set Intersection, unbalanced PSI, soft-
ware implementation

1 Introduction

Private Set Intersection (PSI) is a special case of secure multiparty computation
(MPC) where two parties perform joint operations on datasets while preserv-
ing privacy. They have been used in several applications such as relationship
path discovery in social networks [1], botnet detection [2], proximity testing [3],
cheating detection in online games [4], genetic testing of fully-sequenced human
genomes [5] and private contact discovery [6].

PSI protocols allow two parties store a set of private data such as lists of
patients, criminal suspects or telephone contacts to compute the intersection of
their sets without revealing any additional information beyond the intersection
to one or both parties. These protocols can be divided into one-way PSI, i.e., only
one of the parties learns the intersection; or mutual PSI (mPSI), in which both
parties learn the intersection. The focus of this work are one-way PSI protocols.
For more information about mPSI, the reader is invited to see [7,8,9,10,11,12].

They can also be classi�ed based on their behavior. In the literature, Chen
et al. [6] de�ned the PSI setting as symmetric when the sets have approximately
the same size and asymmetric when one of the sets is substantially smaller than

2 Amanda C. Davi Resende and Diego F. Aranha

the other. We propose a new terminology to prevent confusion with the type of
cryptographic primitive being used (symmetric or asymmetric): balanced for sets
with approximately the same size and unbalanced for the opposite scenario1.

However, even with several PSI protocols already proposed in the literature,
most real-world applications use naive solutions (as later detailed in Section 2.2),
because they are more e�cient in both run time and communication. Protocols
proposed and implemented in several papers by Pinkas et al. [13,14,15] are ef-
�cient in terms of computation (by using mostly symmetric operations), but
need to transmit a lot of data, while other works based on public-key cryptogra-
phy [16,17,5,6] need to transmit fewer data, but require less e�cient operations.
Thus, the choice of the protocol depends on the PSI setting, network bandwidth,
storage space, security properties, among other factors.

1.1 Our contributions

While the e�cient implementation of symmetric and asymmetric cryptographic
primitives is a vibrant and rich �eld of research in cryptography, the same is not
true for MPC protocols, in general, and PSI, in particular. Several of the PSI
implementations available in the literature make no use of modern and e�cient
techniques for the implementation of cryptographic protocols. We aim at �lling
this gap by showing that a state-of-the-art protocol previously proposed by Baldi
et al. in [5] can be optimized as to reduce its communication complexity by more
than one order of magnitude and its running time by a factor of at least three.

In more detail, the main contributions of this paper are:

� Improvements on Baldi et al. one-way PSI protocol based on public-
key cryptography [5], secure against semi-honest adversaries: We
show that this protocol, improved with our optimizations, becomes an ef-
�cient and practical one-way PSI for the unbalanced setting. Furthermore,
if the optimized protocol is used in constrained scenarios, like 1Mbps of
network bandwidth, it remains a good choice for balanced one-way PSI too
(Table 4 in Appendix C). Additionally, the protocol has the desired forward
secrecy property on the client side, that is usually more vulnerable than the
server, which guarantees that elements exchanged in the past will remain
con�dential even if long-term secrets (keys) are exposed.

� We propose Cuckoo �lters to reduce the amount of data to be
exchanged by the protocol and stored by the client: Cuckoo �lters
present many advantages: (i) they requires less storage space than other
similar approaches, like Bloom �lter and Cuckoo hashing, for a false positive
rate (FPR) less than 3% [18]; (ii) they allow the delete operation (important
in some applications); and (iii) the lookup operation is performed in linear
time in the number of entries per bucket (more details in Appendix A).
To the best of our knowledge, this is the �rst time that a Cuckoo �lter is
employed in PSI protocols, where normally a Bloom �lter is used.

1 Throughout this paper, the client set is always the smaller one.

Unbalanced Approximate PSI 3

� We provide an e�cient software implementation of the protocols
using the Galbraith-Lin-Scott binary elliptic curve (GLS-254) with
point compression: To the best of our knowledge, this is the �rst time that
a state-of-the-art implementation of elliptic curves is used to instantiate PSI
protocols that rely on this type of operation. Our implementation of the
GLS-254 curve takes around 50,000 cycles to compute an exponentiation,
which is 24× faster than the Koblitz K-283 curve implementation used, for
example, in the PSI protocol presented in [19].

� Experimental comparison: We implemented our optimized protocol and
the original version [5] (both using the GLS-254 curve) and compared them
with the most promising PSI protocols in the literature, showing the results
of the (o�ine) preprocessing phase (when it is possible) and the online phase.
Our results show that with our optimizations, this protocol is e�cient even
when used in bandwidth restricted scenarios.

1.2 Applications to private contact discovery

In the private contact discovery problem, a user signs up to a messaging appli-
cation such as WhatsApp, Signal or Telegram, and would like to discover which
contacts his/her address book are also registered. However, the user is not will-
ing to reveal his entire list of contacts. In this setting, the user typically has a
set with a few hundred contacts, while the messaging application can have from
a few million to a few billion users, characterizing the unbalanced setting.

Because of the sheer number of entries in the social network server's side, se-
cure messaging applications such as TextSecure/Signal2 and Secret3, currently
employ insecure approaches (see Section 2.2) to �solve� the private contact dis-
covery problem, since they have better both run time and communication com-
plexity when compared to state-of-the-art secure protocols. At the cost of toler-
ating a small FPR, our optimized protocol provides a secure solution that works
in this realistic scenario, being potentially useful for secure social networks with
billions of users.

Organization. This paper is organized as follows. In Section 2, we show nota-
tion and terminology used during the development of this work, a classi�cation
of the PSI protocols into categories and a brief overview of the main protocols in
each class. In Sections 3 and 4, the basic protocol is presented and the optimiza-
tions are proposed, respectively. In Section 5 we show the results and compare
them with the most promising protocols from the literature. Finally, in Section 6
we present the conclusions.

2 https://whispersystems.org/signal/privacy/
3 https://medium.com/@davidbyttow/demystifying-secret-12ab82fda29f\#.

5433o6e8h

4 Amanda C. Davi Resende and Diego F. Aranha

2 Related work for PSI protocols

We start by formalizing the notation used throughout the paper and other rele-
vant de�nitions.

2.1 Notation and terminology

� P1 and P2 are the participating parties of the protocols, where P1 is the
server and P2 the client, except when referring to server-aided (third party)
PSI protocols. X and Y are the respective input sets of P1 and P2, with size
n1 = |X| and n2 = |Y |. The set X is denoted by {x1, x2, ..., xn1

} and the set
Y by {y1, y2, ..., yn2

} where each element has bit-length σ.

� For a set S, the notation x
R← S indicates that x was sampled from S with

uniform distribution.
� The operation a

?
= b denotes the comparison whether a is equal or not to b.

� κ = 128 is the symmetric security parameter.
� ρ = 40 is the statistical security parameter (hashing failure).
� ϕ = 256 is the size of the representation of a point in the GLS-254 binary
elliptic curve when using point compression (number of bits to store one
x-coordinate and two trace bits).

� η = 30 is the hash collision parameter, i.e., the probability of a hash collision
occurring is < 2−30.

� G is a multiplicative group of prime order q.
� H : {0, 1}∗ → {0, 1}l, H1 : {0, 1}σ → G, H2 : G→ {0, 1}l are hash functions
modeled as random oracles in the security analysis. In some cases, the output
length is de�ned as l = ρ+log n1 + log n2, as suggested by Pinkas et al. [15],
instead of 2 ·κ. This produces the collision probability 2−η, which is suitable
for most applications.

