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Abstract

This work considers statistical analysis of attacks on block ciphers using several linear approximations. A
general and unified approach is adopted. To this end, the general key randomisation hypotheses for multidi-
mensional and multiple linear cryptanalysis are introduced. Expressions for the success probability in terms of
the data complexity and the advantage are obtained using the general key randomisation hypotheses for both
multidimensional and multiple linear cryptanalysis and under the settings where the plaintexts are sampled
with or without replacement. Particularising to standard/adjusted key randomisation hypotheses gives rise to
success probabilities in 16 different cases out of which in only five cases expressions for success probabilities
have been previously reported. Even in these five cases, the expressions for success probabilities that we obtain
are more general than what was previously obtained. A crucial step in the analysis is the derivation of the
distributions of the underlying test statistics. While we carry out the analysis formally to the extent possible,
there are certain inherently heuristic assumptions that need to be made. In contrast to previous works which
have implicitly made such assumptions, we carefully highlight these and discuss why they are unavoidable.
Finally, we provide a complete characterisation of the dependence of the success probability on the data com-
plexity.
Keywords: multidimensional linear cryptanalysis, multiple linear cryptanalysis, chi-squared distribution, suc-
cess probability, data complexity, advantage.

1 Introduction

Linear cryptanalysis for block ciphers was introduced by Matsui in [21]. Matsui’s work spurred a great deal of
research and considered several aspects of linear cryptanalysis. At a broad level, the attacks are of two types.
The goal of one type of attack is to recover (a subset of the bits of) the secret key and such attacks are called
key recovery attacks. A different and weaker type of attack seeks to only distinguish the output of a block cipher
from uniform random bits. Such attacks are called distinguishing attacks. In this work, we will be concerned
only with key recovery attacks.

At a broad level, linear cryptanalysis proceeds in the following manner. A careful study of the block cipher
results in one or more linear approximations. During the data collection phase, N plaintexts P1, . . . , PN are
chosen and the corresponding ciphertexts under a secret but, fixed key are obtained. The key recovery algorithm
is applied to the obtained plaintext-ciphertext pairs and the output is a list of possible values of the (partial)
key. An attack is said to be successful if the correct value of the key is in the output list. For an attack, the
success probability is denoted by PS ; the data complexity is N ; and the attack has an advantage a, if the size of
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the output list is 2−a times the total number of (partial) keys. The goal of a statistical analysis of such a key
recovery attack is to obtain a relation between PS , N and a.

A formal statistical treatment of linear cryptanalysis has the following aspects.

Multiple versus multidimensional linear cryptanalysis: One issue is whether a single linear approxima-
tion is available or, whether several such linear approximations are available. In the later case, analysis is of
two types depending on whether the several linear approximations can be considered independent or not. If
the analysis is under the independent assumption, then the attack is often called multiple linear cryptanalysis
whereas if the independence assumption is not made, then the attack is often called multidimensional linear
cryptanalysis.

Sampling with or without replacement: For the attack, plaintexts P1, . . . , PN are randomly sampled and
the corresponding ciphertexts are obtained. One issue is whether the plaintexts are considered to be sampled
uniformly at random with replacement or, whether they are considered to be sampled uniformly at random
without replacement.

Key randomisation hypothesis: The linear approximations hold with certain probabilities. The basis for
the attack is that the probability corresponding to the right key is different from the probability corresponding to
a wrong key. In the standard key randomisation hypothesis, the probabilities corresponding to both the right and
the wrong key are assumed to be fixed. The adjusted or, revised (as termed in [7]) key randomisation hypothesis
assumes that the probabilities themselves are random variables.

Our Contributions

In this work, we consider the scenario when several linear approximations are available. Our goal is to express
PS in terms of N and a in each of the above mentioned settings. Table 1 lists all the 16 possible cases that can
arise and in each case mentions whether the case has been previously considered in the literature or whether it
is new. If a case has occurred earlier, then the corresponding reference is provided and the last column provides
the section number of this work where an expression for PS can be found. We observe that out of the 16 possible
cases, only 6 cases have been considered earlier and in 5 of these cases expressions for success probabilities have
been reported.

We provide a general and unified treatment to the extent possible and the 16 different cases are obtained
as special cases of the general treatment. The route that we take is similar to the route taken in [27] for single
linear cryptanalysis.

Linear cryptanalysis identifies a target sub-key and attempts to obtain the correct value of the target sub-key
in time less than an exhaustive search over all possible values of the whole secret key. At a broad level, linear
cryptanalysis applies a statistical test to each possible value of the target sub-key. Section 2 provides an overview
of linear cryptanalysis and identifies the test statistic that is to be used. The test statistic is parameterised by
the choice of the target sub-key and the distribution of the test statistic depends on whether the choice is right
or wrong. For a statistical analysis, it is required to obtain the distributions of the test statistic under both the
right and the wrong choices of the target sub-key.

The literature provides two approaches for analysing success probability, namely the order statistics based
approach and the hypothesis testing based approach. Assuming certain forms of the distributions of the test
statistic for the right and the wrong key choices, Section 3 obtains expressions for PS following both the order
statistic and the hypothesis testing based approaches. Certain problems with the order statistics based approach
which were earlier pointed out in [25, 27] are briefly summarised. It is shown that if some approximations are
applied to the expression for PS obtained using the hypothesis testing based approach then one obtains the
expression for PS obtained using the order statistics based approach. Since such approximations do not seem
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type samp. RKRH WKRH new previous PS new PS

md

wr

std std no [16] [16] Section 7.1.1

std adj yes – Section 7.1.2

adj std no [17] – Section 7.1.3

adj adj no [7] [7] Section 7.1.4

wor

std std yes – Section 7.1.1

std adj yes – Section 7.1.2

adj std yes – Section 7.1.3

adj adj no [7] [7] Section 7.1.4

m

wr

std std yes – Section 7.2.1

std adj yes – Section 7.2.2

adj std yes – Section 7.2.3

adj adj no [7] [7] Section 7.2.4

wor

std std yes – Section 7.2.1

std adj yes – Section 7.2.2

adj std yes – Section 7.2.3

adj adj no [7] [7] Section 7.2.4

Table 1: Here md (resp. m) denotes multidimensional (resp. multiple) linear cryptanalysis; wr (resp. wor) denotes
sampling with (resp. without) replacement. RKRH (resp. WKRH) is an abbreviation for right (resp. wrong)
key randomisation hypothesis; std (resp. adj) denotes whether the standard (resp. adjusted) key randomisation
hypothesis is considered.

to be necessary, the rest of the paper follows the expression for PS obtained using the hypothesis testing based
approach.

The literature has separately considered the standard and the adjusted key randomisation hypotheses. In
Section 4, we discuss the existing hypotheses and point out some heuristic assumptions in their formulation that
have been implicitly made in the literature. We propose a general right key randomisation hypothesis and a
general wrong key randomisation hypothesis and show that the existing key randomisation hypotheses can be
obtained as special cases of these two general hypotheses.

Section 5 takes up the crucial task of obtaining the distributions of the test statistic. These distributions
are obtained under the general right and wrong key randomisation hypotheses. The cases of multidimensional
and multiple linear cryptanalysis and that of sampling with and without replacement are treated separately.
For obtaining the distributions, we proceed formally to the extent possible. The derivation of the distributions,
however, requires several heuristic assumptions. We carefully identify these heuristics and discuss why these
cannot be replaced by formal analysis. Distributions of the test statistic under the right and wrong key have
been obtained earlier for particular cases. We remark that heuristic assumptions similar to those that we identify
have also been implicitly made in previous works.

Section 6 obtains expressions for PS under the general key randomisation hypotheses for the cases of multidi-
mensional/multiple linear cryptanalysis. It turns out that a compact expression for PS can be provided covering
both sampling with and without replacement. The expressions for PS are obtained by combining the distribu-
tions of the test statistics obtained in Section 5 with the expression for PS obtained in Section 3 following the
hypothesis testing framework.

Expressions for PS for the 16 possible cases mentioned in Table 1 are obtained in Section 6. These expressions
are obtained by specialising the general key randomisation hypotheses to either the standard or the adjusted
key randomisation hypothesis for both right and wrong key choices. As mentioned above, expressions for PS
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are obtained for the first time in 11 out of the 16 possible cases. In the remaining five cases, making several
approximations to the expressions for PS that are obtained in this work, it is possible to obtain the expressions
for PS obtained in earlier works. Since such approximations do not seem to be necessary, even in the remaining
five cases, the expressions for PS are more general than what was previously known.

Intuitively, one may assume that for a fixed value of the advantage a, the success probability is a monotonic
increasing function of the data complexity N . On the other hand, the expressions for PS show a complicated
dependence on N . Section 8 closely analyses the dependence of the success probability on N . To do this, the
general and compact expressions for PS obtained in Section 6 are used. A complete characterisation of the
nature of monotonicity of PS on N is obtained. This characterisation is then specialised to the particular cases
of standard/adjusted key randomisation hypothesis and sampling with/without replacement. To the best of
our knowledge, no previous work in the literature has carried out such an extensive analysis of the monotonic
behaviour of PS with respect to N .

Previous and Related Works

Linear cryptanalysis was introduced by Matsui [21]. An earlier work [30] had considered linear approximation
in the context of an attack on S-boxes of FEAL. The initial work of Matsui [21] considered using a single linear
approximation. A subsequent work [22] by Matsui himself showed how to improve linear cryptanalysis if two
linear approximations are available. Independently, Kaliski and Robshaw [20] also showed that the availability
of several linear approximations with certain restrictions leads to an improved attack. Both the attacks [22, 20]
considered the linear approximations to be independent. Further analysis under the independence assumption
of the linear approximations was later done in [4]. Murphy [23] observed that the independence assumption may
not be valid.

A series of papers [2, 3, 19] carried out a systematic investigation of multiple linear cryptanalysis where the
linear approximations are not necessarily independent. The motivation of these works was to analyse and obtain
optimal distinguishers to distinguish between two distributions. This was done using the framework of hypothesis
testing. Several important techniques, including the log-likelihood ratio test, were successfully developed to build
optimal distinguishers.

Matsui’s original work [21] employed a ranking approach to key recovery attacks. A subsequent work by
Selçuk [28] proposed a formal statistical treatment of this approach using the methodology of order statistics.
The work by Selçuk proved to be quite influential and the order statistics based approach was adopted in a
number of later papers [16, 5]. Selçuk’s work required an asymptotic result on normal approximation of order
statistic. A concrete error bound on the normal approximation was obtained in [25] and several problematic
issues with the order statistics approach were pointed out. The alternative hypothesis testing based approach to
analysing key recovery attacks was suggested in [25] and has been subsequently used in [7].

Treatment of key recovery attacks for multidimensional linear cryptanalysis without requiring any indepen-
dence assumption on the linear approximations was carried out by Hermelin, Cho and Nyberg [16]. This work
followed the order statistic based approach of Selçuk [28] and analysis of the same setting using the hypothesis
testing based approach was done in [25].

The standard wrong key randomisation hypothesis was formally introduced by Harpes et al. in [15]. The first
work to consider the adjusted key randomisation hypothesis was by Bogdanov and Tischhauser [11]. This was
in the setting of single linear cryptanalysis. The formulation of the adjusted key randomisation hypothesis was
based on an earlier work on statistical properties of uniform random permutation by Daemen and Rijmen [14].
A later work on adjusted key randomisation hypotheses for single linear approximation is by Ashur et al. [1]. A
general and unified treatment of success probability under general key randomisation hypotheses for single linear
cryptanalysis has been done in [27].

Extension of the adjusted right key randomisation hypothesis from single to multidimensional linear crypt-
analysis was considered in Huang et al. [17]. The work did not provide an expression for the success probability.
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Out of the 16 possible cases listed in Table 1, four cases were considered by Blondeau and Nyberg in [7] and
expressions for PS obtained in these cases. As mentioned earlier, these expressions are less general than the ones
that we obtain in the present work.

A related line of work [10, 12, 9, 8] considers zero correlation attacks. The notion of sampling without
replacement was first considered in the setting of multidimensional zero correlation attack [9]. In this paper, we
do not consider zero correlation attacks.

Much of the analysis in the context of linear cryptanalysis is based on approximations where the errors in the
approximations are not known. A more rigorous approach has been advocated in [24] where such approximations
are avoided and instead rigorous upper bounds on the data complexity are obtained. A test statistic whose
analysis avoids approximations and also avoids some of the problems associated with the generally used test
statistics has been proposed in [26].

2 Linear Cryptanalysis

Let the function E : {0, 1}k × {0, 1}n 7→ {0, 1}n denote a block cipher such that for each K ∈ {0, 1}k, EK(·) ∆
=

E(K, ·) is a bijection from {0, 1}n to itself. Here K is called the secret key. The n-bit input to the block cipher
is called the plaintext and n-bit output of the block cipher is called the ciphertext.

