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Abstract. In this work we provide a framework for dynamic secret shar-
ing and present the first dynamic and verifiable hierarchical secret shar-
ing scheme based on Birkhoff interpolation. Since the scheme is dynamic
it allows, without reconstructing the message distributed, to add and
remove shareholders, to renew shares, and to modify the conditions for
accessing the message. Furthermore, each shareholder can verify its share
received during these algorithms protecting itself against malicious deal-
ers and shareholders. While these algorithms were already available for
classical Lagrange interpolation based secret sharing, corresponding tech-
niques for Birkhoff interpolation based schemes were missing. Note that
Birkhoff interpolation is currently the only technique available that al-
lows to construct hierarchical secret sharing schemes that are efficient
and allow to provide shares of equal size for all shareholder in the hi-
erarchy. Thus, our scheme is an important contribution to hierarchical
secret sharing.

Keywords: hierarchical secret sharing, distributed storage, cloud computing,
long-term security, Birkhoff interpolation, proactive secret sharing

1 Introduction

1.1 Motivation and Contribution

Secret sharing is an important primitive that allows to store sensitive data in
distributed fashion. In classical secret sharing schemes any subset of a certain
amount of shareholders can reconstruct the message distributed. This is different
for hierarchical secret sharing [20, 15, 21, 5, 11, 22]. Here the shares are generated,
such that not only the amount of shareholders, but also the level in the hierarchy
they are assigned to is crucial for message reconstruction. Assume, for instance,
signature keys are distributed to employees of a company. Then, hierarchical
secret sharing allows to introduce certain conditions to the signing process, e.g.
that at least one department head or senior must attend for a valid signature.

However, compared to classical secret sharing schemes, the approaches con-
cerning hierarchical secret sharing are less developed. For instance, dynamic
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schemes allowing, without reconstructing the shared massage, to add or remove
shareholders (e.g. to reboot or reinstall servers holding shares), to renew the
shares, and to modify the conditions for accessing the message are available for
classical secret sharing only, while solutions for dynamic hierarchical secret shar-
ing schemes have not been provided yet. Furthermore, classic schemes allow for
verifiability, i.e. each shareholder can verify the correctness of its share received.
For hierarchical secret sharing such algorithms are only available for the very
inefficient early approaches.

Contribution. In this work we provide the first dynamic and verifiable se-
cret sharing scheme that is hierarchical, efficient, and ideal with respect to the
size of the shares. More precisely, like in [22] our solution uses Birkhoff interpo-
lation to reconstruct the shared message. This allows to compute shares of equal
size for all shareholders independent of their ability to reconstruct the message.
We show how to enhance Birkhoff interpolation based schemes, i.e. disjunctive
secret sharing and conjunctive secret sharing, by algorithms that allow, without
message reconstruction, to add and remove shareholders, to modify the condi-
tions for accessing the message, and to renew shares. Furthermore, our scheme
is verifiable and therefore protects against malicious dealers and shareholders.
Moreover, we provide the first definition of dynamic secret sharing and prove
our scheme secure.

Organization. After providing preliminaries in Section 2, we introduce a
framework for dynamic secret sharing in Section 3. Afterwards, we provide an
introduction to hierarchical secret sharing in Section 4, present our verifiable
and dynamic hierarchical secret sharing scheme in Section 5, and conclude with
a summary and possible future work in Section 6.

1.2 Related Work

Hierarchical Secret Sharing. The first solutions for hierarchical secret sharing
have been proposed by Shamir in [20] and Kothari in [15]. In Shamir’s approach
the higher a shareholder is in the hierarchy, the more shares it gets, overloading
the most powerful shareholders. In Kothari’s solution, shareholders are grouped
in sets and for each set an independent secret sharing scheme is instantiated.
This requires managing multiple secret sharing schemes and does not allow for
cooperation among sets during the reconstruction. Disjunctive secret sharing as
introduced by Simmons in [21], is the first approach using only one secret sharing
scheme and supporting cooperations of shareholders assigned to different sets,
or rather levels in a hierarchy. However, his approach is not ideal meaning that
the higher a shareholder in the hierarchy the larger the share to be stored.
Brickell in [5] improved this by providing a disjunctive secret sharing scheme
that is ideal with respect to the size of the shares, but apart from that rather
inefficient. Later, Ghodosi et al. showed in [11] how to achieve efficient schemes
for specific access structures. Finally, in [22] Tassa further improved this line of
research by providing an efficient disjunctive secret sharing scheme for general
access structures. Furthermore, he introduced conjunctive secret sharing that
does not only allow concurrency among levels, but strictly requires the presence



of a minimum amount of shareholders from the highest levels. Both conjunctive
and disjunctive secret sharing are good solutions for hierarchical secret sharing
and our contribution builds on Tassa’s work. None of these approaches provide
verifiability, nor do they allow, without reconstructing the shared message, to
add or remove shareholders, to modify the conditions for accessing the message,
nor to renew shares.

Dynamical and verifiable hierarchical secret sharing. Notions of dy-
namic secret sharing have been already proposed, yet with different meanings
and less functionalities with respect to our definition. More precisely, in the one
hand, in [4] it is the dealer that decides which shareholders reconstruct which
secret. On the other hand, in [3] it is not possible to add shareholders without
changing all the shares already distributed. Moreover, none of these approaches
are suitable for hierarchical secret sharing nor do they provide verifiability. The
only step towards a dynamic Birkhoff interpolation-based secret sharing scheme
has been made by Pakniat et al. in [17]. It is shown how to renew shares, but,
again, this process does not allow to add or remove shareholders and to modify
the conditions for accessing the message nor does it provide verifiability or ad-
dresses conjunctive secret sharing. At the same time, for classical secret sharing
schemes dynamic and verifiable solutions have been developed. For instance, in
[16] it is shown how to add shareholders, in [13] it is shown how shares can be
renewed, and in [12] it is shown how even the entire set of shareholders and
the conditions for accessing the message can be changed. In addition, all these
algorithms come with verifiability. Note that classical secret sharing is based
on Lagrange interpolation and the protocols [16], [13], and [12] allowing for dy-
namism are defined accordingly. However, these approaches cannot be used for
secret sharing schemes based on Birkhoff interpolation and solutions introducing
dynamism also for these schemes need to be found.

Thus, our work is the first to provide dynamic and verifiable secret sharing
based on Birkhoff interpolation.