� For the Cuckoo �lter, we also de�ne v as the �ngerprint length (in bits), w
as the load factor (0 ≤ w ≤ 1), b as the number of entries per buckets, m as
the number of buckets, εmax as the upper bound on the FPR and ε as the
observed FPR. The FPR is given in %.

2.2 Classi�cation and related work of PSI protocols

Many one-way PSI protocols have been proposed in the open research litera-
ture [20,21,22,23,24,25,13,14,15,6]. They are constructed based on several prim-
itives such as Bloom �lters [26], Cuckoo hashing [27], Oblivious Polynomial
Evaluation (OPE) [28], Oblivious Pseudorandom Function (OPRF) [29], Gar-
bled Circuits (GC) [30,31], Unpredictable Function [23], Homomorphic Encryp-
tion [32,33], Oblivious Transfer (OT) [34,35], among others.

Following Pinkas et al. [13,14,15], PSI protocols can be classi�ed into: naive
hashing (or naive solution), server-aided PSI (or third party-based PSI), PSI
based on generic protocols (or circuit-based PSI), OT-based PSI and PSI based
on public-key cryptography.

Unbalanced Approximate PSI 5

Naive hashing. Both P1 and P2 use a hash function H to compute the hash
of their elements. P1 then computes x′i = H(xi) while P2 computes y′j = H(yj),
where 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2. After computing the hashes, P1 sends values
x′i to P2 which computes the intersection between sets x′ and y′ by checking if

y′j
?
= x′i for each value of i and j. This approach is very e�cient both in run

time and communication. P1 and P2 must compute n1 and n2 hash functions,
respectively. P2 does not need to send any data to P1, while P1 sends only n1l
bits to P2. In the end, P2 also needs comparisons to �nd the intersection, which
can be done with complexity O(1) per element, in average, by using a hash table.

However, if the hash function inputs were taken from a low-entropy domain
D, P2 can discover all elements of P1 by performing a brute-force attack. For

every possible element z ∈ D, P2 veri�es if H(z)
?
= x′i. One solution could be

to choose D with high entropy when possible. This would prevent the problem,
but consecutive executions of the protocol would still leak repeated elements
and would not guarantee forward secrecy since P2 can verify if a speci�c element

z ∈ D was part of the P1 set, by just checking if H(z)
?
= x′i. Nonetheless, this

insecure protocol is employed by messaging applications for the private contact
discovery problem, and social networks like Facebook4, Twitter5 and Snapchat6

to measure advertisement conversion rates.

Server-aided PSI. Several works in the literature [25,36,12] have employed a
third party, in this case called as server, to achieve better performance in PSI
protocols. The server can be semi-honest (can not deviate from protocol, learns
only by observing communication between parties), covert (if it deviates from
protocol, it is detected with some probability by an honest party) or malicious
(can arbitrarily deviate from the protocol). However, such protocols are secure
only if the third party does not collude with any of the other parties, thus having
a di�erent security model from conventional protocols.

In [36], Kamara et al. present a semi-honest server protocol that takes 10
minutes with 12GB of communication and 100 threads to evaluate 2 sets of 1
billion elements each. In the protocol, P1 samples a random k-bit key K and
sends it to P2 (in this approach both P1 and P2 are considered clients). Both P1

and P2 calculate f1 = π1(FK(x1), ..., FK(xi)) and f2 = π2(FK(y1), ..., FK(yj)),
respectively, where F : {0, 1}k × D→ {0, 1}≥k is a pseudorandom permutation,
π is a random permutation for 1 ≤ i, j ≤ 109, and then send f1 and f2 to the
semi-honest server. The server calculates the intersection I = f1 ∩ f2 and sends
I to P2 which obtains the intersection by computing F−1k (e) for each e ∈ I.

PSI based on generic protocols. Generic secure computation uses Arith-
metic or Boolean circuits to securely evaluate functions, among them, the set in-

4 https://www.wired.com/2014/12/oracle-buys-data-collection-company-

datalogix/
5 https://support.twitter.com/articles/20170410
6 https://www.wsj.com/articles/snapchat-to-enable-ad-targeting-using-

third-party-data-1484823600

6 Amanda C. Davi Resende and Diego F. Aranha

tersection. In [24], Huang et al. presented several of these protocols using Boolean
circuits, all of them constructed using Yao's garbled circuits [30,31].

The simplest protocol described in [24] involves the comparison of each ele-
ment from P1 with each from P2. This approach is known as Pairwise-Comparison
(PWC) and involves O(n2) comparisons, which does not scale well for large
sets. Another more e�cient approach presented in [24], the Sort-Compare-Shu�e
(SCS) circuit, is more e�cient, with complexity O(n log n). SCS �rst sorts the
union of the P1 and P2 elements, then compares if adjacent elements are the
same, and �nally shu�es the result to prevent information leakage.

The major advantage of this type of protocol is that they can be easily
adapted to any other features that PSI protocols may require, such as revealing
only the intersection size or whether the size is larger or smaller than a threshold.
However, despite the improvements in recent years, generic protocols still have
a very high run time compared to other protocols.

OT-based PSI. This category of protocols is the most recent and, up to date,
the most promising, mainly because of the large performance improvements from
OT extensions. The �rst protocol was proposed in 2013 by Dong et al. [25],
combining Bloom �lters and OT [37] in their construction.

In 2014, Pinkas et al. [13] presented improvements to [25] and also proposed
a new and more e�cient protocol combining OT and hashing. In 2015, Pinkas
et al. [14] have shown that the previously presented proposal [13] could be im-
proved by using the permutation-based hash technique [38], since it reduces the
size of each element stored in the bins, which until then was the main overhead of
the protocol. In 2016, Pinkas et al. [15] presented improvements for their earlier
protocols, where the complexity no longer depends on the size of each element.
This protocol is the state of the art for balanced one-way PSI protocols and,
depending on the scenario (network bandwidth), also for unbalanced PSI pro-
tocols, with security against semi-honest adversaries. By using only symmetric
operations in almost all of its construction, the protocol is extremely e�cient7.

Public-key cryptography based PSI. Meadows [16] and Huberman et al. [17]
proposed one of the earliest PSI approaches based on public-key cryptography,
even before the PSI problem was formally de�ned in [20]. Both protocols were
based on the Di�e-Hellman (DH) key exchange, taking advantage of its com-
mutative properties. DH-based PSI protocols use the Random Oracle Model
(ROM) to prove their security, while Freedman et al. [20,39] introduced PSI
protocols based on the standard model, which are secure against both semi-
honest and malicious adversaries and are based on the ElGamal cryptosystem.
In [22], Cristofaro and Tsudik presented a PSI protocol based on blind-RSA.

Later Jarecki et al. [23] presented a PSI protocol that is secure against mali-
cious adversaries based on a Parallel Oblivious Unpredictable Function (POUF).

7 The protocol presented in [15] uses asymmetric operations [34] to generate the OT
bases. However, the cost of these operations is negligible when the number of elements
evaluated is substantially greater than the value of κ.

