
1

Differential Fault Attack on Grain v1, ACORN v3
and Lizard

Akhilesh Anilkumar Siddhanti, Santanu Sarkar, Subhamoy Maitra and Anupam Chattopadhyay
BITS Pilani, Goa, India; IIT Madras, India; Indian Statistical Institute, Kolkata; NTU Singapore

Communicating email: subho@isical.ac.in

Abstract—Differential Fault Attack (DFA) is presently a very
well known technique to evaluate security of a stream cipher. This
considers that the stream cipher can be weakened by injection of
the fault. In this paper we study DFA on three ciphers, namely
Grain v1, Lizard and ACORN v3. We show that Grain v1 (an
eStream cipher) can be attacked with injection of only 5 faults
instead of 10 that has been reported in 2012. For the first time, we
have mounted the fault attack on Lizard, a very recent design
and show that one requires only 5 faults to obtain the state.
ACORN v3 is a third round candidate of CAESAR and there is
only one hard fault attack on an earlier version of this cipher.
However, the ‘hard fault’ model requires a lot more assumption
than the generic DFA. In this paper, we mount a DFA on ACORN
v3 that requires 9 faults to obtain the state. In case of Grain v1
and ACORN v3, we can obtain the secret key once the state
is known. However, that is not immediate in case of Lizard.
While we have used the basic framework of DFA that appears
in literature quite frequently, specific tweaks have to be explored
to mount the actual attacks that were not used earlier. To the
best of our knowledge, these are the best known DFA on these
three ciphers.

Keywords: Differential Fault Attack, Stream Cipher, Grain
v1, ACORN v3, Lizard.

I. INTRODUCTION

In search of stream ciphers suitable for widespread adoption,
the eStream portfolio [20] was started in 2004 by EU ECRYPT
network. By this date, three ciphers form the hardware profile
of the portfolio, namely Grain v1 [10], Trivium [7] and
MICKEY 2.0 [1]. Stream ciphers find a special application
in designing securities in case of resource-constrained or low
power scenarios like RFID tags or hearing aids, due to their
very low gate requirements. A natural attention was drawn
towards Grain v1 for being the ‘lightest’ in terms of the state
size and the Boolean functions used among the three, and
many lightweight stream ciphers have been hence proposed
based on Grain v1. The DFA proposed in [2], [18] shows that
by injecting 10 or more faults during the Pseudo Random bit
Generation Algorithm (PRGA), the secret key can be deduced
hence compromising the security of the cipher. However, the
attack can be further optimized. In this work, we claim that
the fault requirement can be further brought down to just 5
using optimized techniques.

Following the estream portfolio, a new competition for
authenticated ciphers called CAESAR [21] has been hosted.
Enlisting fifteen different ciphers as final candidates, a cipher
with unique design has emerged called ACORN v3 [22]. A
lightweight stream cipher composed of 6 Linear Feedback

Shift Registers (LFSRs) making a state size of 293 bits,
ACORN v3 promises a 128-bit security keyed using a 128-
bit secret key and IV. Since very limited study has been done
on such type of cipher constructs, we explore how the design
performs against mounting of a DFA. As per our experiments,
cryptanalysis is possible in this case with a requirement of 9
faults. We are aware of a fault attack on an earlier version of
ACORN as in [8], but that is only in a restricted model of hard
fault, which considers a fault to be permanent. Our model of
DFA here is much more well accepted in literature.

Inheriting the ideas from Grain v1, another interesting
lightweight stream cipher Lizard has been designed. A unique
feature of Lizard [9] is that the secret key cannot be found even
if the secret state is known. This ensures additional security,
specifically in places where the secret state can get compro-
mised. Till now, there has been no reported cryptanalysis on
Lizard apart from a related key/IV attack shown in [5]. We
show that a successful DFA can be performed against Lizard
using a minimum of 5 faults.

For all the above mentioned ciphers viz. Grain v1, Lizard
and ACORN v3, we follow a similar approach as in [14]
that has been used many times in earlier papers too (see
references in [14]). The correct location of the fault is obtained
by finding the correlation between faulty and fault-free key
streams. Using the given set of faulty and fault-free key
streams, equations are generated and fed into a SAT solver.
The outline of such DFA will be discussed in Section II.
In Section III, we describe the process of finding the exact
location of fault. In Section IV, we explain the procedure of
finding the state variables and the recovery of secret key once
the exact location of fault is known. For optimizing the SAT
solver to find solutions faster, we consider key stream bits
from previous rounds as well. This is the main tweak in our
approach over the existing works and briefly mentioned in
Sections IV-A, IV-B, IV-C. In Section V, we conclude the
paper summarizing our work. The description of the ciphers
are available in the Appendix.

A. Our Contribution

While a specific mode of DFA, that we discuss in this
paper, is well standardized, most of the stream cipher designers
do not consider evaluating such attack on the new designs.
This leaves an open space towards implementing such attacks
on specific ciphers. Further, blind implementation of some
standard techniques do not immediately help in mounting a

2

successful DFA. For this the exact implementation related to
a specific cipher requires certain optimization. In this paper,
we have two specific modes of optimization.