2 Preliminaries

Secret sharing is a cryptographic primitive enabling a dealer to distribute a
message among a set of shareholders, each of whom is allocated a share of the
message. More precisely, to distribute a message m ∈M to a set of shareholders
S = {s1, . . . , sn} the dealer computes shares σ1, . . . , σn ∈ Σ, where M is the
message space and Σ the space of all possible shares. The message can be recon-
structed only when an authorized subset A ⊂ S of these shareholders combine
their shares while unauthorized subsets U ⊂ S are prevented from doing it. The
access structure Γ ∈ P(S)1 determines both sets, i.e. A ∈ Γ and U /∈ Γ . From
now on, the number of shareholders of a subset R ⊂ S is denoted as r := |R|.
Note that for security we assume that all data communicated by a dealer to
a shareholder and between the shareholders is sent using private channels to
prevent attackers from eavesdropping.

1 P(S) denotes the partition of the set S.



Definition 1. For a message spaceM, a space of shares Σ, a set of shareholders
S = {s1, . . . , sn}, where i ∈ I is the unique ID of shareholder si ∈ S, and an
access structure Γ ⊂ P(S), a secret sharing scheme is a pair of PPT algorithms
Share and Reconstruct.

Share It takes as input a message m ∈M and it outputs n shares σ1, . . . , σn ∈ Σ,
where share σi is to be sent to shareholder si, for i = 1, . . . , n.

Reconstruct It takes as input a set of shares σ1, . . . , σr held by a subset R ⊂ S
of shareholders. It outputs m ∈M if R ∈ Γ , and ⊥ otherwise.

A secret sharing scheme is perfectly secure if any unauthorized subset of
participants learns nothing about the message in an information-theoretic sense,
while any authorized subset of participants is able to reconstruct the secret
(accessibility). Since our improvements rely on the scheme proposed by Tassa in
[22] we recall here his definition, which uses the Shannon’s entropy H.

Definition 2. Let us assume that m ∈M is the message distributed by a secret
sharing scheme among a set S of shareholders according to access structure Γ .
For an authorized subset A ∈ S, i.e. A ∈ Γ , let us denote by σA the set of
shares owned by the shareholders si ∈ A, i.e. σA := {σi such that si ∈ A} . The
accessibility of a secret sharing scheme is the property such that: H(m|σA) =
0, ∀ A ∈ Γ. In contrast, any unauthorized subset U ∈ S, i.e. U /∈ Γ , should not
be able to reconstruct the secret. If in addition no information about m ∈ M
is leaked to the shareholders in U , then the secret sharing scheme is perfectly
secure: H(m|σU ) = H(m), ∀ U /∈ Γ.

Another interesting primitive is verifiable secret sharing (VSS) [6]: each algo-
rithm within a secret sharing scheme outputs some audit data allowing to check
whether the algorithms themselves were performed correctly. Formally, a VSS
scheme is a secret sharing scheme with the following additional requirements.

Definition 3 ([18]). The algorithms in which shares are computed are extended
by an additional verification protocol executed between the dealer and the share-
holders S = {s1 . . . sn}, such that the following properties are fulfilled.

Completeness If the parties computing the shares, e.g. dealers and sharehold-
ers, follow the algorithms correctly, then each shareholder accepts the new
share with probability 1.

Committing If for any two authorized subsets A1 ⊂ S and A2 ⊂ S, i.e.
A1, A2 ∈ Γ , the shareholders of A1 and A2 accept their shares, then the
following holds except with negligible probability: if mi is the message recon-
structed by the shareholders in Ai (for i = 1, 2), then m1 = m2.

Note that the committing property of Definition 3 holds except with negligible
probability, because this definition covers solutions using Pedersen commitments
that are unconditionally hiding, but only computationally binding. If Feldmann
commitments are used the verification protocol provides completeness even with
probability 1. However, these commitments are only computationally hiding and
do not ensure confidentiality in the long-term.



3 Dynamic Secret Sharing

The standard secret sharing definition only covers the algorithms Share and
Reconstruct. However, in practice it is desirable that secret sharing schemes pro-
vide algorithms allowing to Add new shareholders and to Reset the entire access
structure (i.e. the conditions for accessing the message and the set of sharehold-
ers). Note that algorithm Reset can be run to refresh the shares only, without
modifying the access structure nor the set of shareholders. The algorithm Add
differs from Reset in the sense that the access structure remains unchanged and
old shareholders keep their shares. This is of practical interest since renewing
shares could be a quite demanding and expensive procedure, e.g. in case shares
are distributed on smartcards. Note that the algorithm Reset allows to remove
shareholders, since the set S of shareholders can be replaced by a subset S′ ⊂ S.
In the framework of dynamic secret sharing, we assume that all communication
channels used guarantee reliable delivery of messages, any two shareholders can
communicate via a private channel, all shareholders can receive messages sent
over a broadcast channel, any shareholder can declare and no shareholder can
spoof its identity, and a majority of the shareholders participating in each algo-
rithm is trustworthy such that wrongly generated shares can be detected. Note
that these are standard assumption for classical secret sharing schemes that pro-
vide verifiability and dynamism and that the latter assumption can be weakened
using the complaint mechanism proposed in [12]. Furthermore, our algorithms
assume a synchronous network, but can easily be adapted to asynchronous net-
works, for instance, by using the techniques proposed in [19]. In the following,
we formally introduce dynamic secret sharing schemes as secret sharing schemes
that in addition allow to perform Add and Reset in distributed fashion.

Definition 4. For a message spaceM, a space of shares Σ, a set of shareholders
S = {s1, . . . , sn} where i ∈ I is the unique ID of shareholder si ∈ S, and an
access structure Γ ⊂ P(S), a dynamic secret sharing scheme is a tuple of PPT
algorithms Share, Add, Reset, and Reconstruct.

Share It takes as input a message m ∈ M. It outputs n shares σ1, . . . , σn ∈ Σ,
where share σi is to be sent to shareholder si ∈ S, for i = 1, . . . , n.

Add It takes as input a set of shares σ1, . . . , σr held by a subset R ⊂ S of
shareholders and the ID i, i.e. i = n + 1, of the new shareholder. If R
is unauthorized, i.e. R /∈ Γ , it outputs ⊥. Otherwise, R ∈ Γ and without
message reconstruction, it outputs a corresponding share σi ∈ Σ for the new
shareholder si.