In general, block cipher constructions involve a simple round function parametrised by round key iterated
over several rounds. The round functions are bijections of {0, 1}n. Round keys are produced by applying
an expansion function, called the key scheduling algorithm, to the secret key K. Denote the round keys by

k(0), k(1), . . . and round functions by R
(0)

k(0)
, R

(1)

k(1)
, . . .. Also, let K(i) denote the concatenation of the first i round

keys, i.e., K(i) = k(0) || · · · || k(i−1) and E
(i)

K(i) denote the composition of the first i round functions, i.e.,

E
(1)

K(1) = R
(0)

k(0)
; E

(i)

K(i) = R
(i−1)

k(i−1) ◦ · · · ◦R
(0)

k(0)
= R

(i−1)

k(i−1) ◦ E
(i−1)

k(i−1) ; i ≥ 1.

A reduced round cryptanalysis of a block cipher targets r+ 1 rounds of the total number of rounds proposed by

the block cipher design. For a plaintext P , we denote by C the output after r + 1 rounds, i.e., C = E
(r+1)

K(r+1)(P ),

and by B the output after r rounds, i.e, B = E
(r)

K(r)(P ) and C = R
(r)

k(r)
(B). Throughout this paper, we will be

assuming an attack on the first r + 1 rounds of an iterated block cipher with r + 1 rounds.

Linear approximations: Block cipher cryptanalysis starts off with a detailed analysis of the block cipher.
This results in one or possibly more relations between the plaintext P , the input to the last round B and possibly
the expanded key K(r). In case of linear cryptanalysis these relations are linear in nature and are of the following
form:

〈Γ(i)
P , P 〉 ⊕ 〈Γ

(i)
B , B〉 = 〈Γ(i)

K ,K
(r)〉; i = 1, 2, . . . , `;

where Γ
(i)
P ,Γ

(i)
B ∈ {0, 1}n and Γ

(i)

K(r) ∈ {0, 1}nr denote the plaintext mask, the mask to the input of the last round
and the key mask. A linear relation of the form above is called a linear approximation of the block cipher. These
linear approximations usually hold with some probability which is taken over random choices of the plaintext
P . In case ` > 1, it is required to work with the corresponding joint distribution. Obtaining such relations and
their joint distribution is a non-trivial task and requires a lot of ingenuity and experience. They form the basis
on which the statistical analysis of block ciphers are built. In this work we will only consider ` > 1. There are
two cases.

Multiple linear cryptanalysis: The linear approximations are assumed to be independent.

Multidimensional linear cryptanalysis: The linear approximations are not assumed to be independent.
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Let
Li

∆
= 〈Γ(i)

P , P 〉 ⊕ 〈Γ
(i)
B , B〉; for i = 1, 2, . . . , `. (1)

Inner key bits: Let

zi = 〈Γ(i)
K ,K

(r)〉; i = 1, . . . , `.

Note that for a fixed but unknown key K(r), zi represents a single unknown bit. Denote by z = (z1, . . . , z`) the

collection of the bits arising in this manner. Since, all the ` key masks Γ
(1)
K , . . . ,Γ

(`)
K are known, the tuple z is

determined only by the unknown but fixed K(r). Hence, there is no randomness either of K(r) or z. We call z
as the inner key bits.

Target sub-key bits: Any linear relation between P and B of the form (1) usually involves only a subset of
the bits of B. When ` > 1, several relations between P and B are known. In such cases, it is required to consider
the subset of the bits of B which covers all the relations. In order to obtain these bits from the ciphertext C it
is required to (partially) decrypt C by one round. This involves a subset of the bits of the last round key k(r).
We call this subset of bits of k(r) as the target sub-key.

Recall that the ciphertext C is obtained by encrypting P using the secret key K. Let κ∗ denote the value of
the target sub-key corresponding to the secret key K. The goal of linear cryptanalysis is then to find the correct
value of the target sub-key κ∗ using the ` linear approximations and their (joint or marginal) distributions.

Denote the size of the target sub-key by m. In other words, these m key bits are sufficient to partially decrypt
C by one round and obtain the bits of B involved in any of the ` linear approximations. There are 2m possible
choices of the target sub-key out of which only one correct. The purpose of the attack is to identify the correct
key.

Joint distribution parametrised by inner key bits: Let the plaintext P be chosen uniformly at random
from {0, 1}n; C be the ciphertext obtained after encrypting with the secret key K; and B the result of partial
decryption of C with a choice κ of the target sub-key. The random variable B depends on the choice κ used to
invert C partially by one round whereas the ciphertext C depends on the correct choice κ∗ of the target sub-key
and hence so does B. So the random variable Li depends on both κ and κ∗. Hence, to emphasise this dependence
we write Lκ,κ∗,i for κ 6= κ∗ and simply write Lκ∗,i for κ = κ∗. Define the random variables Xκ,κ∗ and Xκ∗ as
follows:

Xκ,κ∗ = (Lκ,κ∗,1, . . . , Lκ,κ∗,`) and Xκ∗,i = (Lκ∗,1, . . . , Lκ∗,`).

Also, define the joint distribution of the random variables Xκ,κ∗ ⊕ z and Xκ∗ ⊕ z to be

qκ,κ∗,z(η) = Pr[Lκ,κ∗,1 = η1 ⊕ z1, . . . , Lκ,κ∗,` = η` ⊕ z`] =
1

2`
+ εκ,κ∗,η(z); (2)

and

pκ∗,z(η) = Pr[Lκ∗,1 = η1 ⊕ z1, . . . , Lκ∗,` = η` ⊕ z`] =
1

2`
+ εκ∗,η(z) (3)

respectively, where−1/2` ≤ εκ,κ∗,η(z), εκ∗,η(z) ≤ 1−1/2`. Denote by q̃κ,κ∗,z = (qκ,κ∗,z(0), qκ,κ∗,z(1), . . . , qκ,κ∗,z(2
`−

1)) and p̃κ∗,z = (pκ∗,z(0), pκ∗,z(1), . . . , pκ∗,z(2
` − 1)) the corresponding probability distributions, where the inte-

gers {0, 1, . . . , 2` − 1} are identified with the set {0, 1}`. For each choice of z, we obtain a different but related
distribution. Let z′ = z ⊕ β for some β ∈ {0, 1}`. It is easy to verify that εκ,κ∗,η(z

′) = εκ,κ∗,η⊕β(z) and
εκ∗,η(z

′) = εκ∗,η⊕β(z), which implies that

qκ,κ∗,z⊕β(η) = qκ,κ∗,z(η ⊕ β) and pκ∗,z⊕β(η) = pκ∗,z(η ⊕ β). (4)
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Let p̃κ∗ and q̃κ,κ∗ denote the probability distributions p̃κ∗,0` and q̃κ,κ∗,0` , respectively. We write

q̃κ,κ∗ = (qκ,κ∗(0), . . . , qκ,κ∗(2` − 1)) and p̃κ∗ = (pκ∗(0), . . . , pκ∗(2` − 1)). (5)

For i = 1, . . . , `, define

qκ,κ∗,i = Pr[Lκ,κ∗,i = 1] and pκ∗,i = Pr[Lκ∗,i = 1]. (6)

Statistical model of the attack: Let P1, . . . , PN , with N ≤ 2n, be N plaintexts chosen randomly from the
set {0, 1}n of all possible plaintexts and assume that these N plaintexts follow some distribution over the set
{0, 1}n. Also assume that the adversary possess N plaintext-ciphertext pairs (Pj , Cj); j = 1, 2, . . . , N , such that
Cj = EK(Pj) for some fixed key K. Given N plaintext-ciphertext pairs, the goal of the adversary is then to find
κ∗ in time faster than a brute force search on all possible keys of the block cipher.

For each choice κ of the target sub-key it is possible for the attacker to partially decrypt each Cj by one
round to obtain Bκ,j ; j = 1, 2, . . . , N . Note that Bκ,j is dependent on κ even though Cj may not be. For κ = κ∗,
Cj clearly depends on κ, whereas for the κ 6= κ∗, Cj has no relationship with κ. Define,

Lκ,i,j = 〈Γ(i)
P , Pj〉 ⊕ 〈Γ

(i)
B , Bκ,j〉, (7)

Xκ,z,j = (Lκ,1,j ⊕ z1, . . . , Lκ,`,j ⊕ z`), (8)

Qκ,z,η = #{j ∈ {1, 2, . . . , N} : Xκ,z,j = η}, (9)

where κ ∈ {0, 1, 2, . . . , 2m − 1}; z1, . . . , z` ∈ {0, 1}; j = 1, 2, . . . , N ; i = 1, 2, . . . , `. Note that∑
η∈{0,1}`

Qκ,z,η = N. (10)

The condition Xκ,z⊕β,j = η is written as

(Lκ,1,j ⊕ z1 ⊕ β1, . . . , Lκ,`,j ⊕ z` ⊕ β`) = η

⇒ (Lκ,1,j ⊕ z1, . . . , Lκ,`,j ⊕ z` ⊕ β`) = η ⊕ β
⇒ Xκ,z,j = η ⊕ β,

where β = (β1, . . . , β`). Therefore,
Qκ,z⊕β,η = Qκ,z,η⊕β. (11)

The variable Xκ,z,j is determined by the pair (Pj , Cj), the choice κ of the target sub-key and the choice
z of the inner key bits. Recall that Cj depends upon K and hence upon κ∗ which implies that Xκ,z,j also
depends upon κ∗ through Cj . The randomness of Xκ,z,j arises from the randomness in Pj and also possibly from
the randomness of the previous P1, . . . , Pj−1. In fact it depends on how P1, . . . , PN are sampled from {0, 1}n.
Therefore Pr[Xκ,z,j = η] potentially depends upon the following quantities:

z : the choice of the inner key bits;
pκ∗,z(η) or pκ,κ∗,z(η) : the probabilities of linear approximations as given in (2) and (3).
j : the index determining the pair (Pj , Cj).

This models a general scenario which captures a possible dependence on the index j. The dependence on j will
be determined by the joint distribution of the plaintexts P1, . . . , PN . In the case that P1, . . . , PN are independent
and uniformly distributed, Pr[Xκ,z,j = η] does not depend on j. On the other hand, suppose that P1, . . . , PN are
sampled without replacement. In such a scenario, Pr[Xκ,z,j = η] does depend on j.
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Test statistic for multidimensional linear cryptanalysis: For each choice κ of the target sub-key and the
inner key bits z, let Tκ,z ≡ T (Xκ,z,1, . . . , Xκ,z,N ) denote the test statistic.

Tκ,z =
∑

η∈{0,1}`

(
Qκ,z,η −N2−`

)2
N2−`

.

Then

Tκ,z⊕β =
∑

η∈{0,1}`

(
Qκ,z⊕β,η −N2−`

)2
N2−`

=
∑

η∈{0,1}`

(
Qκ,z,η⊕β −N2−`

)2
N2−`

; [By (11)]

=
∑

η⊕β∈{0,1}`

(
Qκ,z,η −N2−`

)2
N2−`

=
∑

η∈{0,1}`

(
Qκ,z,η −N2−`

)2
N2−`

= Tκ,z.

So Tκ,z is independent of z. Therefore it is sufficient to consider z = 0`. To simplify notation, we will write Tκ
instead of Tκ,z. Therefore,

Tκ =
∑

η∈{0,1}`

(
Qκ,η −N2−`

)2
N2−`

. (12)

There are 2m choices of κ, which give rise to 2m random variables Tκ. The distribution of Tκ depends on whether
κ is correct or incorrect. For statistical analysis of an attack, it is required to obtain the distribution of Tκ under
both correct and incorrect choices of the target sub-key. Later we will consider this issue in more details.

Remark: Recall that, since there is no randomness over K(r), the bits zi’s also have no randomness even though
they are unknown. Therefore the distribution of Lκ,i,j ⊕ zi is completely determined by the distribution of Lκ,i,j .

Test statistic for multiple linear cryptanalysis: In this case, the linear approximations are assumed to be
independent. As a result, it is possible to define a simpler test statistic. For each choice κ of the target sub-key
and inner key bits z = (z1, . . . , z`), let

Yκ,z,i,j = Lκ,i,j ⊕ zi and Yκ,z,i =

N∑
j=1

Yκ,z,i,j ,

where i = 1, . . . , ` and j = 1, . . . , N . For z = 0`, we simply write Yκ,i,j and Yκ,i instead of Yκ,z,i,j and Yκ,z,i
respectively. Let β = (β1, . . . , β`). If βi = 0, then Yκ,z⊕β,i,j = Yκ,z,i; if βi = 1, then Yκ,z⊕β,i,j = 1−(Lκ,i,j ⊕ zi) and
Yκ,z⊕β,i = N−Yκ,z,i. Consequently, for any β, (Yκ,z,i−N/2)2 = (Yκ,z⊕β,i−N/2)2. Let Tκ,z ≡ T (Xκ,z,1, . . . , Xκ,z,N )
denote the test statistic

Tκ,z =
∑̀
i=1

(Yκ,z,i −N/2)2

N/4
.