• What we feed to the SAT solver for obtaining the states
are some equations based on the differential key streams.
For the first time we show that corresponding to a state
we should consider the equations forward and backward
both. Earlier we have only considered the equations while
moving forward. This drastically reduces the number
of faults as experienced in Grain v1 and the method
succeeded for Lizard too.

• Due to the large state of ACORN v3 and the clever state
update, it is not easy to obtain the solutions through the
SAT solver directly. Thus we need to consider fixing
some bits before exploiting the SAT solver. This indeed
increases the overall complexity, but at the same time
makes the DFA possible. The exhaustive search over the
assumed bits can be trivially parallelized keeping the
complete attack practical.

II. PROPOSED OUTLINE OF DFA
Fault Attacks have always been studied in cryptanalytic

literature with great interest. By inducing a fault, we mean
flipping one bit (1 → 0 or 0 → 1) for some particular state
of the cipher. Such faults can be induced at the beginning
of the PRGA round, hence causing a change in the key
stream bits. The difference between the key stream bits can
be used to deduce the internal state of the cipher. Fault attack
techniques range from simple glitches (caused by perturbations
in the clock or power supply), focused laser beam injection,
Body Bias injection to Electromagnetic injection. The range
of attacks is much wider if one considers the non-volatile
memories, for which, one may use hot air gun or even
software-based Rowhammer attack. Depending on the level
of intrusion that is enabled by the attack setup, attacks can be
classified to be non-invasive, semi-invasive and invasive.

Fault injection attacks of various forms [6] is becoming an
important tool in the arsenal of modern cryptanalysts. Rapidly
evolving techniques for attacks and their countermeasures [17]
indicate that a proper feasibility analysis of the implemen-
tation is imperative. Although inducing a fault might seem
quite complicated, there have been many works in this area.
Implementations of well-known ciphers like RSA, AES and
DES have already been cryptanalyzed. In fact, all the final
candidates of eStream [20] hardware portfolio (namely Grain
v1, MICKEY 2.0 and Trivium) have been cryptanalyzed using
DFA [2], [18], [3], [4], [11], [12], [13], [18]. This work
aims to highlight that ACORN v3 and Lizard can also be
cryptanalyzed using DFA and the existing knowledge against
Grain v1 can be improved.

Let us now clearly explain the assumptions while mounting
the DFA. Generally too many assumptions can make an attack
impractical. Further, the number of faults injected should be
low, as there is a chance of damaging the device completely.
Based on the documents in cryptanalytic literature on fault
attacks, we consider that the attacker:

1) can restart the cipher and re-key it as well with the
original Key/IV more than once,

2) can inject the fault with certain precision of timing,
3) has the equipment/required technology for injecting the

fault,
4) does not need to know the exact location during fault

injection.
Next we will discuss several steps of DFA. Note that

the basic methodology is the same which is basically the
Differential Attack, but the Key Scheduling Algorithm (KSA)
is ignored. That is, we consider that one can inject the fault
during the PRGA. We will follow the basic methodology as
in [14] and the references in this work which are in the same
line. Our specific tweaks will be described in the process.

III. IDENTIFYING FAULT LOCATIONS

The first step of the DFA requires identification of fault
signatures. We consider the most common signature methods
that had been used in [14] too. Consider that the certain
changes in the key stream bits are achieved by injecting a
fault at some random location f . By random location, we
mean some LFSR or NFSR bit, which is the part of secret
state of the cipher. Thus, by injecting a fault at location f
means it might be a location in the LFSR or NFSR according
to the specific description of the cipher. For example, in case
of Grain v1, f ∈ [0, 79] means injecting a fault at LFSR bit
lf , whereas f ∈ [80, 159] underlines injecting a fault in NFSR
bit n(f−80).

In the attack model, we consider that for some fault location
f , it is possible to obtain the respective fault-free key stream
zi and faulty key stream z

(f)
i for λ key stream bits. To form

a unique pattern of the key stream sequence, we compute a
signature vector Q(f) which we define as:

Q(f) = (q
(f)
0 , q

(f)
1 , . . . , q

(f)
λ−1) (1)

where

q
(f)
i =

1

2
− Pr(zi 6= z

(f)
i),∀ i ∈ [0, λ− 1]. (2)

This probability is estimated by sufficient number of experi-
ments beforehand. The sharpness of a signature is defined as
follows:

σ(Q(f)) =
1

λ

λ−1∑
i=0

|q(f)i |. (3)

Following similar convention for ACORN v3, the fault
in location f simply corresponds to fault in bit Sf . The
corresponding plot is presented in Figure 1. For Lizard, the
convention is fault location in Sf for first 31 bits and fault
location in B(f−90) for next 90 bits. With λ = 90, 64, 64
respectively, we execute 215 runs with random key-IV pairs
to obtain the signatures Q(0), Q(1), . . . for each of Grain v1,
ACORN v3 and Lizard.