Unbalanced Approximate PSI 7

In [5], Baldi et al. relaxes the security of [23] to semi-honest adversaries. This
protocol is used to obtain the results of this paper. Another relevant public-
key PSI protocol was presented by Chen et al. [6]. It is based on the protocol
presented by Pinkas et al. [15], but instead of performing OPRF (via OT) opera-
tions, it uses the Fan-Vercauteren (FV) leveled Fully Homomorphic Encryption
(FHE) scheme. This change considerably decreases the amount of data to be
transmitted in the unbalanced setting. Therefore, depending on the unbalanced
setting and the network bandwidth, this protocol is faster than Pinkas et al. [15].
The good performance is however restricted to 32-bit elements due to limitations
in the parameters of the FHE scheme.

The most recent work was presented by Kiss et al. [40]. They independently
noted that in some PSI protocols the server can perform operations on its data
only once and send the result to the client, which will use them in future ex-
ecutions to compute the intersection. They proposed using a Bloom �lter (or
a counting Bloom �lter) to decrease the amount of data to be transmitted or
stored by the client. These observations are very important in an unbalanced
setting, since all operations and communication are only performed consider-
ing the smaller client set. In terms of security, there is an important limitation
in their approach: in the protocol closest to our optimized proposal (DH-based
PSI [16,17]), the client and server reuse the same keys across all executions,
which does not provide forward secrecy. In terms of performance, during the
preprocessing phase alone (the setup phase, as in the paper), the server should
send n1ϕ bits to the client and the client computes n1 exponentiations. For ex-
ample, if n1 = 224 it will be necessary to transmit and store 512 MB and to
perform 224 exponentiations on the client side.

One e�cient way to instantiate PSI protocols based on public-key cryptog-
raphy is to use elliptic curves. The exponentiation on elliptic curves becomes a
scalar multiplication and we will keep the exponentiation notation throughout
the paper for compatibility with the other works.

3 The basic protocol

Jarecki and Lui [23] presented a one-way PSI protocol secure against mali-
cious adversaries based on the hardness of the One-More-Gap-Di�e-Hellman
(OMGDH) problem and a Zero-Knowledge Proof (ZKP). Later, Baldi et al. [5]
relaxes the security of this protocol to be secure against semi-honest adversaries,
by removing the ZKP. This protocol is shown in Figure 1 and works as follows:
for each element xi ∈ X, the server computes the hash H1(xi), the exponentia-
tion H1(xi)

α with the same exponent for all the elements, and again computes
the hash txi = H2(H1(xi)

α), sending values txi to the client. For each element
yi ∈ Y , the client computes the hash H1(yj), the exponentiation aj = H1(yj)

βj

with ephemeral exponents βj and sends values aj to the server. The server com-
putes a′j = (aj)

α for each aj using the same α used previously and sends values

a′j to the client. The client then calculates tyj = H2((a
′
j)

1/βj), by �removing� the
exponents that were applied earlier. Finally, the client computes the intersection
by checking if tyj ∈ {tx1, tx2, ..., txn1}. The long-term secret is the server key α.

8 Amanda C. Davi Resende and Diego F. Aranha

Fig. 1. Basic PSI protocol proposed in [5] that relaxes the security of the [23] to
be secure against semi-honest adversaries. H1 and H2 are hash functions modeled as
random oracles. [5, Adapted].

4 Optimizations

We propose a few modi�cations to the protocol presented in Section 3 that
drastically improve its performance during the preprocessing phase.

(i) The o�ine phase is executed just once and the results stored in a database.
We signi�cantly reduce the size of the database by using a Cuckoo �lter [41].
A �gure portraying our modi�cation is presented in Appendix B.

(ii) We implement the protocol based on the GLS-254 elliptic curve, which im-
proves its computational performance.

Below these improvements are described in detail.

4.1 Generating the database

As it can be seen in Figure 1, the protocol is divided into two parts: o�ine and
online. The o�ine part is executed without the need of any communication from
the server to the client, except for any possible negotiation to de�ne the initial
parameters such as the group G and its order q. Thus, the server can mask all
elements using α and the hash functions H1 and H2 (txi = H2(H1(xi)

α)) before
receiving connections. Because of this feature, the o�ine part can be performed
only once, where the server would calculate the mask of each element and send
it to the client, which would store them for use in each execution of the protocol.
Therefore, only the online part needs to be used.

Unbalanced Approximate PSI 9

The resulting protocol is very e�cient when used in unbalanced PSI setting,
where the smallest set belongs to the client. This happens because in the online
part all operations are performed only on the client elements (3n2 asymmetric
cryptographic operations and 2n2ϕ bits are transmitted).

4.2 Reducing the database size

The database size increases with the number of server elements. For example,
assuming each masked server element has l = ρ+log n1+log n2 bits and if ρ = 40,
as de�ned in Section 2.1, with n2 = 28 and n1 = 224, each masked element would
have l = 72 bits. Since the server has 224 elements, all server masked elements
will occupy 144 MB. However, if the scale changes from a few million to a few
billion, as is the case of a large messaging application with approximately 230

users, the server masked elements would need 9.75 GB of space.
Downloading and storing this data on devices with low memory resources,

such as mobile devices, or with constrained network connection (low bandwidth
or/and high latency) can be prohibitive. To reduce the size of the data, tech-
niques have been used previously in the literature like Bloom �lters and their
variants [26,42,43] and Cuckoo hashing [27].

We take a di�erent approach and propose to use Cuckoo �lters [41]. They
have clear advantages over Bloom �lters and Cuckoo hashing, since they allow
the delete operation (which is essential in private contact discovery) using sig-
ni�cantly less space than the Bloom �lter variants and the Cuckoo hashing by
storing only the element's �ngerprint. We give the necessary preliminaries about
Cuckoo �lter in Appendix A, and further on assume that the reader is familiar
with the concept. To the best of our knowledge, this is the �rst application of
Cuckoo �lters to the problem of PSI.

4.3 E�cient software implementation of GLS-254 elliptic curve

Our implementation of ECC is based on the latest version of the GLS-254 soft-
ware [44] available in SUPERCOP8. The binary GLS curve is a particularly e�-
cient choice for our target platform due to its native support to binary �eld arith-
metic, the lambda coordinate system [45] and the GLS endomorphism for fast
scalar multiplications [46], achieving the current speed record for this operation.
The code is structured in three layers: an e�cient vectorized implementation of
binary �eld arithmetic targeting Intel instruction sets; a regular window-based
method for variable-base scalar multiplication implemented in constant time; a
thin protocol layer implementing the DH key exchange. The exponentiations in
our protocol were heavily based on the two last layers, while hashing and point
compression were directly implemented over the �eld arithmetic.

The approach selected for hashing was a combination of the SHA256 hash
function with the binary Shallue-van de Woestijne well-bounded encoding algo-
rithm [47]. Elements are �rst hashed to a binary �eld element u ∈ F2m using

8 https://bench.cr.yp.to

10 Amanda C. Davi Resende and Diego F. Aranha

SHA256, and then the encoding outputs the lambda coordinates (x, λ) of a point
over the binary elliptic curve. This approach requires only a single inversion, a
quadratic equation solution and some cheaper �eld operations, and provides bet-
ter statistical properties than popular try-and-increment heuristics. Point com-
pression adapts a rather classical technique [48]. The λ coordinate de�ned over
a quadratic extension F22m [s]/(s2 + s+ 1) as (λ0 + λ1s) is compressed to a pair
of trace values (Tr(λ0), T r(λ1)), which can later be used to solve a quadratic
equation and disambiguate among the four possible solutions. In total, 256 bits
are used by concatenating the 254 bits of the x coordinate with the two trace
bits. Decompression again requires a �eld inversion, solving a quadratic equation
and some cheaper binary �eld operations. As a result, our entire code runs in
constant time for side-channel resistance, including the quadratic solver [47].