For β = (β1, . . . , β`),

Tκ,z⊕β =
∑̀
i=1

(Yκ,z⊕β,i −N/2)2

N/4
=
∑̀
i=1

(Yκ,z,i −N/2)2

N/4
= Tκ,z.
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So, Tκ,z is independent of β and as in the multidimensional case, it is sufficient to consider z = 0`. We will write
Tκ instead of Tκ,0` and this is defined as follows.

Tκ =
∑̀
i=1

(Yκ,i −N/2)2

N/4
. (13)

Success probability: An attack will produce a set (or a list) of candidate values of the target sub-key. The
attack is considered successful if the correct value of the target sub-key κ∗ is in the output set. The probability
of this event is called the success probability of the attack.

Advantage: An attack is said to have advantage a if the size of the set of candidate values of the target
sub-key is equal to 2m−a. In other words, a fraction 2−a portion of the possible 2m values of the target sub-key
is produced by the attack.

Data complexity: The number N of plaintext-ciphertext pairs required for an attack is called the data
complexity of the attack. Clearly, N depends on the success probability PS and the advantage a. One of the
goals of a statistical analysis is to be able to obtain a closed form relation between N , PS and a.

Additional Notation

Capacity: Let p̃ = (p0, . . . , p2`−1) be a probability distribution over {0, 1}`. The multidimensional capacity
C(md)(p̃) is defined as

C(md)(p̃) = 2`
2`−1∑
i=0

(pi − 2−`)2 = 2`
2`−1∑
i=0

ε2i (14)

where ε = pi − 2−`. When p̃ is clear from the context, we will simply write C(md) instead of C(md)(p̃).
There is a corresponding notion [7] which is useful in the case of multiple linear cryptanalysis. Let p̃ =

(p1, . . . , p`) be such that 0 ≤ pi ≤ 1, i = 1, . . . , `; then C(m)(p̃) is defined to be

C(m)(p̃) =
∑̀
i=1

4 (pi − 1/2)2 =
∑̀
i=1

4ε2i (15)

where ε = pi − 1/2. When p̃ is clear from the context, we will simply write C(m) instead of C(m)(p̃).

Normal distribution: By N (µ, σ2) we will denote the normal distribution with mean µ and variance σ2. The
density function of N (µ, σ2) will be denoted by f(x;µ, σ2). The density function of the standard normal will be
denoted by φ(x) while the distribution function of the standard normal will be denoted by Φ(x).

Chi-squared distribution: The probability density function of a central chi-square distribution with ν degrees
of freedom will be denoted by χ2

ν(x) and its corresponding cumulative density function will be denoted by Ψν(x).
The density function of a non-central chi-square distribution with ν degrees of freedom and a non-centrality
parameter δ will be denoted by χ2

ν,δ(x) and its cumulative density function will be denoted by Ψν,δ(x).
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3 Two Approaches for Deriving Success Probability

The test statistic for the multidimensional case is given in (12) and for the multiple case is given in (13). To
obtain the success probability of an attack it is required to obtain the corresponding distributions of Tκ for the
two scenarios κ = κ∗ and κ 6= κ∗. Suppose that the following holds.

Tκ∗ ∼ N (µ0, σ
2
0); Tκ/ω ∼ χ2

ν , κ 6= κ∗, (16)

where ω > 0 is a constant.
In this section, we consider the derivation of the success probability in terms of µ0, σ2

0, ν and ω. Later, we
will see how to obtain µ0, σ2

0, ν and ω. In particular, we will see that δ depends on N whereas ν depends on the
number of linear approximations `.

From (16), there are two approaches to deriving success probability which we discuss below.

3.1 Order Statistics Based Analysis

This approach is based on a ranking methodology used originally by Matsui [21] and later formalised by
Selçuk [28]. The idea is the following. There are 2m random variables Tκ corresponding to the 2m possible
values of the target sub-key. Suppose the variables are denoted as T0, . . . , T2m−1 and assume that T0 corresponds
to the choice of the correct target sub-key κ∗. Let T(1), . . . , T(2m−1) be the order statistics of T1, . . . , T2m−1, i.e.,
T(1), . . . , T(2m−1) is the ascending order sort of T1, . . . , T2m−1. So, the event corresponding to a successful attack
with a-bit advantage is T0 > T(2mq), where q = 1− 2−a.

Using a well known result on order statistics, the distribution of T(2mq) can be assumed to approximately

follow N (µq, σ
2
q ) where µq = Ψ−1

ν (1 − 2−a−1) and σ2
q = 2−(m+a)(1−2−a)

χ2
ν(µq)

. For the asymptotic version of the result

refer to [31] and for a concrete error bound refer to [25]. Further assuming that T0 and T(2mq) are independent
the success probability PS can be approximated in the following manner.

PS = Pr[T0 > T(2mq)] = Pr[T0 − T(2mq) > 0]

≈ 1− Φ

−(µ0 − µq)√
σ2

0 + σ2
q

 = Φ

 µ0 − µq√
σ2

0 + σ2
q


= Φ

µ0 −Ψ−1
ν (1− 2−a−1)√
σ2

0 + σ2
q

 ; (17)

where µ0 = E[T0] = E[Tκ∗ ] = ν + δ and σ2
0 = E[(T0 − µ0)2] = E[(Tκ∗ − µ0)2] = 2(ν + 2δ).

Some criticisms: The order statistics based approach is crucially dependent on the normal approximation
of the distribution of the order statistics. A key observation is that the order statistics result is applied to
2m random variables and for the result to be applied even in an asymptotic context, it is necessary that 2m is
sufficiently large. In [25] a close analysis of the hypothesis of the theorem and the error bound in the concrete
setting showed that both m and m− a must be large. In particular, to ensure that the approximation error is at
most around 10−3, it is required that m − a should be at least around 20 bits. Since a is the advantage of the
attack, the applicability of the order statistics based analysis for attacks with high advantage is not clear.

For the analysis to be meaningful one needs to make two further independence assumptions which were
implicitly used by Selçuk in [28]. This issue has been pointed out in [27].
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1. The hypothesis of the result on the normal approximation of order statistics requires the random variables
T1, T2, . . . , T2m−1 to be independent and identically distributed. The randomness of all of these random vari-
ables arise from the randomness of P1, . . . , PN and so these random variables are certainly not independent.
As a result, the independence of these random variables is a heuristic assumption.

2. It is assumed that T0−T(2mq) follows a normal distribution. A sufficient condition for T0−T(2mq) to follow
a normal distribution is that T0 and T(2mq) are independent normal variates. Since the randomness of both
T0 and T(2mq) arise from the randomness in P1, . . . , PN , they are clearly not independent. As a result, the
assumption that T0 − T(2mq) follows a normal distribution is also a heuristic assumption.

The net effect of the above two assumptions is that the test statistics corresponding to different choices of the
sub-key are independent.

3.2 Hypothesis Testing Based Analysis

Statistical hypothesis testing for analysing block cipher cryptanalysis was carried out in [2] in the context of
distinguishing attacks. For analysing linear cryptanalysis based key recovery attacks, the hypothesis testing
based approach was used in [25] as a method for overcoming some of the theoretical limitations of the order
statistics based analysis. Subsequently, hypothesis testing based approach for analysing key recovery attacks in
the context of key dependent assumptions was performed in [7].

The idea of the hypothesis testing based approach is simple and intuitive. For each choice κ of the target
sub-key, let H0 be the null hypothesis that κ is correct and H1 be the alternative hypothesis that κ is incorrect.
The test statistic Tκ is used to test H0 against H1 where the distributions of Tκ are as in (16) for both κ = κ∗

and κ 6= κ∗. From (16), we get E[Tκ∗ ] = µ0 and E[Tκ] = ν. Later on we will see that µ0 = ν + δ, where δ > 0 is
a constant. Since E[Tκ∗ ] = µ0 > ν = E[Tκ], the following hypothesis test is considered.

H0 : κ is correct; versus H1 : κ is incorrect.
Decision rule: Reject H0 if Tκ ≤ t.

}
(18)

Here t is a threshold whose exact value is determined depending on the desired success probability and advantage.
The idea of the test is the following. The mean µ0 under H0 is greater than the mean ν under H1, so, if the
value of the test statistic is lesser than a certain threshold, it is guessed that H0 does not hold.

Such a hypothesis test gives rise to two kinds of errors: H0 is rejected when it holds which is called the Type-1
error; and H0 is accepted when it does not hold which is called the Type-2 error. If a Type-1 error occurs, then
κ = κ∗ is the correct value of the target sub-key but, the test rejects it and so the attack fails to recover the
correct value. The attack is successful if and only if Type-1 error does not occur. So, the success probability
PS = 1 − Pr[Type-1 error]. On the other hand, for every Type-2 error, an incorrect value of κ gets labelled as
a candidate key. As a result, the number of times that Type-2 errors occurs is the size of the list of candidate
keys.

Theorem 1. Let κ∗ ∈ {0, 1}m. For κ ∈ {0, 1}m, let Tκ be 2m random variables, where Tκ∗ ∼ N (µ0, σ
2
0), and for

κ 6= κ∗, Tκ/ω ∼ χ2
ν for some constant ω > 0. Suppose the hypothesis test given in (18) is applied to Tκ for all

κ ∈ {0, 1}m. Let PS = 1−Pr[Type-1 error] and the expected number of times that Type-2 errors occurs is 2m−a.
Then

PS = Φ

(
µ0 − ωγ
σ0

)
(19)

where γ = Ψ−1
(

1− 2m−a−1

2m−1

)
.
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Proof. Let α = Pr[Type-1 error] and β = Pr[Type-2 error] and so PS = 1−α. For each κ 6= κ∗, let Zκ be a binary
valued random variable which takes the value 1 if and only if a Type-2 error occurs for κ. So, Pr[Zκ = 1] = β.
The size of the list of candidate keys returned by the test is

∑
κ6=κ∗ Zκ and so the expected size of the list of

candidate keys is

E

∑
κ6=κ∗

Zκ

 =
∑
κ6=κ∗

E [Zκ] =
∑
κ6=κ∗

Pr[Zκ = 1] = (2m − 1)β. (20)

The expected number of times that Type-2 errors occurs is 2m−a. So,

β =
2m−a

2m − 1
. (21)

The Type-1 and Type-2 error probabilities are calculated as follows.

α = Pr[Type-1 error]

= Pr[Tκ ≤ t|H0 holds]

= Pr[Tκ∗ ≤ t]

= Φ

(
t− µ0

σ0

)
; (22)

β = Pr[Type-2 error]

= Pr[Tκ > t|H1 holds] = Pr[Tκ/ω > t/ω|H1 holds]

= 1−Ψν(t/ω). (23)

Using β = 2m−a/(2m − 1) in (23), we obtain

t = ωΨ−1
ν

(
1− 2m−a−1

2m − 1

)
= ωγ. (24)

Substituting t in (22) and noting that PS = 1− α, we obtain

PS = Φ

(
µ0 − ωγ
σ0

)
.

Remarks:

1. Note that γ = Ψ−1
(
1− 2m−a−1/(2m − 1)

)
≥ 0.

2. The computation in (20) does not require the Zκ’s or the Tκ’s to be independent.

3. The theoretical limitations of the order statistics based analysis (namely, m and m − a are large and the
heuristic assumption that the Tκ’s are independent) are not present in the hypothesis testing based analysis.

4. Comparing (19) to (17), we find that the two expressions are equal under the following three assumptions:

(a) 2m/(2m − 1) ≈ 1: this holds for moderately large values of m, but, is not valid for small values of m.

(b) σ0 � σq: this assumption was used in [28].

(c) ω ≈ 1.

In the rest of the work, we will use (19) as the expression for the success probability.
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4 General Key Randomisation Hypotheses

At this point it is important to make the distinction between multiple and multidimensional linear cryptanalysis as
it appears in the literature. Multiple linear cryptanalysis [4] refers to linear attacks using ` linear approximations
where the linear approximations are assumed to be statistically independent. Whereas in multidimensional linear
cryptanalysis [16] the attacker exploits all linear approximations with linear masks (ΓP ,ΓB) 6= (0, 0) in a linear
space. In other words, in multidimensional linear cryptanalysis the linear approximations are not assumed to
be statistically independent. Therefore, in case of multidimensional linear cryptanalysis the attacker works with
the joint distribution of the ` linear approximations whereas in case of multiple linear cryptanalysis the attacker
works with the marginal distributions.

Recall the definitions of qκ,κ∗(η) and pκ∗(η) from (5). The corresponding biases are εκ,κ∗(η) and εκ∗(η). For
obtaining the distributions of Tκ∗ and Tκ, κ 6= κ∗, it is required to hypothesise the behaviour of pκ∗(η) and
qκ,κ∗(η), respectively.

4.1 General Multidimensional Key Randomisation Hypotheses

The two standard multidimensional key randomisation hypotheses are the following.

Standard multidimensional right key randomisation hypothesis: For every choice of κ∗,
pκ∗(η) = pη, such that 0 < pη < 1 and

∑
η∈{0,1}` pη = 1.

