
Updatable Tokenization: Formal Definitions and
Provably Secure Constructions ?

Christian Cachin, Jan Camenisch,
Eduarda Freire-Stögbuchner, and Anja Lehmann

IBM Research – Zurich
(cca|jca|efr|anj)@zurich.ibm.com

Abstract. Tokenization is the process of consistently replacing sensitive
elements, such as credit cards numbers, with non-sensitive surrogate val-
ues. As tokenization is mandated for any organization storing credit card
data, many practical solutions have been introduced and are in commer-
cial operation today. However, all existing solutions are static yet, i.e.,
they do not allow for efficient updates of the cryptographic keys while
maintaining the consistency of the tokens. This lack of updatability is a
burden for most practical deployments, as cryptographic keys must also
be re-keyed periodically for ensuring continued security. This paper in-
troduces a model for updatable tokenization with key evolution, in which
a key exposure does not disclose relations among tokenized data in the
past, and where the updates to the tokenized data set can be made by
an untrusted entity and preserve the consistency of the data. We for-
mally define the desired security properties guaranteeing unlinkability of
tokens among different time epochs and one-wayness of the tokenization
process. Moreover, we construct two highly efficient updatable tokeniza-
tion schemes and prove them to achieve our security notions.

1 Introduction

Increasingly, organizations outsource copies of their databases to third parties,
such as cloud providers. Legal constraints or security concerns thereby often
dictate the de-sensitization or anonymization of the data before moving it across
borders or into untrusted environments. The most common approach is so-called
tokenization which replaces any identifying, sensitive element, such as a social
security or credit card number, by a surrogate random value.

Government bodies and advisory groups in Europe [7] and in the United
States [11] have explicitly recommended such methods. Many domain-specific
industry regulations require this as well, e.g., HIPAA [15] for protecting pa-
tient information or the Payment Card Industry Data Security Standard (PCI
DSS) [12] for credit card data. PCI DSS is an industry-wide set of guidelines that
must be met by any organization that handles credit card data and mandates

? An extended abstract of this work was published at Financial Crypto 2017. This is
the full version.

(cca|jca|efr|anj)@zurich.ibm.com

that instead of the real credit card numbers only the non-sensitive tokens are
stored.

For security, the tokenization process should be one-way in the sense that the
token does not reveal information about the original data, even when the secret
keys used for tokenization are disclosed. On the other hand, usability requires
that a tokenized data set preserves referential integrity. That is, when the same
value occurs multiple times in the input, it should be mapped consistently to
the same token.

Many industrial white papers discuss solutions for tokenization [13, 14, 16],
which rely on (keyed) hash functions, encryption schemes, and often also non-
cryptographic methods such as random substitution tables. However, none of
these methods guarantee the above requirements in a provably secure way, backed
by a precise security model. Only recently an initial step towards formal security
notions for tokenization has been made [6].

However, all tokenization schemes and models have been static so far, in the
sense that the relation between a value and its tokenized form never changes and
that the keys used for tokenization cannot be changed. Thus, key updates are a
critical issue that has not yet been handled. In most practical deployments, all
cryptographic keys must be re-keyed periodically for ensuring continued security.
In fact, the aforementioned PCI DSS standard even mandates that keys (used
for encryption) must be rotated at least annually. Similar to proactively secure
cryptosystems [9], periodic updates reduce the risk of exposure when data leaks
gradually over time. For tokenization, these key updates must be done in a
consistent way so that already tokenized data maintains its referential integrity
with fresh tokens that are generated under the updated key. None of the existing
solutions allows for efficient key updates yet, as they would require to start from
scratch and tokenize the complete data set with a fresh key. Given that the
tokenized data sets are usually large, this is clearly not desirable for real-world
applications. Instead the untrusted entity holding the tokenized data should be
able to re-key an already tokenized representation of the data.

Our Contributions. As a solution for these problems, this paper introduces a
model for updatable tokenization (UTO) with key evolution, distinguishes mul-
tiple security properties, and provides efficient cryptographic implementations.
An updatable tokenization scheme considers a data owner producing data and
tokenizing it, and an untrusted host storing tokenized data only. The scheme
operates in epochs, where the owner generates a fresh tokenization key for every
epoch and uses it to tokenize new values added to the data set. The owner also
sends an update tweak to the host, which allows to “roll forward” the values
tokenized for the previous epoch to the current epoch.

We present several formal security notions that refine the above security
goals, by modeling the evolution of keys and taking into consideration adap-
tive corruptions of the owner, the host, or both, at different times. Due to the
temporal dimension of UTO and the adaptive corruptions, the precise formal no-
tions require careful modeling. We define the desired security properties in the
form of indistinguishability games which require that the tokenized representa-

2

tions of two data values are indistinguishable to the adversary unless it trivially
obtained them. An important property for achieving the desired strong indis-
tinguishability notions is unlinkability and we clearly specify when (and when
not) an untrusted entity may link two values tokenized in different epochs. A
further notion, orthogonal to the indistinguishability-based ones, formalizes the
desired one-wayness property in the case where the owner discloses its current
key material. Here the adversary may guess an input by trying all possible val-
ues; the one-wayness notion ensures that this is also its best strategy to reverse
the tokenization.

Finally, we present two efficient UTO constructions: the first solution (UTOSE)
is based on symmetric encryption and achieves one-wayness, and indistinguisha-
bility in the presence of a corrupt owner or a corrupt host. The second construc-
tion (UTODL) relies on a discrete-log assumption, and additionally satisfies our
strongest indistinguishability notion that allows the adversary to (transiently)
corrupt the owner and the host. Both constructions share the same core idea:
First, the input value is hashed, and then the hash is encrypted under a key that
changes every epoch.

We do not claim the cryptographic constructions are particularly novel. The
focus of our work is to provide formal foundations for key-evolving and up-
datable tokenization, which is an important problem in real-world applications.
Providing clear and sound security models for practitioners is imperative for
the relevance of our field. Given the public demands for data privacy and the
corresponding interest in tokenization methods by the industry, especially in
regulated and sensitive environments such as the financial industry, this work
helps to understand the guarantees and limitations of efficient tokenization.

Related Work. A number of cryptographic schemes are related to our notion
of updatable tokenization: key-homomorphic pseudorandom functions (PRF),
oblivious PRFs, updatable encryption, and proxy re-encryption, for which we
give a detailed comparison below.

A key-homomorphic PRF [4] enjoys the property that given PRFa(m) and
PRFb(m) one can compute PRFa+b(m). This homomorphism does not immedi-
ately allow convenient data updates though: the data host would store values
PRFa(m), and when the data owner wants to update his key from a to b, he must
compute ∆m = PRFb−a(m) for each previously tokenized value m. Further, to
allow the host to compute PRFb(m) = PRFa(m) +∆m, the owner must provide
some reference to which PRFa(m) each ∆m belongs. This approach has several
drawbacks: 1) the owner must store all previously outsourced values m and 2)
computing the update tweak(s) and its length would depend on the amount of
tokenized data. Our solution aims to overcome exactly these limitations. In fact,
tolerating 1)+2), the owner could simply use any standard PRF, re-compute all
tokens and let the data host replace all data. This is clearly not efficient and
undesirable in practice.

Boneh et al. [4] also briefly discuss how to use such a key-homomorphic
PRF for updatable encryption or proxy re-encryption. Updatable encryption
can be seen as an application of symmetric-key proxy re-encryption, where the

3

proxy re-encrypts ciphertexts from the previous into the current key epoch.
Roughly, a ciphertext in [4] is computed as C = m + PRFa(N) for a nonce
N , which is stored along with the ciphertext C. To rotate the key from a to
b, the data owner pushes ∆ = b − a to the data host which can use ∆ to
update all ciphertexts. For each ciphertext, the host then uses the stored nonce
N to compute PRF∆(N) and updates the ciphertext to C ′ = C + PRF∆(N) =
m+PRFb(N). However, the presence of the static nonce prevents the solution to
be secure in our tokenization context. The tokenized data should be unlinkable
across epochs for any adversary not knowing the update tweaks, and we even
guarantee unlinkability in a forward-secure manner, i.e., a security breach at
epoch e does not affect any data exposed before that time.

In the full version of their paper [5], Boneh et al. present a different solution
for updatable encryption that achieves such unlinkability, but which suffers from
similar efficiency issues as mentioned above: the data owner must retrieve and
partially decrypt all of his ciphertexts, and then produce a dedicated update
tweak for each ciphertext, which renders the solution unpractical for our purpose.
Further, no formal security definition that models adaptive key corruptions for
such updatable encryption is given in the paper.

The Pythia service proposed by Everspaugh et al. [8] mentions PRFs with
key rotation which is closer to our goal, as it allows efficient updates of the out-
sourced PRF values whenever the key gets refreshed. The core idea of the Pythia
scheme is very similar to our second, discrete-logarithm based construction. Un-
fortunately, the paper does not give any formal security definition that covers
the possibility to update PRF values nor describes the exact properties of such a
key-rotating PRF. As the main goal of Pythia is an oblivious and verifiable PRF
service for password hashing, the overall construction is also more complex and
aims at properties that are not needed here, and vice-versa, our unlinkability
property does not seem necessary for the goal of Pythia.