4.4 Correctness and security guarantees with our modi�cations

The correctness guarantees of the protocol with the modi�cation shown above
follows the correctness of the original protocol by Jarecki and Lui [23] and Baldi
et al. [5] and the correctness of the Cuckoo �lter (up to false positives) [41,49].
This happens due to the fact that the same messages are exchanged and the same
computational steps are performed by both parties, with the only di�erence that
the server's masked elements are encoded in a Cuckoo �lter.

The FPR of the Cuckoo �lter can be as small as the application requires
considering the cost of increasing the �lter size. We have 2 di�erent FPR: the
εmax and the ε. The �rst is the upper bound and does not take into account the
load factor of the �lter and the second is the observed measure that takes into
account the load factor (for more details see the Appendix A).

The security guarantees of the modi�ed protocol also follow from the security
of the original protocol, which is based on the hardness of the OMGDH problem.
We apply only one modi�cation in the protocol that does not change the security:
we replace the transmission of the server's masked elements to the client, in the
o�ine phase, by sending a Cuckoo �lter which encodes the masked elements.

However, sending the Cuckoo �lter does not reveal any more information
than sending the masked elements. By assumption, there is an algorithm A
that the attacker can use on the modi�ed protocol (with the Cuckoo �lter) and
breaks security with non-negligible probability γ. It is possible to devise the
algorithm A′ with which the attacker can use to break the original protocol
and works as follows: �rst A′ runs the original protocol and keeps the raw set
of masked elements received from the server. Then, the attacker encodes the
masked elements as a Cuckoo �lter and feeds A with it. Therefore, A observes
the same view as in a run of the modi�ed protocol and thus can break security
with probability γ. Thus, A′ breaks the security with the same probability.

5 Implementation and experimental evaluation

We ran our experiments in a computer equipped with an Intel Haswell i7-4770K
quadcore CPU with 3.4GHz and 16GB of RAM with Turbo Boost turned o�.

Unbalanced Approximate PSI 11

All tests were performed using only this machine, and network bandwidth and
latency were simulated using the Linux command tc (network simulation code
can be found in Appendix D). For the Local Area Network (LAN) setting, the
two parties (client and server) are connected via local host with 10Gbps of
bandwidth and a 0.2ms Round-Trip Time (RTT). In addition to the LAN, we
also consider three Wide Area Network (WAN) settings with 100Mbps, 10Mbps
and 1Mbps of bandwidth, each with an 80ms RTT. These settings follow what
was proposed by Chen et al. [6].

We evaluate the performance of the PSI protocols in the unbalanced setting
and in the Appendix C we show the performance of the PSI protocols in the
balanced setting. In this scenario n2 ∈ {5535, 11041} and n1 ∈ {216, 220, 224},
as proposed by Chen et al. [6]. The size of each element was set to be 32 bits
(σ = 32 bits), but this does not impact the performance of our protocol due to
hashing. The output of the hash function used in Baldi et al. [5] is l, as de�ned in
the Section 2.1. The run time of each protocol was measured from the beginning
of the execution until the client computes the intersection. Each protocol was
executed 10 times and the run times were computed as the average of these
executions, as done in [15,6].

5.1 Implementation

OT+Hashing [15] implementation was obtained from Pinkas et al. [15], available
at https://github.com/encryptogroup/PSI. They used OpenSSL (v.1.0.1e)
for the symmetric cryptographic primitives, the implementation of [50] for the
OT extension, available at https://github.com/encryptogroup/OTExtension,
and the MIRACL library (v.5.6.1) for ECC. According to our benchmarking, an
exponentiation within their codebase takes 1.2 million cycles9, which indicates a
miscon�gured version of MIRACL. Up to now, there is no implementation avail-
able for the Chen et al. [6] protocol, but we tried to reproduce the benchmarking
scenarios as close as possible to their work.

We implemented our optimized protocol and the original [5] using the soft-
ware provided by Pinkas et al. [15] replacing the Koblitz K-283 curve, available
in MIRACL, by the GLS-254 curve. Our implementation of the GLS-254 curve
takes around 50,000 cycles to compute an exponentiation, which is 24× faster
than [15]. We used the Cuckoo �lter implementation of Fan et al. [41] available
at https://github.com/efficient/cuckoofilter.

All protocols were implemented using C and C++ programming languages
and executed using the same hardware. The same libraries were used to perform
the cryptographic operations, except for the OTs in OT+Hashing [15] which still
use the Koblitz curve. This does not impact the run time of the protocol, since
the cost of this operation is negligible when the number of elements is large.

5.2 Preprocessing

To improve performance, some PSI protocols can be divided into two phases (on-
line and o�ine) without impact in security. The o�ine part of the protocol can

9 Average of 220 exponentiations performed on our Haswell machine.

12 Amanda C. Davi Resende and Diego F. Aranha

be executed only once and reused in future executions. In the protocol proposed
by Chen et al. [6], the server precomputes some values to facilitate the underly-
ing FHE multiplications. In this case, only the server will use the precomputed
data and no transfer to the client is required.

Unlike the Chen et al. protocol [6], in the basic protocol [5] presented in
Section 3, the server can preprocess the encryption/masking of all elements and
send them to the client. The client must store and reuse this data in all sub-
sequent executions of the protocol to calculate the intersection, as presented in
Section 4.1. Beyond using the precomputing allowed in the basic protocol, our
approach also inserts each encrypted element into a Cuckoo �lter, according to
Section 4.2, in order to reduce the data that must be transmitted to the client
and that should be stored.

Table 1 presents the preprocessing and data transmission time using the
network settings de�ned in beginning of Section 5. The run times of Chen et

al. were obtained from their own paper [6], and since some parameters of the
FHE can generate more e�cient processing depending on the con�guration, the
preprocessing column may have two di�erent values (we separate them with the
symbol *) that will be used in the next section.

We note that the run times for the protocol proposed by Baldi et al. in [5]
here presented are for an implementation based on the binary elliptic curve GLS-
254 and not for the original implementation proposed in [5] which works over a
1024-bit prime number. The improvements would be way more drastic had the
original implementation proposed in [5] been used for comparison.

It is interesting to note that the preprocessing run times of our optimized
protocol and our implementation of the original Baldi et al. protocol [5] are prac-
tically the same, since we perform the same operations. However by employing
a Cuckoo �lter to reduce the amount of data to be transmitted, our optimized
version transmits up to 3.3× less data than [5] and is accordingly 3.3× faster.

5.3 Comparison to others PSI protocols

The performance evaluation of the protocols will be performed in the unbalanced
setting. As the code of the protocol presented by Chen et al. [6] was not avail-
able, we obtained its and OT+Hashing [15] results from [6]. As shown in Section
2.2, PSI protocols can be classi�ed into �ve categories. Because the naive hash-
ing and server-aided approaches have di�erent security notions from the other
protocols, they will not be analyzed. PSI based on generic protocols are out of
scope, because they have limitations in run time and memory. Among the two
remaining categories, OT-based PSI and PSI based on public-key cryptography,
we will analyze the best protocol in each category comparing the results with
our optimized proposal.