Standard multidimensional wrong key randomisation hypothesis: For every choice of κ∗

and κ 6= κ∗, qκ,κ∗(η) = 2−` for all η ∈ {0, 1}`.

The standard wrong key randomisation hypothesis for ` = 1 was formally considered in [15] and later generalised
to ` > 1 in [16]. Based on the work in [14] the standard wrong key randomisation for ` = 1 was modified in [11]
and for ` > 1 in [7]. An earlier version [6] of [7] uses the following formulation.

Adjusted multidimensional wrong key randomisation hypothesis: For each κ 6= κ∗, η ∈
{0, 1}`, qκ,κ∗(η) ∼ N

(
1
2`
, 1

2n+`

(
1− 1

2`

))
and qκ,κ∗(0), . . . , qκ,κ∗(2` − 1) are independent.

Remarks:

1. In this hypothesis, there is no explicit dependence of the bias on either κ or κ∗.

2. As qκ,κ∗(η) is a probability, 0 ≤ qκ,κ∗(η) ≤ 1. On the other hand, a random variable following a normal
distribution can take any real value. So, the above hypothesis may lead to qκ,κ∗(η) taking a value outside
the range [0, 1] which is not meaningful. As a result, the adjusted wrong key randomisation hypothesis
must necessarily be considered to be a heuristic assumption.

3. The probability that qκ,κ∗(η) takes values outside of [0, 1] can be bounded as follows.

Pr[qκ,κ∗(η) < 0 or qκ,κ∗(η) > 1]

= Pr[qκ,κ∗(η) < 0] + Pr[qκ,κ∗(η) > 1]

= Pr[qκ,κ∗(η)− 2−` < −2−`] + Pr[qκ,κ∗(η)− 2−` > 1− 2−`]

≤ Pr[|qκ,κ∗(η)− 2−`| < 2−`] + Pr[|qκ,κ∗(η)− 2−`| > 1− 2−`]

≤ 1

2n+`

(
1− 1

2`

)
× 1

2−2`
+

1

2n+`

(
1− 1

2`

)
× 1

(1− 2−`)2
[By Chebyshev’s inequality]

=
2` − 1

2n
+

1

2n(2` − 1)
≤ 2−(n−`) +

1

2n(2` − 1)

≈ 2−(n−`) + 2−(n+`).
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In other words, qκ,κ∗(η) takes values outside [0, 1] with exponentially low probability, provided that n − `
is large; if n− ` is not too large, then the probability is not negligible.

Modification of the right key randomisation hypothesis was first considered in [17] in the context of multi-
dimensional linear cryptanalysis. In [17], Theorem 22 of [13] was taken as the right key hypotheses, i.e., it was
assumed that even for the right choice of the target sub-key, the probability of a linear approximation follows a
normal distribution. This assumption was later used in [7] and the following can be stated.

Adjusted multidimensional right key randomisation hypothesis: For all η ∈ {0, 1}`,
pκ∗(η) ∼ N

(
pη, σ

2
)
, where 0 < pη < 1 is a constant such that

∑
η∈{0,1}` pη = 1 and each subset

of 2` − 1 random variables out of 2` possible random variables qκ,κ∗(η) are independent and this set
determines the remaining random variable uniquely.

Remarks:

1. The first two remarks for adjusted multidimensional wrong key randomisation hypothesis also holds for
adjusted multidimensional right key randomisation hypothesis.

2. Since the form of σ2 is not given nothing can be said about the probability that pκ∗(η) lies outside [0, 1].

3. The random variables pκ∗(0), . . . , pκ∗(2`−1) are not assumed to be independent. On the other hand, while
the marginals are assumed to follow normal distribution, no assumption is made on the joint distribution.
The normality of the marginals do not imply that the joint distribution is also normal.

4. The assumption that each possible subset of 2` − 1 random variables out of 2` possible random variables
pκ∗(η) are independent is a heuristic assumption. The rationale for this assumption is perhaps to justify
that the distribution of the test statistic under the right key follows a non-central chi-squared distribution.
This assumption, however, is not sufficient for this purpose, as we discuss later.

Let C be the expected value of 2`
∑

η∈{0,1}`(pκ∗(η)− 2−`)2, i.e.,

C = 2`
∑

η∈{0,1}`
E[(pκ∗(η)− 2−`)2]. (25)

In [7], the value of σ2 in the adjusted right key randomisation hypothesis is expressed in terms of C and the
capacity C(md) in the following manner.

C = 2`
∑

η∈{0,1}`
E[(pκ∗(η)− 2−`)2]

= 2`
∑

η∈{0,1}`
E[(pκ∗(η)− pη)2 + (pη − 2−`)2 + 2(pη − 2−`)(pκ∗(η)− pη)]

= 22`σ2 + C(md)

⇒ σ2 =
C − C(md)

22`
. (26)

Motivated by the description of the standard and adjusted right and wrong key randomisation hypotheses
in [7] we formulate the following general multidimensional key randomisation hypotheses for both the right and
the wrong key.
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General multidimensional right key randomisation hypothesis: For all η ∈ {0, 1}`, pκ∗(η) ∼
N
(
pη, s

2
0

)
, where 0 < pη < 1 is a constant such that

∑
η∈{0,1}` pη = 1 and each subset of 2` − 1

random variables out of 2` possible random variables pκ∗(η) are independent and this set determines
the remaining random variable uniquely. Further, s2

0 ≤ 2−n.
General multidimensional wrong key randomisation hypothesis: For each κ 6= κ∗, η ∈
{0, 1}`, qκ,κ∗(η) ∼ N

(
1
2`
, s2

1

)
, where s2

1 ≤ 2−n; and qκ,κ∗(0), . . . , qκ,κ∗(2` − 1) are independent.

The heuristic nature of the adjusted right and wrong key hypotheses discussed earlier also hold for the general
hypotheses.

1. As s1 ↓ 0, the random variable qκ,κ∗(η) becomes degenerate and takes the value 2−`. In this case, the general
multidimensional wrong key randomisation hypothesis becomes the standard multidimensional wrong key
randomisation hypotheses.

2. For s2
1 = 1

2n+`

(
1− 1

2`

)
, the general multidimensional wrong key randomisation hypothesis becomes the

adjusted multidimensional wrong key randomisation hypothesis.

3. As s0 ↓ 0, the general multidimensional right key randomisation hypothesis reduces to the standard multi-
dimensional right key randomisation hypothesis.

4. For s2
0 = σ2, the general multidimensional right key randomisation hypothesis becomes the adjusted mul-

tidimensional right key randomisation hypothesis.

4.2 General Multiple Key Randomisation Hypotheses

For a single linear approximation, the standard/adjusted/general wrong and right key randomisation hypotheses
have been proposed in the literature [15, 11, 27]. The extension to multiple linear cryptanalysis is essentially
extending to several independent linear approximations. This requires making assumptions on pκ∗,i and qκ,κ∗,i
given by (6).

The standard multiple right and wrong key randomisation hypotheses were first considered in [4] and can be
stated as follows.

Standard multiple right key randomisation hypothesis: For each choice of κ∗ and for i =
1, . . . , `, pκ∗,i = pi with 0 < pi < 1.
Standard multiple wrong key randomisation hypothesis: For each choice of κ∗ and κ 6= κ∗,
and for i = 1, . . . , `, qκ,κ∗,i = 1/2.

Based on [14], the multiple wrong key randomisation hypothesis was modified in [6] (which is an earlier version
of [7]) in the following manner.

Adjusted multiple wrong key randomisation hypothesis: For each κ 6= κ∗ and for i = 1, . . . , `,
qκ,κ∗,i

i.i.d.∼ N
(

1
2 , 2
−n−2

)
.

Remarks: The remarks given below are essentially extensions of similar comments given in [27] in the context of
single linear approximation.

1. There is no explicit dependence of the bias on either κ or κ∗.

2. As qκ,κ∗,i is a probability it takes values from [0, 1]. On the other hand, a random variable following a
normal distribution can take any real value. So, similar to the multidimensional case, here also, the above
hypothesis may lead to qκ,κ∗,i taking a value outside the range [0, 1] which is not meaningful. Hence, the
adjusted wrong key randomisation hypothesis must necessarily be considered to be a heuristic assumption.
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3. The variance 2−n is an exponentially decreasing function of n and by Chebyshev’s inequality Pr[|qκ,κ∗,i −
1/2| > 1/2] ≤ 4 · 2−n−2 = 2−n. In other words, qκ,κ∗,i takes values outside [0, 1] with exponentially low
probability.

Modification of the standard right key randomisation hypothesis in the context of multiple linear approxima-
tion was considered in [7]. The formulation given below follows [6].

Adjusted multiple right key randomisation hypothesis: For all κ∗ and for i = 1, . . . , `,
pκ∗,i

i.i.d.∼ N
(
pi, σ

2
)
.

Remarks: The first two remarks for the adjusted multiple wrong key randomisation hypothesis also hold in this
case. As the mathematical form of σ2 is not given, nothing can be said about the probability that a particular
pκ∗,i lies outside [0, 1].

Motivated by the description of the standard and adjusted right and wrong key randomisation hypotheses
in [7] we formulate the following general multiple key randomisation hypotheses for both the right and the wrong
key.

General multiple right key randomisation hypothesis: For all κ∗ and for i = 1, . . . , `; pκ∗,i
i.i.d.∼

N
(
pi, s

2
0

)
, where pi ∈ [0, 1] and s2

0 ≤ 2−n.
General multiple wrong key randomisation hypothesis: For all κ∗ and κ 6= κ∗, and for
i = 1, . . . , `; qκ,κ∗,i

i.i.d.∼ N
(

1
2 , s

2
1

)
, where s2

1 ≤ 2−n.

The heuristic nature of the adjusted right and wrong key hypotheses discussed earlier also hold for the general
hypotheses. We note the following.

1. As s0 ↓ 0, the random variable pκ∗,i becomes degenerate and takes the value of the constant pi. In this
case, the general multiple right key randomisation hypothesis becomes the standard multiple right key
randomisation hypothesis.

2. For s2
0 = σ2, the general multiple right key randomisation hypothesis becomes the adjusted multiple right

key randomisation hypothesis.

3. As s1 ↓ 0, the random variable qκ,κ∗,i becomes degenerate and takes the value 1/2. In this case, the general
multiple wrong key randomisation hypothesis becomes the standard multiple wrong key randomisation
hypothesis.

4. For s2
1 = 2−n−2, the general multiple wrong key randomisation hypothesis becomes the adjusted multiple

wrong key randomisation hypothesis.

4.3 Differences with the Formulation of the Various Hypotheses in [7]

We have postulated the various hypotheses as conditions on pκ∗ and qκ,κ∗ given by (5) in the case of multidi-
mensional linear cryptanalysis and as conditions on pκ∗,i and qκ,κ∗,i given by (6) in the case of multiple linear
cryptanalysis. This follows the approach taken in an earlier version [6] of [7]. The hypotheses in the published
version [7] are of the following types.

1. For the multidimensional case, the adjusted right key randomisation hypothesis is formulated as an as-
sumption on pκ∗ as in the earlier version [6] while the adjusted wrong key randomisation hypothesis is
formulated as an assumption on Qκ,η −N2−`.

2. For the multiple case, the adjusted right key randomisation hypothesis is formulated as an assumption on
Yκ∗,i − N/2 while the adjusted wrong key randomisation hypothesis is formulated as an assumption on
Yκ,i −N/2.
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So, in [7], out of four cases, in one case the assumption is on underlying probability while in the other three
cases, the assumptions are on derived random variables. In our opinion, if one follows the work in [14], then the
assumptions should be on the underlying probabilities rather than on the derived random variables. That is why
we have chosen to state the hypotheses as formulated in [6].

We emphasise that the general formulation that we present here and the detailed consideration of the heuristic
nature of these hypotheses do not appear either in [6] or in [7].

5 Heuristic Distributions of the Test Statistics

The form of the test statistic Tκ is given by (12) for multidimensional linear cryptanalysis and by (13) for multiple
linear cryptanalysis. As outlined in Section 3, to obtain the success probability it is required to obtain the
distributions of Tκ for both the right and wrong choices of κ. In the case of mutidimensional linear cryptanalysis,
Tκ is defined from the Qκ,η’s and so to obtain the distribution of Tκ it is required to obtain the distribution of
Qκ = (Qκ,0, . . . , Qκ,2`−1). Similarly, in the case of multiple linear cryptanalysis, Tκ is defined from Yκ,i and to
obtain the distribution of Tκ it is required to obtain the distribution of (Yκ,1, . . . , Yκ,`).

The derivations of the distributions of Tκ under the various settings are heuristic and provide only a rough
approximation where it is hard to estimate the error in approximation. We explain this issue in the context of
multidimensional linear cryptanalysis where sampling with replacement is used, but, similar considerations hold
in the other settings.