While the aforementioned works share some relation with updatable tok-
enization, they have conceptually quite different security requirements. Starting
with such an existing concept and extending its security notions and construc-
tions to additionally satisfy the requirements of updatable tokenization, would
reduce efficiency and practicality, for no clear advantage. Thus, we consider the
approach of directly targeting the concrete real-world problem more suitable.

An initial study of security notions for tokenization was recently presented by
Diaz-Santiago et al. [6]; they formally define tokenization systems and give sev-
eral security notions and provably secure constructions. In a nutshell, their defi-
nitions closely resemble the conventional definitions for deterministic encryption
and one-way functions adopted to the tokenization notation. However, they do
not consider adaptive corruptions and neither address updatable tokens, which
are the crucial aspects of this work.

4

2 Preliminaries

In this section, we recall the definitions of the building blocks and security notions
needed in our constructions.

Deterministic Symmetric Encryption. A deterministic symmetric encryption
scheme SE consists of a key space K and three polynomial-time algorithms
SE.KeyGen,SE.Enc,SE.Dec satisfying the following conditions:

SE.KeyGen: The probabilistic key generation algorithm SE.KeyGen takes as in-
put a security parameter λ and produces an encryption key s

r← SE.KeyGen(λ).
SE.Enc: The deterministic encryption algorithm takes a key s ∈ K and a message

m ∈M and returns a ciphertext C ← SE.Enc(s,m).
SE.Dec: The deterministic decryption algorithm SE.Dec takes a key s ∈ K and

a ciphertext C to return a message m← SE.Dec(s, C).

For correctness we require that for any key s ∈ K, any message m ∈M and
any ciphertext C ← SE.Enc(s,m), we have m← SE.Dec(s, C).

We now define a security notion of deterministic symmetric encryption schemes
in the sense of indistinguishability against chosen-plaintext attacks, or IND-CPA
security. This notion was informally presented by Bellare et al. in [1], and cap-
tures the scenario where an adversary that is given access to a left-or-right (LoR)
encryption oracle is not able to distinguish between the encryption of two distinct
messages of its choice with probability non-negligibly better than one half. Since
the encryption scheme in question is deterministic, the adversary can only query
the LoR oracle with distinct messages on the same side (left or right) to avoid
trivial wins. That is, queries of the type (mi

0,m
i
1), (mj

0,m
j
1) where mi

0 = mj
0 or

mi
1 = mj

1 are forbidden. We do not grant the adversary an explicit encryption
oracle, as it can obtain encryptions of messages of its choice by querying the
oracle with a pair of identical messages.

Definition 1. A deterministic symmetric encryption scheme SE = (SE.KeyGen,
SE.Enc,SE.Dec) is called IND-CPA secure if for all polynomial-time adversaries

A, it holds that |Pr[Expind-cpa
A,SE (λ) = 1]−1/2| ≤ ε(λ) for some negligible function ε.

Experiment Expind-cpa
A,SE (λ):

s
r← SE.KeyGen(λ)

d
r← {0, 1}

d′
r← AOenc(s,d,·,·)(λ)

where Oenc on input two messages m0,m1 returns C ← SE.Enc(s,md).
return 1 if d′ = d and all values m1

0, . . . ,m
q
0 and all values m1

1, . . . ,m
q
1 are

distinct, respectively, where q denotes the number of queries to Oenc.

Hash Functions. A hash function H : D → R is a deterministic function that
maps inputs from domain D to values in range R. For our second and stronger
construction we assume the hash function to behave like a random oracle.

5

In our first construction we use a keyed hash function, i.e., H gets a key
hk

r← H.KeyGen(λ) as additional input. We require the keyed hash function to
be pseudorandom and weakly collision-resistant for any adversary not knowing
the key hk. We also need H to be one-way when the adversary is privy of the
key, i.e., H should remain hard to invert on random inputs.

Pseudorandomness: A hash function is called pseudorandom if no efficient
adversary A can distinguish H from a uniformly random function f : D →
R with non-negligible advantage. That is,

∣∣Pr[AH(hk,·)(λ)]− Pr[Af(·)(λ)]
∣∣ is

negligible in λ, where the probability in the first case is over A’s coin tosses
and the choice of hk

r← H.KeyGen(λ), and in the second case over A’s coin
tosses and the choice of the random function f .

Weak collision resistance: A hash function H is called weakly collision-resistant
if for any efficient algorithm A the probability that for hk

r← H.KeyGen(λ)
and (m,m′)

r← AH(hk,·)(λ) the adversary returns m 6= m′, where H(hk,m) =
H(hk,m′), is negligible (as a function of λ).

One-wayness: A hash function H is one-way if for any efficient algorithm A the
probability that for hk

r← H.KeyGen(λ), m
r← D and m′

r← A(hk,H(hk,m))
returns m′, where H(hk,m) = H(hk,m′), is negligible (as a function of λ).

Decisional Diffie-Hellman Assumption. Our second construction requires a group
(G, g, p) as input where G denotes a cyclic group G = 〈g〉 of order p in which the
Decisional Diffie-Hellman (DDH) problem is hard w.r.t. λ, i.e., p is a λ-bit prime.
More precisely, a group (G, g, p) satisfies the DDH assumption if for any efficient
adversary A the probability

∣∣Pr[A(G, p, g, ga, gb, gab)]− Pr[A(G, p, g, ga, gb, gc)]
∣∣

is negligible in λ, where the probability is over the random choice of p, g, the
random choices of a, b, c ∈ Zp, and A’s coin tosses.

3 Formalizing Updatable Tokenization

An updatable tokenization scheme contains algorithms for a data owner and a
host. The owner de-sensitizes data through tokenization operations and dynami-
cally outsources the tokenized data to the host. For this purpose, the data owner
first runs an algorithm setup to create a tokenization key. The tokenization key
evolves with epochs, and the data is tokenized with respect to a specific epoch e,
starting with e = 0. For a given epoch, algorithm token takes a data value and
tokenizes it with the current key ke. When moving from epoch e to epoch e+ 1,
the owner invokes an algorithm next to generate the key material ke+1 for the
new epoch and an update tweak ∆e+1. The owner then sends ∆e+1 to the host,
deletes ke and ∆e+1 immediately, and uses ke+1 for tokenization from now on.
After receiving ∆e+1, the host first deletes ∆e and then uses an algorithm upd to
update all previously received tokenized values from epoch e to e+1, using ∆e+1.
Hence, during some epoch e the update tweak from e− 1 to e is available at the
host, but update tweaks from earlier epochs have been deleted.

6

Definition 2. An updatable tokenization scheme UTO consists of a data space
X , a token space Y, and a set of polynomial-time algorithms UTO.setup, UTO.next,
UTO.token, and UTO.upd satisfying the following conditions:

UTO.setup: The algorithm UTO.setup is a probabilistic algorithm run by the
owner. On input a security parameter λ, this algorithm returns the tok-
enization key for the first epoch k0

r← UTO.setup(λ).
UTO.next: This probabilistic algorithm is also run by the owner. On input a

tokenization key ke for some epoch e, it outputs a tokenization key ke+1 and
an update tweak∆e+1 for epoch e+1. That is, (ke+1, ∆e+1)

r← UTO.next(ke).
UTO.token: This is a deterministic injective algorithm run by the owner. Given

the secret key ke and some input data x ∈ X , the algorithm outputs a
tokenized value ye ∈ Y. That is, ye ← UTO.token(ke, x).

UTO.upd: This deterministic algorithm is run by the host and uses the up-
date tweak. On input the update tweak ∆e+1 and some tokenized value ye,
UTO.upd updates ye to ye+1, that is, ye+1 ← UTO.upd(∆e+1, ye).

The correctness condition of a UTO scheme ensures referential integrity in-
side the tokenized data set. A newly tokenized value from the owner in a par-
ticular epoch must be the same as the tokenized value produced by the host
using update operations. More precisely, we require that for any x ∈ X , for
any k0

r← UTO.setup(λ), for any sequence of tokenization key/update tweak
pairs (k1, ∆1), . . . , (ke, ∆e) generated as (kj+1, ∆j+1)

r← UTO.next(kj) for j =
0, . . . , e − 1 through repeated applications of the key-evolution algorithm, and
for any ye ← UTO.token(ke, x), it holds that

UTO.token(ke+1, x) = UTO.upd(∆e+1, ye).

3.1 Privacy of Updatable Tokenization Schemes

The main goal of UTO is to achieve privacy for data values, ensuring that an ad-
versary cannot gain information about the tokenized values and cannot link them
to input data tokenized in past epochs. We introduce three indistinguishability-
based notions for the privacy of tokenized values, and one notion ruling out that
an adversary may reverse the tokenization and recover the input value from a
tokenized one. All security notions are defined through an experiment run be-
tween a challenger and an adversary A. Depending on the notion, the adversary
may issue queries to different oracles, defined in the next section.

At a high level, the four security notions for UTO are distinguished by the
corruption capabilities of A.

IND-HOCH: Indistinguishability with Honest Owner and Corrupted Host: This
is the most basic security criterion, focusing on the updatable dynamic aspect
of UTO. It considers the owner to be honest and permits corruption of the
host during the interaction. The adversary gains access to the update tweaks
for all epochs following the compromise and yet, it should (roughly speaking)
not be able to distinguish values tokenized before the corruption.