Unbalanced PSI protocols. In many applications where it is necessary to
compute the private set intersection, the sets have unequal sizes. In the clien-
t/server approach, the server usually has a set from millions to billions of ele-
ments while the client has only a few hundred, such as in the case of private

Unbalanced Approximate PSI 13

Transmission time (s)

LAN WAN

Protocol n1 n2 Comm. Preprocessing 10Gbps 100Mbps 10Mbps 1Mbps

Chen
et al. [6]

224
11041 - 70.9, 76.8∗ - - - -

5535 - 64.1, 71.2∗ - - - -

220
11041 - 6.4 - - - -

5535 - 4.3 - - - -

216
11041 - 1.0 - - - -

5535 - 0.7 - - - -

Baldi
et al. [5]

224
11041

160.00 334.17 0.13 15.73 136.32 1,345.55
5535

220
11041

10.00 20.91 0.01 1.10 8.38 84.40
5535

216
11041

0.56 1.31 0.01 0.19 0.53 5.09
5535

Our

protocol

224
11041

48.00 333.62 0.06 4.82 40.71 403.68
5535

220
11041

3.00 20.78 0.00 0.60 2.55 25.63
5535

216
11041

0.19 1.30 0.00 0.01 0.19 1.56
5535

Table 1. Preprocessing and transmission time for PSI protocols. The WAN setting
has 80ms RTT and the LAN 0.02ms RTT. For the �lter in our optimized protocol we
have v = 16, b = 3, w = 0.66 and εmax = 0.009155%. More details about Cuckoo �lter
is given in Appendix A. The communication is given in MB and the time in seconds.
Zero values refer to numbers smaller than 5 · 10−3. Best values marked in bold.

contact discovery. Table 2 shows the run time (in seconds) and the communica-
tion (in MBs) of the unbalanced scenario considering both the LAN and WAN
settings. We have analyzed the best protocol for the OT-based PSI, the two best
protocols for PSI based on public-key cryptography and we compare them with
our optimized proposal.

Amongst the public-key protocols, our proposal and the Baldi et al. proto-
col [5] have the same communication cost (2n2ϕ bits) and, regarding run time,
our approach is slightly better by employing the Cuckoo �lter in the server
database, what makes the �nal computation of the intersection more e�cient,
since the �lter is already constructed and the lookup is done in O(b) per element.
Because of this, we omitted the �gures related to Baldi et al. protocol [5] in Ta-
ble 2. In addition, comparing with the Chen10 et al. protocol [6], our optimized
approach transmits up to 59× less data and is up to 76× faster with 10Gbps,
for n2 = 5535 and n1 = 224.

10 In the communication column of Table 2, the protocol [6] can have 2 di�erent values,
because according to the network setting it is better that the operations take more
time and generate less data than to the operations take less time but produce more
data. This trade-o� can be raised in the FHE by adjusting the system parameters.

14 Amanda C. Davi Resende and Diego F. Aranha

Comparing our optimized protocol with OT+Hashing [15], our approach
transmits up to 1, 413× less data and is up to 74× faster with 10Gbps of band-
width and 946× faster with 1Mbps, for n2 = 5535 and n1 = 224.

Parameters Comm LAN WAN

Type Protocol n1 n2 Size (MB) 10Gbps 100Mbps 10Mbps 1Mbps

OT OT+Hashing [15]

224
11041 480.9 40.5 88.0 449.5 4,084.8

5535 480.4 40.1 87.9 449.2 4,080.6

220
11041 30.9 3.3 7.0 29.8 263.7

5535 30.4 3.1 6.8 29.0 260.0

216
11041 2.6 0.7 1.5 3.3 21.6

5535 2.1 0.7 1.4 2.9 19.8

Public
key

Chen et al. [6]

224
11041 23.2, 21.1∗ 44.5 46.9 63.5 214.0∗

5535 20.1, 12.5∗ 41.1 43.1 49.1∗ 139.9∗

220
11041 11.5 6.4 7.6 15.8 99.0

5535 5.6 8.6 9.2 13.3 53.6

216
11041 4.1 2.0 2.4 5.4 35.0

5535 2.6 1.1 1.3 3.2 21.8

224
11041 0.67 0.87 1.52 1.86 7.81

Our 5535 0.34 0.54 1.04 1.21 4.31

optimized
220

11041 0.67 0.67 1.31 1.65 7.59

protocol 5535 0.34 0.34 0.83 1.00 3.97

216
11041 0.67 0.66 1.29 1.64 7.57

5535 0.34 0.33 0.82 0.99 3.93

Table 2. Run time in seconds and communication in MBs for unbalanced PSI pro-
tocols. Times are taken at the client because it �nishes last. In the communication
column, the protocol of Chen et al. [6] may have two values due to di�erent parameters
used in the FHE system. For more information, see [6]. The results of OT+Hashing [15]
and Chen et al. [6] were obtained from [6]. Best values marked in bold.

Our optimized approach performs well for unbalanced scenario because our
operations depend only on the client set size, with 2n2ϕ bits transmitted and 3n2
exponentiations. Although exponentiations are considered an expensive opera-
tion when performed a small number of times and with an e�cient elliptic curve
implementation, a curve-based protocol becomes competitive with the others.

Comparison with Kiss et al. [40]. In a very recent paper, Kiss et al. [40]
present several PSI protocols, where the closest to our proposal is ECC-DH-
PSI [16,17]. In the preprocessing stage, the server needs to compute n1 expo-
nentiations like in our protocol, but the client also needs to compute n1 expo-
nentiations. In some applications, such as private contact discovery, this amount
of exponentiations in the client side could be prohibitive, because typically the
client has a resource constrained device. Considering n1 = 220 and according
to [40], the preprocessing takes 1,325.4 s while our proposal takes 21 s (using a
1Gbps network), that is 63× faster. Moreover, the server sends n1ϕ (ϕ = 284
in their case), that adds up to 35.5MB for ε = 0.1% and ε = 10−7%, while
our proposal just sends a 2.125MB �lter for ε = 0.05% (v = 16, w = 0.94 and

Unbalanced Approximate PSI 15

b = 17) and a 5MB �lter for ε = 1.6× 10−7% (v = 32, w = 0.8 and b = 5). This
is 15.7× and 7.1×, respectively less data to be transmitted.

In the online phase the amount of data to be transmitted is asymptotically the
same, 2n2ϕ, but concretely Kiss et al. [40] use ϕ = 284 bits for the K-283 curve
with compression and we have ϕ = 256 bits for the GLS-254 curve. Considering
the number of exponentiations, their approach needs to compute 2n2 operations
while our protocol computes 3n2. This advantage happens because the ECC-
DH-PSI from [40] does not provide forward secrecy on the client side and reuse
the same key across all protocol executions.

In order to reduce the amount of data to be stored by the client, Kiss et

al. [40] use a Bloom �lter, while our optimized approach employs a Cuckoo
�lter. The Cuckoo �lter allows deletions while the traditional Bloom �lter does
not and uses 30% less space for the same FPR [49]. While counting Bloom �lters
do allow deletions, this happens at the cost of using 3− 4× more space.

In summary, our protocol provides an e�cient preprocessing phase, forward
secrecy on the client side and a �lter that needs less storage space. The ECC-
DH-PSI protocol from [40] has an asymptotically faster online phase, but the
performance improvement is small in the unbalanced setting when n2 is small.
Moreover, their protocol does not provide any forward secrecy to clients and the
preprocessing phase is expensive and can be prohibitive on mobile devices.