In the setting of multidimensional linear cryptanalysis, Tκ given by (12) is defined from the random vector
Qκ = (Qκ,0, . . . , Qκ,2`−1) where Qκ,η’s are defined as in (9) satisfying the condition given in (10). For sam-
pling with replacement, Qκ follows a multinomial distribution and Qκ,η follows Bin(N, pκ(η)) where pκ(η) is
heuristically assumed to follow a normal distribution. The pκ(η)’s are not assumed to be independent.

The mean vector of the random vector Qκ is (Npκ(0), . . . , Npκ(2`−1)). The distribution of a random variable
whose parameters are also random variables is called a compound distribution. If the pκ(η)’s took values in [0, 1],
then it would have been possible to formally consider the distribution of Qκ. Since the pκ(η)’s are assumed to
follow normal, they can take values outside of [0, 1] and so, we see no way of formally deriving the distribution
of Qκ. The heuristic assumption of normality on pκ(η) implies that the distribution of Qκ and hence of Tκ are
both fundamentally heuristic assumptions. It is not possible to derive these distributions formally; one can only
try to provide some justification for the heuristic assumptions.

The key randomisation hypotheses postulates that the marginals pκ(η)’s are approximately normal. It does
not postulate anything about the joint distribution of the pκ(η)’s. If the marginals are normal, it does not
necessarily follow (in fact, it mostly does not) that the joint distribution is also normal. From the normal
assumption on the marginals pκ(η)’s, we can only heuristically argue (as argued in Section 5.1 below) that
each of the marginals Qκ,η follow an approximate normal distribution. Nothing can be proved about the joint
distribution of the Qκ,η’s. Instead, it is required to make a heuristic assumption that Qκ follows a multivariate
normal distribution. Further, this heuristic assumption does not clarify the nature of the variance-covariance
matrix of the multivariate normal distribution of Qκ.

The form of Tκ given by (12) suggests that the distribution of Tκ should be given by a suitable chi-squared
distribution. This would follow if it is possible to show that the Qκ approximately follows a multivariate normal
distribution whose variance-covariance matrix satisfies the conditions of Theorem A.1 of Appendix 6. Since this
cannot be proved formally, it is heuristically assumed that Qκ follows an appropriate multivariate normal so that
the distribution of Tκ can be approximated by a chi-squared distribution.

Note that for the actual computation of the parameters (degrees of freedom and the non-centrality parameter)
of the chi-squared distribution, it is sufficient to have the mean vector for Qκ. Since it is possible to heuristically
justify that the marginals for Qκ follow an approximate normal distribution, an approximation of the mean vector
for Qκ can be obtained. So, it is possible to obtain approximate values of the parameters of the chi-squared
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distribution which Tκ is heuristically assumed to follow.
This issues of heuristic derivation of the distribution of Tκ is not particular to the use of the general key ran-

domisation hypotheses. It is also relevant in the context of adjusted key randomisation hypotheses as considered
in [7]. The work [7] does not provide an explicit deduction of the distribution of Tκ. If the derivation had been
considered in details in [7], then the issues discussed above would have appeared.

5.1 Multidimensional Case

The distributions of Tκ∗ and Tκ depend on whether P1, . . . , PN are chosen with or without replacement. We
separately consider both these cases. As mentioned above, the distributions of Tκ∗ and Tκ require the distribution
of Qκ and the discussion below provides a heuristic justification that the marginals Qκ,η follow an approximate
normal distribution. The analysis is similar to the analysis for the case of single linear approximation given
in [27]. Before proceeding, we state some approximations that will be required later.

In the general multidimensional key randomisation hypotheses, we have s2
0, s

2
1 ≤ 2−n. Let θ2

0 = s2
02n/2 ≤

2−n/2. By Chebyshev’s inequality, we have for all η ∈ {0, 1}`

Pr[|pκ∗(η)− pη| > θ0] ≤ V ar(pκ∗(η))

θ2
0

= s2
0/θ

2
0 ≤ 2−n/2. (27)

So, with exponentially low probability, pκ∗(η) takes values outside the range [pη − θ0, pη + θ0]. For pη ∈ [pη −
θ0, pη + θ0] and θη = pη − 2−`, we have εη − θ0 ≤ θη ≤ εη + θ0, where εη = pη − 2−`. So

pη(1− pη) = (2−` + θη)(1− 2−` − θη)

= 2−`(1− 2−`) + θη

(
1− 2−`+1

)
− θ2

η

≥ 2−`(1− 2−`) + (εη − θ0)
(

1− 2−`+1
)
− (εη + θ0)2

≈ 2−`(1− 2−`) + (εη − θ0)
(

1− 2−`+1
)

≥ 2−`(1− 2−`) + (εη − 2−n/4)
(

1− 2−`+1
)

≈ 2−`(1− 2−`) + εη

(
1− 2−`+1

)
. (28)

under the assumption that (εη + θ0)2 and 2−n/4 are negligible. Proceeding with the approximation pη(1− pη) ≈
2−`(1 − 2−`) + εη

(
1− 2−`+1

)
it does not seem possible to obtain a known tractable form of the distribution of

Tκ∗ . Perhaps to avoid this problem, [7] replaces pη(1−pη) by 2−`. This is clearly a heuristic assumption made to
make sure that the distribution is tractable. We will also proceed with a similar heuristic assumption. Instead
of assuming pη(1− pη) ≈ 2−`, we will assume

pη(1− pη) ≈ 2−`(1− 2−`). (29)

for pη ∈ [pη − θ0, pη + θ0].
Let ϑ2

1 = s2
12n/2 ≤ 2−n/2 and as above, we have by Chebyshev’s inequality

Pr[|qκ,κ∗(η)− 2−`| > ϑ1] ≤ s2
1/ϑ

2
1 = 2−n/2. (30)

Further, let ϑ = qη − 2−` so that for qη ∈ [2−` − ϑ1, 2
−` + ϑ1],

qη(1− qη) ≥ 2−`(1− 2−`)− 2−n/4
(

1− 2−`+1
)
− 2−n/2

≈ 2−`(1− 2−`). (31)

under the assumption that 2−n/4 is negligible.
Remark: Note that for small values of n ignoring 2−n/4 is not justified. In that case, for κ 6= κ∗ we may
approximate qη(1− qη) by 2−`(1− 2−`)− 2−n/4

(
1− 2−`+1

)
, i.e., we ignore 2−n/2.
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5.1.1 Distributions of Tκ∗ and Tκ, κ 6= κ∗ under Uniform Random Sampling with Replacement

In this case, P1, . . . , PN are chosen under uniform random sampling with replacement so that P1, . . . , PN are
assumed to be independent and uniformly distributed over {0, 1}n.

First consider Tκ∗ whose distribution is determined from the distribution of pκ∗(η)’s. Recall that Qκ∗,η =
#{j ∈ {1, 2, . . . , N} : Xκ,j = η} = Wκ∗,1 + · · ·+Wκ∗,N , where

Wκ∗,j =

{
1 if Xκ,j = η
0 if Xκ,j 6= η.

Thus, eachWκ,j is a Bernoulli distributed random variable with probability of success pκ∗(η). Since P1, . . . , PN are
independent, the random variables Wκ∗,1, . . . ,Wκ∗,N are also independent. Hence, Qκ∗,η is a Binomial(N, pκ∗(η))
variate. Under the general multidimensional right key randomisation assumption, pκ∗(η) is modelled as a random
variable following N (pη, s

2
0) and so the density function of pκ∗(η) is f(pη; pη, s

2
0). The distribution function of

Qκ∗,η is approximated as follows:

Pr[Qκ∗,η ≤ x] =
∑
k≤x

Pr[Qκ∗,η = k]

≈
∑
k≤x

∫ ∞
−∞

(
N

k

)
pkη(1− pη)

N−kf(pη; pη, s
2
0)dpη

=

∫ ∞
−∞

∑
k≤x

(
N

k

)
pkη(1− pη)

N−k

 f(pη; pη, s
2
0)dpη. (32)

The sum within the integral is the distribution function of the binomial distribution and can be approximated
by N (Npη, Npη(1− pη)). In this approximation, the variance of the normal also depends on pη which makes it
difficult to proceed with further analysis. Using (29), we approximate pη(1− pη)) by 2−`(1− 2−`). As mentioned
earlier this is a heuristic assumption made to get a tractable form of the distribution of Tκ∗ . So, we break up the
integral in (32) in a manner such that the approximation pη(1 − pη) ≈ 2−`(1 − 2−`) can be made in the range
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pη − θ0 to pη + θ0 and it is possible to show that the contribution to (32) for pη outside this range is negligible.

Pr[Qκ∗,η ≤ x]

=

∫ pη+θ0

pη−θ0

∑
k≤x

(
N

k

)
pkη(1− p)N−k

 f(pη; pη, s
2
0)dpη

+

∫ pη−θ0

−∞

∑
k≤x

(
N

k

)
pkη(1− pη)

N−k

 f(pη; pη, s
2
0)dpη +

∫ ∞
pη+θ0

∑
k≤x

(
N

k

)
pkη(1− pη)

N−k

 f(pη; pη, s
2
0)dpη (33)

≤
∫ pη+θ0

pη−θ0

∑
k≤x

(
N

k

)
pkη(1− pη)

N−k

 f(pη; pη, s
2
0)dpη +

∫ pη−θ0

−∞
f(pη; pη, s

2
0)dpη +

∫ ∞
pη+θ0

f(pη; pη, s
2
0)dpη

=

∫ pη+θ0

pη−θ0

∑
k≤x

(
N

k

)
pkη(1− pη)

N−k

 f(pη; pη, s
2
0)dpη + Pr[|pκ∗(η)− pη| > θ0]

≤
∫ pη+θ0

pη−θ0

∑
k≤x

(
N

k

)
pkη(1− pη)

N−k

 f(pη; pη, s
2
0)dpη + 2−n/2 (from (27))

≈
∫ pη+θ0

pη−θ0

∑
k≤x

(
N

k

)
pkη(1− pη)

N−k

 f(pη; pη, s
2
0)dpη. (34)

The sum inside the integral is approximated by the distribution function of N (Npη, Npη(1 − pη)). The range
of the integration over pη is from pη − θ0 to pη + θ0. Using (29), it follows that for pη ∈ [pη − θ0, pη + θ0] the
normal distribution N (Npη, Npη(1 − pη)) can be approximated as N

(
Npη, N2−`(1− 2−`)

)
(i.e., pη(1 − pη) ≈

2−`(1 − 2−`)). Note that the above analysis has been done to ensure that the range of pη is such that this
approximation is meaningful. Then,

Pr[Qκ∗,η ≤ x] ≈
∫ pη+θ0

pη−θ0

(∫ x

−∞
f
(
x;Npη, N2−`(1− 2−`)

)
dx

)
f(pη; pη, s

2
0)dpη.

≤
∫ ∞
−∞

(∫ x

−∞
f
(
x;Npη, N2−`(1− 2−`)

)
dx

)
f(pη; pη, s

2
0)dpη. (35)

=

∫ x

−∞

∫ ∞
−∞

(
f
(
x;Npη, N2−`(1− 2−`)

)
f(p; pη, s

2
0)dp

)
dx

=

∫ x

−∞
f
(
x;Npη, s

2
0N

2 +N2−`(1− 2−`)
)
dx. (36)

The last equality follows from compound normal distribution. For a proof, we refer to the appendix of [27].
From (36), the distribution of Qκ∗,η is approximately N

(
Npη, s

2
0N

2 +N2−`(1− 2−`)
)
. Consequently, the

distribution of Zκ∗,η = Qκ∗,η/N − 2−` is approximately given as follows:

Zκ∗,η ∼ N
(
εη, s

2
0 +

2−`(1− 2−`)

N

)
. (37)



5 HEURISTIC DISTRIBUTIONS OF THE TEST STATISTICS 21

We have

Tκ∗ = N2`
∑

η∈{0,1}`
Z2
κ∗,η

= N

(
2`s2

0 +
(1− 2−`)

N

) ∑
η∈{0,1}`

Z2
κ∗,η

s2
0 + 2−`(1−2−`)

N

.

Theorem 6 of Appendix A.1 lists certain conditions under which Tκ∗ follows a non-central chi-square distribution
with 2` − 1 degrees of freedom. To apply this result, we assume that (Zκ∗,0, . . . , Zκ∗,2`−1) follows a multivariate
normal distribution N (µ,Σ) and there exists an ι = (ι0, . . . , ι2`−1) such that ιΣ = 0 ⇒ ιµt = 0; Σ2 = Σ with
trace of Σ equal to 2` − 1. Then by Theorem 6 the following approximately holds.

Tκ∗

N
(
2`s2

0 + 1
N (1− 2−`)

) ∼ χ2
2`−1(δ), (38)

where

δ =
∑

η∈{0,1}`

ε2η

s2
0 + 1

N (2−`(1− 2−`))
= N2`

∑
η∈{0,1}`

ε2η
N2`s2

0 + (1− 2−`)

=
NC(md)

N2`s2
0 + (1− 2−`)

. (39)

As mentioned earlier, the above assumption is not particular to the case of general key randomisation hypotheses.
Though not explicitly stated, such an assumption is also required to justify the distribution of the test statistic
in the proof of Theorem 8 in [7].