7

IND-COHH: Indistinguishability with Corrupted Owner and Honest Host: Mod-
eling a corruption of the owner at some point in time, the adversary learns
the tokenization key of the compromised epoch and all secrets of the owner.
Subsequently A may take control of the owner, but should not learn the
correspondence between values tokenized before the corruption. The host is
assumed to remain (mostly) honest.

IND-COTH: Indistinguishability with Corrupted Owner and Transiently Cor-
rupted Host: As a refinement of the first two notions, A can transiently
corrupt the host during multiple epochs according to its choice, and it may
also permanently corrupt the owner. The adversary learns the update tweaks
of the specific epochs where it corrupts the host, and learns the tokenization
key of the epoch where it corrupts the owner. Data values tokenized prior
to exposing the owner’s secrets should remain unlinkable.

One-Wayness: This notion models the scenario where the owner is corrupted
right at the first epoch and the adversary therefore learns all secrets. Yet,
the tokenization operation should be one-way in the sense that observing a
tokenized value does not give the adversary an advantage for guessing the
corresponding input from X .

3.2 Definition of Oracles

During the interaction with the challenger in the security definitions, the ad-
versary may access oracles for data tokenization, for moving to the next epoch,
for corrupting the host, and for corrupting the owner. In the following descrip-
tion, the oracles may access the state of the challenger during the experiment.
The challenger initializes a UTO scheme with global state (k0, ∆0, e), where
k0 ← UTO.setup(λ), ∆0 ← ⊥, and e ← 0. Two auxiliary variables e∗h and e∗o
record the epochs where the host and the owner were first corrupted, respectively.
Initially e∗h ← ⊥ and e∗o ← ⊥.

Otoken(x): On input a value x ∈ X , return ye ← UTO.token(ke, x) to the adver-
sary, where ke is the tokenization key of the current epoch.

Onext: When triggered, compute the tokenization key and update tweak of the
next epoch as (ke+1, ∆e+1)← UTO.next(ke) and update the global state to
(ke+1, ∆e+1, e+ 1).

Ocorrupt-h: When invoked, return ∆e to the adversary. If called for the first time
(e∗h = ⊥), then set e∗h ← e. This oracle models the corruption of the host
and may be called multiple times.

Ocorrupt-o: When invoked for the first time (e∗o = ⊥), then set e∗o ← e and return
ke to the adversary. This oracle models the corruption of the owner and can
only be called once. After this call, the adversary no longer has access to
Otoken and Onext.

Note that although corruption of the host at epoch e exposes the update
tweak ∆e, the adversary should not be able to compute update tweaks of fu-
ture epochs from this value. To obtain those, A should call Ocorrupt-h again in

8

the corresponding epochs; this is used for IND-HOCH security and IND-COTH
security, with different side-conditions. A different case arises when the owner
is corrupted, since this exposes all relevant secrets of the challenger. From that
point the adversary can generate tokenization keys and update tweaks for all
subsequent epochs on its own. This justifies why the oracle Ocorrupt-o can only be
called once. For the same reason, it makes no sense for an adversary to query the
Otoken and Onext oracles after the corruption of the owner. Furthermore, observe
that Ocorrupt-o does not return ∆e according to the assumption that the owner
deletes this atomically with executing the next algorithm.

We are now ready to formally define the security notions for UTO in the
remainder of this section.

3.3 IND-HOCH: Honest Owner and Corrupted Host

The IND-HOCH notion ensures that tokenized data does not reveal information
about the corresponding original data when A compromises the host and obtains
the update tweaks of the current and all future epochs. Tokenized values are also
unlinkable across epochs, as long as the adversary does not know at least one
update tweak in that timeline.

Definition 3 (IND-HOCH). An updatable tokenization scheme UTO is said
to be IND-HOCH secure if for all polynomial-time adversaries A it holds that
|Pr[ExpIND-HOCH

A,UTO (λ) = 1]− 1/2| ≤ ε(λ) for some negligible function ε.

Experiment ExpIND-HOCH
A,UTO (λ):

k0
r← UTO.setup(λ)

e← 0; e∗h ← ⊥ // these variables are updated by the oracles
(x̃0, x̃1, state)

r← AOtoken,Onext,Ocorrupt-h(λ)
ẽ← e; d

r← {0, 1}
ỹd,ẽ ← UTO.token(kẽ, x̃d)

d′
r← AOtoken,Onext,Ocorrupt-h(ỹd,ẽ, state)

return 1 if d′ = d and at least one of following conditions holds
a)

(
e∗h ≤ ẽ+ 1

)
∧ A has not queried Otoken(x̃0) or Otoken(x̃1) in epoch

e∗h − 1 or later
b)

(
e∗h > ẽ+ 1 ∨ e∗h = ⊥

)
∧ A has not queried Otoken(x̃0) or Otoken(x̃1) in

epoch ẽ

This experiment has two phases. In the first phase, A may query Otoken,
Onext and Ocorrupt-h; it ends at an epoch ẽ when A outputs two challenge inputs
x̃0 and x̃1. The challenger picks one at random (denoted by x̃d), tokenizes it,
obtains the challenge ỹd,ẽ and starts the second phase by invoking A with ỹd,ẽ.
The adversary may then further query Otoken, Onext, and Ocorrupt-h and eventually
outputs its guess d′ for which data value was tokenized. Note that only the first
host corruption matters for our security notion, since we are assuming that once

9

corrupted, the host is always corrupted. For simplicity, we therefore assume that
A calls Ocorrupt-h once in every epoch after e∗h.

The adversary wins the experiment if it correctly guesses d while respecting
two conditions that differ depending on whether the adversary corrupted the
host (roughly) before or after the challenge epoch:

a) If e∗h ≤ ẽ+ 1, then A first corrupts the host before, during, or immediately
after the challenge epoch and may learn the update tweaks to epoch e∗h and
later ones. In this case, it must not query the tokenization oracle on the
challenge inputs in epoch e∗h − 1 or later.

In particular, if this restriction was not satisfied, when e∗h ≤ ẽ, the adversary
could tokenize data of its choice, including x̃0 and x̃1, during any epoch
from e∗h − 1 to ẽ, subsequently update the tokenized value to epoch ẽ, and
compare it to the challenge ỹd,ẽ. This would allow A to trivially win the
security experiment.

For the case e∗h = ẽ+ 1, recall that according to the experiment, the update
tweak ∆e remains accessible until epoch e+1 starts. Therefore, A learns the
update tweak from ẽ to ẽ+ 1 and may update ỹd,ẽ into epoch ẽ+ 1. Hence,
from this time on it must not query Otoken with the challenge inputs either.

b) If e∗h > ẽ+ 1∨ e∗h = ⊥, i.e., the host was first corrupted after epoch ẽ+ 1 or
not at all, then the only restriction is that A must not query the tokenization
oracle on the challenge inputs during epoch ẽ. This is an obvious restriction
to exclude trivial wins, as tokenization is deterministic.

This condition is less restrictive than case a), but it suffices since the adver-
sary cannot update tokenized values from earlier epochs to ẽ, nor from ẽ to
a later epoch. The reason is that A only gets the update tweaks from epoch
ẽ+ 2 onwards.

3.4 IND-COHH: Corrupted Owner and Honest Host

The IND-COHH notion models a compromise of the owner in a certain epoch,
such that the adversary learns the tokenization key and may generate tokeniza-
tion keys and update tweaks of all subsequent epochs by itself. Given that the
tokenization key allows to derive the update tweak of the host, this implicitly
models some form of host corruption as well. The property ensures that data
tokenized before the corruption remains hidden, that is, the adversary does not
learn any information about the original data, nor can it link such data with
data tokenized in other epochs.

Definition 4 (IND-COHH). An updatable tokenization scheme UTO is said
to be IND-COHH secure if for all polynomial-time adversaries A it holds that
|Pr[ExpIND-COHH

A,UTO (λ) = 1]− 1/2| ≤ ε(λ) for some negligible function ε.

10

Experiment ExpIND-COHH
A,UTO (λ):

k0
r← UTO.setup(λ)

e← 0; e∗o ← ⊥ // these variables are updated by the oracles
(x̃0, x̃1, state)

r← AOtoken,Onext(λ)
ẽ← e; d

r← {0, 1}
ỹd,ẽ ← UTO.token(kẽ, x̃d)

d′
r← AOtoken,Onext,Ocorrupt-o(ỹd,ẽ, state)

return 1 if d′ = d and all following conditions hold
a) e∗o > ẽ ∨ e∗o = ⊥
b) A never queried Otoken(x̃0) or Otoken(x̃1) in epoch ẽ

During the first phase of the IND-COHH experiment the adversary may query
Otoken and Onext, but it may not corrupt the owner. At epoch ẽ, the adversary
produces two challenge inputs x̃0 and x̃1. Again, the challenger selects one at
random and tokenizes it, resulting in the challenge ỹd,ẽ. Subsequently, A may
further query Otoken and Onext, and now may also invoke Ocorrupt-o. Once the
owner is corrupted (during epoch e∗o), A knows all key material of the owner
and may generate tokenization keys and update tweaks of all subsequent epochs
by itself. Thus, from this time on, we remove access to the Otoken or Onext oracles
for simplicity.

