
Evidence-Based Trust Mechanism Using Clustering
Algorithms for Distributed Storage Systems

Giulia Traverso∗, Carlos Garcia Cordero∗, Mehrdad Nojoumian†,
Reza Azarderakhsh†, Denise Demirel∗, Sheikh Mahbub Habib∗, Johannes Buchmann∗

∗ Technical University of Darmstadt (Germany)
† Florida Atlantic University (USA)

Abstract—In distributed storage systems, documents are
shared among multiple Cloud providers and stored within
their respective storage servers. In social secret sharing-based
distributed storage systems, shares of the documents are allocated
according to the trustworthiness of the storage servers. This
paper proposes a trust mechanism using machine learning
techniques to compute evidence-based trust values. Our mech-
anism mitigates the effect of colluding storage servers. More
precisely, it becomes possible to detect unreliable evidence and
establish countermeasures in order to discourage the collusion
of storage servers. Furthermore, this trust mechanism is applied
to the social secret sharing protocol AS3, showing that this new
evidence-based trust mechanism enhances the protection of the
stored documents.

Keywords: Trust management, social secret sharing, ap-
plied cryptography, distributed storage systems, cloud com-
puting, and clustering algorithms.

I. INTRODUCTION

Nowadays, it has become common practice to rely on Cloud
infrastructures for the storage of data. In fact, for large amount
of data or shared data, it is more convenient for a user to out-
source these data to the Cloud. In distributed storage systems,
documents are shared among multiple Cloud providers and
stored within their respective storage servers. Cloud providers
have to ensure the protection of the stored documents with
respect to two aspects: confidentiality and retrievability. For
example, assume health records are stored and managed. They
contain sensitive information whose disclosure harm patients’
reputation (e.g. sexual or genetic diseases). Furthermore, fast
retrieval is of vital importance in case of an emergency (e.g.
blood group for urgent transfusions). Ensuring confidentiality
and retrievability is inherent to the trustworthiness of the
storage servers involved. In fact, untrustworthy storage servers
are a risk for confidentiality in case they leak information to
third parties. Moreover, they might not respond, respond late,
or even lose the data.

A. Problem Description

Distributed storage systems are able to allocate data accord-
ing to the trustworthiness of the storage servers when they
are based on so called social secret sharing [20], [18]. Social
secret sharing is a primitive that can be used in the Cloud-
based systems in order to distribute more informative shares
of a document to more trustworthy storage servers [19]. In
fact, social secret sharing relies on trust management systems

[17] to periodically update the trust value assigned to each
storage server.

More precisely, every time the storage servers interacted,
they evaluate each other by submitting either positive or
negative evidence, depending on how well they behaved. This
evidence is collected and processed to output the new trust
values. Then, the system is reset and shares are redistributed
according to the updated trust values. In this setting, confi-
dentiality and retrievability of the data are provided because
untrustworthy storage servers do not have enough shares to get
any information about the data nor to cause its loss in case
they do not respond. Note that having more shares to store
and manage leads to a greater income for the Cloud. Thus,
Cloud providers may enforce their storage servers to submit
wrong evidence. That is, positive evidence are submitted for
storage servers from the same Cloud provider and negative
evidence are submitted for storage servers owned by other
Cloud providers. As a result, the trust values might not
communicate the actual trustworthiness of the storage servers,
and consequently, more informative shares are granted to the
wrong storage servers putting confidentiality and retrievability
of the data at risk.

B. Contribution

Our evidence-based trust mechanism aims at enhancing the
protection capability of social secret sharing-based distributed
storage systems. More precisely, the credibility of the trust
value associated with each storage server is evaluated through
clustering techniques by taking into account not only the evi-
dence submitted by the other storage servers, but also the rep-
utation of those storage servers (also named evaluators). Thus,
the computed trust values are built out of two measurements.
The first measurement is the trustworthiness of a storage server
according to all the other storage servers. It relies on so called
unsupervised machine learning techniques, which have the
advantage of not requiring the manual specification of the
type of evidence observed. In particular, we use clustering
algorithms and mixture models. The second measurement is
the reliability of the storage server with respect to its submitted
evidence. It is computed taking into account the reputation
of the storage server and the accuracy of its submissions.
Furthermore, we apply this trust mechanism to the social secret
sharing protocol AS3 [27] and show how the protection of the
data stored is enhanced.

The rest of the paper is organized as follows. Section
II discusses the related works. Section III provides some
preliminaries on distributed storage servers and on the machine
learning techniques we use. This is followed by Section IV,
where our new evidence-based trust mechanism is introduced.
In Section V, this new trust mechanism is applied to the social
secret sharing protocol AS3. Finally, Section VII discusses
concluding remarks and future work.

II. RELATED WORK

Trust mechanisms are referred to as evidence-based trust
mechanisms when they rely on evidence derived from past in-
teractions. More precisely, evidence can be derived from direct
interactions between a trustor and a trustee. Direct interactions,
however, may be rare in certain cases, e.g. newcomers in
service marketplaces. Thus, evidence-based mechanisms also
consider evidence derived from indirect interactions. That is,
an entity provides another entity with evidence about its past
interactions with a third entity. This is usually referred to as
exchange of recommendations. In case both direct and indirect
interactions are not available, one may rely on evidence
derived from virtual cues, e.g., certifications or stereotypes.
In this paper, we are interested in computational trust models
that consider past evidence (via direct or indirect interactions)
about trustee’s behavior to estimate the trustworthiness of
that trustee in the future. Particularly, in this section, trust
mechanisms based on various statistical and machine learning
techniques are investigated.