As we can see in Figure 1, the Z-axis has been plotted
from −0.5 to 0.5. The signatures are said to be strong if the
curve is closer to −0.5 or 0.5 for some fault location f . In
all the three cases of Grain v1, ACORN v3 and Lizard, the
signatures are quite strong, in fact stronger than Plantlet [14]
and Sprout [15]. Hence, the identification of the fault will

3

(a) Grain v1: Signature

(b) ACORN v3: Signature

(c) Lizard: Signature

Fig. 1: Signatures for Grain v1 (plot of Q(f) ∀f ∈ [0, 159]),
ACORN v3 (plot of Q(f) ∀f ∈ [0, 292]) and Lizard (plot of
Q(f) ∀f ∈ [0, 120]) with λ = 64 for ACORN v3 and Lizard,
and λ = 90 for Grain v1.

be easier for these ciphers. The signatures are pre-computed
during the offline phase of the attack, and they are stored for
comparisons with differential key stream later. To clarify this,
we require to explain a few more definitions.

Suppose we inject a fault in a random unknown location g
and obtain the fault-free and faulty key streams zi and z

(g)
i

respectively. Then we define the following:

ν
(g)
i =

1

2
− η(g)i (4)

where η(g)i = zi ⊕ z(g)i .
Definition 1: The vector

Γ(g) = (ν
(g)
0 , ν

(g)
1 , . . . , ν

(g)
λ−1)

is called trail of the fault at the unknown location g.
Note that there is no probability involved in this scenario, as
one actually injects a fault and checks against the signatures.
That is, one can compare Γ(g) for each of the Q(f)’s, to
estimate the exact fault location.

Definition 2: We call a relation between the signa-
ture Q(f) = (q

(f)
0 , q

(f)
1 , . . . , q

(f)
λ−1) and a trail Γ(g) =

(ν
(g)
0 , ν

(g)
1 , . . . , ν

(g)
λ−1) a mismatch, if there exists at least one

i, (0 ≤ i ≤ λ − 1) such that (q
(f)
i = 1

2 , ν(g)i = − 1
2) or

(q
(f)
i = − 1

2 , ν(g)i = 1
2) hold true.

However, this is for excluding some locations for possible
faults, but to identify the location, this definition needs to
be extended. For this purpose, we incorporate the correlation
coefficient between two sets of data.

Definition 3: It is natural to use correlation coefficient
µ(Q(f),Γ(g)) between the signature Q(f) = (q

(f)
0 , q

(f)
1 ,

. . . , q
(f)
λ−1) and a trail Γ(g) = (ν

(g)
0 , ν

(g)
1 , . . . , ν

(g)
λ−1) for check-

ing a match. Naturally, −1 ≤ µ(Q(f),Γ(g)) ≤ 1. In case of a
mismatch, (as per the Definition 2), then µ(Q(f),Γ(g)) = −1.
Let us now explain how one can locate the faults. For
each known fault g, it is possible to calculate the trail
Γ(g) = (ν

(g)
0 , ν

(g)
1 , . . . , ν

(g)
λ−1), and hence the corresponding

µ(Q(f),Γ(g)) for each of the faults f . The following quantities
are noted:

1) maxf µ(Q(f),Γ(g)),
2) µ(Q(g),Γ(g)), and
3) α(Q(g)) = #f |{µ(Q(f),Γ(g)) > µ(Q(g),Γ(g))}|.
In the following Figure 2, when µ(Q(g),Γ(g)) (drawn in red)

is close to max100
f=0 µ(Q(f),Γ(g)) (drawn in blue), α(Q(g))

is small, it is easier to locate these faults. However, if
µ(Q(g),Γ(g)) is much smaller than maxf µ(Q(f),Γ(g)) (blue),
i.e., α(Q(g)) is large, that means it is harder to locate the
fault for that particular fault location f from differential key
stream. In fact, the difference between the red and blue lines
for ACORN v3 is so small, it is barely visible. Hence, we
should expect ACORN v3 to have better expected ranks than
Grain v1 and Lizard.

Given α(Q(g)), for each g, we can estimate how many
attempts we should require to obtain the actual fault location.
As one can see in Figure 3, the rank of the correct set of
fault locations is very low for all three ciphers, with ranks for
ACORN v3 being the strongest. The ranks for ACORN v3 and
Grain v1 lie between 1 and 2, hence we can get the correct set

4

0 20 40 60 80 100 120 140 160

i

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

c
o

rr
e

la
ti
o

n
 c

o
e

ff
ic

ie
n

t

Maximum Correlation

Expected value

(a) Grain v1

0 50 100 150 200 250

i

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

c
o

r
r
e

la
ti

o
n

 c
o

e
ff

ic
ie

n
t

Maximum correlation

Expected value

(b) ACORN

0 20 40 60 80 100 120

g

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

c
o

rr
e
la

ti
o

n
 c

o
e
ff

ic
ie

n
t

Maximum Correlation

Expected value

(c) Lizard

Fig. 2: Plot of max100
f=0 µ(Q(f),Γ(g)) (blue) and µ(Q(g),Γ(g))

(red) for all three ciphers.

of fault locations very quickly using this technique. The ranks
of correct set of fault locations for Lizard also comes very
close to the other two ciphers. However ACORN v3 has the
highest fault requirement (9 faults) due to its large state size,
and also due to an additional complexity of 220 incorporated
(explained in Section IV) for faster solving, ACORN v3 has
higher complexity (225.40) than Grain v1 (23.49) and Lizard
(210.69).