6 Conclusions

Private set intersection is an important cryptographic primitive to allow two par-
ties to perform joint operations on their private sets without revealing additional
information beyond the intersection. Despite many protocols available in the lit-
erature, few of them provide solutions that are e�cient in both run time and
data transmission. In most approaches, the computational cost is based in both
the server and client set sizes, giving no advantages in the unbalanced setting.

We show that the protocol of Baldi et al. based on public-key cryptography,
with our optimizations, becomes an e�cient, practical and simple one-way PSI
protocol for unbalanced sets that ensures forward secrecy on the client side.
Additionally, we implemented the protocol using the GLS-254 binary elliptic
curve with point compression using techniques considered state of the art, that
allow a better comparison with the other proposed approaches.

Our optimized protocol with this implementation provides an interesting
trade-o� between preprocessing and the online phase of the protocol, where for
n1 = 224 the preprocessing takes less than six minutes (recalling that this phase
needs to be done only once) and the online phase for n2 = 11041 takes less than
8 seconds even with 1Mbps bandwidth. The client needs to store only 48MB
of information for this con�guration. We believe that our improved protocol is
a practical alternative for the solutions currently in place for privacy preserving
contact discovery in existing social networks.

16 Amanda C. Davi Resende and Diego F. Aranha

References

1. G. Mezzour, A. Perrig, V. D. Gligor, and P. Papadimitratos, �Privacy-Preserving
Relationship Path Discovery in Social Networks,� in CANS, vol. 5888 of Lecture
Notes in Computer Science, pp. 189�208, Springer, 2009.

2. S. Nagaraja, P. Mittal, C. Hong, M. Caesar, and N. Borisov, �BotGrep: Find-
ing P2P Bots with Structured Graph Analysis,� in USENIX Security Symposium,
pp. 95�110, USENIX Association, 2010.

3. A. Narayanan, N. Thiagarajan, M. Lakhani, M. Hamburg, and D. Boneh, �Location
Privacy via Private Proximity Testing,� in NDSS, The Internet Society, 2011.

4. E. Bursztein, M. Hamburg, J. Lagarenne, and D. Boneh, �OpenCon�ict: Preventing
Real Time Map Hacks in Online Games,� in IEEE Symposium on Security and
Privacy, pp. 506�520, IEEE Computer Society, 2011.

5. P. Baldi, R. Baronio, E. D. Cristofaro, P. Gasti, and G. Tsudik, �Countering GAT-
TACA: E�cient and Secure Testing of Fully-sequenced Human Genomes,� in ACM
Conference on Computer and Communications Security, pp. 691�702, ACM, 2011.

6. H. Chen, K. Laine, and P. Rindal, �Fast Private Set Intersection from Homomor-
phic Encryption,� IACR Cryptology ePrint Archive, 2017.

7. L. Kissner and D. X. Song, �Privacy-Preserving Set Operations,� in CRYPTO,
vol. 3621 of Lecture Notes in Computer Science, pp. 241�257, Springer, 2005.

8. J. Camenisch and G. M. Zaverucha, �Private Intersection of Certi�ed Sets,� in
Financial Cryptography, vol. 5628 of Lecture Notes in Computer Science, pp. 108�
127, Springer, 2009.

9. M. Kim, H. T. Lee, and J. H. Cheon, �Mutual Private Set Intersection with Linear
Complexity,� in WISA, vol. 7115 of Lecture Notes in Computer Science, pp. 219�
231, Springer, 2011.

10. C. Dong, L. Chen, J. Camenisch, and G. Russello, �Fair Private Set Intersection
with a Semi-trusted Arbiter,� in DBSec, vol. 7964 of Lecture Notes in Computer
Science, pp. 128�144, Springer, 2013.

11. S. K. Debnath and R. Dutta, �A Fair and E�cient Mutual Private Set Intersection
Protocol from a Two-Way Oblivious Pseudorandom Function,� in ICISC, vol. 8949
of Lecture Notes in Computer Science, pp. 343�359, Springer, 2014.

12. S. K. Debnath and R. Dutta, �Towards Fair Mutual Private Set Intersection
with Linear Complexity,� Security and Communication Networks, vol. 9, no. 11,
pp. 1589�1612, 2016.

13. B. Pinkas, T. Schneider, and M. Zohner, �Faster Private Set Intersection Based on
OT Extension,� in USENIX Security Symposium, pp. 797�812, USENIX Associa-
tion, 2014.

14. B. Pinkas, T. Schneider, G. Segev, and M. Zohner, �Phasing: Private Set Intersec-
tion Using Permutation-based Hashing,� in USENIX Security Symposium, pp. 515�
530, USENIX Association, 2015.

15. B. Pinkas, T. Schneider, and M. Zohner, �Scalable Private Set Intersection Based
on OT Extension,� IACR Cryptology ePrint Archive, 2016.

16. C. A. Meadows, �A More E�cient Cryptographic Matchmaking Protocol for Use
in the Absence of a Continuously Available Third Party,� in IEEE Symposium on
Security and Privacy, pp. 134�137, IEEE Computer Society, 1986.

17. B. A. Huberman, M. K. Franklin, and T. Hogg, �Enhancing Privacy and Trust in
Electronic Communities,� in EC, pp. 78�86, 1999.

18. B. Fan, D. G. Andersen, M. Kaminsky, and M. Mitzenmacher, �Cuckoo Filter:
Practically Better than Bloom,� in Proceedings of the 10th ACM International

Unbalanced Approximate PSI 17

on Conference on emerging Networking Experiments and Technologies, CoNEXT
2014, Sydney, Australia, December 2-5, 2014 (A. Seneviratne, C. Diot, J. Kurose,
A. Chaintreau, and L. Rizzo, eds.), pp. 75�88, ACM, 2014.

19. B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams, �Secure Two-Party Com-
putation Is Practical,� in ASIACRYPT, vol. 5912 of Lecture Notes in Computer
Science, pp. 250�267, Springer, 2009.

20. M. J. Freedman, K. Nissim, and B. Pinkas, �E�cient Private Matching and Set
Intersection,� in EUROCRYPT, vol. 3027 of Lecture Notes in Computer Science,
pp. 1�19, Springer, 2004.

21. S. Jarecki and X. Liu, �E�cient Oblivious Pseudorandom Function with Appli-
cations to Adaptive OT and Secure Computation of Set Intersection,� in TCC,
vol. 5444 of Lecture Notes in Computer Science, pp. 577�594, Springer, 2009.

22. E. D. Cristofaro and G. Tsudik, �Practical Private Set Intersection Protocols with
Linear Complexity,� in Financial Cryptography, vol. 6052 of Lecture Notes in Com-
puter Science, pp. 143�159, Springer, 2010.

23. S. Jarecki and X. Liu, �Fast Secure Computation of Set Intersection,� in SCN,
vol. 6280 of Lecture Notes in Computer Science, pp. 418�435, Springer, 2010.

24. Y. Huang, D. Evans, and J. Katz, �Private Set Intersection: Are Garbled Circuits
Better than Custom Protocols?,� in NDSS, The Internet Society, 2012.

25. C. Dong, L. Chen, and Z. Wen, �When Private Set Intersection Meets Big Data:
An E�cient and Scalable Protocol,� in ACM Conference on Computer and Com-
munications Security, pp. 789�800, ACM, 2013.

26. B. H. Bloom, �Space/Time Trade-o�s in Hash Coding with Allowable Errors,�
Commun. ACM, vol. 13, no. 7, pp. 422�426, 1970.