1) Bayesian Trust Models: Bayesian trust
models [6] [3], [15], [5], [22] leverage Bayesian
probabilities [2] to estimate the future behavior (i.e. the
trust value) of the trustee. In particular, the Beta probability
density function is used to estimate the future behavior based
on the evidence collected from the past interactions. For
instance, the reputation system proposed in [6] calculates trust
values following the Beta distribution. However, the system
is not able to filter out unfair evidence, making the system
ineffective when evidence is not genuine. A robust reputation
system is introduced in [3], which deals with honest behavior
of the participants. The idea is to learn from the observation
of others before having to learn by direct interaction. In other
words, reputation ratings are incorporated into the view of
others. An extension of the Bayesian probabilistic model is the
event-based trust mechanism proposed in [15], which handle
so called event-structure frameworks [16]. More precisely,
the work provides a formal framework based on information
divergence to measure the quality of probabilistic trust
mechanisms. Furthermore, the so called trust-aware model
introduced in [5] addressing service-oriented environments
formalizes a Bayesian service selection model focusing
on monitoring and exploring desired service composition.
Specifically, the work shows how one can reward/punish
the services dynamically with incomplete knowledge of
the composition. CertainTrust [22], an extended Bayesian
trust model considering context-dependent parameters, has
been already used in the distributed storage systems for

trustworthiness assessment [27] of storage servers with
respect to confidentiality and retrievability. This mechanism is
compared with the proposed trust mechanism in Section V-B
in order to demonstrate the improvements of the proposed
mechanism.

2) Machine Learning for Trust Models: Machine learning
plays an important role in the area of trust research. In fact,
nowadays, an increasing amount of evidence (or data) is
generated by large-scale web applications, e.g. social media,
e-commerce, recommender systems. Machine learning tech-
niques are used by researchers to model more and more
complex scenarios by answering two fundamental questions
in trust research. The first question is about the initial trust-
worthiness estimation of a target entity in the absence of past
behavior. The second question is about capturing and detecting
dynamic behavior of the target entity in different interactions.

In order to address the first question, stereotyping models
(e.g. [9]) use the trustor’s past experience with other similar
entities. These models harness trust-relevant features using
machine learning techniques [10] (e.g. Linear Discriminant
Analysis (LDA), Decision Tree (DT), and M5 model tree)
to extract connections between potential interactions and past
interactions. In large-scale open systems like social networks,
behavior of an entity may vary in different interactions with
different entities to maximize their profits. Approaches based
on Hidden Markov Model [13] are essential to effectively
capture and detect dynamic behavior patterns.

In order to address the second question, Tang et al. [24]
address the issue of dynamic behavior. The authors analyze the
trust evolution by investigating the dynamics of the preference
of the users on line in review sites like Epinions1. It turns
out that trust is strongly correlated to the similarity of the
preference of the users. In order to capture their preference
evolution, hence dynamic trust, the authors use machine learn-
ing approaches like the latent factor model [1]. Moreover, in
evidence-based trust mechanisms, evidence is often provided
by different sources. Honesty of the information source is key
for reliable trust estimation and, thus, it is essential to know
whether the information source is unbiased or biased. Existing
evidence-based trust models use unsupervised approaches, like
statistical deviation [8], to identify feedbacks that are very
different from others. The assumption here is that the biased
feedback is a small subset of all feedbacks.

Our paper addresses the second question by using machine
learning techniques to design our evidence-based trust mecha-
nism. The unsupervised clustering algorithms are able to iden-
tify evidence created by dishonest participants. Furthermore, in
contrast to related work, with the techniques of fitting mixture
of Gaussians to clusters, we identify unreliable evidence
submitted by colluding participants. This confers our trust
mechanism the capability to downgrade the trustworthiness
of groups of participants that have chosen to collaborate in a
dishonest manner.

1http://epinions.com/

III. PRELIMINARIES

In this section, we explain preliminary knowledge to un-
derstand our contribution. More precisely, first, Section III-A
provides an overview on distributed storage systems. Second,
Section III-B and Section III-C discuss the machine learning
techniques of K-means clustering and mixture of Gaussians,
respectively.

A. Distributed Storage Systems

In distributed storage systems [11] ,[23], the to be stored
document is split into shares, which are distributed to several
Cloud providers. Each share is stored within the storage
servers belonging to Cloud providers. The shares are generated
such that only a certain amount of them is needed to recon-
struct the document. Cloud providers have to guarantee the
confidentiality and the retrievability of documents at any point
in time and, thus, have to cope with possibly untrustworthy
storage servers. In fact, confidentiality and retrievability are
inherent to the trustworthiness of the storage servers involved.
More precisely, untrustworthy storage servers with respect to
confidentiality are referred to as honest but curious. These
are prone to leak information to third parties or to collude
with each other. Instead, untrustworthy storage servers with
respect to retrievability are referred to as faulty. These might
not respond or respond with a significant delay, preventing
the retrieval of the document. A solution to overcome this
problem is to generate shares with different reconstruction
capabilities. That is, more informative shares are distributed
to the more trustworthy storage servers and less informative
shares are distributed to the less trustworthy ones. In this way,
untrustworthy storage servers do not have enough reconstruc-
tion power to retrieve the document by themselves and have
to collaborate with other storage servers. Social secret sharing
[19] is a cryptographic primitive enabling exactly this type of
generation and distribution of the shares. Each storage server is
associated with a trust value representing its trustworthiness. A
trust function is periodically called to update these trust values,
as the trustworthiness of the storage servers may improve or
worsen over time. After the update, the distribution of the
shares is recomputed, meaning that the old shares are deleted
and new shares are generated according to the updated trust
values. More details about the redistribution procedure can be
found in [26].