Thus, to summarize, the exact algorithm for mounting a
fault is as follows. Consider that every fault is injected at the
same round t of PRGA routine.

• Inject a fault at some random fault location.
• Obtain the differential trail (for some unknown g) Γ(g) =

(ν
(g)
0 , ν

(g)
1 , . . . , ν

(g)
λ−1).

• For each f in [0, 159] (for e.g. Grain v1), calculate
µ(Q(f),Γ(g)).

• For the fault, prepare a ranked table Tg arranging the
possible fault locations f with more priority according to
µ(Q(f),Γ(g)).

0 20 40 60 80 100 120 140 159

f

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

R
a
n

k

(a) Grain v1

0 50 100 150 200 250 292

f

1

1.1

1.2

1.3

1.4

1.5

1.6

R
a

n
k

(b) ACORN

0 20 40 60 80 100 120

g

1

1.5

2

2.5

3

3.5

4

4.5

5

R
a
n

k

(c) Lizard

Fig. 3: Ranks of actual fault locations in list of predicted fault
locations for all the three ciphers. (lower the better).

• After creating tables Tg for the required number of faults,
compute using SAT solvers as mentioned in Section IV
for each of the combinations.

In case, the correct fault set can be selected in the above
algorithm, one can obtain the correct state, which will in turn
discover the secret key bits. This can be confirmed as one can
check and match with the existing fault free and faulty key
streams at hand. To obtain the streams, the attacker needs to
re-key the cipher a few times and inject the required number
of faults.

A. Estimated complexity to find the correct set of faults

The DFA will be more efficient when the faults are in
the locations where it is easier to identify them. That is a
location g such that α(Q(g)) is small will provide better
result. That is, lower the α(Q(g)), lesser the the number of
possible combinations of faults, and lesser the number of times
one needs to run the SAT solver. It has been noted in [14]
that for Plantlet, the signature of the faults are quite sharp.

5

Cipher Faults Reqd. Maximum Average

Grain v1
5 3.49 2.44
6 4.10 2.93
7 4.71 3.42

ACORN v3
7 4.21 3.78
8 4.80 4.32
9 5.40 4.86

Lizard
5 10.69 6.16
6 12.76 7.39
7 14.71 8.62

TABLE I: Maximum and average number of combinations to
check for all three ciphers for different number of faults. The
values (except for faults) have been given in logarithm to the
base 2.

Interestingly, signatures of Grain v1, Lizard and ACORN v3
are sharper than Plantlet. As we will see later, for the actual
attack, we require at least 5, 9 and 5 faults for Grain v1,
ACORN v3 and Lizard respectively. In the following table we
provide the experimental estimation of the number of attempts
to get the exact fault locations for these three ciphers. Note
that the data provided in Table I is logarithm to the base 2.

IV. DEDUCING THE STATE VARIABLES AND SECRET KEY

Once we obtain the differential key streams for some set of
fault locations, we need to find at least one state of the cipher
for some round t which in-turn can help us find the secret key.
We start off by noting that for every key stream bit produced,
we can formulate following three equations:

1) The output function,
2) The NFSR feedback function,
3) The LFSR feedback function.

Hence, at the beginning of the first round of PRGA, we have
160 unknown variables (80 for each LFSR and NFSR) in
case of Grain v1, 293 variables in case of ACORN v3 and
121 variables in case of Lizard. With every new round of
the ciphers, the complexity of the above equations increase
sharply. To combat this, new variables are introduced at every
step, and hence new equations are formed. Two new variables
are added and three new equations are formed for every round
of the ciphers. Note than in case of ACORN v3, there are 6
LFSRs hence 7 new variables are added with each cycle (6
from LFSRs and 1 from feedback) and 8 new equations are
formed. We collect all these equations and feed them into a
SAT solver. However, the number of equations becomes very
high and hence the SAT solver cannot find a solution, hence
steps specific to each cipher need to be taken.

A. Optimizing SAT solver for Grain v1

Grain v1 has been constructed in such a way that the higher
16 bits of LFSR and NFSR are not used at all. Hence, we can
safely discard the equations formed during the last 16 rounds
of our set of equations. Next, we observe that if the fault has
taken place in LFSR, the NFSR equations do not change till
the fault reaches location l0. Hence, we remove all such NFSR
equations. Now, if the fault has taken place in NFSR, we need
not consider any equation of LFSR because LFSR remains

unaffected throughout the clocking. Since LFSR equations are
linear and easier to calculate for the SAT solver, we consider
injecting faults in LFSR only.