Reset It takes as input a set of shares σ1, . . . , σr held by a subset R ⊂ S of
shareholders, a new set of shareholders S′ = {s′1, . . . , s′n′} (that need not be
disjoint to S), and an access structure Γ ′ ⊂ P(S′). If R is unauthorized, i.e.
R /∈ Γ , it outputs ⊥. Otherwise, R ∈ Γ and without message reconstruction,
it outputs n′ shares σ′1, . . . , σ

′
n′ , where share σ′i is to be sent to each new



shareholder s′i ∈ S′, for i = 1, . . . , n′. The shares σ1, . . . , σn ∈ Σ held by the
old shareholders are deleted. 2

Reconstruct It takes as input a set of shares σ1, . . . , σr held by a subset R ⊂ S
of shareholders. It outputs m ∈M if R ∈ Γ , and ⊥ otherwise.

In addition to the algorithms Share, Add, and Reset, a Verifiable and Dy-
namic Secret Sharing Scheme provides audit data for verification according to
Definition 3.

4 Secret Sharing Based on Birkhoff Interpolation

Simmons introduced in [21] hierarchical secret sharing as a secret sharing scheme
where shareholders are divided into disjoint levels L0, . . . , L` and the power of
a shareholder to reconstruct the message depends on the level it is assigned to.
The union of all shareholders from all levels constitutes the set of shareholders
S = {s1, . . . , sn}, i.e.

S =
⋃`
h=0 Lh, such that Lh ∩ Lk = ∅ for h 6= k.

If nh is the number of shareholders assigned to level Lh, then n = |S| =∑`
h=0 nh. Furthermore, assume that L0 is the highest level and L` the lowest

level. Clearly, it is expected that less shares are needed to reconstruct the mes-
sage at the higher levels, i.e. shareholders assigned to the highest level have a
larger ability to reconstruct the message. Therefore, denoted by th the threshold
associated to level Lh, for h = 0, . . . , `, it is plausible to assume that the lower
a level the higher the threshold, i.e. 0 < t0 < · · · < t`.

For legibility, in the following we concentrate on conjunctive secret sharing
as introduced by Tassa in [22]. The corresponding solution for disjunctive secret
sharing can be found in brackets.

Definition 5. Assume the existence of a message space M, a space of shares
Σ, and an access structure Γ ⊂ P(S) where th is the threshold for level Lh,
for h = 0, . . . , ` with t := t` and t−1 := 0. Furthermore, assume a set of n
shareholders S where the pair (i, j) ∈ I × I is the unique ID of shareholder
si,j ∈ Lh and j := th−1(j := t` − th), for i = 1, . . . , nh and h = 0, . . . , `. Then
a conjunctive (disjunctive) secret sharing scheme is a pair of PPT algorithms
Share and Reconstruct, defined as follows.

Share It takes as input a message m ∈ M and generates a polynomial f(x) =
a0 + a1x + a2x

2 + · · · + at−1x
t−1 where a0 := m (at−1 := m) and the

coefficients a1, . . . , at−1 ∈ Fq (a0, . . . , at−2 ∈ Fq) are chosen uniformly at
random. It outputs n shares σi,j ∈ Σ, where share σi,j := f j(i) is to be sent
to shareholder si,j ∈ Lh, for i = 1, . . . , nh and h = 0, . . . , ` and f j(x) is the
j-th derivative of the polynomial f(x).

2 To renew the shares, the algorithm Reset is run with the old set of shareholder S
and the old access structure Γ as input.



Reconstruct It takes as input a set of shares held by a subset R ⊂ S of share-
holders. It outputs m ∈ M if R ∈ Γ , where m = a0 (m = at−1) is retrieved
using Birkhoff interpolation. It outputs ⊥ otherwise.

In the following, it is described in details how Birkhoff interpolation is per-
formed such that Reconstruct outputs the message m ∈M.

Let us assume a subset R ⊂ S of r := |R| shareholders participating in
the reconstruction such that R ∈ Γ . The interpolation matrix associated to
set R is a binary matrix E where entry ei,j is set to ‘1’ if shareholder si,j
participates with share σi,j (that is the j-th derivative of f on position i) and
‘0’ otherwise. The Birkhoff interpolation problem is the problem of finding a
polynomial f(x) = a0 + a1x + a2x

2 + · · · + at−1x
t−1 ∈ Rt−1[x] satisfying the

equalities f j(i) = σi,j , where Rt−1[x] is the ring of the polynomials with degree
at most t− 1.

In the following, I(E) = {(i, j) such that ei,j = 1} is the set containing the
entries of E in lexicographic order, i.e. the pair (i, j) precedes the pair (i′, j′)
if and only if i < i′ or i = i′ and j < j′. The elements of I(E) are denoted
by (i1, j1), (i2, j2), . . . , (ir, jr). Furthermore, we set ϕ := {φ0, φ1, φ2, . . . , φt−1} =
{1, x, x2, . . . , xt} and denote by φjk the j-the derivative of φk, for k = 0, . . . , t−1.
Then the matrix A(E,X,ϕ) is defined as follows:

A(E,X,ϕ) =


φj10 (i1) φj11 (i1) φj12 (i1) · · · φj1t−1(i1)

φj20 (i2) φj21 (i2) φj22 (i2) · · · φj2t−1(i2)
...

...
... · · ·

...

φjr0 (ir) φ
jr
1 (ir) φ

jr
2 (ir) · · · φjrt−1(ir)

 .

Then polynomial f(x) ∈ Rt−1[x] can be reconstructed by computing

f(x) =

t−1∑
k=0

det(A(E,X,ϕk))

det(A(E,X,ϕ))
xk,

where A(E,X,ϕk) is obtained from A(E,X,ϕ) by replacing its (k+1)-th column
with the shares σi,j in lexicographic order.

Note that it depends on the interpolation matrix E whether the Birkhoff
interpolation problem has a unique solution and, consequently, the secret sharing
scheme is accessible (see Appendix A for the necessary and sufficient conditions).
In the following, it is assumed that the access structure Γ is chosen such that
the matrix E leads to a well posed Birkhoff interpolation problem, as already
discussed by Tassa in [22].