27. R. Pagh and F. F. Rodler, �Cuckoo Hashing,� in ESA, vol. 2161 of Lecture Notes
in Computer Science, pp. 121�133, Springer, 2001.

28. M. Naor and B. Pinkas, �Oblivious Transfer and Polynomial Evaluation,� in STOC,
pp. 245�254, ACM, 1999.

29. M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold, �Keyword Search and Obliv-
ious Pseudorandom Functions,� in TCC, vol. 3378 of Lecture Notes in Computer
Science, pp. 303�324, Springer, 2005.

30. A. C. Yao, �Protocols for Secure Computations (Extended Abstract),� in FOCS,
pp. 160�164, IEEE Computer Society, 1982.

31. A. C. Yao, �How to Generate and Exchange Secrets (Extended Abstract),� in
FOCS, pp. 162�167, IEEE Computer Society, 1986.

32. C. Gentry, �Fully Homomorphic Encryption using Ideal Lattices,� in STOC,
pp. 169�178, ACM, 2009.

33. J. Fan and F. Vercauteren, �Somewhat Practical Fully Homomorphic Encryption,�
IACR Cryptology ePrint Archive, 2012.

34. M. Naor and B. Pinkas, �E�cient Oblivious Transfer Protocols,� in SODA, pp. 448�
457, ACM/SIAM, 2001.

35. V. Kolesnikov and R. Kumaresan, �Improved OT Extension for Transferring Short
Secrets,� in CRYPTO (2), vol. 8043 of Lecture Notes in Computer Science, pp. 54�
70, Springer, 2013.

36. S. Kamara, P. Mohassel, M. Raykova, and S. S. Sadeghian, �Scaling Private Set In-
tersection to Billion-Element Sets,� in Financial Cryptography, vol. 8437 of Lecture
Notes in Computer Science, pp. 195�215, Springer, 2014.

37. Y. Ishai, J. Kilian, K. Nissim, and E. Petrank, �Extending Oblivious Transfers
E�ciently,� in CRYPTO, vol. 2729 of Lecture Notes in Computer Science, pp. 145�
161, Springer, 2003.

18 Amanda C. Davi Resende and Diego F. Aranha

38. Y. Arbitman, M. Naor, and G. Segev, �Backyard Cuckoo Hashing: Constant Worst-
Case Operations with a Succinct Representation,� in FOCS, pp. 787�796, IEEE
Computer Society, 2010.

39. M. J. Freedman, C. Hazay, K. Nissim, and B. Pinkas, �E�cient Set Intersection
with Simulation-Based Security,� J. Cryptology, vol. 29, no. 1, pp. 115�155, 2016.

40. A. Kiss, J. Liu, T. Schneider, N. Asokan, and B. Pinkas, �Private Set Intersection
for Unequal Set Sizes with Mobile Application,� PoPETs, vol. 2017, no. 4, pp. 97�
117, 2017.

41. B. Fan, D. G. Andersen, M. Kaminsky, and M. Mitzenmacher, �Cuckoo Filter:
Practically Better Than Bloom,� in CoNEXT, pp. 75�88, ACM, 2014.

42. L. Fan, P. Cao, J. M. Almeida, and A. Z. Broder, �Summary Cache: A Scalable
Wide-Area Web Cache Sharing Protocol,� IEEE/ACM Trans. Netw., vol. 8, no. 3,
pp. 281�293, 2000.

43. F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese, �An Im-
proved Construction for Counting Bloom Filters,� in ESA, vol. 4168 of Lecture
Notes in Computer Science, pp. 684�695, Springer, 2006.

44. T. Oliveira, D. F. Aranha, J. L. Hernandez, and F. Rodríguez-Henríquez, �Improv-
ing the performance of the GLS254.� CHES Rump Session, 2016.

45. T. Oliveira, J. López, D. F. Aranha, and F. Rodríguez-Henríquez, �Two is the
Fastest Prime: Lambda Coordinates for Binary Elliptic Curves,� J. Cryptographic
Engineering, vol. 4, no. 1, pp. 3�17, 2014.

46. D. Hankerson, K. Karabina, and A. Menezes, �Analyzing the galbraith-lin-scott
point multiplication method for elliptic curves over binary �elds,� IEEE Trans.
Computers, vol. 58, no. 10, pp. 1411�1420, 2009.

47. D. F. Aranha, P. Fouque, C. Qian, M. Tibouchi, and J. Zapalowicz, �Binary Elli-
gator Squared,� IACR Cryptology ePrint Archive, 2014.

48. J. Lopez and R. Dahab, �New Point Compression Algorithms for Binary Curves,�
in 2006 IEEE Information Theory Workshop - ITW '06 Punta del Este, pp. 126�
130, March 2006.

49. D. Eppstein, �Cuckoo Filter: Simpli�cation and Analysis,� in SWAT, vol. 53 of
LIPIcs, pp. 8:1�8:12, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

50. G. Asharov, Y. Lindell, T. Schneider, and M. Zohner, �More E�cient Oblivious
Transfer and Extensions for Faster Secure Computation,� in ACM Conference on
Computer and Communications Security, pp. 535�548, ACM, 2013.

51. �Tra�c shaping, bandwidth shaping, packet shaping with linux tc htb.� https:

//www.iplocation.net/traffic-control. Accessed: 2017-05-30.

Appendix A - Cuckoo �lter

A Cuckoo �lter is a compact variant of a Cuckoo hashing proposed by Fan
et al. [41] that stores only the element's �ngerprint and consists of a set of
buckets each one with b entries. This type of �lter allows performing 3 types
of operations/algorithms: insertion, lookup and deletion. In the following, we
brie�y summarize how these operations work. For more details, the reader is
invited to read [41,49].

For an element x to be inserted, it is necessary to compute its �ngerprint f
and its two possible candidate buckets b1(x) = h(x) and b2(x) = b1(x) ⊕ h(f),
where h is a hash function. If one of them has an empty entry, the �ngerprint

Unbalanced Approximate PSI 19

f is inserted into that entry, completing the insertion process. However, if all
entries in the 2 buckets are �lled, one of the two buckets (say b2) and an entry
containing f ′ are randomly selected, and then the �ngerprint f is inserted in
place of f ′ and a new bucket b3 = b2 ⊕ h(f ′) is calculated for f ′. Note that,
b3 is equal to b1 because the operation ⊕ guarantees that b1 can be calculated
from b2 and the �ngerprint f ′. This is repeated until one empty entry is found
or the maximum number of attempts is reached. In a simple way, the insertion
algorithm tries to relocate the elements between its two possible buckets.

The lookup operation is simple. Given an element x′, compute its �ngerprint
f ′, the two possible buckets b′1 and b′2 and, if f ′ is in b′1 or b′2 then the element
x′ has been inserted and the algorithm returns true, otherwise false. The delete
operation is as simple as the lookup. First, calculate the element �ngerprint, the
two possible buckets, check if any of the entries correspond to �ngerprint and
if so, a copy (two distinct elements can share the same bucket and the same
�ngerprint) is removed. This operation is important to our approach because it
is not necessary to generate a new �lter every time that an element (or a set of
elements) is deleted, which happens when using traditional Bloom �lters.