B. K-Means Clustering

In this section, we review the machine learning technique
of K-means clustering. Note that for the definition of this
technique, as well as for the definition of the technique of
mixture of Gaussians in the next section, we refer to [1].

Let us define a data set P = {P1, . . . , Pn} of n points in
a D-dimensional Euclidean space, with Pi = (x1i , . . . , xDi

),
for i = 1, . . . , n. The k-means clustering is the problem of
grouping these points into K clusters C1, . . . , CK . These clus-
ters are identified such that the distances of points within the
same cluster are smaller than the distances to points outside the
cluster. This means that together with the clusters C1, . . . , CK ,

so called center points M1, . . . ,MK are identified, where
Mj = (x1j , . . . , xDj), for j = 1, . . . ,K. Each center point
Mj satisfies the property that the sum of the squares of the
distances of each data point Pi to the closest point Mj is
a minimum. This concept can be formalized by the so called
distortion measure J , an objective function defined as follows:

J =

n∑
i=1

K∑
j=1

ri,j ||Pi −Mj ||2,

where ||Pi −Mj || is the distance between points Pi,Mj and
where ri,j = 1 if point Pi is assigned to cluster Cj and ri,l = 0
for l 6= j. Thus, the K-means clustering problem consists
of finding values ri,j and centers Mj , for i = 1, . . . , n and
j = 1, . . . ,K, such that the distortion measure J is minimized.
This is achieved by means of so called EM algorithms,
consisting of an expectation step E, where the values ri,j
are adjusted, and a maximization step M, where, instead,
the points Mj are adjusted. In fact, the distortion measure
J can be minimized through multiple iterations, where after
each iteration an expectation step and a maximization step
are performed. A concrete instantiation of the above strategy
can be found in [1] and [12]. Details about how to make this
K-means clustering more efficient can be found in [21] and
[14].

C. Mixture of Gaussians

In this section, we review the machine learning technique of
mixture of Gaussians. This technique is meant to model real
data set P = {P1, . . . , Pn} of points, which otherwise could
not be fully described by a single Gaussian distribution. Con-
sider K Gaussian distributions N1(µ1, σ

2
1), . . . ,NK(µK , σ

2
K),

where µi is the mean and σ2
i is the variance, for i = 1, . . . ,K.

Denoted by p(P), a mixture of Gaussians with respect to data
set P is defined as a linear combinations of the given Gaussian
distributions:

p(P) =
K∑
j=1

πjN (µj , σ
2
j),

where each Gaussian N (µj , σ
2
j) is said a component of

the mixture and each parameter πj is the respective mixing
coefficient. In addition, if

∑K
j=1 πj = 1, then also p(P) is

a probability distribution. It is possible to find a Gaussian
distribution NP(µ, σ2) computed as the approximation of the
mixture of Gaussians p(P). That is, distribution NP(µ, σ2)
is the closest distribution to p(P) that is not a mixture of
Gaussians, according to the Kullback-Leibler distance (see
[7]). The mean µ and the variance σ2 of NP(µ, σ2) can be
easily computed as:

µ =

K∑
j=1

πjµj and σ2 =

K∑
j=1

πj(σ
2
j + µ2

j)− µ2,

where π1, . . . , πK correspond to the mixing coefficients of the
mixture of Gaussians p(P), as described in [25].

IV. OUR TRUST MECHANISM

In this section, our evidence-based trust mechanism using
clustering algorithms and mixture of Gaussians is presented.
First, the general framework of our trust mechanism is pre-
sented (Section IV-A). Then, Section IV-B, Section IV-C, and
Section IV-D describe how to compute the trust values.

A. Description of the Framework and Assumptions

Let us assume a distributed storage system involving a
set S = {S1, . . . , Sn} of n storage servers. Trust values
τ
(t)
1 , . . . , τ

(t)
n ∈ [0, 1] are assigned, respectively, to storage

servers S1, . . . , Sn at time t. These trust values convey in-
formation about how trustworthy they are expected to be.
More precisely, these storage servers periodically interact with
each other to manage the storage of documents. After each
interaction at time t, the storage servers evaluate each other
and update trust values τ (t−1)1 , . . . , τ

(t−1)
n at time t− 1 taking

into account the current performance. To simplify the notation,
from now on, trust values τ (t)1 , . . . , τ

(t)
n at time t are simply

denoted by τ1, . . . , τn. Storage servers S1, . . . , Sn are owned
by multiple Cloud providers. That is, the set S can be seen
as the union S = S1 ∪ · · · ∪ Sm, with m ≤ n, where
Sl = {Sl,1, . . . , Sl,ml

} is the set of storage servers owned by
the l-th Cloud provider, with n =

∑m
l=1ml, for l = 1, . . . ,m.

Cloud providers are interested in maximizing the trust values
of their storage servers, because this leads to a greater income.
Thus, it is not only necessary that Cloud providers provide the
distribute storage system with high performing and trustworthy
storage servers. In fact, it might also be convenient to blame
other storage servers owned by different Cloud providers, no
matter how well they actually behave. This is regarded as
collusion among storage servers owned by the same Cloud
provider. We make the following two assumptions with respect
to how storage servers may collude.

1) Assumption 1: Only storage servers owned by the same
Cloud provider can collude.

2) Assumption 2: The behavior of storage servers is as-
sumed to be consistent among all storage servers. That is, a
storage server does not choose to behave differently according
to the provenance of the storage servers it is interacting with.
On the contrary, a storage server may submit dishonest evi-
dence for other storage servers according to their provenance.

3) Assumption 3: All evidence is submitted to a central
peer responsible for computing the trust values. The central
peer is always honest and does not tamper with the evidence.