Consider the case of Tκ, κ 6= κ∗. This requires the distribution of Qκ = (Qκ,0, . . . , Qκ,2`−1), κ 6= κ∗ and is
based on the general wrong key randomisation hypothesis in the multidimensional setting. Under this hypothesis,
the qκ,κ∗(η)’s are considered to be independent. The distribution of the marginal Qκ,η (and of Zκ,η) from the
distribution of qκ,κ∗(η) is heuristically derived as in the case of Qκ∗,η. The independence of the qκ,κ∗(η) does not,
however, imply that the Qκ,η’s are independent. The condition

∑
η∈{0,1}` Qκ,η = N still hold. So, as in the case

of Qκ∗ , the heuristic assumptions on the normality of the random vector Qκ and its variance-covariance matrix
are still required. Under such assumptions it is possible to heuristically argue that the following approximately
holds.

Tκ

s2
1 + 1

N (2−` (1− 2−`))
=

∑
η∈{0,1}`

Z2
κ,η

s2
1 + 1

N (2−` (1− 2−`))
∼ χ2

2`−1, κ 6= κ∗. (40)

5.1.2 Distributions of Tκ∗ and Tκ, κ 6= κ∗ under Uniform Random Sampling without Replacement

In this scenario, the plaintexts P1, . . . , PN are chosen according to uniform random sampling without replacement.
As a result, P1, . . . , PN are no longer independent and correspondingly neither areXκ,1, . . . , Xκ,N . So, the analysis
in the case for sampling with replacement needs to be modified. The discussion given below provides heuristic
justification for the normality of the marginals Qκ,η’s of the random vector Qκ.

We first consider the distribution of Tκ∗ in the scenario where pκ∗(η)’s are random variables. A fraction
pκ∗(η) of the 2n possible plaintexts P satisfies the condition Xκ∗ = η. So,

Pr[Qκ∗,η = k] =

(bpκ∗ (η)2nc
k

)(2n−bpκ∗ (η)2nc
N−k

)(
2n

N

) . (41)
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Under the general right key randomisation hypothesis it is assumed that pκ∗(η) follows N (pη, s
2
0) so that the

density function of pκ∗(η) is taken to be f(pη; pη, s
2
0). Then

Pr[Qκ∗,η ≤ x] =
∑
k≤x

Pr[Qκ∗,η = k]

≈
∑
k≤x

∫ ∞
−∞

(bpη2nc
k

)(2n−bpη2nc
N−k

)(
2n

N

) f(pη; pη, s
2
0)dp

=

∫ ∞
−∞

∑
k≤x

(bpη2nc
k

)(2n−bpη2nc
N−k

)(
2n

N

)
 f(pη; pη, s

2
0)dp.

An analysis along the lines of (33) to (34) using (27) shows that

Pr[Qκ∗,η ≤ x] ≈
∫ pη+θ0

pη−θ0

∑
k≤x

(bpη2nc
k

)(2n−bpη2nc
N−k

)(
2n

N

)
 f(pη; pη, s

2
0)dp.

The sum within the integral can be seen to be the distribution function of the hypergeometric distribution
Hypergeometric(N, 2n, bpη2nc). If N/2n = t ∈ (0, 1), then the hypergeometric distribution approximately fol-
lows N (pηN,N(1 − t)pη(1 − pη)) (see the appendix of [27] for a discussion) which using t = N/2n is equal to
N (pηN,N(1−N/2n)pη(1− pη)).

For pη ∈ [pη−θ0, pη +θ0], from (29) the normal distribution N (pηN,N(1−N/2n)pη(1−pη)) is approximated
as N (Npη, N2−`(1−N/2n)(1− 2−`)). The approximation is meaningful in the mentioned range of pη and it is
not valid for values of pη close to 0 or 1.

Pr[Qκ∗,η ≤ x] ≈
∫ pη+θ0

pη−θ0

(∫ x

−∞
f(x;Npη, N2−`(1−N/2n)(1− 2−`)) dx

)
f(pη; pη, s

2
0) dp

≤
∫ ∞
−∞

(∫ x

−∞
f(x;Npη, N2−`(1−N/2n)(1− 2−`)) dx

)
f(pη; pη, s

2
0) dp

=

∫ x

−∞

(∫ ∞
−∞

f(x;Npη, N2−`(1−N/2n)(1− 2−`))f(pη; pη, s
2
0) dp

)
dx

=

∫ x

−∞
f(x;Npη, s

2
0N

2 +N2−`(1−N/2n)(1− 2−`))dx.

The last equality is based on compound normal and we refer to the appendix of [27] for a proof. So, Qκ∗,η
approximately follows N (Npη, N

2s2
0 +N2−`(1−N/2n)(1− 2−`)) and since Zκ∗,η = Qκ∗,η/N − 2−` we have that

the distribution of Zκ∗,η is approximately given as follows:

Zκ∗,η ∼ N
(
εη, s

2
0 +

1

2`

(
1

N
− 1

2n

)(
1− 1

2`

))
. (42)

For Tκ with κ 6= κ∗, we need to consider the general wrong key randomisation hypothesis where qκ,κ∗(η) is
modelled as a random variable following N (2−`, s2

1). In this case, it is required to use (30) and (31) instead of (27)
and (28) respectively. In particular, as in the case of sampling with replacement, we note that for qη ∈ [2−` −
ϑ1, 2

−`+ϑ1], it is required to approximate N (Nqη, N(1−N/2n)qη(1−qη)) by N (Nqη, N2−`(1−N/2n)(1−2−`)),
i.e., qη(1 − qη) ≈ 2−`(1 − 2−`). The validity of this follows from (31) and the approximation is not valid for
values of qη near to 0 or 1. With these approximations, the resulting analysis shows the following approximate
distribution:

Zκ,η ∼ N
(

0, s2
1 +

1

2`

(
1

N
− 1

2n

)(
1− 1

2`

))
, κ 6= κ∗. (43)
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Like in the case of sampling with replacement, appropriate heuristic assumptions based on the conditions of
Theorem 6 in Appendix A.1 are needed to obtain approximate distributions of Tκ∗ and Tκ, κ 6= κ∗.

Tκ∗

N
(
2`s2

0 +
(

1
N −

1
2n

) (
1− 1

2`

)) ∼ χ2
2`−1 (δ) (44)

Tκ

N
(
2`s2

1 +
(

1
N −

1
2n

) (
1− 1

2`

)) ∼ χ2
2`−1, κ 6= κ∗; (45)

where

δ =
∑

η∈{0,1}`

ε2η

s2
0 + 1

2`

(
1
N −

1
2n

) (
1− 1

2`

) =
NC(md)

Ns2
02` +

(
1− N

2n

) (
1− 1

2`

) . (46)

5.2 Multiple Case

The test statistic is Tκ which is given in (13). This is defined from the random variables Yκ,1, . . . , Yκ,`. The
distribution of Yκ,i is in turn based on the distribution of pκ∗,i for κ = κ∗, or on the distribution of qκ,κ∗,i for
κ 6= κ∗. Given the distributions of pκ∗,i and qκ,κ∗,i modelled by the two general multiple key randomisation
hypotheses, the requirement is to obtain approximations of the distributions of Yκ∗,i and Yκ,i and hence of Tκ∗

and Tκ respectively.
In the setting of multiple linear approximation, the random variables Yκ,1, . . . , Yκ,` are assumed to be inde-

pendent. Unlike the case of multidimensional cryptanalysis, it is not required to make the heuristic assumption
that Yκ = (Yκ,1, . . . , Yκ,`) follows a multivariate normal and consequently, it is not required to make the heuristic
assumption that the variance-covariance matrix of Yκ satisfies the conditions of Theorem 6 of Appendix A.1 to
assume that Tκ follows a chi-squared distribution.

The distributions of Yκ∗,i and Yκ,i, κ 6= κ∗ depend on whether P1, . . . , PN are chosen with or without replace-
ment. In both cases, the analysis is essentially the same as that for the single linear approximation done in [27].
So, we skip the details.

5.2.1 Distributions of Tκ∗ and Tκ, κ 6= κ∗ under Uniform Random Sampling with Replacement

In this case, P1, . . . , PN are chosen under uniform random sampling with replacement so that P1, . . . , PN are
assumed to be independent and uniformly distributed over {0, 1}n. The form of the test statistic is given by (13)
which is defined from the random variables Yκ,i. The distributions of Yκ∗,i and Yκ,i, κ 6= κ∗ are determined by
the distributions of pκ∗,i’s and qκ,κ∗,i’s, respectively. Proceeding as in Section 5.1 of [27], it can be heuristically
shown that the following approximately holds.

Yκ∗,i ∼ N
(
Npi, N

2s2
0 +

N

4

)
and Yκ,i ∼ N

(
N

2
, N2s2

1 +
N

4

)
. (47)

First consider Tκ∗ . Since it is assumed that each of the ` linear approximations are independent, the Yκ∗,i’s are
also independent. So, the random variable

∑̀
i=1

(Yκ∗,i −N/2)2

N2s2
0 + N

4

is equal to the sum of squares of independent normal variates, which we know follows a non-central chi-squared
distribution if the mean of at least one of the normal distribution is non-zero. Therefore, we have

Tκ∗

4Ns2
0 + 1

∼ χ2
` (δ), (48)
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where

δ =
∑̀
i=1

N2ε2i
N2s2

0 + N
4

=
N
∑`

i=1 4ε2i
4Ns2

0 + 1
=

NC(m)

4Ns2
0 + 1

.

Similarly, it can be heuristically argued that for all κ 6= κ∗,

Tκ
4Ns2

1 + 1
∼ χ2

` . (49)

5.2.2 Distributions of Tκ∗ and Tκ, κ 6= κ∗ under Uniform Random Sampling without Replacement

Proceeding as in Section 5.2 of [27], it can be heuristically argued that the following approximately holds.

Yκ∗,i ∼ N
(
Npi, N

2s2
0 +

(
1− N

2n

)
N

4

)
and Yκ,i ∼ N

(
N

2
, N2s2

1 +

(
1− N

2n

)
N

4

)
. (50)

So,

Tκ∗ =
∑̀
i=1

(Yκ∗,i −N/2)2

N/4
=

(
4Ns2

0 +

(
1− N

2n

))∑̀
i=1

(Yκ∗,i −N/2)2

N2s2
0 +

(
1− N

2n

)
N
4

.

Since it is assumed that each of the ` linear approximations are independent, we have, by the argument given in
the preceding section,

Tκ∗

4Ns2
0 +

(
1− N

2n

) ∼ χ2
` (δ), (51)

where

δ =
∑̀
i=1

N2ε2i(
N2s2

0 +
(
1− N

2n

)
N
4

) =
N
∑`

i=1 4ε2i
4Ns2

0 +
(
1− N

2n

) =
NC(m)

4Ns2
0 +

(
1− N

2n

) .
Similarly, it can be heuristically argued that for all κ 6= κ∗,

Tκ

4Ns2
1 +

(
1− N

2n

) ∼ χ2
` . (52)

6 Success Probability under General Key Randomisation Hypotheses

We separately consider the two cases of multidimensional and multiple linear cryptanalysis.

6.1 Multidimensional Case

The distributions of Tκ∗ and Tκ for κ 6= κ∗ are respectively given by (38) and (40) for the case of sampling with
replacement and are given by (44) and (45) for the case of sampling without replacement. These expressions can
be compactly expressed in the following form:

Tκ∗

N(2`s2
0 + σ2

(md))
∼ χ2

2`−1(δ(md));
Tκ

N(2`s2
1 + σ2

(md))
∼ χ2

2`−1, for κ 6= κ∗; (53)

where

σ2
(md) =

{
1
N

(
1− 1

2`

)
for sampling with replacement;(

1
N −

1
2n

) (
1− 1

2`

)
for sampling without replacement,

(54)
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and

δ(md) =


NC(md)

N2`s20+(1−2−`)
for sampling with replacement;

NC(md)

Ns202`+(1− N
2n )

(
1− 1

2`

) for sampling without replacement.
(55)

Recall that for sampling with replacement, we have

δ(md) =
NC(md)

N2`s2
0 + (1− 2−`)

=
C(md)

2`s2
0 + (1−2−`)

N

which is an increasing function of N . Similarly, for sampling without replacement we have

δ(md) =
NC(md)

Ns2
02` +

(
1− N

2n

) (
1− 1

2`

) =
C(md)

s2
02` +

(
1
N −

1
2n

) (
1− 1

2`

)
which is again an increasing function of N . Since, δ(md) increases with N , we can approximate the non-central

chi-square distribution by a normal distribution with mean (2` − 1) + δ(md) and variance 2((2` − 1) + 2δ(md))

(see Theorem 7 of Appendix A.2). Then Tκ∗ approximately follows a normal distribution with mean N(2`s2
0 +

σ2
(md))((2

` − 1) + δ(md)) and variance 2N2(2`s2
0 + σ2

(md))
2((2` − 1) + 2δ(md)). Substituting σ2

0 = 2N2(2`s2
0 +

σ2
(md))

2((2` − 1) + 2δ(md)), µ0 = N(2`s2
0 + σ2

(md))((2
` − 1) + δ(md)), ω = N(2`s2

1 + σ2
(md)) and ν = 2` − 1 in

Theorem 1, we obtain the following result.