Note that Grain v1 is reversible, i.e. given one state, we
can easily determine the previous state of the cipher by
solving feedback equations. Considering that the fault has been
injected at PRGA round t, we can form more equations by
considering key stream bits of round t − 1, t − 2 and so on.
Although the number of equations increase, it is added only
once (not for every fault) and helps in finding a solution faster.

After the performing the above optimizations, the fault
requirement for Grain v1 is 5 faults with a time complexity
of 23.49.

Example 1: Consider the following set of 5 fault locations
for Grain v1: S = {6, 16, 50, 51, 69}. (This set of numbers
is randomly generated and not specifically chosen.) The es-
timated number of fault locations to check for is 22.29. The
equations are formed and fed into the SAT solver. The number
of key stream bits considered is 250, with 40 reverse key
stream bits considered, and the total time required by the SAT
solver for the correct set of fault locations is 1756.45 seconds.

B. Optimizing SAT solver for ACORN v3

The state size of ACORN v3 is much larger than Grain
v1, Lizard, Plantlet and Sprout. Also, the number of equations
added at each clock cycle is much higher than compared to the
latter. Hence, we propose a different approach - we consider
that some n bits for example l0, l1, . . . , ln−1 are known. Now
we try to find a solution assuming these n bits are correct.
Now the SAT solver is able to find a solution much faster.
Note that this raises our attack complexity by 2n, but we can
try getting as small value of n as possible while still being able
to find solutions faster. Our experiments show that for n = 20
we can deduce the state using 9 faults, whereas with n = 40 or
n = 60 we can deduce the state even with 8 or 7 faults. From
Table I, we know the maximum number of combinations to be
24.21, 24.80, 25.40 in case of 7, 8 and 9 faults. Considering the
above optimizations, the complexity will be 264.21 in case of
7 faults, 244.80 and 225.40 in case of 8 and 9 faults. However,
there are some cases in which we cannot solve for the entire
state with 7 or 8 faults, and hence we consider 9 faults to be
minimum for a successful attack.

Since the solving time depends upon which n bits (say
20) are known, a good choice would be choosing the 15 tap
locations of ACORN v3 and then further considering higher
bits like S292, S291, . . . , S287 and so on. Like Grain v1 and
Lizard, we can further reduce the number of faults by using
key stream bits from rounds prior to injecting of the fault. We
have not performed this optimization in our work for ACORN
v3, but we believe this could better our results further.

Example 2: Suppose we have the following
set of 9 locations for ACORN v3, S =
{279, 238, 10, 129, 9, 121, 271, 225, 166}. The number of
variables considered to be known are s0, . . . , s19, i.e. n = 20
bits. The number of combinations to check, for this set of
fault locations will be 24.92. Thus the number of times SAT
solver is run will be 220 × 24.92 = 224.92. The number of key

6

stream bits considered is 1200. For solving the correct set of
fault locations, the SAT solver takes 342.43 seconds.

C. Optimizing SAT solver for Lizard

In case of Lizard, the fault requirement is comparatively
very high (more than ten) when we adopt the strategy used in
case of ACORN v3 and Grain v1. However, we use some opti-
mizations to improve our results. Firstly, we have used 90 key
stream bits zt, zt+1, zt+2, . . . , zt+89 to formulate equations,
where t refers to the round in which the fault has been injected.
Since Lizard is reversible without using key bits during the
PRGA, we reverse the state (St, Bt) upto (S(t−90), B(t−90))
and formulate equations for zt−1, zt−2, . . . , zt−89. Next, we
consider that if we are able to inject faults in NFSR2 (register
B) only, we can reduce the number of variables drastically,
and hence obtain results faster. This is because the S register
is independent of B register, and we need not include more
variables for NFSR1 update equations (NFSR1 remains same
post fault injection in NSFR2). Also, we note that the highest
bit used in NFSR2 update function is B84, hence we need not
include any variables from round 85 for all faults.

As mentioned before, we can only solve for the secret state
and not for the secret key in case of Lizard. However, we can
obtain the secret key once the secret state is known in case
of Grain v1 and ACORN v3. Solving for the state of Lizard
takes a fault requirement of 5 faults with a time complexity
of 210.69.

Example 3: Considering 5 fault locations
S = {33, 59, 10, 5, 43} and combinations to check for
being 25.52, the SAT solver takes 2092.41 seconds to compute
the states of LFSR and NFSR. The number of key stream
bits considered is 90 and 40 key stream bits are taken from
the previous rounds.

D. Summary of Comparison

Here we present the summary of DFA on the three ciphers
based on our theory and experiments. According to our study,
all the ciphers could be attacked using DFA with very few
faults. The above experiments were performed on ciphers im-
plemented in Sage-7.6 [19] along with Cryptominisat-2.9.6 as
SAT solver on a laptop running Ubuntu-17.04. The hardware
configuration is based on Intel(R) Core(TM) i5-4200M CPU
@ 2.50GHz and 8 GB RAM.