Assumption 1 and Assumption 2 emphasize that what we
focus on here is coping with the possibility of unreliable
evidence (i.e. unreliable ratings) submitted by storage servers
with the aim of maximizing the overall trustworthiness of their
Cloud provider. That is why storage servers from different
Cloud providers are not interested in cooperating. Further-
more, when storage servers submit unreliable evidence, they
do it regardless of the actual performance and trustworthiness
of the storage servers in question. That is why storage servers

are assumed to have a constant behavior when they interact
with each other, without necessarily rating with honesty.

Our trust mechanism aims at mitigating the collusion of
the storage servers belonging to the same Cloud provider
under Assumption 1, Assumption 2, and Assumption 3. More
precisely, the computation of trust value τi is computed by
two measurements: the so called first and second partial trust
values. The first partial trust value τ ′i for storage server Si
is the result of evidence submitted by storage server Sj , for
j = 1, . . . , n and j 6= i (see Section IV-B). This first step
is somewhat similar to what has been done for Bayesian
models (see Section II), except that the evidence processed
for the computation of the first partial trust value has different
relevance depending on the reputation of the source. The
second partial trust value τ ′′i depends on how reliable the
evidence submitted by storage server Si are with respect
to storage server Sj , with j 6= i (see Section IV-C). This
second step is where unreliable evidence is detected and the
submitter is discouraged to do so because its trustworthiness
is decreased. In Section IV-D, it is described how to merge
these two measurements to obtain trust value τi.

For the sake of readability, we summarize in Table I the
notations that follow throughout the rest of the paper.

TABLE I: Summary of the notation used

Si, Sj storage server

n total number of storage servers

τi trust value of Si at time t

τ ′i/τ
′′
i first/second partial trust value of Si at time t

τ
(t−1)
i reputation of Si at time t− 1

P
(i)
j data point describing how Sj rates Si

x
P

(i)
j

/y
P

(i)
j

x/y-coordinate of P (i)
j

σ
(i)
j evidence submitted by Sj with respect to Si

C1, . . . , CK clusters/classes of credibility

M1, . . . ,MK center points of clusters C1, . . . , CK
yM1

, . . . , yMK
y-coordinate of M1, . . . ,MK

ω
(i)
j weight of data point P (i)

j

π1, . . . , πK mixing coefficients of M1, . . . ,MK

α1, α2 thresholds delimiting the ranges of reliability

o
(j)
i trustworthiness gain or loss by Si with respect to Sj

η1, η2 coefficients for τ ′i and τ ′′i , respectively

B. Computation of the First Partial Trust Value τ ′i
This section describes how the first partial trust value τ ′i

for storage server Si is computed, which takes into account
the evidence submitted by all the other storage servers. The
computation of the first partial trust value τ ′i is performed in
an Euclidean space of dimension D = 2. For readability, we
divide this computation into steps.

1) Collection of the evidence: Each storage server Sj sub-
mits point P (i)

j = (x
P

(i)
j
, y
P

(i)
j

) with respect to storage server

Si. The first coordinate of point P (i)
j is x

P
(i)
j

= τ
(t−1)
j ∈ [0, 1],

where τ (t−1)j is the reputation of the evaluator storage server
Sj . In fact, being τ (t−1)j the trust value computed at time t−1,
it can be seen as the reputation gained by storage server Sj
up to that moment. The second coordinate of point P (i)

j is
y
P

(i)
j

= σ
(i)
j , where σ

(i)
j ∈ [0, 1] is the evidence by which

storage server Sj evaluates storage server Si. In other words,
σ
(i)
j is the expectation that storage server Sj has with respect

to the future behavior of storage Si.
2) Representation of τ ′i : Since the evidence relative to the

trustworthiness of storage server Si is represented as a value
between 0 and 1, the first partial trust value τ ′i is also a
value between 0 and 1. The idea is to define the data set
P(i) = {P (i)

1 , . . . , P
(i)
i−1, P

(i)
i+1, . . . , P

(i)
n } of points submitted

by storage server Sj , for j = 1, . . . , n and j 6= i. Then,
the machine learning techniques of K-means clustering (see
Section III-B) and mixture of Gaussians (see Section III-C) are
used to extract the first partial trust value τ (i)i from coordinate
y
P

(i)
j

of each point in the data set P(i).
3) Classes of credibility: K classes of evidence are dis-

tinguished with respect to their credibility by the K-means
clustering algorithm. The points in the data set P(i) are
grouped into K clusters C1, . . . , CK . In fact, each point in the
data set P(i) is a tuple corresponding to the values “reputation
of the rater” and the values “the submitted rate/evidence”.
Therefore, the clustering algorithm finds classes which take
into account both values. The center points M1, . . . ,MK of
clusters C1, . . . , CK simplify these classes of credibility with
fewer, yet more informative points.

4) Assigning a weight ω(i)
j to point P (i)

j : Each point P (i)
j is

submitted by storage server j, which has a reputation τ (t−1)j .
We wish to use this reputation to weight point P (i)

j . We define
weight ω(i)

j as:

ω
(i)
j =

F (τ
(t−1)
j)∑n−1

j=1 F (τ
(t−1)
j)

,

where F : [0, 1]→ R is a positive and increasing function over
the interval [0, 1], which assigns higher scores for larger trust
value τ (t−1)j . The meaning of this function is to define how
to balance the influence of a low-weighted reputation against
a high-weighted reputation. In other words, function F (x)
determines how many low-weighted reputations are needed to
have as much influence so as to overcome one high-weighted
reputation. In fact, storage servers with a high reputation might
also submit incorrect evidence. If many storage servers, even
with a low reputation, submit different evidence in contrast
to the highly reputable storage server, then their opinion
have also an impact. A possible approach to define function
F (x) is to choose a known increasing function (such as the
logarithmic function) and adjust the eccentricity according to
the number of low-weighted reputations necessary to balance
higher-weighted reputations. Note that function F (x) does not
need to be continuous. In fact, another possible approach to

define function F (x) is to create a step function over disjoint
subintervals of the interval [0, 1]. Thus, two trust values within
the same subinterval are considered equivalent with respect to
the reputation of the storage server they represent.