Theorem 2. Let κ∗ ∈ {0, 1}m. For κ ∈ {0, 1}m, let Tκ be 2m random variables, where

Tκ∗ ∼ N (N(2`s2
0 + σ2

(md))((2
` − 1) + δ(md)), 2N

2(2`s2
0 + σ2

(md))
2((2` − 1) + 2δ(md)));

Tκ/N(2`s2
1 + σ2

(md)) ∼ χ2
2`−1, for κ 6= κ∗;

σ2
(md) and δ(md) are given by (54) and (55) respectively.

Suppose the hypothesis test given in (18) is applied to Tκ for all κ ∈ {0, 1}m. Let PS = 1− Pr[Type-1 error]
and the expected number of times that Type-2 errors occurs is 2m−a. Then

PS = Φ

(2`s2
0 + σ2

(md))((2
` − 1) + δ(md))− (2`s2

1 + σ2
(md))γ

(2`s2
0 + σ2

(md))
√

2((2` − 1) + 2δ(md))

 (56)

where γ = Ψ−1
(

1− 2m−a−1

2m−1

)
.

6.2 Multiple Case

The distributions of Tκ∗ and Tκ for κ 6= κ∗ are respectively given by (48) and (49) for the case of sampling with
replacement and are given by (51) and (52) for the case of sampling without replacement. These expressions can
be compactly expressed in the following form:

Tκ∗

N(4s2
0 + σ2

(m))
∼ χ2

` (δ(m));
Tκ

N(4s21+σ2
(m)

)
∼ χ2

` , for κ 6= κ∗; (57)

where

σ2
(m) =

{
1
N for sampling with replacement;
1
N −

1
2n for sampling without replacement,

(58)
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and

δ(m) =


NC(m)

4Ns20+1
for sampling with replacement;

NC(m)

4Ns20+(1− N
2n )

for sampling without replacement.
(59)

Recall that for sampling without replacement, we have

δ(m) =
NC(m)

4Ns2
0 +

(
1− N

2n

) =
C(m)

4s2
0 +

(
1
N −

1
2n

)
which is an increasing function of N . Similarly, for sampling with replacement we have

δ(m) =
NC(m)

4Ns2
0 + 1

=
C(m)

4s2
0 + 1

N

which is again an increasing function of N . Since, δ(m) increases with N , we can approximate the non-central
chi-square distribution by a normal distribution with mean (`+ δ(m)) and variance 2(`+ 2δ(m)) (see Theorem 7
of Appendix A.2). Then Tκ∗ approximately follow a normal distribution with mean N(4s2

0 + σ2
(m))(`+ δ(m)) and

variance 2N2(4s2
0 +σ2

(m))
2(`+2δ(m)). Substituting σ2

0 = 2N2(4s2
0 +σ2

(m))
2(`+2δ(m)), µ0 = N(4s2

0 +σ2
(m))(`+δ(m)),

ω = N(4s2
1 + σ2

(m)) and ν = ` in Theorem 1, we obtain the following result.

Theorem 3. Let κ∗ ∈ {0, 1}m. For κ ∈ {0, 1}m, let Tκ be 2m random variables, where

Tκ∗ ∼ N (N(4s2
0 + σ2

(m))(`+ δ(m)), 2N
2(4s2

0 + σ2
(m))

2(`+ 2δ(m)));

Tκ/N(4s2
1 + σ2

(m)) ∼ χ2
` , for κ 6= κ∗;

σ(m) and δ(m) are given by (59) and (58) respectively. Suppose the hypothesis test given in (18) is applied to Tκ
for all κ ∈ {0, 1}m. Let PS = 1−Pr[Type-1 error] and the expected number of times that Type-2 errors occurs is
2m−a. Then

PS = Φ

(4s2
0 + σ2

(m))(`+ δ(m))− (4s2
1 + σ2

(m))γ

(4s2
0 + σ2

(m))
√

2(`+ 2δ(m))

 (60)

where γ = Ψ−1
(

1− 2m−a−1

2m−1

)
.

7 Success Probability Under Particular Key Randomisation Hypotheses

In this section we give the expressions for success probability of multidimensional/multiple linear cryptanaly-
sis under different settings, namely, multidimensional or multiple; sampling with or without replacement; and
whether standard or adjusted key randomisation hypothesis are used for the right or the wrong key. To differen-
tiate between these cases, we will use superscripts to PS denoting the different possible cases. The notation for
these superscripts are as follows.

1. The superscripts md and m will denote multidimensional and multiple linear cryptanalysis respectively.

2. The superscripts wr and wor will denote namely sampling with replacement and sampling without replace-
ment respectively.
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3. The superscripts std, adj, radj and wadj will denote the different combinations of the key randomisation
hypotheses.

� The superscript std will denote that the standard key randomisation hypothesis is considered for both
right and wrong key.

� The superscript adj will denote that the adjusted key randomisation hypothesis is considered for both
right and wrong key.

� The superscript radj will denote the adjusted right key randomisation hypothesis and the standard
wrong key randomisation hypothesis.

� The superscript wadj will denote the adjusted wrong key randomisation hypothesis and the standard
right key randomisation hypothesis.

So, there are 16 possible cases. For each of these cases, we state the corresponding expressions for the success
probabilities.

7.1 Success Probability for Multidimensional Linear Cryptanalysis

Let P
(md,wr,·)
S denote the success probability of multidimensional linear cryptanalysis when sampling with re-

placement is used and let P
(md,wor,·)
S denote the success probability of multidimensional linear cryptanalysis

when sampling without replacement is used. The third slot is for the type of key randomisation hypothesis used,
i.e., the third slot can be filled up in 4 ways, namely std, adj, radj and wadj. Notice that std, adj, radj and wadj

influences only the values of s2
0 and s2

1 of (56). Therefore we can get the values of P
(m,wr,·)
S and P

(m,wor,·)
S by using

the corresponding expressions for σ from (54) and (55) in (56).

P
(md,wr,·)
S

= Φ


(
2`s2

0 + 1
N

(
1− 1

2`

)) (
(2` − 1) + NC(md)

N2`s20+(1−2−`)

)
−
(
2`s2

1 + 1
N

(
1− 1

2`

))
γ(

2`s2
0 + 1

N

(
1− 1

2`

))√
2
(

(2` − 1) + 2NC(md)

N2`s20+(1−2−`)

)
 ; (61)

P
(md,wor,·)
S

= Φ


(
2`s2

0 +
(

1
N −

1
2n

) (
1− 1

2`

))(
(2` − 1) + NC(md)

Ns202`+(1− N
2n )

(
1− 1

2`

)
)
−
(
2`s2

1 +
(

1
N −

1
2n

) (
1− 1

2`

))
γ

(
2`s2

0 +
(

1
N −

1
2n

) (
1− 1

2`

))√√√√2

(
(2` − 1) + 2NC(md)

Ns202`+(1− N
2n )

(
1− 1

2`

)
)

 .(62)

Remarks:

1. If N � 2n, then P
(md,wor,·)
S ≈ P

(md,wr,·)
S . So, the expression for P

(md,wor,·)
S given by (62) becomes useful

only when the fraction N/2n is non-negligible.

2. In the case of sampling with replacement, due to the birthday paradox, having N to be greater than 2n/2

is not really useful, since repetitions will begin to occur.
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7.1.1 Success Probability Under Standard Key Randomisation Hypotheses

Let P
(md,wr,std)
S and P

(md,wor,std)
S be the success probabilities of multidimensional linear cryptanalysis for both

standard multidimensional right and wrong key randomisation hypotheses corresponding to the situations where
plaintexts are chosen with and without replacement respectively. As discussed in Section 4.1, the standard
key randomisation hypotheses is obtained from the general key randomisation hypothesis by letting s0 ↓ 0 and
s1 ↓ 0. Using these conditions in (61) and (62) lead to the following expressions for the success probabilities of
multidimensional linear cryptanalysis in the two cases of sampling with and without replacement.

P
(md,wr,std)
S = Φ


(

(2` − 1) + NC(md)

(1−2−`)

)
− γ√

2
(

(2` − 1) + 2NC(md)

(1−2−`)

)
 (63)

P
(md,wor,std)
S = Φ



(
(2` − 1) + NC(md)

(1− N
2n )

(
1− 1

2`

)
)
− γ√√√√2

(
(2` − 1) + 2NC(md)

(1− N
2n )

(
1− 1

2`

)
)
 . (64)

Success probability in [16]: Hermelin et al [16] had obtained an expression for the success probability under
the standard multidimensional key randomisation hypotheses and under the assumption that P1, . . . , PN are

chosen uniformly with replacements. Assuming that 1 − 2−` ≈ 1, the expression for P
(md,wr,std)
S given by (63)

becomes exactly the same as equation (6.8) of [25]. It was shown in [25] that under few further approximations
this expression becomes exactly the same as the expression given in [16, Section 5.1].

To the best of our knowledge, no prior work has analysed the success probability of multidimensional linear
cryptanalysis with the standard key randomisation hypotheses and under the condition where P1, . . . , PN are

chosen uniformly without replacement. So, the expression for P
(md,wor,std)
S given by (64) is the first such result.

7.1.2 Success Probability Under Adjusted Wrong Key Randomisation Hypothesis

Let P
(md,wr,wadj)
S and P

(md,wor,wadj)
S be the success probabilities of multidimensional linear cryptanalysis for ad-

justed multidimensional wrong key randomisation hypothesis and standard multidimensional right key randomi-
sation hypothesis corresponding to the situations where plaintexts are chosen with and without replacement
respectively.

Setting s2
0 ↓ 0 converts the general right key randomisation hypothesis to the standard right key randomisation

hypothesis. Also, we let s2
1 = 1

2n+`

(
1− 1

2`

)
, so that the general wrong key randomisation hypothesis simplifies to

the adjusted wrong key randomisation hypothesis. Using the conditions for s0 and s1 in (61) and (62) provides
the following expressions for the success probabilities of multidimensional linear cryptanalysis in the two cases
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of sampling with and without replacement.

P
(md,wr,wadj)
S = Φ


(

(2` − 1) + NC(md)

(1−2−`)

)
−
(
1 + N

2n

)
γ√

2
(

(2` − 1) + 2NC(md)

(1−2−`)

)
 ; (65)

P
(md,wor,wadj)
S = Φ


(
1− N

2n

)(
(2` − 1) + NC(md)

(1− N
2n )

(
1− 1

2`

)
)
− γ

(
1− N

2n

)√√√√2

(
(2` − 1) + 2NC(md)

(1− N
2n )

(
1− 1

2`

)
)
 . (66)

To the best of our knowledge, no prior work has analysed the success probability of multidimensional linear
cryptanalysis for the adjusted wrong key randomisation hypothesis and standard multidimensional right key
randomisation hypothesis corresponding to the situation where plaintexts P1, . . . , PN are chosen with and without

replacement, respectively. So, the expressions for P
(md,wr,wadj)
S and P

(md,wor,wadj)
S given by (65) and (66) are the

first such results.

7.1.3 Success Probability Under Adjusted Right Key Randomisation Hypothesis

Let P
(md,wr,radj)
S and P

(md,wor,radj)
S be the success probabilities of multidimensional linear cryptanalysis for ad-

justed right key randomisation hypothesis and standard wrong key randomisation hypothesis corresponding to
the situations where plaintexts are chosen with and without replacement respectively.

Setting s2
0 = C−C(md)

22`
converts the general multidimensional right key randomisation hypothesis to the ad-

justed multidimensional right key randomisation hypothesis. Also, we let s2
1 ↓ 0, so that the general multidimen-

sional wrong key randomisation hypothesis simplifies to the standard multidimensional wrong key randomisation
hypothesis. Using the conditions for s0 and s1 in (61) and (62) provides the following expressions for the success
probabilities of multidimensional linear cryptanalysis in the two cases of sampling with and without replacement.