Cipher #Faults Time Time taken by SAT solver
Complexity Max. Avg. Min

Grain v1 5 23.49 26798.64 7165.48 204.48
ACORN v3 9 225.40 369.56 293.75 194.80

Lizard 5 210.69 720.42 201.82 20.46

TABLE II: Results observed while obtaining state from fault
attack.

V. CONCLUSION

Most of the popular and commercial Feedback Shift Regis-
ter (FSR) based stream ciphers have come out to be vulnerable

against Differential Fault Attack. In this paper, we presented
successful DFA against a finalist of eStream portfolio Grain
v1 (improvisation over previous DFA), a phase-3 candidate of
CAESAR called ACORN v3 and a lightweight stream cipher
Lizard. We explored the identification of fault locations using
correlation of signatures and trail of a faulty key stream for all
the three ciphers and expected number of checks required to
obtain a correct state was presented. Equations were formed
from faulty and fault-free key streams and fed into a SAT
solver. Further cipher-specific optimizations were performed
towards minimizing the number of faults as well as to speed
up solving time. This is the novel contribution of this work.
The analysis performed in this work can be further extended to
other stream ciphers as well, and future work in this area could
be promising. We are working towards optimizing our attacks
on these three ciphers to succeed with even fewer faults.
Further, our technique on Grain v1 can also be implemented on
Grain 128 and Grain 128a. These we will include in the final
version of the paper. Based on our work and the development
in this domain, it is evident that FSR based ciphers in nonlinear
combiner/filter generator model will generally be vulnerable
against DFA. Implementors need to come up with new ways
to protect against such fault attack scenarios.

REFERENCES

[1] S. Babbage and M. Dodd. The stream cipher MICKEY 2.0. ECRYPT
Stream Cipher Project Report. Online available at http://ecrypt.eu.org/
stream/p3ciphers/mickey/mickey p3.pdf

[2] S. Banik, S. Maitra and S. Sarkar. A Differential Fault Attack on the
Grain Family of Stream Ciphers. In CHES 2012, LNCS, Vol. 7428, pp.
122–139.

[3] S. Banik and S. Maitra. A Differential Fault Attack on MICKEY 2.0.
CHES 2013, LNCS, Vol. 8086, pp. 215–232, 2013.

[4] S. Banik, S. Maitra and S. Sarkar. Improved differential fault attack on
MICKEY 2.0. Journal of Cryptographic Engineering, 5(1):13–29, 2015.
http://link.springer.com/article/10.1007\%2Fs13389-014-0083-9, 2014

[5] S. Banik and T. Isobe. Some cryptanalytic results on Lizard. Online
available at http://eprint.iacr.org/2017/346.pdf

[6] A. Barenghi, L. Breveglieri, I. Koren and D. Naccache. Fault Injection
Attacks on Cryptographic Devices: Theory, Practice, and Countermea-
sures. In Proceedings of the IEEE vol. 100, no. 11, pp. 3056–3076, Nov.
2012, doi: 10.1109/JPROC.2012.2188769

[7] C. De Cannire and B. Preneel. TRIVIUM Specifications. eSTREAM,
ECRYPT Stream Cipher Project, Report.

[8] P. Dey, R. S. Rohit and A. Adhikari. Full key recovery of ACORN with
a single fault. Journal of Information Security and Applications, Volume
29, Issue C, August 2016, Pages 57-64, doi: 10.1016/j.jisa.2016.03.003
Elsevier Science Inc. New York, NY, USA

[9] M. Hamann, M. Krause, W. Meier. LIZARD - A Lightweight Stream
Cipher for Power-constrained Devices. IACR Transactions on Symmetric
Cryptology, Volume 2017, Issue 1, http://tosc.iacr.org/index.php/ToSC/
article/view/584

[10] M. Hell, T. Johansson and W. Meier. Grain – A Stream Cipher
for Constrained Environments. ECRYPT Stream Cipher Project Report
2005/001, 2005. Available at http://www.ecrypt.eu.org/stream.

[11] M. Hojsı́k and B. Rudolf. Differential Fault Analysis of Trivium. In FSE
2008, LNCS, Vol. 5086, pp. 158–172.

[12] M. Hojsı́k and B. Rudolf. Floating Fault Analysis of Trivium. In
INDOCRYPT 2008, LNCS, Vol. 5365, pp. 239–250.

[13] Y. Hu, J. Gao, Q. Liu and Y. Zhang. Fault analysis of Trivium. Designs,
Codes and Cryptography, 62(3): 289–311, 2012.