The adversary ends the experiment by guessing which input challenge was
tokenized. It wins when the guess is correct and the following conditions are met:

a) A must have corrupted the owner only after the challenge epoch (e∗o > ẽ) or
not at all (e∗o = ⊥). This is necessary since corruption during epoch ẽ would
leak the tokenization key kẽ to the adversary. (Note that corruption before
ẽ is ruled out syntactically.)

b) A must neither query the tokenization oracle with any challenge input (x̃0
or x̃1) during the challenge epoch ẽ. This condition eliminates that A can
trivially reveal the challenge input since the tokenization operation is deter-
ministic.

On the (Im)possibility of Additional Host Corruption. As can be noted, the
IND-COHH experiment does not consider the corruption of the host at all. The
reason is that allowing host corruption in addition to owner corruption would
either result in a non-achievable notion, or it would give the adversary no extra
advantage. To see this, we first argue why additional host corruption capabilities
at any epoch e∗h ≤ ẽ+ 1 is not allowed. Recall that such a corruption is possible
in the IND-HOCH experiment if the adversary does not make any tokenization
queries on the challenge values x̃0 or x̃1 at any epoch e ≥ e∗h−1. This restriction is
necessary in the IND-HOCH experiment to prevent the adversary from trivially
linking the tokenized values of x̃0 or x̃1 to the challenge ỹd,ẽ. However, when the
owner can also be corrupted, at epoch e∗o > ẽ, that restriction is useless. Note
that upon calling Ocorrupt-o the adversary learns the owner’s tokenization key and
can simply tokenize x̃0 and x̃1 at epoch e∗o. The results can be compared with
an updated version of ỹd,ẽ to trivially win the security experiment.

11

Now we discuss the additional corruption of the host at any epoch e∗h > ẽ+1.
We note that corruption of the owner at epoch e∗o > ẽ allows the adversary to
obtain the tokenization key of epoch e∗o and compute the tokenization keys and
update tweaks of all epochs e > e∗o + 1. Thus, the adversary then trivially knows
all tokenization keys from e∗o+1 onward and modeling corruption of the host after
the owner is not necessary. The only case left is to consider host corruption before
owner corruption, at an epoch e∗h with ẽ+ 1 < e∗h < e∗o. However, corrupting the
host first would not have any impact on the winning condition. Hence, without
loss of generality, we assume that the adversary always corrupts the owner first,
which allows us to fully omit the Ocorrupt-h oracle in our IND-COHH experiment.

We stress that the impossibility of host corruption at any epoch e∗h ≤ ẽ +
1 only holds if we consider permanent corruptions, i.e., the adversary, upon
invocation of Ocorrupt-h is assumed to fully control the host and to learn all future
update tweaks. In the following security notion, IND-COTH, we bypass this
impossibility by modeling transient corruption of the host.

3.5 IND-COTH: Corrupted Owner and Transiently Corrupted Host

Extending both of the above security properties, the IND-COTH notion consid-
ers corruption of the owner and repeated but transient corruptions of the host.
It addresses situations where some of the update tweaks received by the host
leak to A and the keys of the owner are also exposed at a later stage.

Definition 5 (IND-COTH). An updatable tokenization scheme UTO is said
to be IND-COTH secure if for all polynomial-time adversaries A it holds that
|Pr[ExpIND-COTH

A,UTO (λ) = 1]− 1/2| ≤ ε(λ) for some negligible function ε.

Experiment ExpIND-COTH
A,UTO (λ):

k0
r← UTO.setup(λ)

e← 0; e∗o ← ⊥ // these variables are updated by the oracles
elast ← ⊥; efirst ← ⊥
(x̃0, x̃1, state)

r← AOtoken,Onext,Ocorrupt-h(λ)
ẽ← e; d

r← {0, 1}
ỹd,ẽ ← UTO.token(kẽ, x̃d)

d′
r← AOtoken,Onext,Ocorrupt-h,Ocorrupt-o(ỹd,ẽ, state)

elast ← last epoch before ẽ in which A queried Otoken(x̃0) or Otoken(x̃1)
efirst ← first epoch after ẽ in which A queried Otoken(x̃0) or Otoken(x̃1)
return 1 if d′ = d and all following conditions hold

a) e∗o > ẽ ∨ e∗o = ⊥
b) A never queried Otoken(x̃0) or Otoken(x̃1) in epoch ẽ

c) either e∗h = ⊥ or all following conditions hold
i)
(
elast = ⊥

)
∨ ∃ e′ with elast < e′ ≤ ẽ where A has not queried Ocorrupt-h

ii)
(
efirst = ⊥

)
∨ ∃ e′′ with ẽ < e′′ ≤ efirst where A has not queried Ocorrupt-h

iii)
(
e∗o = ⊥

)
∨ ∃ e′′′ with ẽ < e′′′ ≤ e∗o where A has not queried Ocorrupt-h

12

Observe that the owner can only be corrupted after the challenge epoch, just
as in the IND-COHH experiment. As before, A then obtains all key material and,
for simplicity, we remove access to the Otoken or Onext oracles from this time on.
The transient nature of the host corruption allows to grant A additional access
to Ocorrupt-h before the challenge, which would be impossible in the IND-COHH
experiment if permanent host corruption was considered.

Compared to the IND-HOCH definition, here A may corrupt the host and
ask for a challenge input to be tokenized after the corruption. Multiple host
corruptions may occur before, during, and after the challenge epoch. But in
order to win the experiment, A must leave out at least one epoch and miss an
update tweak. Otherwise it could trivially guess the challenge by updating the
challenge output or a challenge input tokenized in another epoch to the same
stage. In the experiment this is captured through the conditions under c). In
particular:

c-i) If A calls Otoken with one of the challenge inputs x̃0 or x̃1 before triggering
the challenge, it must not corrupt the host and miss the update tweak in at
least one epoch from this point up to the challenge epoch. Thus, the latest
epoch before the challenge epoch where A queries Otoken(x̃0) or Otoken(x̃1),
denoted elast, must be smaller than the last epoch before ẽ where the host is
not corrupted.

c-ii) Likewise if A queries Otoken with a challenge input x̃0 or x̃1 after the
challenge epoch, then it must not corrupt the host and miss the update
tweak in at least one epoch after ẽ. Otherwise, it could update the challenge
ỹd,ẽ to the epoch where it calls Otoken. The first epoch after the challenge
epoch where A queries Otoken(x̃0) or Otoken(x̃1), denoted efirst, must be larger
than or equal to the first epoch after ẽ where the host is not corrupted.

c-iii) If A calls Ocorrupt-o, it must not obtain at least one update tweak after
the challenge epoch and before, or during, the epoch of owner corruption e∗o.
Otherwise, A could tokenize x̃0 and x̃1 with the tokenization key of epoch
e∗o, exploit the exposed update tweaks to evolve the challenge value ỹd,ẽ to
that epoch, and compare the results.

PRF-style vs. IND-CPA-style definitions. We have opted for definitions based on
indistinguishability in our model. Given that the goal of tokenization is to output
random looking tokens, a security notion in the spirit of pseudorandomness might
seem like a more natural choice at first glance. However, a definition in the
PRF-style does not cope well with adaptive attacks: in our security experiments
the adversary is allowed to adaptively corrupt the data host and corrupt the
data owner, upon which it gets the update tweaks or the secret tokenization
key. Modeling this in a PRF vs. random function experiment would require
the random function to contain a key and to be compatible with an update
function that can be run by the adversary. Extending the random function with
these “features” would lead to a PRF vs. PRF definition. The IND-CPA inspired
approach used in this paper allows to cover the adaptive attacks and consistency
features in a more natural way.

13

Relation Among the Security Notions. Our notion of IND-COTH security is
the strongest of the three indistinguishability notions above, as it implies both
IND-COHH and IND-HOCH security, but not vice-versa. That is, IND-COTH
security is not implied by IND-COHH and IND-HOCH security. A distinguishing
example is our UTOSE scheme. As we will see in Section 4.1, UTOSE is both IND-
COHH and IND-HOCH secure, but not IND-COTH secure.

The proof of Theorem 1 below is given in Appendix A.

Theorem 1 (IND-COTH ⇒ IND-COHH + IND-HOCH). If an updat-
able tokenization scheme UTO is IND-COTH secure, then it is also IND-COHH
secure and IND-HOCH secure.

3.6 One-Wayness

The one-wayness notion models the fact that a tokenization scheme should not
be reversible even if an adversary is given the tokenization keys. In other words,
an adversary who sees tokenized values and gets hold of the tokenization keys
cannot obtain the original data. Because the keys allow one to reproduce the to-
kenization operation and to test whether the output matches a tokenized value,
the resulting security level depends on the size of the input space and the ad-
versary’s uncertainty about the input. Thus, in practice, the level of security
depends on the prior knowledge of the adversary about X .

Our definition is similar to the standard notion of one-wayness, with the
difference that we ask the adversary to output the exact preimage of a tokenized
challenge value, as our tokenization algorithm is an injective function.

Definition 6 (One-Wayness). An updatable tokenization scheme UTO is said
to be one-way if for all polynomial-time adversaries A it holds that

Pr[x = x̃ : x← A(λ, k0, ỹ),

ỹ ← UTO.token(k0, x̃), x̃
r← X , k0

r← UTO.setup(λ)] ≤ 1/|X |.

4 UTO Constructions

In this section we present two efficient constructions of updatable tokeniza-
tion schemes. The first solution (UTOSE) is based on symmetric encryption and
achieves one-wayness, IND-HOCH and IND-COHH security; the second con-
struction (UTODL) relies on a discrete-log assumption, and additionally satisfies
IND-COTH security. Both constructions share the same core idea: First, the
input value is hashed, and then the hash is encrypted under a key that changes
every epoch.