5) Computation of τ ′i : The first partial trust value τ ′i is com-
puted as a weighted combination of coordinates yM1 , . . . , yMK

of the center points M1, . . . , MK , respectively. Center points
M1, . . . ,MK are not equivalent: together with the classes of
credibility they distinguish, they depend on the cardinality
of the respective clusters. The idea is to associate values
π1, . . . , πK to center points M1, . . . ,MK in quantitative and
qualitative manner. Values π1, . . . , πK are regarded as the
mixing coefficients of a mixture p(P(i)) of K Gaussian
distributions N1(µ1, σ

2
1), . . . ,NK(µK , σ

2
K). More precisely,

the points within each cluster Cl can be seen as following
a Gaussian distribution with µl =Ml, for l = 1, . . . ,K. That
is because the mean and the variance of a Gaussian distri-
bution convey information about where the points are mostly
concentrated and how they are spread, which is comparable
to the information conveyed by the clusters. Weights ω(i)

j are
used to compute the mixing coefficients π1, . . . , πK . In more
detail, πl =

∑nl

j=1 ω
(i)
lj

, where nl is the cardinality of cluster

Cl and ω
(i)
lj

is the weight assigned to point P (i)
lj
∈ Cl, for

l = 1, . . . ,K. Note that
∑K
l=1 πl = 1 and thus the mixture

p(P(i)) is a probability distribution. The weighted sum of
means µ1, . . . , µK represents the mean µ of the closets Gaus-
sian distribution N (µ, σ2) approximating mixture p(P(i)) (see
Section III-C). And this is exactly what we aim at: since the
means µ1, . . . , µK are the center points M1, . . . ,MK , we can
now compute the first partial trust value τ ′i as the weighted
sum of coordinates yM1

, . . . , yMK
according to the mixing

coefficients π1, . . . , πK . That is,

τ ′i =

K∑
l=1

πl · yMl
∈ [0, 1].

Basically, the first partial trust value is computed as coordinate
yµ of the mean µ of the fitting Gaussian distribution N (µ, σ2).
One can argue that the first partial trust value τ ′i could be com-
puted directly after clusters C1, . . . , CK were distinguished,
without passing through the step of computing the mixture of
Gaussians. This is, in fact, what one would practically do when
computing τ ′i . However, we highlight that this computation is
possible because the center points of the clusters model are
the means of Gaussian distributions.

C. Computation of the Second Partial Trust Value τ ′′i
This section describes how the second partial trust value τ ′′i

for storage server Si is computed, which takes into account
the reliability of the evidence submitted by storage server Si
itself with respect to all the other storage servers. We recall that
the second partial trust value is meant to distinguish submitted
reliable evidence from unreliable evidence and to, respectively,
encourage and discourage such submission. Just as with the
first partial trust value τ ′i , the computation of the second partial

trust value τ ′′i is performed in an Euclidean space of dimension
D = 2. For readability, we divide this computation into steps.

1) Collection of the evidence: The evidence collected is
σ
(j)
i ∈ [0, 1], i.e. the coordinate y

P
(j)
i

of point P (j)
i sub-

mitted by the evaluator storage server Si with respect to
storage server Sj , for j = 1, . . . , n and j 6= i, where point
P

(j)
i = (x

P
(j)
i
, y
P

(j)
i

) is defined in Section IV-B.
2) Representation of τ ′′i : Since the evidence relative to

the reliability of the submissions of storage server Si is
represented as a value between 0 and 1, the second partial
trust value τ ′′i is also a value between 0 and 1. The reliability
of evidence σ(j)

i is measured by distance d(τ ′j , σ
(j)
i), where

τ ′j is the first partial trust value of storage server Sj . Distance
d(τ ′j , σ

(j)
i) is at most 1. If distance d(τ ′j , σ

(j)
i) is close to 1,

this is an indicator of the dishonesty of storage server Si when
rating storage server Sj , i.e. it is an indicator that σ(j)

i is
an unreliable piece of evidence. On the contrary, if distance
d(τ ′j , σ

(j)
i) is close to 0, this is an indicator of the honesty of

storage server Si when rating storage server Sj , i.e. it is an
indicator that σ(j)

i is a reliable piece of evidence.
3) Ranges of reliability: Ranges of reliability are spanned

to grant trustworthiness to storage server Si when distance
d(τ ′j , σ

(j)
i) is small and vice versa. More precisely, a score

o ∈ [0, 1] is defined to represent how much the trustworthiness
increases or decreases when the submission of score σ(j)

i is
reliable or unreliable, respectively. Three ranges of reliability
are defined by α1, α2 ∈ [0, 1]. If 0 ≤ d(τ ′j , σ

(j)
i) ≤ α1,

then the trustworthiness of storage server Si increases by o.
If α2 ≤ d(τ ′j , σ

(j)
i) ≤ 1, then the trustworthiness of storage

server Si decreases by o. If α1 < d(τ ′j , σ
(j)
i) < α2, then

the trustworthiness of storage server Si remains unchanged.
We denote by o

(j)
i ∈ {−o, o, 0} the trustworthiness lost,

gained, or maintained by the evaluator storage server Si when
submitting score σ

(j)
i , for j = 1, . . . , n and j 6= i. In

this way, storage servers are encouraged to submit reliable
evidence and discouraged to submit unreliable evidence. In
fact, if storage servers submit time after time evidence that are
considered unreliable, then they progressively lose more and
more trustworthiness. This is regarded as a countermeasure
against submitted unreliable evidence, as the influence of the
submitter decreases. Note that we choose to have three ranges
of reliability for simplicity but more ranges can be spanned.