5 Providing a Dynamic and Verifiable Hierarchical Secret
Sharing Scheme

In this section, we show how Tassa’s conjunctive and disjunctive hierarchical
secret sharing schemes can be enhanced by introducing the algorithms Add and



Reset to the existing algorithms Share and Reconstruct. This leads to dynamic
secret sharing, as defined in Definition 4. Note that with respect to algorithm
Reset that renews the shares our construction is more efficient compared to
the protocol proposed in [17]. More precisely, they demand the shareholders to
reconstruct the entire function in distributed fashion while in our scheme one
coefficient of the function is sufficient Furthermore, we show how the algorithms
can be enhanced such that verifiability is provided. In fact, this ensures that the
distributed message cannot be changed by malicious shareholders when these
algorithms are run. From now on we simplify the notation referring to the share-
holders within subset R ⊂ S as sl and no longer as s(i,j). However, we stress
that shareholders in R are not equal from the hierarchical point of view.

5.1 Distributed Computation of Determinants

To fulfill Definition 4, the algorithms Add and Reset have to be performed with-
out reconstructing the message m ∈ M. This is possible since determinants
det(A(E,X,ϕk)), for k = 0, . . . , t− 1, can be computed in distributed fashion.

Theorem 1. The polynomial f(x) = a0 +a1x+a2x
2 + · · ·+at−1x

t−1 ∈ Rt−1[x]
can be computed by

f(x) =

t−1∑
k=0

akx
k =

t−1∑
k=0

r∑
l=1

al,kx
k,

where al,k is computed by shareholder sl ∈ R, for l = 1, . . . , r and R ∈ Γ is an
authorized subset of S, with r =: |R|.

Proof. Let us first recall that Laplace’s expansion formula computes the de-
terminant det(A) of an n × n matrix A as the weighted sum of the determi-
nants of n sub-matrices of A, each of size (n − 1) × (n − 1). More precisely
det(A) =

∑n
j′=1 ai,j′(−1)i+j

′
det(Ai,j′) =

∑n
i′=1 ai′,j(−1)i

′+j det(Ai′,j), where
Ai,j results from A by deleting the i-th row and j-th column.

The fact that A(E,X,ϕ) can be computed by each shareholder from public
information together with Laplace’s expansion formula implies that each share-
holder sl ∈ R, for l = 1, . . . , r, can compute the partial information al,k for

coefficient ak = det(A(E,X,ϕk))
det(A(E,X,ϕ)) , by al,k := σi,j(−1)l−1+k

det(Al−1,k(E,X,ϕ))
det(A(E,X,ϕ)) , where

σi,j is the share held by shareholder sl, and Al−1,k(E,X,ϕ) is the matrix that
results from A(E,X,ϕ) by removing the l-th row and the (k + 1)-th column.
From Laplace’s expansion formula it follows that:

r∑
l=1

al,k =

r∑
l=1

σi,j(−1)l−1+k
det(Al−1,k(E,X,ϕ))

det(A(E,X,ϕ))
=

det(A(E,X,ϕk))

det(A(E,X,ϕ))
= ak.

In conclusion, the coefficients ak, for k = 0, . . . , t − 1, of polynomial f(x) =
a0 + a1x + a2x

2 + · · · + at−1x
t−1 are computed as the sum of the partial co-

efficients al,k, where al,k is computed by shareholder sl ∈ R and R ∈ Γ is an
authorized set. Importantly, this also implies that f(x) =

∑r
l=1 fl(x), where

f(x) =
∑r
l=1 fl(x) =

∑r
l=1

∑t−1
k=0 al,kx

k.



In the following, the notation defined above holds. That is, al,k is the partial in-
formation held by shareholder sl about the coefficient ak of polynomial f(x) and

fl(x) =
∑t−1
k=0 al,kx

k is the partial Birkhoff interpolation polynomial of share-
holder sl. Note that Theorem 1 implies that also derivatives of polynomial f(x)
can be computed in a distributed fashion.

Theorem 2. The j-th derivative f j(x) of polynomial f(x) = a0 + a1x+ a2x
2 +

· · ·+ at−1x
t−1 can be computed in distributed fashion as

f j(x) =

r∑
l=1

f jl (x),

where f jl (x) is computed by shareholder sl ∈ R, for l = 1, . . . , r and R ∈ Γ is an
authorized subset of S, with r =: |R|.

Proof. To compute the derivative of polynomial f(x) each shareholder sl ∈ R
first computes its partial Birhkoff interpolation polynomial fl(x) =

∑t−1
k=0 al,kx

k.

Then it computes the j-th derivative f jl (x) =
∑t−1
k=j

k!
(k−j)!al,kx

k−j . Note that

due to the sum rule for derivatives, i.e. (f(x) + g(x))′ = f(x)′ + g(x)′, and
f(x) =

∑r
l=1 fl(x) the j-th derivative f j(x) of polynomial f(x) can be computed

by adding all partial derivatives, i.e. f j(x) =
∑r
l=1 f

j
l (x).

5.2 Verifiable Algorithms for Dynamic Hierarchical Secret Sharing

In this section, we provide a verifiable dynamic conjunctive and a verifiable dy-
namic disjunctive secret sharing scheme using Birkhoff interpolation. The ver-
ification process is described using Feldman commitments [8]. However, it can
easily be adapted to Pedersen commitments [18] to achieve information-theoretic
confidentiality.3 Like in Section 4, we focus on conjunctive secret sharing and
show the differences to disjunctive secret sharing in brackets.

Let Γ be an access structure arranged in disjoint levels L0, . . . , L`, where th
is the threshold of level Lh for h = 0, . . . , `. Let us assume a message space M,
a space of shares Σ, and a set of shareholders S where the pair (i, j) ∈ I × I
is the unique ID of shareholder si,j ∈ S, such that j = th−1 (j = t` − th) and
t−1 = 0. Then the algorithms Share, Add, Reset, and Reconstruct for verifiable
dynamic conjunctive (disjunctive) secret sharing are defined as follows.

Share It takes as input a message m ∈ M. This algorithm works like the one
in Definition 5 except that some additional audit data is computed and
distributed. More precisely, the algorithm randomly chooses two large primes
p, q, such that q|(p− 1). Let g be a generator of the q-th order subgroup Fq

3 There exists solutions [10], [9], [14], [2] for VSS providing both information-theoretic
confidentiality and bindingness. However, they are not secure against a mobile adver-
sary that is able to collect over time enough share to retrieve the message. The solu-
tion proposed in [2] is an interactive protocol while we only consider non-interactive
protocol having less communication complexity.



of F∗p and set M := Fq. After defining the polynomial f(x) = a0 + a1x +
a2x

2 + · · · + at−1x
t−1, where a0 := m (at−1 := m) and a1, . . . , at−1 ∈ Fq

(a0, . . . , at−2 ∈ Fq) are chosen uniformly at random, the dealer commits to
each coefficient ak by computing ck := gak mod p, for k = 0, . . . , t − 1. It
broadcasts the commitments and sends each share σi,j to shareholder si,j ∈
Lh, for i = 1, . . . , nh and h = 0, . . . , ` using a private channel. Shareholder
si,j accepts σi,j as its valid share, if and only if

gσi,j ≡
t−1∏
k=j

c
k!