The Cuckoo �lter (or any similar approach) introduces a FPR which is upper
bounded by εmax = 1−(1− 1

2v)
2×b, according to Fan et al. [41]. This bound does

not take into account the load factor of the �lter. The FPR increases as the �lter
becomes more occupied, thus 0 ≤ ε ≤ εmax. For 16-bit �ngerprints (v = 16) and
3 entries per buckets (b = 3) we have 0 ≤ ε ≤ 0.009155%. The Table 3 shows the
observed FPRs, for the same values of v, b and εmax with load factor of 66.6%
(w = 0.66). The observed FPRS are the average of 1000 executions of a Cuckoo
�lter, where each one was �lled with random values and the queries to check the
FPR were also random values. As can be seen in Table 3, the observed FPR ε
ranges from 0.00508% to 0.00669% for a load factor of 66.6%, which is 56% to
73% in relation to εmax = 0.009155%.

Number of queries

n1 5535 11041 28 212 216 220 224 Number of buckets

224 0.00618 0.00649 - - - - 0.00611 223 = 8, 388, 608

220 0.00669 0.00619 - - - 0.00610 - 219 = 524, 288

216 0.00558 0.00627 - - 0.00605 - - 215 = 32, 768

212 - - - 0.00559 - - - 211 = 2, 048

28 - - 0.00508 - - - - 27 = 128

Table 3. Observed FPR (in %) and the number of buckets (m) for the Cuckoo �lter
presents in the Section 5.2 for 16-bit �ngerprints (v = 16), 3 entries per buckets (b = 3),
εmax = 0.009155% and load factor of 66.6% (w = 0.66).

20 Amanda C. Davi Resende and Diego F. Aranha

Appendix B - Our optimized protocol

Fig. 2. Our optimized protocol combining the PSI protocol of Baldi et al. [5] with
Cuckoo �lter [41]. CF is a Cuckoo �lter, CF.Insert is the insertion operation and
CF.Check is the lookup operation, presented in Section 4.2. H1 is a hash function
modeled as random oracles.

Appendix C - Balanced PSI protocols

Following as Section 5, DH-ECC [16,17] implementation was obtained from
Pinkas et al. [15], available at https://github.com/encryptogroup/PSI. For
the balanced scenario, n1 = n2 ∈ {28, 212, 216, 220, 224} as proposed by Pinkas
et al. [14,15]. The size of each element was set to be 32 bits (σ = 32 bits). The
output of the hash function used in the DH-ECC [16,17] is l, as de�ned in the
Section 2.1.

Table 4 presents the run time (in seconds) and the communication (in MBs)
of the balanced scenario considering both a LAN and a WAN setting as de�ned in
the beginning of Section 5. The results show, as expected, that the OT+Hashing
protocol [15] has the best run time, being 9.5× faster than DH-ECC [16,17] and
14.5× faster than our optimized approach with 10Gbps. This is due to the fact
that OT+Hashing [15] uses practically only symmetric operations, that are faster
than asymmetric used by public-key protocols.

Unbalanced Approximate PSI 21

Furthermore, by analyzing only public-key based protocols, the DH-ECC
protocol [16,17] is approximately 35% faster than the proposed approach with
10 Gbps. This happens because in DH-ECC [16,17] it is possible to perform
client and server operations in parallel, while in our optimized proposal it is
not possible (as shown in Figure 1). However, the DH-ECC [16,17] and our
protocol exchange 32% and 42% less data, respectively, than OT+Hashing [15].
For the WAN setting with 1Mbps of bandwidth, both approaches are faster
than OT+Hashing [15] by transmitting less data and our optimized protocol is
slightly faster than DH-ECC [16,17], because we transmit 10% less data.

Parameters Comm LAN WAN

Type Protocol n1 = n2 Size (MB) 10Gbps 100Mbps 10Mbps 1Mbps

OT

224 1,756.83 67.86 218.62 1,518.18 14,800.33

OT 220 106.83 4.70 14.79 93.54 902.31

+ 216 6.52 0.66 2.13 6.74 57.11

Hashing [15] 212 0.43 0.36 0.93 1.09 3.88

28 0.05 0.34 0.66 0.68 0.87

Public
key

DH-ECC [16,17]

224 1,200.00 641.09 741.44 1,647.09 10,716.27

220 74.00 39.91 46.56 102.37 662.58

216 4.56 2.49 3.40 6.61 41.88

212 0.28 0.18 0.59 0.67 2.80

28 0.02 0.01 0.25 0.25 0.32

224 1,024.00 991.83 1,090.96 1,863.41 9,599.94

Our 220 64.00 62.00 68.77 116.41 600.66

optimized 216 4.00 3.87 5.24 7.81 38.68

protocol 212 0.25 0.24 0.72 0.80 2.51

28 0.02 0.02 0.25 0.25 0.26

Table 4. Run time in seconds and communication inMBs for balanced PSI protocols.
Times are taken at the client because it �nishes last. The WAN setting has 80ms RTT
and the LAN 0.02ms RTT. For the �lter in our optimized protocol we have 16-bit
�ngerprints (v = 16), 3 entries per buckets (b = 3), load factor of 66.6% (w = 0.66)
and εmax = 0.009155%. More details about Cuckoo �lter is given in Appendix A. Best
values marked in bold.

Appendix D - Network simulation

The simulation code was obtained from [51] and a few changes were made.

#!/bin/bash

#

tc uses the following units when passed as a parameter.

kbps: Kilobytes per second

mbps: Megabytes per second

22 Amanda C. Davi Resende and Diego F. Aranha

kbit: Kilobits per second

mbit: Megabits per second

bps: Bytes per second

Amounts of data can be specified in:

kb or k: Kilobytes

mb or m: Megabytes

mbit: Megabits

kbit: Kilobits

To get the byte figure from bits, divide the number by 8 bit

Name of the traffic control command.

TC=/sbin/tc

IF=lo # The network interface

IP=127.0.0.1 # IP address of the machine we are controlling

DNLD=100mbit # Download limit (in Megabits)

UPLD=100mbit # Upload limit (in Megabits)

RTT=40ms # RTT (in mega bits)

Filter options for limiting the intended interface.

U32="$TC filter add dev $IF protocol ip parent 1:0 prio 1 u32"

start() {

We'll use Hierarchical Token Bucket (HTB) to shape bandwidth.

For detailed configuration options, please consult Linux man page.

$TC qdisc add dev $IF root handle 1: htb default 30

$TC class add dev $IF parent 1: classid 1:1 htb rate $DNLD ceil $DNLD

$TC class add dev $IF parent 1: classid 1:2 htb rate $UPLD ceil $UPLD

$U32 match ip dst $IP/32 flowid 1:1

$U32 match ip src $IP/32 flowid 1:2

$TC qdisc add dev $IF parent 1:1 netem delay $RTT

$TC qdisc add dev $IF parent 1:2 netem delay $RTT

}

stop() {

Stop the bandwidth shaping.

$TC qdisc del dev $IF root

}

restart() {

Self-explanatory.

stop

sleep 1

Unbalanced Approximate PSI 23

start

}

show() {

Display status of traffic control status.

$TC -s qdisc ls dev $IF

}

case "$1" in

start)

echo -n "Starting bandwidth shaping: "

start

echo "done"

;;

stop)

echo -n "Stopping bandwidth shaping: "

stop

echo "done"

;;

restart)

echo -n "Restarting bandwidth shaping: "

restart

echo "done"

;;

show)

echo "Bandwidth shaping status for $IF:"

show

echo ""

;;

*)

pwd=$(pwd)

echo "Usage: tc.bash {start|stop|restart|show}"

;;

esac

exit 0