4) Computation of τ ′′i : The second partial trust value τ ′′i is
computed from the reputation τ

(t−1)
i of storage server Si at

time t − 1, taking into account the average reliability of the
n − 1 scores σ(j)

i it submitted, for j = 1, . . . , n with j 6= i.
That is,

τ ′′i = τ
(t−1)
i +

1

n− 1

n∑
j=1,j 6=i

o
(j)
i .

In this way, the second partial trust value τ ′′i is computed by
increasing τ

(t−1)
i if the scores σ(j)

i are on average reliable
or by decreasing τ

(t−1)
i if the scores σ

(j)
i are on average

unreliable. Note that the computation of the second partial trust

value τ ′′i is recursive. That is, the history of the behavior of
storage server Si in the previous rounds is taken into account
by the term τ

(t−1)
i . In fact, reputation is built upon consistent

increments over a long period of time and is not greatly
affected, both positively and negatively, in one single round.

D. Computation of Trust Value τi
Trust value τi is computed as a convex combination of

τ ′i (defined in Section IV-B) and τ ′′i (Section IV-C). That is,
parameters η1, η2 ∈ [0, 1] are selected such that η1 + η2 = 1
and trust value τi is computed as:

τi = η1 · τ ′i + η2 · τ ′′i .

Parameters η1, η2 hold for the computation of each trust
value τi, for i = 1, . . . , n. They are chosen based on the
requirements of the specific distributed storage system. In
some situations, it might be more desirable to assign more
weight to a server performing well rather than a server rating
honestly and vice versa.

V. APPLICATION TO THE SOCIAL SECRET SHARING
PROTOCOL AS3

In this section, the trust mechanism introduced in Section IV
is applied to distributed storage systems based on social secret
sharing. In this setting, the protection of the stored document
is enhanced because the trust values are more accurate with
respect to the actual trustworthiness of the storage servers.
Therefore, the overall system is more resilient to honest but
curious and faulty storage servers, because they are provided
with the least informative shares. In particular, we consider
the social secret sharing protocol AS3 presented in [27].

A. Overview of the AS3 Protocol

The peculiarity of the AS3 protocol is that two trust values
are computed separately for each storage server. The first
measures the trustworthiness with respect to confidentiality
and the second measures the trustworthiness with respect to
retrievability. After the update of the trust values, the amount
of potential honest but curious storage servers and the amount
of potential faulty storage servers are estimated. Finally, for
each storage server, a unique trust value is computed as a
weighted sum of the trust value for confidentiality and the trust
value for retrievability. The shares are distributed according to
it, i.e. more informative shares are distributed to the storage
servers that have a high trust value, and vice versa. Since
they are related to two independent protection goals, counter-
measures against honest but curious and faulty storage servers
are taken separately. The countermeasure against honest but
curious storage servers is: the reconstruction threshold of
the underlying secret sharing scheme is increased such that
it is not possible for them to retrieve the document. The
countermeasure against faulty storage servers is: to broadcast
a warning message if the document cannot be retrieved in
case all of them would not respond to the reconstruction.
The warning messages bootstrap new and better functioning
storage servers. These countermeasures are expensive, both

with respect to computation overhead and to the cost for
maintaining the storage servers. Distribution of shares leading
to situations when these countermeasures have to be taken
often must be therefore prevented.

B. Improvements and Performances

Whenever the trust values are updated, our trust mechanism
is run twice: once to compute the trust values of the storage
servers with respect to confidentiality and once with respect
to retrievability. In the framework of social secret sharing, it
is commonly assumed that the Byzantine model’s requirement
holds [4]. That is, the amount of colluding storage servers is
bounded by the reconstruction threshold. That is, the colluding
storage servers do not have enough information to reconstruct
the document by themselves. Furthermore, we recall that when
our trust mechanism is applied to social secret sharing, also
Assumption 1, Assumption 2, and Assumption 3 must hold
as well (see Section IV). Note that, the Byzantine model’s re-
quirement and Assumption 1 lead to the fact that the amount of
storage servers owned by the same Cloud provider is bounded
by the reconstruction threshold as well. That is, a Cloud
provider, even by enforcing its storage servers to collude,
cannot retrieve the document alone. Furthermore, the function
F (x) defined in Section IV-B can be instantiated here such
that the number of low-weighted reputations balancing with
one high-weighted reputation is the reconstruction threshold.
In this way, collusion of storage servers owned by the same
Cloud provider is overcome.

We run the AS3 protocol using CertainTrust [22] as the trust
mechanism (as it was originally presented in [27]) and we run
AS3 using the trust mechanism presented in Section IV. In
both cases, the input parameters to the AS3 protocol are λc =
λr = 0.5, Tc = Tr = 0.2, and (n1, n2, n2) = (3, 5, 8) for K ∈
{3, 4}. The parameters λc, λr ∈ [0, 1] are the weights with
respect to confidentiality and retrievability used to compute
the final trust value. The parameters Tc, Tr ∈ [0, 1] are the
thresholds for confidentiality and retrievability below which
storage servers are considered honest but curious and faulty,
respectively. The parameter ni is the number of storage servers
owned by the i-th Cloud provider. The clustering algorithm
distinguishes K classes of credibility (see Section IV).