(k−j)!
ik−j

k = gf
j(i).

Add It takes as input a set of shares σ1, . . . , σr held by a subset R ⊂ S of
shareholders and the ID (i′, j′) of the new shareholder. If R is unauthorized,
i.e. R /∈ Γ , it outputs ⊥. Otherwise, R ∈ Γ and the shareholders compute
σi′,j′ := f j

′
(i′) in distributed fashion. More precisely, each shareholder sl ∈

R performs the following steps, for l = 1, . . . , r.

1. It computes the j′-th derivative of its partial Birkhoff interpolation poly-
nomial at x = i′, i.e.

λl := σl

t−1∑
k=j′

k!

(k − j′)!
(−1)l−1+k

det(Al−1,k(E,X,ϕ))

det(A(E,X,ϕ))
i′
k−j′

.

2. It randomly splits the result into r values, i.e. λl = δ1,l + · · · + δr,l and
sends δm,l to shareholder sm,j ∈ R, for m = 1, . . . , r and m 6= l using a
private channel.

3. It collects all values δl,m received and computes δl :=
∑r
m=1 δl,m.

4. It sends δl to the new shareholder si′,j′ using a private channel and
broadcasts the audit data c0, . . . , ct−1 received during the share algo-
rithm.

The new shareholder si′,j′ computes its share σi′,j′ by adding all values δl
received, i.e. σi′,j′ :=

∑r
l=1 δl. It can verify the correctness of its share by

checking whether

gσi′,j′ ≡
t−1∏
k=j′

c
k!

(k−j′)! i
′k−j′

k = gf
(j′)(i′),

using the audit data received from the shareholders.
Reset It takes as input a set of shares σ1, . . . , σr held by a subset R ⊂ S of

shareholders a new set of shareholders S′ = {s′1, . . . , s′n′}, each accompanied
with a unique ID (i′, j′), and an access structure Γ ′ ⊂ P(S′) with maximal
threshold t′. If R is unauthorized, i.e. R /∈ Γ , it outputs ⊥. Otherwise,
R ∈ Γ and the subset of old shareholders jointly computes shares for the
new shareholders in S′. More precisely, each old shareholder sl ∈ R performs
the following steps, for l = 1, . . . , r .



1. It computes its partial Birkhoff interpolation coefficient

al,0 := σl(−1)l−1
det(Al−1,0(E,X,ϕ))

det(A(E,X,ϕ))(
al,t−1 = σl(−1)l+t−2

det(Al−1,t−1(E,X,ϕ))
det(A(E,X,ϕ))

)
.

2. It chooses a polynomial f ′l (x) = a′l,0 +a′l,1x+a′l,2x
2 + · · ·+a′l,t′−1x

t′−1 of
degree t′−1, where a′l,0 = al,0 (a′l,t−1 = al,t−1) is the partial Birkhoff in-
terpolation coefficient and coefficients a′l,1, . . . , a

′
l,t′−1 ∈ Fq (a′l,0, . . . , a

′
l,t′−2 ∈

Fq) are chosen uniformly at random.
3. It computes subshare σl,i′,j′ for shareholder s′i′,j′ ∈ S′ as σl,i′,j′ :=

f ′
j′

l (i′).
4. It sends subshare σl,i′,j′ to shareholder s′i′,j′ ∈ S using a private channel

and broadcasts the audit data, composed of commitments to each coef-
ficient of polynomial f ′l (x), i.e. c′l,k := ga

′
l,k , for k = 0, . . . , t′ − 1, and

commitment c0 = gm (ct−1 = gm) of the old polynomial f(x).
5. It deletes its share.

Each new shareholder si′,j′ ∈ S′ computes its share σ′i′,j′ adding all subshares

σl,i′,j′ received, i.e. σ′i′,j′ :=
∑r
l=1 σl,i′,j′ . To verify the correctness of share

σl,i′,j′ , each new shareholder si′,j′ ∈ S′ performs the following steps.
1. It checks the function value of each polynomial, i.e.

gσl,i′,j′ ≡
t′−1∏
k=j′

c′l,k
k!

(k−j′)! i
′k−j′

= gf
′(j′)
l (i′), for l = 1, . . . , r.

2. It checks whether the free coefficient (last coefficient) of all polynomials
f ′l (i

′) leads to the original message m ∈M, i.e.

c0 ≡
r∑
l=1

c′l,0

(ct−1 ≡
∑r
l=1 c

′
l,t′−1).

3. If both equations are satisfied, it accept σ′i′,j′ as its valid share.
Reconstruct It takes as input shares held by a subset R ⊂ S of shareholders.

If R ∈ Γ , it outputs m ∈ M reconstructed using Birkhoff interpolation.
It outputs ⊥ otherwise. Having access to the original audit data c0 = ga0

(ct−1 = gat−1) it is possible to verify whether the reconstructed message
m ∈ M is a correct opening value for commitment c0 (ct−1), i.e. gm ≡ c0
(gm ≡ ct−1).

5.3 Security and Efficiency

In this work, our achievement is enhancing Tassa’s protocols by the algorithms
Add and Reset. What we need to show is that even after performing these algo-
rithms no information is leaked and the message can still be reconstructed, i.e.



perfect security and accessibility are provided. However, merging dynamic secret
sharing with the verification protocol leads to an overall scheme that is either
unconditionally binding or unconditionally hiding. A rigorous analysis can be
found in Appendix B.

With respect to the algorithm Add, to compute a share for a new shareholder

si′,j′ each shareholder sl ∈ A of an authorized subset A ∈ Γ computes f j
′

l (i′).
Since this subshare leaks information about the own share, each shareholder
randomly splits and distributes this value to the other shareholders. Then each
shareholder only forwards the sum of all values received, hiding the individual
subshares. Consequently, confidentiality is preserved. Accessibility is provided
since the distributed subshares and the polynomials used for secret sharing are
additively homomorphic. With respect to the algorithm Reset, each shareholder
sl of an authorized subset A ∈ Γ use hierarchical secret sharing to distribute its
share to a new (the same) set of shareholders. While security of this algorithm
follows from the security of the used conjunctive or disjunctive secret sharing
scheme, accessibility is provided by the homomorphic property of polynomials.