[14] S. Maitra, A. Siddhanti and S. Sarkar. A Differential Fault Attack
on Plantlet. To appear in IEEE Transactions on Computers. DOI:
10.1109/TC.2017.2700469, Date of Publication: 02 May 2017. An earlier
version is available at Cryptology ePrint Archive: Report 2017/088, 4
February, 2017. http://eprint.iacr.org/2017/088

[15] S. Maitra, S. Sarkar, A. Baksi and P. Dey. Key Recovery from State
Information of Sprout: Application to Cryptanalysis and Fault Attack,
2015. http://eprint.iacr.org/2015/236

7

[16] V. Mikhalev, F. Armknecht and C. Müller. On ciphers that continuously
access the non-volatile key. FSE 2017. TOSC, Volume 2016, Issue 2,
pp. 52–79, 2016. Available at http://tosc.iacr.org/index.php/ToSC/article/
view/565/507

[17] T. Sugawara, D. Suzuki, R. Fujii, S. Tawa, R. Hori, M. Shiozaki, T.
Fujino. Reversing Stealthy Dopant-Level Circuits. Cryptographic Hard-
ware and Embedded Systems CHES 2014, vol. 8731 of the series Lecture
Notes in Computer Science, pp. 112–126.

[18] S. Sarkar, S. Banik and S. Maitra. Differential Fault Attack against Grain
family with very few faults and minimal assumptions. IEEE Transactions
on Computers, 64(6):1647–1657, 2015.

[19] W. Stein. Sage Mathematics Software. Free Software Foundation, Inc.,
2009. Available at http://www.sagemath.org. (Open source project initi-
ated by W. Stein and contributed by many).

[20] The ECRYPT Stream Cipher Project. eSTREAM Portfolio of Stream
Ciphers. Online at http://www.ecrypt.eu.org/stream/

[21] The Project CAESAR on Authenticated Ciphers. Online at http://
competitions.cr.yp.to/caesar.html

[22] H. Wu. ACORN: A Lightweight Authenticated Cipher (v3). https:
//competitions.cr.yp.to/round3/acornv3.pdf, 2016

APPENDIX: DESCRIPTION OF THE CIPHERS

A1: Grain v1

Grain v1 has two registers, LFSR and NFSR of 80 bits each
and we use the notation si, s1 + i, . . . , s79+i and b0 + i, b1 +
i, . . . , b79+i for state bits of LFSR and NFSR respectively.
The output function calculates the key stream bit and then the
LFSR and NFSR states are updated. The output function is
given by:

zt = bi+1 ⊕ bi+2 ⊕ bi+4 ⊕ bi+10 ⊕ bi+31

⊕ bi+43 ⊕ bi+56 ⊕ h(x) (5)

where h(x) is given by:

h(x) = x1 ⊕ x4 ⊕ x0x3 ⊕ x2x3 ⊕ x3x4 ⊕ x0x1x2
⊕ x0x2x3 ⊕ x0x2x4 ⊕ x1x2x4 ⊕ x2x3x4 (6)

and x1, x2, x3, x4, x5 correspond to tap positions
si+3, si+25, si+46, si+64, bi+63.

The LFSR feedback bit si+80 is calculated as:

si+80 = si+62 ⊕ si+51 ⊕ si+38 ⊕ si+23 ⊕ si+13si (7)

and the NFSR feedback bit is calculated as:

bi+80 = si ⊕ bi+62 ⊕ bi+60 ⊕ bi+52 ⊕ bi+45 ⊕ bi+37

⊕ bi+33 ⊕ bi+28 ⊕ bi+9 ⊕ bi ⊕ bi+63bi+60 ⊕ bi+37bi+33

⊕ bi+15bi+9 ⊕ bi+60bi+52bi+45 ⊕ bi+33bi+28bi+21

⊕ bi+63bi+45bi+28bi+9 ⊕ bi+60bi+52bi+37bi+33

⊕ bi+63bi+60bi+52bi+45bi+37 ⊕ bi+33bi+28bi+21bi+15bi+9

⊕ bi+52bi+45bi+37bi+33bi+28bi+21 (8)

The cipher is initialized using the key and IV bits as per
the following:

bi = ki for 0 ≤ i ≤ 79, (9)
si = IVi for 0 ≤ i ≤ 79. (10)

After initialization, the cipher is clocked 160 times without
producing any key stream bit. In fact, the key stream bit
is XOR’d with the feedback bit during the KSA. After 160
rounds, we get our first key stream bit.

A2: ACORN v3

We briefly state here the description of ACORN v3 relevant
to our work, i.e. we assume the plaintext message to be a
stream of 0’s and are concerned only about the key stream
generation process (PRGA), hence initialization of the cipher
has been omitted. As stated before, ACORN v3 has 6 LFSRs
concatenated to form a 293 bit state. We denote the state of
the cipher by St and its respective bits as: St0 . . . S

t
292. The

cipher has the following three functions:

1) Output Function. The output bit zt for any state t is
generated as:

zt = St12 ⊕ St154 ⊕maj(St235, St61, St193)

⊕ ch(St230, S
t
111, S

t
66) (11)

2) Feedback Function. The feedback bit ft for any state
t is generated as:

ft = St0 ⊕ (∼ St107)⊕maj(St244, St23, St160)