We run 1000 iterations and observe the average round
when the first and second countermeasures are applied. Here,
“round” corresponds to the notion of “time” used in Sec-
tion IV to denote when the trust values are updated. Table
II shows that, when using our new trust mechanism, both
countermeasures are performed at later rounds. That is, the
two countermeasures are performed less often. Thus, when our
trust mechanism is used, the AS3 protocol becomes more re-
silient to honest but curious and faulty storage servers because
the distribution of the shares is more accurate. In fact, the
function F (x) (Section IV-B) and the second partial trust value
(Section IV-C) are defined such that it is possible to mitigate
the effect of colluding storage servers providing unreliable
evidence up to the reconstruction threshold. Assumption 1
and the Byzantine’s model requirement ensure that no more

than this amount of storage servers is interested in colluding.
In Table II, the AS3 protocol is denoted by “CT-AS3” when
CertainTrust is used and is denoted by “K-AS3” when our
new trust mechanism based on K-means clustering is used.

TABLE II: Average round where the first and second counter-
measures are applied (the higher, the better).

CT-AS3 K-AS3

1st countermeasure 3.4 5.7

2nd countermeasure 23.86 31.16

VI. DISCUSSION

The evidence-based trust mechanism that we propose in this
work is meant to enhance the framework of distributed storage
systems based on social secret sharing. Social secret sharing
is a primitive composed of a secret sharing scheme and a trust
mechanism. More precisely, secret sharing schemes distribute
a document among different storage servers by generating
shares of the document. Trust mechanisms measure the trust-
worthiness of the storage servers and assign a corresponding
trust value to each of them. Thus, shares with different
reconstruction capability are generated and distributed to each
storage server according to its trust value. That is, more infor-
mative shares are distributed to the more trustworthy storage
servers and vice versa. In order to reconstruct the document,
not all the shares generated have to be combined together.
Subsets of storage servers holding enough information can
reconstruct the document and, the more trustworthy these
storage servers are, the smaller the subsets have to be for the
document’s retrieval. Social secret sharing addresses by design
the protection goals of confidentiality and retrievability. In fact,
when the information provided by the shares is insufficient, the
respective storage servers cannot reconstruct the document.
This means that the protocol is resilient against a certain
number of possible honest but curious storage servers. In
addition, the fact that not all the storage servers are necessary
for the reconstruction of the document means that the protocol
guarantees a certain level of robustness against faulty storage
servers. However, confidentiality and retrievability hold only
if the trust values assigned to the storage servers are properly
computed and are not tampered by colluding storage servers,
as discussed in Section I. That is the reason why in Section
V the evidence-based trust mechanism is used to measure
confidentiality and retrievability.

We highlight that the evidence-based trust mechanism we
propose can be extended to other frameworks different than
distributed storage systems. This trust mechanism can be
applied to compute the trust values in any scenario where the
raters are also rated for their ratings. This is the core problem
we address, where the participants involved are peers and
their trust values are computed taking into account the ratings
submitted by all other peers. And this is the case not only for
distributed storage systems, but also for scenarios like on-line
bids, where all the parts involved offer and use similar services
at the same time. Furthermore, this trust mechanism proposes

a new way to collect the evidence and to process it, but it is
not related to the behavior that the trust values are measuring.
That is, confidentiality and retrievability are not the only two
aspects that can be measured and this trust mechanism can
be used for any other aspect. For example, in the context
of on-line bids, the quality of the products delivered can
be measured, as well as the efficiency of the delivery itself.
Moreover, in the evidence-based trust mechanism we propose,
classes of credibility are clustered in a bi-dimensional space
(see Section IV-B). As such, the clustering algorithm can
be extended to higher dimensions and include more than
two aspects for the formation of the credibility classes. For
example, in the framework of distributed storage systems, a
third dimension can be used to take into account the number
of past interactions among the storage servers. In the context
of on-line bids, a possible way to measure the efficiency of
the delivery of goods could be taking into account the size of
the good, the shipping cost, and the physical distance between
the seller and the buyer.

We have not considered the bootstrapping phase for our
trust mechanism in Section IV. However, bootstrapping mech-
anisms based on machine learning technique have been already
proposed (see Section II). For our trust mechanism, when
storage servers are bootstrapped, we initialize their trust values
according to the procedure presented in [9], which is also
based on stereotyping models. Note that, the AS3 protocol was
originally using the bootstrapping procedure of CertainTrust,
which is the underlying trust mechanism it adopts [27].

VII. CONCLUSION AND FUTURE WORK

In this paper, an evidence-based trust mechanism for dis-
tributed storage systems was proposed. It uses machine learn-
ing techniques to collect and process the evidence. Using
this new approach, it became possible to detect unreliable
evidence and establish countermeasures in order to discourage
the collusion of storage servers owned by opportunistic Cloud
providers. The mechanism was applied to the social secret
sharing protocol AS3, outperforming the trust mechanisms
previously used in this context.

As future work, our trust mechanism can be extended to
compute the trust values according to additional criteria, such
as the amount of past interactions. Also, in this case, clustering
algorithms can be used to process all this information and
define proper credibility classes of evidence. Furthermore, we
plan to design a new bootstrapping procedure that improves
upon [9] so as to better address the scenario of distributed
storage systems.

ACKNOWLEDGMENTS

The authors thank Guido Salvaneschi, Moritz Horsch, and
Alex Palesandro for useful discussions. This work has been
co-funded by the DFG as part of projects “Scalable Trust
Infrastructures” and “Long-Term Secure Archiving” within the
CRC 1119 CROSSING and the European Union’s Horizon
2020 research and innovation program under Grant Agreement
No 644962.

REFERENCES

[1] Christopher M Bishop. Pattern recognition and machine learning. 128:1–
58, 2006.

[2] William M. Bolstad. Introduction to Bayesian Statistics. John Wiley &
Sons, Inc, 2004.