Verifiability is achieved with the help of homomorphic and computation-
ally binding commitment schemes. They allow each shareholder si,j to com-
pute a commitment c∗ to its share σi,j using the commitments received, i.e.

c∗ =
∏t−1
k=j c

k!
(k−j)!

ik−j

k = gf
(j)(i), where ck is the commitment to coefficient ak, for

k = 0, . . . , t− 1. Thus, by verifying c∗ ≡ gσi,j the correctness of its share can be
checked.

Moreover, we argue that introducing dynamism and verifiability even in-
creases the overall security of the secret sharing scheme when it is practically
instantiated. If messages are distributed for a long period of time they are prone
to mobile adversaries [13]. Given enough time a mobile adversary is able to col-
lect enough shares to reconstruct the secret, e.g. by breaking into many servers
storing shares or bribing a sufficient amount of former employees holding shares.
Thus, to provide long-term security it is necessary to renew the shares from
time to time and this is possible due to our Reset algorithm. In addition, the
fact that our dynamic hierarchical secret sharing scheme is also verifiable ensures
protection of shareholders from a malicious dealer and vice versa.

With respect to efficiency, the polynomial f(x) is retrieved computing the
value for each coefficient (see Section 4). However, in the secret sharing frame-
work the only coefficient that matters is the free (last) coefficient for conjunctive
(disjunctive) secret sharing. Therefore for message reconstruction only two de-
terminants have to be computed. This leads to a complexity of O(t3) for matrix
A of dimension t× t in case the LU decomposition technique is used [1].

6 Conclusion and Future Work

In this work we introduced a framework for dynamic secret sharing and pre-
sented the first dynamic and verifiable secret sharing scheme based on Birkhoff
interpolation. For future work, we would like to combine this technique with our
solution to allow for distributed computations on secretly shared data.
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Appendix

A Requirements for Birkhoff interpolation matrices
Intepolation

In this section the necessary requirements and a sufficient condition for the
interpolation matrix E are presented, such that the corresponding Birkhoff in-
terpolation problem is well posed. For the corresponding proofs we refer to [22].

Lemma 1. Let A ⊂ S be an authorized subset of shareholders, i.e. A ∈ Γ , and
E the corresponding interpolation matrix, where the entries ei,j of the matrix E
satisfy the following condition:

k∑
j=0

r∑
i=1

ei,j ≥ k + 1, 0 ≤ k ≤ d, (1)

where d is the highest derivative order in the problem and r := |A| is the
number of interpolating points.

Before providing the sufficient condition (Theorem 3), the following definition
is needed.

Definition 6 ([22]). In the interpolation matrix E a 1-sequence is a maximal
run of consecutive 1s in a row of the matrix E itself. Namely, it is a triplet of
the form (i, j0, j1) where 1 ≤ i ≤ r and 0 ≤ j0 ≤ j1 ≤ d, such that ei,j = 1
for all j0 ≤ j ≤ j1, while ei,j0−1 = ei,j1+1 = 0. A 1-sequence (i, j0, j1) is called



supported if E has 1s both to the northwest and southwest of the leading entry
in the sequence, i.e. there exist indexes nw and sw, where inw < i < isw and
jnw, jsw < j0 such that einw,jnw = eisw,jsw = 1.

Theorem 3. The interpolation Birkhoff problem for an authorized subset A and
the corresponding interpolation matrix E has a unique solution, if the interpola-
tion matrix E satisfies (1) and contains no supported 1-sequence of odd length.

In case the Birkhoff interpolation problem is instantiated over a finite field
Fq with q > 0 a prime number, then also the following condition has to hold.

Theorem 4. The Birkhoff interpolation problem for an interpolation matrix E
has a unique solution over the finite field Fq, if Theorem 3 holds and in addition
also the following inequality is satisfied:

q > 2−d+2 · (d− 1)
(d−1)

2 · (d− 1)! · x
(d−1)(d−2)

2
r , (2)

where d is the highest derivative order of the problem.

B Security Analysis

Conjunctive secret sharing has been introduced by Tassa in [22] and it has been
proven ideal, perfect secure, and accessible. We argue that the algorithms Add
and Reset we introduced enhance the protocol and do not affect the proper-
ties and the security of the original conjunctive secret sharing scheme. To prove
that, we first provide a high level idea of the proof of perfect security and ac-
cessibility of Tassa’s conjunctive secret sharing scheme. Then, we show that
our dynamic hierarchical secret sharing scheme maintains perfect security and
accessibility. Furthermore, it is possible to cope with malicious dealers and share-
holders including a verification protocol to the algorithm Share,Add,Reset, and
Reconstruct. If Pedersen commitments are used in the verification protocol un-
conditional hidingness is maintained while bindingness can only be achieved
computationally. Feldmann commitments instead ensure unconditional binding-
ness, i.e. the correctness of the shares can be guaranteed, but at he expenses of
providing only computational hidingness for the shares. Thus, the latter solution
is not suitable if data is processed for which long-term or even everlasting con-
fidentiality is required. Similarly, it can be proven that Add and Reset maintain
also the same properties of disjunctive secret sharing. However, for readability
in the following we focus on conjunctive secret sharing only.

Roughly speaking, reconstructing a distributed message is equal to finding a
solution of the Birkhoff interpolation problem for a polynomial f(x) = a0+a1x+
a2x

2+· · ·+at−1xt−1. Thus, Tassa proved the security of his approach by showing
that authorized sets of shareholders A ∈ Γ lead to interpolation matrices E for
which the Birkhoff interpolation problem is well posed. Thus, accessibility is
provided. Furthermore, any unauthorized set of shareholders U /∈ Γ leads to an
unsolvable system and perfect security is therefore proven.



The introduction of the protocols Add and Reset making the Birkhoff inter-
polation based secret sharing scheme dynamic does not affect these properties.
First, we show that accessibility and perfect security is provided if all sharehold-
ers act honestly. This corresponds to the setup of Tassa’s security proof. Second,
we prove that our scheme even provides verifiability, i.e. can cope with malicious
dealers and shareholders.

Theorem 5. The dynamic secret sharing scheme composed of the protocols Share,
Add, Reset, and Reconstruct described in Section 5.2 is accessible and perfectly
secure according to Definition 2.