4.1 An UTO Scheme based on Symmetric Encryption

We build a first updatable tokenization scheme UTOSE, that is based on a sym-
metric deterministic encryption scheme SE = (SE.KeyGen,SE.Enc,SE.Dec) with

14

message space M and a keyed hash function H : K × X →M. In order to tok-
enize an input x ∈ X , our scheme simply encrypts the hashed value of x. At each
epoch e, a distinct random symmetric key se is used for encryption, while a fixed
random hash key hk is used to hash x. Both keys are chosen by the data owner.
To update the tokens, the host receives the encryption keys of the previous and
current epoch and re-encrypts all hashed values to update them into the current
epoch. More precisely, our UTOSE scheme is defined as follows:

UTO.setup(λ): Generate keys s0
r← SE.KeyGen(λ), hk

r← H.KeyGen(λ) and out-
put k0 ← (s0, hk).

UTO.next(ke): Parse ke as (se, hk). Choose a new key se+1
r← SE.KeyGen(λ)

and set ke+1 ← (se+1, hk) and ∆e+1 ← (se, se+1). Output (ke+1, ∆e+1).
UTO.token(ke, x): Parse ke as (se, hk) and output ye ← SE.Enc(se,H(hk, x)).
UTO.upd(∆e+1, ye): Parse ∆e+1 as (se, se+1) and output the updated value

ye+1 ← SE.Enc(se+1,SE.Dec(se, ye)).

This construction achieves IND-HOCH, IND-COHH, and one-wayness but
not the stronger IND-COTH notion. The issue is that a transiently corrupted
host can recover the static hash during the update procedure and thus can link
tokenized values from different epochs, even without knowing all the update
tweaks between them.

Theorem 2. The UTOSE as defined above satisifies the IND-HOCH, IND-COHH
and one-wayness properties based on the following assumptions on the underlying
encryption scheme SE and hash function H:

UTOSE SE H

IND-COHH IND-CPA weak collision resistance
IND-HOCH IND-CPA pseudorandomness
one-wayness - one-wayness

The proof of Theorem 2 is given in Appendix B.

4.2 An UTO Scheme based on Discrete Logarithms

Our second construction UTODL overcomes the limitation of the first scheme by
performing the update in a proxy re-encryption manner using the re-encryption
idea first proposed by Blaze et al. [3]. That is, the hashed value is raised to
an exponent that the owner randomly chooses at every new epoch. To update
tokens, the host is not given the keys itself but only the quotient of the current
and previous exponent. While this allows the host to consistently update his
data, it does not reveal the inner hash anymore and guarantees unlinkability
across epochs, thus satisfying also our strongest notion of IND-COTH security.

More precisely, the scheme makes use of a cyclic group (G, g, p) and a hash
function H : X → G. We assume the hash function and the group description
to be publicly available. The algorithms of our UTODL scheme are defined as
follows:

15

UTO.setup(λ): Choose k0
r← Zp and output k0.

UTO.next(ke): Choose ke+1
r← Zp, set∆e+1 ← ke+1/ke, and output (ke+1, ∆e+1).

UTO.token(ke, x): Compute ye ← H(x)ke , and output ye.

UTO.upd(∆e+1, ye): Compute ye+1 ← y
∆e+1
e , and output ye+1.

Our UTODL scheme is one-way and satisfies our strongest notion of IND-
COTH security, from which IND-HOCH and IND-COHH security follows (see
Theorem 1). The proof of Theorem 3 below is given in Appendix C.

Theorem 3. The UTODL scheme as defined above is IND-COTH secure under
the DDH assumption in the random oracle model, and one-way if H is one-way.

Acknowledgements. We would like to thank our colleagues Michael Osborne,
Tamas Visegrady and Axel Tanner for helpful discussions on tokenization.

This work has been supported in part by the European Commission through
the Horizon 2020 Framework Programme (H2020-ICT-2014-1) under grant agree-
ment number 644371 WITDOM and through the Seventh Framework Programme
under grant agreement number 321310 PERCY, and in part by the Swiss State
Secretariat for Education, Research and Innovation (SERI) under contract num-
ber 15.0098.

References

1. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) Advances in Cryptology - CRYPTO 2007, 27th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August
19-23, 2007, Proceedings. Lecture Notes in Computer Science, vol. 4622, pp. 535–
552. Springer (2007), http://dx.doi.org/10.1007/978-3-540-74143-5_30

2. Bellare, M., Ristenpart, T., Rogaway, P., Stegers, T.: Format-preserving encryp-
tion. In: Jr., M.J.J., Rijmen, V., Safavi-Naini, R. (eds.) Selected Areas in Cryp-
tography, 16th Annual International Workshop, SAC 2009, Calgary, Alberta,
Canada, August 13-14, 2009, Revised Selected Papers. Lecture Notes in Com-
puter Science, vol. 5867, pp. 295–312. Springer (2009), http://dx.doi.org/10.

1007/978-3-642-05445-7_19

3. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) Advances in Cryptology - EUROCRYPT ’98, Inter-
national Conference on the Theory and Application of Cryptographic Techniques,
Espoo, Finland, May 31 - June 4, 1998, Proceeding. Lecture Notes in Computer
Science, vol. 1403, pp. 127–144. Springer (1998), http://dx.doi.org/10.1007/

BFb0054122

4. Boneh, D., Lewi, K., Montgomery, H.W., Raghunathan, A.: Key homomorphic
prfs and their applications. In: Canetti, R., Garay, J.A. (eds.) Advances in Cryp-
tology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2013. Proceedings, Part I. Lecture Notes in Computer
Science, vol. 8042, pp. 410–428. Springer (2013), http://dx.doi.org/10.1007/

978-3-642-40041-4_23

16

http://dx.doi.org/10.1007/978-3-540-74143-5_30
http://dx.doi.org/10.1007/978-3-642-05445-7_19
http://dx.doi.org/10.1007/978-3-642-05445-7_19
http://dx.doi.org/10.1007/BFb0054122
http://dx.doi.org/10.1007/BFb0054122
http://dx.doi.org/10.1007/978-3-642-40041-4_23
http://dx.doi.org/10.1007/978-3-642-40041-4_23

5. Boneh, D., Lewi, K., Montgomery, H.W., Raghunathan, A.: Key homomorphic
prfs and their applications. IACR Cryptology ePrint Archive 2015, 220 (2015),
http://eprint.iacr.org/2015/220

6. Diaz-Santiago, S., Rodŕıguez-Henŕıquez, L.M., Chakraborty, D.: A cryptographic
study of tokenization systems. In: Obaidat, M.S., Holzinger, A., Samarati, P. (eds.)
SECRYPT 2014 - Proceedings of the 11th International Conference on Security
and Cryptography, Vienna, Austria, 28-30 August, 2014. pp. 393–398. SciTePress
(2014), http://dx.doi.org/10.5220/0005062803930398

7. European Commission, Article 29 Data Protection Working Party:
Opinion 05/2014 on anonymisation techniques. Available online from
http://ec.europa.eu/justice/data-protection/article-29/documentation/

opinion-recommendation/ (2014)

8. Everspaugh, A., Chatterjee, R., Scott, S., Juels, A., Ristenpart, T.: The pythia
PRF service. In: Jung, J., Holz, T. (eds.) 24th USENIX Security Sympo-
sium, USENIX Security 15, Washington, D.C., USA, August 12-14, 2015. pp.
547–562. USENIX Association (2015), https://www.usenix.org/conference/

usenixsecurity15/technical-sessions/presentation/everspaugh

9. Herzberg, A., Jakobsson, M., Jarecki, S., Krawczyk, H., Yung, M.: Proactive public
key and signature systems. In: CCS ’97, Proceedings of the 4th ACM Conference
on Computer and Communications Security, Zurich, Switzerland, April 1-4, 1997.
pp. 100–110 (1997), http://doi.acm.org/10.1145/266420.266442

10. Luchaup, D., Shrimpton, T., Ristenpart, T., Jha, S.: Formatted encryption beyond
regular languages. In: Proceedings of the 2014 ACM SIGSAC Conference on Com-
puter and Communications Security, Scottsdale, AZ, USA, November 3-7, 2014.
pp. 1292–1303 (2014), http://doi.acm.org/10.1145/2660267.2660351

11. McCallister, E., Grance, T., Scarfone, K.: Guide to protecting the confidential-
ity of personally identifiable information (PII). NIST special publication 800-122,
National Institute of Standards and Technology (NIST) (2010), available from
http://csrc.nist.gov/publications/PubsSPs.html.

12. PCI Security Standards Council: PCI Data Security Standard (PCI DSS). https:
//www.pcisecuritystandards.org/document_library?document=pci_dss (2015)

13. Securosis: Tokenization guidance: How to reduce PCI compliance costs. https:

//securosis.com/assets/library/reports/TokenGuidance-Securosis-Final.

pdf

14. Smart Card Alliance: Technologies for payment fraud prevention: EMV,
encryption and tokenization. http://www.smartcardalliance.org/downloads/

EMV-Tokenization-Encryption-WP-FINAL.pdf

15. United States Deapartment of Health and Human Services: Summary
of the HIPAA Privacy Rule. http://www.hhs.gov/sites/default/files/

privacysummary.pdf

16. Voltage Security: Voltage secure stateless tokenization. https://www.voltage.

com/wp-content/uploads/Voltage_White_Paper_SecureData_SST_Data_

Protection_and_PCI_Scope_Reduction_for_Todays_Businesses.pdf

A Proof of Theorem 1

We now prove that our strongest notion of IND-COTH indeed implies both
IND-HOCH and IND-COHH.