⊕ (cai &St196)⊕ (cbi&ksi) (12)

3) State Update Function. Before performing the shift,
the bits St289, S

t
230, S

t
193, S

t
154, S

t
107, S

t
61 are updated as

follows:

St289 = St289 ⊕ St235 ⊕ St230 (13)
St230 = St230 ⊕ St196 ⊕ St193 (14)
St193 = St193 ⊕ St160 ⊕ St154 (15)
St154 = St154 ⊕ St111 ⊕ St107 (16)
St107 = St107 ⊕ St66 ⊕ St61 (17)
St61 = St61 ⊕ St23 ⊕ St0 (18)

And then the bits are shifted in the following manner:

St+1
i = Sti+1 ∀ i ∈ [0, 291] (19)

with the last bit initialized with the feedback bit:

St+1
292 = ft (20)

A3: Lizard

The 121-bit inner state of Lizard is divided into two NFSRs
namely NFSR1 and NFSR2. At time t, the first NFSR, NFSR1
is denoted by (St0, . . . , S

t
30) and the second NFSR, NFSR2 by

(Bt0, . . . , B
t
89). NFSR1 is of 31 bit and the update rule of this

NFSR is

St+1
30 = St0 ⊕ St2 ⊕ St5 ⊕ St6 ⊕ St15 ⊕ St17 ⊕ St18 ⊕ St20

⊕St25 ⊕ St8St18 ⊕ St8St20 ⊕ St12St21 ⊕ St14St19
⊕St17St21 ⊕ St20St22 ⊕ St4St12St22 ⊕ St4St19St22
⊕St7St20St21 ⊕ St8St18St22 ⊕ St8St20St22 ⊕ St12St19St22
⊕St20St21St22 ⊕ St4St7St12St21 ⊕ St4St7St19St21
⊕St4St12St21St22 ⊕ St4St19St21St22 ⊕ St7St8St18S21

⊕St7St8St20St21 ⊕ St7St12St19St21 ⊕ St8St18St21St22
⊕St8St20St21St22 ⊕ St12St19St21St22 .

8

The second register NFSR2 is of 90 bit and the update rule
of this NFSR is

Bt+1
89 = St0 ⊕Bt0 ⊕Bt24 ⊕Bt49 ⊕Bt79 ⊕Bt84 ⊕Bt3Bt59

⊕Bt10Bt12 ⊕Bt15Bt16 ⊕Bt25Bt53 ⊕Bt35Bt42
⊕Bt55Bt58 ⊕Bt60Bt74 ⊕Bt20Bt22Bt23
⊕Bt62Bt68Bt72 ⊕Bt77Bt80Bt81B83

Output bit zt is a function from {0, 1}53 to {0, 1}. At time
t, zt = Lt ⊕Qt ⊕ Tt ⊕ T t, where

• Lt = Bt7 ⊕Bt11 ⊕Bt30 ⊕Bt40 ⊕Bt45 ⊕Bt54 ⊕Bt71

• Qt = Bt4B
t
21 ⊕Bt9Bt52 ⊕Bt18Bt37 ⊕Bt44Bt76

• Tt = Bt5 ⊕ Bt8B
t
82 ⊕ Bt34B

t
67B

t
73 ⊕ Bt2B

t
28B

t
41B

t
65 ⊕

Bt13B
t
29B

t
50B

t
64B

t
75 ⊕ Bt6B

t
14B

t
26B

t
32B

t
47B

t
61 ⊕

Bt1B
t
19B

t
27B

t
43B

t
57B

t
66B

t
78

• T t = St23 ⊕ St3St16 ⊕ St9St13Bt48 ⊕ St1St24Bt38Bt63
The state initialization process is divided into 4 phases.

Phase 1: Key and IV Loading: Let K = (K0, . . . ,K119) be
the 120-bit key and IV = (IV0, . . . , IV63) the 64-bit public
IV. The state is initialized as follows:

B0
j =

{
Kj ⊕ IVj , for 0 ≤ j ≤ 63
Kj , for 64 ≤ j ≤ 89

S0
j =

 Kj+90, for 0 ≤ j ≤ 28
K119+1, for j = 29
1, for j = 30

Phase 2: Grain-like Mixing: In this phase the output bit zt
is fed back into both NFSRs for 0 ≤ t ≤ 127. This type of
approach is used in Grain family.

Phase 3: Second Key Addition: In this phase, the 120-bit
key is XORed to both NFSRs as follows:

B129
j = B128

j ⊕Kj , for 0 ≤ j ≤ 89

S129
j =

{
S128
j ⊕Kj+90, for 0 ≤ j ≤ 29

1, for j = 30

Phase 4: Final Diffusion This phase is exactly similar to
phase 2 except zt is not fed back into the NFSRs. In this
phase, one has to run both NFSRs 128 rounds. So after this
phase, registers are (S257

0 , . . . , S257
30) and (B257

0 , . . . , B257
89).

Now Lizard is ready to produce output key stream bits.