Proof. The proof for the algorithms Share and Reconstruct follows from Tassa’s
security proof. The algorithms Add and Reset are discussed individually in the
following.

Add If the shareholders follow the protocol correctly, then all shareholders,
meaning the old set of shareholders together with the new shareholder, only
hold shares of the polynomial f(x) = a0+a1x+a2x

2+· · ·+at−1xt−1 or of one
of its derivatives. This prevents unauthorized subsets from reconstructing the
message, meaning that perfect security is achieved. However, the share σi′,j′

for the new shareholder si′,j′ is generated by old shareholders in distributed
fashion. More precisely, each old shareholder uses its share to generate a piece
of information from which the new shareholder si′,j′ can compute its own
share σi′,j′ . Therefore, what is left to show is that no information about the
other shares is leaked during the generation of the share σi′,j′ . To compute
the share of a new shareholder si′,j′ each shareholder sl ∈ A of an authorized

subset A ∈ Γ computes f j
′

l (i′), where f j
′

l (x) is the j′-th derivative of the
polynomial fl(x). Note that this value leaks information about the share of sl,

since f j
′

l (i′) = σl
∑t−1
k=j′

k!
(k−j′)!

(−1)l−1+k det(Al−1,k(E,X,ϕ))
det(A(E,X,ϕ)) i′

k−j′
and the lat-

ter part
∑t−1
k=j′

k!
(k−j′)!

(−1)l−1+k det(Al−1,k(E,X,ϕ))
det(A(E,X,ϕ)) i′

k−j′
can be computed from

public information. Thus, it generates shares to this value using an additive

secret sharing scheme [7], i.e. computes f j
′

l (i′) =
∑
k,sk∈A δk,l, and sends δk,l

to shareholder sk ∈ A. Each shareholder sl then adds all subshares received
by the other shareholders, i.e. δl =

∑
k,sk∈A δl,k, and forwards only the re-

sult δl to the new shareholder. Due to the use of the additive secret sharing
scheme perfect security of all shares remains preserved.

Since
∑
l,sl∈A δl=

∑
l,sl∈A

∑
k,sk∈A δk,l=

∑
k,sk∈A f

j′

l (i′)= f j
′
(i′) also ac-

cessibility is provided. This ensures that the new shareholder holds together
with the other shareholders a point of polynomial f(x) or of one of its deriva-
tives and the shares of authorized subsets including the new shareholders can
reconstruct the message.

Reset In this algorithm each shareholder sl ∈ A of an authorized subset A ∈
Γ uses hierarchical secret sharing to distribute its share to a new set of
shareholders. More precisely, it computes its partial Birkhoff interpolation
coefficient

al,0 := σl(−1)l−1
det(Al−1,0(E,X,ϕ))

det(A(E,X,ϕ))



of coefficient a0 and then chooses a polynomial f ′l (x) = a′l,0 +a′l,1x+a′l,2x
2 +

· · · + a′l,t′−1x
t′−1, where a′l,0 = al,0, containing this value in the free coeffi-

cient. In this way, shares of shares are sent to the new shareholders, since
only one point of this polynomial or of one of its derivatives is sent. There-
fore, perfect security follows from the perfect security of conjunctive secret
sharing. Furthermore, it computes the value to be sent to a new shareholder
in accordance to the new access structure and the IDs assigned to each new
shareholder. Thus, any unauthorized subset U /∈ Γ cannot reconstruct the
message and perfect security is provided.

Accessibility of this protocol is provided due to the homomorphic property of
polynomials. More precisely each new shareholder si,j receives from each old

shareholder sl share f ′
j
l (i) of polynomial f ′l (x) = a′l,0 + a′l,1x+ a′l,2x

2 + · · ·+
a′l,t′−1x

t′−1, where a′l,0 = al,0 is the partial Birkhoff interpolation coefficient
of a0. Since the new shareholder adds all shares received to compute its new
share it follows that it holds a point of polynomial f ′(x) =

∑
l,sl∈A f

′
l (x)

=
∑
l,sl∈A(a′l,0 + a′l,1x + · · · + a′l,t′−1x

t′−1) =
∑
l,sl∈A a

′
l,0 +

∑
l,sl∈A a

′
l,1 +

· · · +
∑
l,sl∈A a

′
l,t′−1x

t′−1 = a0 +
∑
l,sl∈A a

′
l,1 + · · · +

∑
l,sl∈A a

′
l,t′−1x

t′−1 or
of one of its derivatives. So the free coefficient of f ′(x) is still a0, meaning
that any authorized subset of the new access structure is still able to retrieve
message a0 = m.

Next we show that our verifiable and dynamic hierarchical secret sharing
scheme indeed provides verifiability. For this we assume a majority of trustworthy
shareholders within an authorized subset. This assumption can be weakened
by letting all shareholders participate during the Add and Reset algorithm and
choose an authorized subset among the majority. This majority can be identified
during Add by checking who reports the same set of commitments to function
f(x) and during Reset by checking who reported the same commitments c0 to
the free coefficient of f(x). Note that the presence of a majority of trustworthy
shareholders is a common assumption of classical secret sharing schemes that
allow to reset access structures, e.g. [12].

Theorem 6. In the presence of a majority of trustworthy shareholders within
an authorized subset the verifiable and dynamic secret sharing scheme composed
of the protocols Share, Add, Reset, and Reconstruct described in Section 5.2 is a
verifiable secret sharing scheme according to Definition 3.

Proof. To prove that each authorized subset of shareholders A ∈ Γ reconstruct
the same message a0 = m each shareholder must hold a point of the to-be-
found polynomial f(x) = a0 + a1x + a2x

2 + · · · + at−1x
t−1 or of one of its

derivatives. Furthermore, each shareholder must hold the point assigned to its
ID (i, j) ∈ I × I, i.e. must receive share σi,j = f j(i), where f j(x) is the j-th
derivative of the polynomial f(x). In the following we show for each algorithm
that generates shares, i.e. Share, Add, and Reset, that the shareholders receiving
these shares are able to verify these conditions.



Share During this algorithm the dealer commits to each coefficient ak of f(x) =
a0 + a1x + a2x

2 + · · · + at−1x
t−1 by computing a commitment ck := gak

mod p, for k = 0, . . . , t − 1. It broadcasts the commitments and sends each
share σi,j to shareholder si,j ∈ Lh, for i = 1, . . . , nh and h = 0, . . . , `. If
shareholder si,j accepts σi,j then the following equation holds

gσi,j ≡
t−1∏
k=j

c
k!