17

http://eprint.iacr.org/2015/220
http://dx.doi.org/10.5220/0005062803930398
http://ec.europa.eu/justice/data-protection/article-29/documentation/opinion-recommendation/
http://ec.europa.eu/justice/data-protection/article-29/documentation/opinion-recommendation/
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/everspaugh
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/everspaugh
http://doi.acm.org/10.1145/266420.266442
http://doi.acm.org/10.1145/2660267.2660351
http://csrc.nist.gov/publications/PubsSPs.html
https://www.pcisecuritystandards.org/document_library?document=pci_dss
https://www.pcisecuritystandards.org/document_library?document=pci_dss
https://securosis.com/assets/library/reports/TokenGuidance-Securosis-Final.pdf
https://securosis.com/assets/library/reports/TokenGuidance-Securosis-Final.pdf
https://securosis.com/assets/library/reports/TokenGuidance-Securosis-Final.pdf
http://www.smartcardalliance.org/downloads/EMV-Tokenization-Encryption-WP-FINAL.pdf
http://www.smartcardalliance.org/downloads/EMV-Tokenization-Encryption-WP-FINAL.pdf
http://www.hhs.gov/sites/default/files/privacysummary.pdf
http://www.hhs.gov/sites/default/files/privacysummary.pdf
https://www.voltage.com/wp-content/uploads/Voltage_White_Paper_SecureData_SST_Data_Protection_and_PCI_Scope_Reduction_for_Todays_Businesses.pdf
https://www.voltage.com/wp-content/uploads/Voltage_White_Paper_SecureData_SST_Data_Protection_and_PCI_Scope_Reduction_for_Todays_Businesses.pdf
https://www.voltage.com/wp-content/uploads/Voltage_White_Paper_SecureData_SST_Data_Protection_and_PCI_Scope_Reduction_for_Todays_Businesses.pdf

Proof. Clearly, the oracles granted in the IND-COHH and IND-HOCH experi-
ments are subsets of the oracles available to the adversary A in the IND-COTH
experiment. Here we show that the winning conditions of both IND-COHH and
IND-HOCH experiments are also covered by the IND-COTH experiment.

For the case of the IND-COHH experiment, we see that conditions a) and b)
are equivalent to the winning conditions of the IND-COTH experiment. (Note
that conditions c-i) to c-iii) of the IND-COTH experiment only apply if A makes
a Ocorrupt-h query, which is not allowed in the IND-COHH experiment.)

For the case of the IND-HOCH experiment, the winning conditions depend
on whether the host was corrupted before or after the challenge epoch ẽ. We
analyze how conditions a) and b) of the IND-HOCH experiment are reflected in
conditions b), c-i) and c-ii) of the IND-COTH experiment. (Note that conditions
a) and c-iii) are based on the owner being corrupted, which does not apply to
the IND-HOCH experiment.)

If an adversary B in the IND-HOCH experiment wins under condition b),
i.e., it corrupts the host at an epoch e∗h > ẽ + 1, or the host is not corrupted
at all, B is only required to not make a tokenization query on x̃0 or x̃1 at the
challenge epoch. We see that this condition is satisfied by condition b) of the
IND-COTH experiment. Since B is allowed to make Otoken queries on x̃0 or x̃1
in all other epochs, we must argue that this is permitted by conditions c-i) and
c-ii) of the IND-COTH experiment. Condition c-i) holds trivially as there is no
epoch e′ ≤ ẽ in which a Ocorrupt-h query was made, and condition c-ii) is always
fulfilled with e′′ = ẽ+ 1.

An adversary B winning the IND-HOCH experiment under condition a) is
significantly more restricted in its Otoken queries. When the host is corrupted at
an epoch e∗h ≤ ẽ+ 1, B is allowed to make Otoken queries on x̃0 or x̃1 latest at an
epoch elast ≤ e∗h − 2 ≤ ẽ − 1. This immediately satisfies condition c-ii) as there
can be no tokenization queries on x̃0 or x̃1 after the challenge epoch ẽ and thus
efirst = ⊥. Condition c-i) is satisfied with e′ = e∗h − 1 and elast ≤ e∗h − 2, since
elast < e′ ≤ ẽ.

B Security of the UTOSE Scheme

In this section we show that our UTOSE construction is correct and achieves the
notions of IND-HOCH, IND-COHH, and one-wayness as defined in Section 3.
We also argue why this scheme does not satisfy the stronger IND-COTH notion.

Correctness. Let X be the data space of our updatable tokenization scheme. For
any x ∈ X , random encryption key se output by SE.KeyGen(λ) and random hash
key hk

r← H.KeyGen(λ), UTO.token(ke, x) outputs ye = SE.Enc(se,H(hk, x)). We
see that UTO.upd(∆e+1, ye) (with ∆e+1 = (se, se+1) and random se+1 output by
SE.KeyGen(λ)) outputs SE.Enc(se+1,SE.Dec(se, ye)) = SE.Enc(se+1,SE.Dec(se,
SE.Enc(se,H(hk, x)))) = SE.Enc(se+1,H(hk, x)), which is also the output of
UTO.token(ke+1, x). Therefore, correctness is satisfied.

18

Theorem 4 (IND-COHH Security of the UTOSE Scheme). Assume SE =
(SE.KeyGen,SE.Enc,SE.Dec) is an IND-CPA secure deterministic symmetric en-
cryption scheme and H is a weakly collision-resistant hash function. Then UTOSE

is IND-COHH secure in the sense of Definition 4.

Proof. Assume an IND-COHH adversary AUTO against the updatable tokeniza-
tion scheme UTOSE. We construct an adversary ASE that breaks the IND-CPA
security of SE. Concretely, ASE simulates the IND-COHH experiment of Defini-
tion 4 for AUTO, and concurrently plays the IND-CPA experiment of Definition 1.
Let emax be a polynomial upper bound on the total number of epochs used by
the UTOSE scheme.

The idea is that in order to provide a perfect simulation, ASE will randomly
select a value g̃ ← {0, 1, . . . , emax − 1}, guessing in which epoch AUTO will make
the challenge query. For all epochs e 6= g̃, ASE will generate tokenization keys on
its own and answer Otoken(x), Onext and Ocorrupt-o queries made by AUTO, whereas
at epoch g̃, ASE will forward the challenge query and Otoken(x) queries to its
own IND-CPA challenger, and respond to AUTO accordingly. More precisely, the
simulation works as follows.

setup: The IND-CPA experiment selects s
r← SE.KeyGen(λ) and d

r← {0, 1}.
ASE picks g̃

r← {0, 1, . . . , emax−1}, hk r← H.KeyGen(λ), and s0
r← SE.KeyGen(λ).

oracle queries: For e < g̃, ASE answers oracle queries to AUTO in the following
way:

a) Onext: if e 6= g̃ − 1, increment e← e+ 1 and run se+1
r← SE.KeyGen(λ).

b) Otoken(x): compute ye ← SE.Enc(se,H(hk, x)) and return ye to AUTO.
c) Ocorrupt-o: abort simulation if oracle queried.
d) challenge (x̃0, x̃1): abort simulation if challenge input received.

For e = g̃ the queries are answered as follows:

a) Onext: increment e← e+ 1 and run se+1
r← SE.KeyGen(λ).

b) Otoken(x): abort simulation if x has already been given as one of the
inputs to the challenge, i.e. if x ∈ {x̃0, x̃1}. Otherwise compute H(hk, x)
and query the LoR oracle of the IND-CPA experiment, i.e., Oenc, with
(H(hk, x),H(hk, x)), obtaining ye = SE.Enc(s,H(hk, x)). Return ye to
AUTO.

c) Ocorrupt-o: abort simulation if oracle queried.
d) challenge (x̃0, x̃1): abort simulation if challenge input not received, or if

at least one of Otoken(x̃0),Otoken(x̃1), was queried at epoch e. Otherwise
compute H(hk, x̃0), H(hk, x̃1) and query Oenc with (H(hk, x̃0),H(hk, x̃1))
obtaining ỹd,g̃ = SE.Enc(s,H(hk, x̃d)). Forward ỹd,g̃ to AUTO.

For e > g̃ the queries are answered as follows:

a) Onext: increment e← e+ 1 and run se+1
r← SE.KeyGen(λ).

b) Otoken(x): compute ye ← SE.Enc(se,H(hk, x)) and return ye to AUTO.
c) Ocorrupt-o: return ke = (se, hk) to AUTO.
d) challenge (x̃0, x̃1): at this point the challenge was already queried or the

simulation was aborted.

output: AUTO outputs a bit d′, whichASE forwards to its IND-CPA experiment.

19

In the simulation above AUTO could have queried Otoken(x) at epoch g̃ such
that H(hk, x) = H(hk, x̃0) or H(hk, x) = H(hk, x̃1). This would allow AUTO to
obtain ỹ0,g̃ = SE.Enc(s,H(hk, x̃0)) or ỹ1,g̃ = SE.Enc(s,H(hk, x̃1)), respectively,
and compare with ỹd,g̃. We denote this probability of collision by coll.