[3] Sonja Buchegger and Jean-Yves Le Boudec. A robust reputation system
for peer-to-peer and mobile ad-hoc networks. In P2PEcon 2004, number
LCA-CONF-2004-009, 2004.

[4] Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. The
round complexity of verifiable secret sharing and secure multicast. In
STOC, pages 580–589, 2001.

[5] Chung-Wei Hang and Munindar P. Singh. Trustworthy service selection
and composition. ACM Trans. Auton. Adapt. Syst., 6(1):5:1–5:17,
February 2011.

[6] Audun Josang and Roslan Ismail. The beta reputation system. In
Proceedings of the 15th bled electronic commerce conference, volume 5,
pages 2502–2511, 2002.

[7] Steffen L Lauritzen. Graphical models, volume 17. Clarendon Press,
1996.

[8] Hady W. Lauw, Ee-Peng Lim, and Ke Wang. Bias and controversy:
Beyond the statistical deviation. In Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’06, pages 625–630, New York, NY, USA, 2006. ACM.

[9] Xin Liu, Anwitaman Datta, Krzysztof Rzadca, and Ee-Peng Lim.
Stereotrust: A group based personalized trust model. In Proceedings of
the 18th ACM Conference on Information and Knowledge Management,
CIKM ’09, pages 7–16, New York, NY, USA, 2009. ACM.

[10] Xin Liu, Gilles Tredan, and Anwitaman Datta. A generic trust frame-
work for large-scale open systems using machine learning. Computa-
tional Intelligence, 30(4):700–721, 2014.

[11] Thomas Loruenser, Andreas Happe, and Daniel Slamanig. Archistar:
towards secure and robust cloud based data sharing. In Cloud Computing
Technology and Science (CloudCom), 2015 IEEE 7th International
Conference on, pages 371–378. IEEE, 2015.

[12] James MacQueen et al. Some methods for classification and analysis of
multivariate observations. In Proceedings of the fifth Berkeley symposium
on mathematical statistics and probability, volume 1, pages 281–297.
Oakland, CA, USA., 1967.

[13] Marie E. G. Moe, Bjarne E. Helvik, and Svein J. Knapskog. Comparison
of the Beta and the Hidden Markov Models of Trust in Dynamic
Environments, pages 283–297. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2009.

[14] Andrew W Moore. The anchors hierarchy: Using the triangle inequality
to survive high dimensional data. In Proceedings of the Sixteenth
conference on Uncertainty in artificial intelligence, pages 397–405.
Morgan Kaufmann Publishers Inc., 2000.

[15] Mogens Nielsen, Karl Krukow, and Vladimiro Sassone. A bayesian
model for event-based trust. Electronic Notes in Theoretical Computer
Science, 172:499–521, 2007.

[16] Mogens Nielsen, Gordon Plotkin, and Glynn Winskel. Petri nets, event
structures and domains, part i. Theoretical Computer Science, 13(1):85
– 108, 1981.

[17] Mehrdad Nojoumian and Timothy C. Lethbridge. A new approach for
the trust calculation in social networks. In E-business and Telecommuni-
cation Networks: 3rd International Conference on E-Business, volume 9
of CCIS, pages 64–77. Springer, 2008.

[18] Mehrdad Nojoumian and Douglas R. Stinson. Brief announcement:
Secret sharing based on the social behaviors of players. In 29th ACM
Symposium on Principles of Distributed Computing (PODC), pages 239–
240, 2010.

[19] Mehrdad Nojoumian and Douglas R. Stinson. Social secret sharing in
cloud computing using a new trust function. In PST, pages 161–167,
2012.

[20] Mehrdad Nojoumian, Douglas R. Stinson, and Morgan Grainger. Un-
conditionally secure social secret sharing scheme. IET Information
Security (IFS), Special Issue on Multi-Agent and Distributed Information
Security, 4(4):202–211, 2010.

[21] V Ramasubramanian and KK Paliwal. A generalized optimization of
the kd tree for fast nearest-neighbour search. In TENCON’89. Fourth
IEEE Region 10 International Conference, pages 565–568. IEEE, 1989.

[22] Sebastian Ries. Extending bayesian trust models regarding context-
dependence and user friendly representation. In Proceedings of the 2009

ACM Symposium on Applied Computing (SAC), Honolulu, Hawaii, USA,
pages 1294–1301, 2009.

[23] Daniel Slamanig, Agi Karyda, and Thomas Lorünser. Prismacloud–
privacy and security maintaining services in the cloud. ERCIM NEWS,
(104):46–46, 2016.

[24] Jiliang Tang, Huiji Gao, Huan Liu, and Atish Das Sarma. etrust:
Understanding trust evolution in an online world. In Proceedings of the
18th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’12, pages 253–261, New York, NY, USA, 2012.
ACM.

[25] Lidija Trailovic and Lucy Y Pao. Variance estimation and ranking
of gaussian mixture distributions in target tracking applications. In
Decision and Control, 2002, Proceedings of the 41st IEEE Conference
on, volume 2, pages 2195–2201. IEEE, 2002.

[26] Giulia Traverso, Denise Demirel, and Johannes A. Buchmann. Dynamic
and verifiable hierarchical secret sharing. In Information Theoretic
Security - 9th International Conference, ICITS 2016, Tacoma, WA, USA,
pages 24–43, 2016.

[27] Giulia Traverso, Denise Demirel, Sheikh Mahbub Habib, and Jo-
hannes A. Buchmann. As3: Adaptive social secret sharing for distributed
storage systems. In 14th Annual Conference on Privacy, Security and
Trust, PST 2016, Auckland, New Zealand, December 12-14, 2016, pages
528–535, 2016.