(k−j)!
ik−j

k = gf
j(i).

From this it follows directly that incorrect shares can be detected and re-
jected.

Add During this algorithm the shareholders sl ∈ A of an authorized subset
A ∈ Γ compute share σi′,j′ for a new shareholder si′,j′ ∈ S in distributed
fashion. Furthermore, each shareholder broadcasts the commitments to the
coefficients ck := gak mod p, for k = 0, . . . , t − 1 received from the dealer.
Under the assumption that at least a majority of these shareholders is honest
the new shareholder has access to a correct set of commitments and can verify
whether

gσi′,j′ ≡
t−1∏
k=j′

c
k!

(k−j′)! i
′k−j′

k = gf
j′ (i′).

From this it follows directly that incorrect shares can be detected and re-
jected.

Reset During this algorithm the shareholders sl ∈ A of an authorized subset
A ∈ Γ compute shares for a set of new shareholders S′ = {s′1, . . . , s′n′},
each accompanied with a unique ID (i′, j′) ∈ I × I, and an access structure
Γ ′ ⊂ P(S′). Like for the other algorithms it has to be checked that share σi′,j′

for the shareholder s′i′,j′ ∈ S′ with ID (i′, j′) ∈ I×I are computed as f ′j
′
(i′).

However, this algorithm has an additional requirement for correctness. The
free coefficient of the to-be-found polynomial must be equal to the message
m distributed by the dealer. To verify the first condition each shareholder
si′,j′ of the new access structure checks

gσl,i′,j′ ≡
t′−1∏
k=j′

c′l,k
k!

(k−j′)! i
′k−j′

= gf
′j′
l (i′), for sl ∈ A,

for each share σl,i′,j′ received from shareholder l of the old set of shareholders.
Finally, it checks that the sum of all shares is a point of a polynomial with
free coefficient a0 = m. This can be verified by multiplying all commitments
to the individual free coefficients, i.e.

c0 ≡
∏
l,sl∈A

c′l,0 =
∏
l,sl∈A

gal,0 = ga0 = gm.

Under the assumption that a majority of the old shareholders sent the correct
commitments incorrect shares can be detected.



Note that our scheme is also ideal. This clearly comes from the fact that each
shareholder si ∈ R receives a share σi,j ∈ Fq that is a field element of the same
field as the message m ∈ Fq.

C Example of Tassa’s Hierarchical Secret Sharing

In the following, an example explaining how Tassa’s hierarchical secret sharing
scheme [22] works is provided. More precisely, we show a numerical instantiation
of the algorithms Share and Reconstruct described in Definition 5 for conjunctive
secret sharing. Note that we shall perform all computations assuming a finite
field Fq for a very large prime q. Thus, we do not perform the modulo operation
assuming the values computed are always smaller than q.

Share Let us assume a hierarchy composed of three levels L0, L1, L2 (where L0

is the highest level and L2 is the lowest level) and thresholds t1 = 1, t2 = 2, t3 =
3. Furthermore, let us assume the set S is composed of n = 6 shareholders. More
precisely, one shareholder s1,0 is assigned to level L0, two shareholders s1,1, s2,1
are assigned to level L1, and three shareholders s1,2, s2,2, and s3,2 are assigned to
level L2. Finally, let us assume that a dealer wants to secretly share the message
m := 2. Denoted t := t3, the dealer selects a polynomial f(x) = a0 + a1x+ a2x

2

of degree t− 1 setting a0 := 2 and choosing the remaining two coefficients a1, a2
uniformly at random., e.g. a1 = 3, a2 = 1, and f(x) = 2+3x+x2. The shares are
computed as points over f(x) or one of its derivatives f ′(x) = 3+2x or f ′′(x) = 2.
With respect to level L0 shareholder s1,0 gets share σ1,0 = f(1) = 6. With respect
to level L1 shareholder s1,1 gets share σ1,1 = f ′(1) = 5 and shareholder s2,1 gets
share σ2,1 = f ′(2) = 7. With respect to level L2 shareholder s1,2 gets share
σ1,2 = f ′′(1) = 2, shareholder s2,2 gets share σ2,2 = f ′′(2) = 2, and s3,2 gets
share σ3,2 = f ′′(3) = 2.

Reconstruct For conjunctive secret sharing, the thresholds 0 < t0 < t1 < t2
have to be considered as a chain. More precisely, the access structure defined is
such that the message can be retrieved if at least t2 = 3 shareholders in total
collaborate, at least t1 = 2 of them belong to level L1 or L0, and at least t0 = 1
of them belong to level L0. Without loss of generality, let us assume that the
shareholders collaborating are s1,0, s2,1, and s3,2. The access structure is satisfied
because the corresponding interpolation matrix

E =

1 0 0
0 1 0
0 0 1


leads to a Birkhoff interpolation problem with unique solution (see Appendix
A). The message m = 2 can be retrieved as follows:

1. the set containing the coordinates of E in lexicographic order is I(E) =
{(1, 0), (2, 1), (3, 2)} and the column containing the shares in lexicographic
order is (6, 7, 2)t;

2. the vector of the functions involved is ϕ = {1, x, x2};



3. the matrices involved in the Birkhoff’s reconstruction formula are:

A(E,X,ϕ) =

1 1 1
0 1 4
0 0 2

 , A(E,X,ϕ0) =

6 1 1
7 1 4
2 0 2

 ,

A(E,X,ϕ1) =

1 6 1
0 7 4
0 2 2

 , A(E,X,ϕ2) =

1 1 6
0 1 7
0 0 2

 ;

4. the determinants are det(A(E,X,ϕ)) = 2,det(A(E,X,ϕ0)) = 4,
det(A(E,X,ϕ1)) = 6 and det(A(E,X,ϕ2)) = 2, respectively;

5. applying Birkhoff’s reconstruction formula the coefficients a0, a1, a2 of poly-
nomial f(x) are computed as:

a0 =
det(A(E,X,ϕ0))

det(A(E,X,ϕ))
=

4

2
= 2, a1 =

det(A(E,X,ϕ1))

det(A(E,X,ϕ))
=

6

2
= 3,

a2 =
det(A(E,X,ϕ2))

det(A(E,X,ϕ))
=

2

2
= 1;

6. the polynomial reconstructed is exactly f(x) = 2 + 3x+ x2 and the secret is
retrieved as f(0) = a0 = 2.