We see that if no hash collision was found, and if an adversary AUTO against
our UTOSE wins its (simulated) IND-COHH security experiment, then ASE also
wins its own IND-CPA experiment. Thus, we have that

Pr [ASE wins] ≥ |Pr [AUTO wins]− coll| ,

which can be written as Pr [AUTO wins] ≤ |Pr [ASE wins] + coll|.
This means that if SE is IND-CPA secure (see Definition 1) and H is a weakly

collision-resistant hash function, then our UTOSE scheme is IND-COHH secure
in the sense of Definition 4, which concludes our proof. ut

Theorem 5 (IND-HOCH Security of the UTOSE Scheme). Assume SE =
(SE.KeyGen,SE.Enc,SE.Dec) is an IND-CPA secure deterministic symmetric en-
cryption scheme and H is a pseudorandom function. Then UTOSE is IND-HOCH
secure in the sense of Definition 3.

Proof. Assume an IND-HOCH adversary AUTO against the updatable tokeniza-
tion scheme UTOSE. We construct an adversary A that breaks the IND-CPA
security of SE or the pseudorandomness of H. Concretely, A simulates the IND-
HOCH experiment of Definition 3 for AUTO, and concurrently plays the IND-
CPA experiment of Definition 1 or the pseudorandomness experiment specified
in Section 2. Let emax be a polynomial upper bound on the total number of
epochs used by our UTOSE scheme.

The idea is that in order to provide the simulation, A will first flip a coin
to guess whether or not AUTO will corrupt the host at an epoch e∗h ≤ ẽ +
1. The way A will be behave depends on its guess. If the guess is yes, AUTO

is assumed not to be allowed to make tokenizing queries on challenge values
x̃0, x̃1 at any epoch e ≥ e∗h − 1, and also able to get all update tweaks from
epoch e∗h onwards, which includes the encryption key sẽ of the challenge epoch ẽ.
Since AUTO will be able to decrypt its challenge using the key sẽ, in this case
the security of UTOSE depends at a first glance only on the pseudorandomness
of H. Given that the latter statement assumes that AUTO obtains no information
whatsoever about H(hk, x̃0) or H(hk, x̃1), we must argue that this is indeed the
case. For this, note that although AUTO is allowed to make tokenization queries
on x̃0 and x̃1 at any epoch e ≤ e∗h − 2, AUTO cannot obtain the encryption key
se of those epochs, and by the IND-CPA security property of SE, the values
SE.Enc(se,H(hk, x)) reveal no information about H(hk, x) even if the adversary
knows some plaintext/ciphertext pairs, according to Definition 1. Therefore, we
see that the security of UTOSE also depends on the IND-CPA security of SE. For
this proof, i.e., for the case where the guess is that e∗h ≤ ẽ+1, we assume that SE
is IND-CPA secure and build an adversary A that breaks the pseudorandomness
of H. During the simulation A will generate the encryption keys of all epochs,
but will not generate the hash key of H. Instead of computing the hash values

20

of x on its own, A will forward x to the PRF experiment, which will always
use either a random function f or the hash function H with a random key hk
to compute x. Now, the guess that AUTO will not corrupt the host at an epoch
e∗h ≤ ẽ+ 1, assumes that AUTO is restricted to not make tokenization queries on
the challenge values only at the challenge epoch ẽ, and that the update tweaks
obtained by AUTO do not contain the encryption key sẽ. The security of our
UTOSE scheme here depends solely on the IND-CPA security of SE. So here the
simulator A will act as an adversary against SE. For this, A will randomly select
a value g̃ ← {0, 1, . . . , emax − 1}, guessing in which epoch AUTO will make the
challenge query on (x̃0, x̃1), and will use its IND-CPA oracle to respond to the
challenge query and to all tokenization queries made at that epoch. Notice that
the fact that A will not know the encryption key of the challenge epoch ẽ is not
a problem for A’s simulation as AUTO cannot query an update tweak containing
sẽ. For all other epochs e 6= ẽ, A will randomly generate the encryption keys se.

Theorem 6 (One-Wayness of the UTOSE Scheme). If H is one-way, then
UTOSE is one-way in the sense of Definition 6.

Proof. In the one-wayness experiment of Definition 6, an adversary AUTO against
our UTOSE scheme having access to the tokenization key of epoch 0, k0 =
(s0, hk), receives as a challenge a token ỹ ← SE.Enc(s0,H(hk, x̃)) for random
s0

r← SE.KeyGen(λ), hk
r← H.KeyGen(λ), and x̃

r← X . Since AUTO obtains s0,
it can decrypt ỹ, obtaining H(hk, x̃). We see that AUTO can only win the one-
wayness experiment if it can break the one-wayness of H. As this is infeasible
according to our stated assumption, then UTOSE is one-way.

UTOSE is not IND-COTH secure. We stress that although our updatable
tokenization scheme UTOSE is IND-COHH and IND-HOCH secure, it does not
achieve our stronger security notion IND-COTH. To see this, assume for in-
stance that an adversary AUTO against our UTOSE scheme queries Ocorrupt-h at
epoch ẽ, receiving ∆ẽ = (sẽ−1, sẽ), and does not corrupt the host at epoch
ẽ + 1. Assume also that AUTO queries Ocorrupt-o at epoch e∗0 = ẽ + 1, receiving
kẽ+1 = (sẽ+1, hk). Note that with these corruptions of host and owner, AUTO

gets kẽ = (sẽ, hk), which allows it to trivially win the IND-COTH experiment by
computing SE.Enc(sẽ,H(hk, x̃0)) or SE.Enc(sẽ,H(hk, x̃1)) on its own and com-
paring the result with the received challenge ỹd,ẽ = SE.Enc(sẽ,H(hk, x̃d)).

C Security of the UTODL Scheme

We now show that our UTODL construction is correct, one-way, and achieves the
notion of IND-COTH security as defined in Section 3.

Correctness. Correctness is easy to verify: for any tokenized value ye ← H(x)ke

and update tweak ∆e+1, output by UTO.next(ke), UTO.upd(∆e+1, ye), produces

y
∆e+1
e = y

ke+1/ke
e = (H(x)ke)ke+1/ke = H(x)ke+1 = ye+1.

21

Theorem 7 (IND-COTH Security of the UTODL Scheme). Assume H be-
haves as a random oracle. Then, under the DDH assumption, the UTODL scheme
is IND-COTH secure in the sense of Definition 5.

Proof. Assume an adversary AUTO against the updatable tokenization scheme
UTODL. We construct an adversary AUTO that breaks the DDH assumption
relative to a cyclic group G = 〈g〉 of order p. Concretely, AUTO simulates the
IND-COTH experiment of Definition 5 for AUTO, and concurrently plays a DDH
experiment as specified in Section 2. Since our proof is in the random oracle
model, AUTO can only obtain hash values by querying a random oracle, which
is also simulated by AUTO.

Assume AUTO receives (g, ga, gb, T) from the DDH experiment and needs to
decide whether or not T = gab. The simulator, will use g, ga and gb to answer
AUTO’s queries, and will embed the DDH challenge T in its response to the
challenge query made by the adversary. In the simulation AUTO will choose a
uniformly chosen bit d in a way that when T is the Diffie-Hellman value gab,
then all the values returned to AUTO in the simulation are according to the IND-
COTH experiment, and the response to the challenge query corresponds to the
tokenized value of x̃d. When T is gc, for a uniformly chosen c ∈ Z∗p, the response
to the challenge query is uniformly distributed in the token space, and AUTO has
no information about the chosen bit d. Therefore, in that case AUTO’s chance of
winning the simulation is 1/2.

At the end of the simulation, AUTO will guess that T = gab if and only if
AUTO outputs d. We argue that if AUTO can break the IND-COTH security of
UTODL, then AUTO can break the DDH assumption. Let ẽ denote the challenge
epoch and (x̃0, x̃1) the pair of challenge values that will be given by AUTO as
input to the challenge query. Roughly, the simulator proceeds as follows.

Flip a coin, coin1
r← {0, 1}, to guess whether the adversary will, during the

whole simulation, ever make a tokenization query, or a random oracle query, on
a challenge value.

1. coin1 = 0: The guess is yes. Here the idea is that the simulator will set ga as
the hash output of one of the challenge values, and will set b as a tokenization
key not obtained by AUTO. All other hash outputs will be consistently set
to gr for a random r ∈ Z∗p per input x. The response to the challenge query

will be T∆, where ∆ is the product of the update tweaks of the epoch
immediately after the epoch where b was embedded, up to epoch ẽ.

(a) Flip a coin d
r← {0, 1}, guessing that the adversary will make at least

one tokenization query, or random oracle query, on x̃d.
(b) Flip a coin coinh1

r← {0, 1} to guess whether the adversary will corrupt
the host in all epochs e ≤ ẽ.

i. coinh1 = 0: the host is honest in at least one epoch e ≤ ẽ. This means
that tokenization queries on challenge values at e ≤ ẽ is allowed.

A. Guess which will be the last epoch, before or at the challenge
epoch, where the host is not corrupted by the adversary. Denote

22

this epoch by elast-nc
h . When the time arrives, implicitly set the

tokenization key of epoch elast-nc
h to b. Before this point, AUTO will

randomly choose a tokenization key ke for each epoch e. After
elast-nc
h ,AUTO will randomly choose update tweaks ∆e for the next

epochs. The tokenization key of those subsequent epochs will be
the multiplication of b and a product of update tweaks. The fact
that AUTO does not know b is not an issue in its simulation since
there the owner cannot be corrupted before the challenge epoch,
and AUTO can use gb to answer the tokenization queries made
by AUTO. Moreover, in this setup the update tweaks of all, but
of epoch elast-nc

h are known to AUTO. Since the host is assumed
not to be corrupted at elast-nc

h , then the simulator can answer all
Ocorrupt-h queries.

B. Flip a coin coin2
r← {0, 1} to guess whether the adversary will

make a tokenization query, or random oracle query, on x̃d before
the challenge epoch.

– coin2 = 0: The guess is yes.

• Guess when the adversary will make its first tokenization
query, or random oracle query, on x̃d. This guess will con-
sider the epoch and the query number of the event. (Note
that although in the simulation the adversary will not be
allowed to make tokenization queries on challenge values at
any epoch e in the range elast-nc

h ≤ e ≤ ẽ, this is not the
case for random oracle queries. This means that the guessed
epoch can be any epoch smaller than, or equal to, the chal-
lenge epoch.)
When the time arrives, set the hash output of x̃d to ga.
Notice that AUTO will not know the actual value of x̃d be-
forehand. When the adversary makes tokenization queries
on x̃d, the simulator will use ga to compute the tokenized
value. Note also that by the way b was set up, the simu-
lator will never have to use the unknown value gab in its
simulation.

– coin2 = 1: The guess is no, but there will be a tokenization
query, or random oracle query, on x̃d after the challenge epoch
ẽ. By then the simulator will already know x̃d, from the chal-
lenge query. Here there is no special set up before ẽ.

ii. coinh1 = 1: The host is corrupted in all epochs e ≤ ẽ. This means
that tokenization queries on challenge values is not allowed at e ≤ ẽ.
However, this is not the case for random oracle queries. Moreover,
the simulator still needs to be able to answer all Ocorrupt-h queries,
and to embed its DDH challenge T in the challenge query made by
AUTO. For these reasons, AUTO will:

A. Implicitly set the tokenization key of epoch 0 to b, and randomly
choose update tweaks ∆e for the next epochs. From epoch 0

23

until epoch ẽ − 1, the simulator will use gb in the computation
of tokenized values.

B. Flip a coin coin3
r← {0, 1} to guess whether the adversary will

make a random oracle query on x̃d before the challenge epoch.
– coin3 = 0: The guess is yes.
• Guess when the adversary will make its first random ora-

cle query on x̃d before the challenge epoch. This guess will
consider the epoch and the query number of the event.
When the time arrives, set the hash output of x̃d to ga. As
before, note that AUTO will not know the actual value of x̃d
beforehand.

– coin3 = 1: The guess is no, but there will be a tokenization
query, or random oracle query, on x̃d after the challenge epoch
ẽ. By then the simulator will already know x̃d, from the chal-
lenge query. There is no special set up before ẽ here.

(c) Flip a coin coinh2
r← {0, 1} to guess whether the adversary will corrupt

the host in all epochs e > ẽ.
i. coinh2 = 0: The host is honest in at least one epoch e > ẽ. This

means that there might be an Ocorrupt-o query, or tokenization queries
on challenge values.
A. Guess which will be the first epoch, after the challenge epoch,

where the host is not corrupted by the adversary. Denote this
epoch by efirst-nc

h . When the time arrives, create a fresh and uni-
formly chosen tokenization key for epoch efirst-nc

h . The set up of a
fresh tokenization key at epoch efirst-nc

h is transparent to the ad-
versary since it will not corrupt the host at that epoch and con-
sequently cannot update any tokenized value previously received
to check for consistency. The tokenization keys of all subsequent
epochs will also be randomly generated by AUTO.
When x̃d appears in tokenization queries or random oracle queries,
set the hash output of x̃d to ga. At this point AUTO will know
the value of x̃d, and thus will be expecting it.
According to the IND-COTH experiment, at epochs e > ẽ, the
adversary is only allowed to make tokenization queries on chal-
lenge values, or to corrupt the owner from epoch efirst-nc

h onwards.
So by setting a fresh tokenization key for epoch efirst-nc

h , the expo-
nent b will not be part of the tokenization key anymore, andAUTO

can appropriately reply to tokenization queries on the challenge
values by using ga in the computation of the tokenized values.
For all epochs e in the range ẽ < e < efirst-nc

h , the simulator
will use gb for the computation of the tokenized values. Now, for
Ocorrupt-o and Ocorrupt-h queries, first note that the simulator has
all the tokenization keys for the epochs where the adversary can
corrupt the owner, i.e., the epochs e ≥ efirst-nc

h . Second, notice
that the update tweaks of all epochs e > ẽ, but of epoch efirst-nc

h ,
are known to AUTO.

24

ii. coinh2 = 1: the host is corrupted in all epochs e > ẽ. This means that
there is no Ocorrupt-o query and no tokenization queries on challenge
values. However, the host still needs to be able to respond to all
Ocorrupt-h queries.

A. The simulator will randomly choose update tweaks for all epochs
e > ẽ and will use gb to answer tokenization queries. The hash
output of x̃d will be set to ga. The simulator will use this value
whenever AUTO makes a random oracle query on x̃d.

2. coin1 = 1: The guess is no, the adversary will not make any tokenization
query or random oracle queries, on challenge values during the whole simu-
lation. Here the idea is that the simulator will choose two values r0, r1

r← Z∗p,
set ga·r0 as the hash output of x̃0 and ga·r1 as the hash output of x̃1, and
implicitly set b as the tokenization key of epoch 0. The hash outputs of all
other values will be consistently set to gr for a random r ∈ Z∗p per input
x. The simulator will randomly and uniformly generate the update tweaks
of all epochs e in the range 0 < e < efirst-nc

h , where as in item 1, efirst-nc
h is a

guess for the first epoch after the challenge epoch where the host will not
be corrupted by the adversary. From efirst-nc

h on, the simulator will randomly
and uniformly generate all tokenization keys. This set up will enable the
simulator to not only answer an Ocorrupt-o query, but also Ocorrupt-h queries.
Notice that if the simulator started self generating tokenization keys at an
epoch e prior to efirst-nc

h , then it would not be able to answer an Ocorrupt-h

query at epoch e since b, which is unknown to the simulator, would be one
of the factors of the update tweak of that epoch. It is easy to see that al-
though AUTO does not have the tokenization keys of the epochs e in the
range 0 < e < efirst-nc

h , it can answer all tokenization queries by using gb in
the computation of a tokenized value; since the simulator is assuming that
there will be no tokenization queries on a challenge value, gab will never be
needed in those computations. By set up, the simulator has, or can compute,
all update tweaks, except for the one of epoch efirst-nc

h , where the adversary
is assumed to not corrupt the host anyway. For the challenge query, AUTO

will flip a coin d
r← {0, 1} and answer with T rd·∆ , where ∆ is the product

of the update tweaks of epoch 1 up to epoch ẽ.

Notice that in AUTO’s simulation, the response to the challenge query will
correspond to the tokenized value of x̃d whenever T = gab. Furthermore, in
that case the simulation will be indistinguishable from the real experiment, and
thus if AUTO outputs a bit d′ = d, this is equivalent to winning the IND-COTH
experiment. When T = gc the response to the challenge query will be a uniformly
distributed value in the token space of UTODL that has no relation to any other
value received by AUTO, and therefore the adversary’s probability of succeeding
will equal 1/2.

25

At the end of the simulation AUTO will output 0 if and only if d′ = d.
Considering that AUTO did not abort the simulation, we have

AdvDDH
AUTO,DDHgen(λ) =

∣∣Pr[0← AUTO | gab]− Pr[0← AUTO | gc]
∣∣ ,

= |Pr[AUTO wins]− 1/2|
= AdvIND-COTH

AUTO,UTO(λ).

We stress that even if the simulation runs until AUTO outputs a bit d′, i.e.,
AUTO does not abort because of a wrong guess, AUTO still has to check if the
simulation was perfect and if it can make use of d′ in its output to the DDH
experiment. For example, if AUTO guessed that the adversary would make a
tokenization query on x̃d at some point in the simulation but it did not, then
T = gab did not result in the answer to the challenge query corresponding to
the tokenized value of x̃d, and thus, if AUTO outputs d′ = d, it does not mean
that AUTO wins the IND-COTH experiment.

Theorem 8 (One-Wayness of the UTODL Scheme). Assume H is one-way.
Then UTODL is one-way in the sense of Definition 6.

Proof. In the one-wayness experiment of Definition 6, an adversary AUTO against
our UTODL scheme having access to the tokenization key of epoch 0, k0, receives
as a challenge some tokenized value ỹ ← H(x̃)k0 for random k0

r← Zp, and
x̃

r← X , with X being the data space of the updatable tokenization scheme.
Since AUTO obtains k0, it can retrieve H(x̃). We see that AUTO can only win
the one-wayness experiment if it can break the one-wayness of H with advantage
better than negligible, considering |X | as the security parameter.

As this is infeasible according to our stated assumption, UTODL is one-way.

26

	Updatable Tokenization: Formal Definitions and Provably Secure Constructions