P
(md,wr,radj)
S = Φ


(
C−C(md)

2`
+ 1

N

(
1− 1

2`

))(
(2` − 1) + NC(md)

N(C−C(md))

2`
+(1−2−`)

)
−
(

1
N

(
1− 1

2`

))
γ

(
C−C(md)

2`
+ 1

N

(
1− 1

2`

))√√√√2

(
(2` − 1) + 2NC(md)

N(C−C(md))

2`
+(1−2−`)

)
 ; (67)

P
(md,wor,radj)
S = Φ



(
(2` − 1) + NC(md)

N(C−C(md))

2`
+(1− N

2n )
(

1− 1

2`

)
)
−

( 1
N
− 1

2n )
(

1− 1

2`

)
γ

C−C(md)

2`
+( 1

N
− 1

2n )
(

1− 1

2`

)√√√√2

(
(2` − 1) + 2NC(md)

N(C−C(md))

2`
+(1− N

2n )
(

1− 1

2`

)
)

 . (68)

The case of adjusted right key randomisation hypothesis and standard wrong key randomisation hypothesis
was considered in [17] where sampling with replacement is used. The work showed that the capacity follows a
gamma distribution but, did not provide an expression for the success probability. To the best of our knowledge,

no prior work has considered sampling without replacement for this case. So, the expressions for P
(md,wr,radj)
S

and P
(md,wor,radj)
S given by (67) and (68) are the first such results.
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7.1.4 Success Probability Under Adjusted Key Randomisation Hypothesis

Let P
(md,wr,adj)
S and P

(md,wor,adj)
S be the success probabilities of multidimensional linear cryptanalysis for both

adjusted multidimensional right and wrong key randomisation hypothesis corresponding to the situations where
plaintexts are chosen with and without replacement respectively.

Setting s2
1 = 1

2n+`

(
1− 1

2`

)
converts the general multidimensional wrong key randomisation hypothesis to

the adjusted multidimensional wrong key randomisation hypothesis. Also, we let s2
0 = C−C(md)

22`
, so that the

general multidimensional right key randomisation hypothesis simplifies to the adjusted multidimensional right
key randomisation hypothesis. Using the conditions for s0 and s1 in (61) and (62) provides the following
expressions for the success probabilities in the two cases of sampling with and without replacement.

P
(md,wr,adj)
S

= Φ


(
C−C(md)

2`
+ 1

N

(
1− 1

2`

))(
(2` − 1) + NC(md)

N(C−C(md))

2`
+(1−2−`)

)
−
(

1
N + 1

2n

) (
1− 1

2`

)
γ

(
C−C(md)

2`
+ 1

N

(
1− 1

2`

))√√√√2

(
(2` − 1) + 2NC(md)

N(C−C(md))

2`
+(1−2−`)

)
 ; (69)

P
(md,wor,adj)
S

= Φ


(
C−C(md)

2`
+
(

1
N −

1
2n

) (
1− 1

2`

))(
(2` − 1) + NC(md)

N(C−C(md))

2`
+(1− N

2n )
(

1− 1

2`

)
)
− 1

N

(
1− 1

2`

)
γ

(
C−C(md)

2`
+
(

1
N −

1
2n

) (
1− 1

2`

))√√√√2

(
(2` − 1) + 2NC(md)

N(C−C(md))

2`
+(1− N

2n )
(

1− 1

2`

)
)

 . (70)

Expressions for the success probability with the adjusted multidimensional key randomisation hypothesis under
both sampling with and without repetitions were obtained in [7]. The expressions given in [7] hold for those
values of ` for which the central chi-square distribution can be approximated by a normal.

We consider applying the approximations made in [7] to the expressions for PS given by (69) and (70).
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Assume that 1− 2−` ≈ 1, C(md) = 0 and C = λ(2`−1)
2n , where λ ≥ 1. Then from (69) and (70), we have

P
(md,wr,adj)
S ≈ Φ


(
λ(2`−1)

2n+`
+ 1

N

)
(2` − 1)−

(
1
N + 1

2n

)
γ(

λ(2`−1)
2n+`

+ 1
N

)√
2(2` − 1)


≈ Φ

((
λ
2n + 1

N

)
(2` − 1)−

(
1
N + 1

2n

)
γ(

λ
2n + 1

N

)√
2(2` − 1)

)

= Φ

(
(λN + 2n) (2` − 1)− (N + 2n) γ

(λN + 2n)
√

2(2` − 1)

)
;

P
(md,wor,adj)
S ≈ Φ


(
λ(2`−1)

2n+`
+
(

1
N −

1
2n

))
(2` − 1)− γ

N(
λ(2`−1)

2n+`
+
(

1
N −

1
2n

))√
2(2` − 1)


≈ Φ

((
λ
2n +

(
1
N −

1
2n

))
(2` − 1)− γ

N(
λ
2n +

(
1
N −

1
2n

))√
2(2` − 1)

)

≈ Φ

((
λ−1
2n + 1

N

)
(2` − 1)− γ

N(
λ−1
2n + 1

N

)√
2(2` − 1)

)

= Φ

(
(N(λ− 1) + 2n) (2` − 1)− 2nγ

(N(λ− 1) + 2n)
√

2(2` − 1)

)

As mentioned earlier, [7] approximates the central chi-square distribution by a normal distribution. For this, it
is required to replace γ by (2` − 1) +

√
2(2` − 1)ϕa, where ϕa = Φ−1(1− 2−a). Using this in the above gives

P
(md,wr,adj)
S ≈ Φ

N (λ− 1)

√
(2`−1)

2 − (N + 2n)ϕa

(λN + 2n)


P

(md,wor,adj)
S = Φ

N(λ− 1)
√

2`−1
2 − 2nϕa

N(λ− 1) + 2n


which are identical to the expressions for PS for sampling with and without replacement as can be obtained from
Equation (25) of [7].

7.2 Success Probability for Multiple Linear Cryptanalysis

Let P
(m,wr,·)
S denote the success probability of multiple linear cryptanalysis when sampling with replacement is

used and let P
(m,wor,·)
S denote the success probability of multiple linear cryptanalysis when sampling without

replacement is used. The third slot is for the type of key randomisation hypothesis used, i.e., the third slot
can be filled up in 4 ways, namely std, adj, radj and wadj. Notice that std, adj, radj and wadj influences only the

values of s2
0 and s2

1 of (60). Therefore we can get the values of P
(m,wr,·)
S and P

(m,wor,·)
S by using the corresponding
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expressions for σ from (58) and (59) in (60).

P
(m,wr,·)
S = Φ


(
4s2

0 + 1
N

) (
`+ NC(m)

4Ns20+1

)
−
(
4s2

1 + 1
N

)
γ(

4s2
0 + 1

N

)√
2
(
`+ 2NC(m)

4Ns20+1

)
 ; (71)

P
(m,wor,·)
S = Φ


(
4s2

0 + 1
N

(
1− N

2n

))(
`+ NC(m)

4Ns20+(1− N
2n )

)
−
(
4s2

1 + 1
N

(
1− N

2n

))
γ

(
4s2

0 + 1
N

(
1− N

2n

))√
2

(
`+ NC(m)

4Ns20+(1− N
2n )

)
 . (72)

Remarks:

1. If N � 2n, then P
(m,wor,·)
S ≈ P

(m,wr,·)
S . So, the expression for P

(m,wor,·)
S given by (72) becomes useful only

when the fraction N/2n is non-negligible.

2. In the case of sampling with replacement, due to the birthday paradox, having N to be greater than 2n/2

is not really useful, since repetitions will begin to occur.

7.2.1 Success Probability Under Standard Key Randomisation Hypotheses

Let P
(m,wr,std)
S and P

(m,wor,std)
S be the success probabilities of multiple linear cryptanalysis for standard multiple

right and wrong key randomisation hypotheses corresponding to the situations where plaintexts are chosen with
and without replacement respectively. As discussed in Section 4.2, the standard multiple key randomisation
hypotheses is obtained from the general multiple key randomisation hypothesis by letting s0 ↓ 0 and s1 ↓ 0.
Using these conditions in (71) and (72) lead to the following expressions for the success probabilities of multiple
linear cryptanalysis in the two cases of sampling with and without replacement.

P
(m,wr,std)
S = Φ

 (`+NC(m)
)
− γ√

2
(
`+ 2NC(m)

)
 (73)

P
(m,wor,std)
S = Φ


(
`+ NC(m)

(1− N
2n )

)
− γ√

2

(
`+ NC(m)

(1− N
2n )

)
 . (74)

To the best of our knowledge, no prior work has analysed the success probability of multiple linear crypt-
analysis with the standard key randomisation hypotheses and under both the conditions where P1, . . . , PN are

chosen uniformly with and without replacement. So, the expressions for P
(m,wr,std)
S and P

(m,wor,std)
S given by (73)

and (74) are the first such results.

7.2.2 Success Probability Under Adjusted Wrong Key Randomisation Hypothesis

Let P
(m,wr,wadj)
S and P

(m,wor,wadj)
S be the success probabilities of multiple linear cryptanalysis for adjusted wrong

key randomisation hypothesis and standard right key randomisation hypothesis corresponding to the situations
where plaintexts are chosen with and without replacement respectively.

Setting s2
1 = 2−n−2 converts the general multiple wrong key randomisation hypothesis to the adjusted multiple

wrong key randomisation hypothesis. Also, we let s2
0 ↓ 0, so that the general multiple right key randomisation
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hypothesis simplifies to the standard multiple right key randomisation hypothesis. Using the conditions for s0

and s1 in (71) and (72) provides the following expressions for the success probabilities in the two cases of sampling
with and without replacement.

P
(m,wr,wadj)
S = Φ

(`+NC(m)
)
−
(
1 + N

2n

)
γ√

2
(
`+ 2NC(m)

)
 ; (75)

P
(m,wor,wadj)
S = Φ


(
1− N

2n

)(
`+ NC(m)

(1− N
2n )

)
− γ

(
1− N

2n

)√
2

(
`+ NC(m)

(1− N
2n )

)
 . (76)

To the best of our knowledge, no prior work has analysed the success probability of multiple linear cryptanal-
ysis for the adjusted multiple wrong key randomisation hypothesis and standard multiple right key randomisation
hypothesis corresponding to the situation where plaintexts P1, . . . , PN are chosen with and without replacement,

respectively. So, the expressions for P
(m,wr,wadj)
S and P

(m,wor,wadj)
S given by (75) and (76) are the first such results.

7.2.3 Success Probability Under Adjusted Right Key Randomisation Hypothesis

Let P
(m,wr,radj)
S and P

(m,wor,radj)
S be the success probabilities of multiple linear cryptanalysis for adjusted multiple

right key randomisation hypothesis and standard multiple wrong key randomisation hypothesis corresponding
to the situations where plaintexts are chosen with and without replacement respectively.

Setting s2
1 ↓ 0 converts the general multiple wrong key randomisation hypothesis to the standard multiple

wrong key randomisation hypothesis. Also, we let s2
0 = σ2, so that the general multiple right key randomisation

hypothesis simplifies to the adjusted multiple right key randomisation hypothesis. Using the conditions for s0 and
s1 in (71) and (72) provides the following expressions for the success probabilities in the two cases of sampling
with and without replacement.

P
(m,wr,radj)
S = Φ


(
4Nσ2 + 1

) (
`+ NC(m)

4Nσ2+1

)
− γ

(4Nσ2 + 1)

√
2
(
`+ 2NC(m)

4Nσ2+1

)
 ; (77)

P
(m,wor,radj)
S = Φ


(
4Nσ2 +

(
1− N

2n

))(
`+ NC(m)

4Nσ2+(1− N
2n )

)
−
(
1− N

2n

)
γ

(
4Nσ2 +

(
1− N

2n

))√
2

(
`+ NC(m)

4Ns20+(1− N
2n )

)
 . (78)

Remarks: To the best of our knowledge, no prior work has analysed the success probability of multiple linear
cryptanalysis with the adjusted right key randomisation hypotheses and under the condition where P1, . . . , PN
are chosen uniformly without replacement. So, the expressions for P

(m,wr,std)
S and P

(m,wor,std)
S given by (77)

and (78) are the first such results.

7.2.4 Success Probability Under Adjusted Key Randomisation Hypothesis

Let P
(m,wr,adj)
S and P

(m,wor,adj)
S be the success probabilities of multiple linear cryptanalysis for both adjusted

multiple right and wrong key randomisation hypothesis corresponding to the situations where plaintexts are
chosen with and without replacement respectively.
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Setting s2
1 = 2−n−2 converts the general multiple wrong key randomisation hypothesis to the adjusted multiple

wrong key randomisation hypothesis. Also, we let s2
0 = σ2, so that the general multiple right key randomisation

hypothesis simplifies to the standard multiple right key randomisation hypothesis. Using the conditions for s0

and s1 in (71) and (72) provides the following expressions for the success probabilities in the two cases of sampling
with and without replacement.

P
(m,wr,adj)
S = Φ


(
4Nσ2 + 1

) (
`+ NC(m)

4Nσ2+1

)
−
(
1 + N

2n

)
γ

(4Nσ2 + 1)

√
2
(
`+ 2NC(m)

4Nσ2+1

)
 ; (79)

P
(m,wor,adj)
S = Φ


(
4Nσ2 +

(
1− N

2n

))(
`+ NC(m)

4Nσ2+(1− N
2n )

)
− γ

(
4Nσ2 +

(
1− N

2n

))√
2

(
`+ NC(m)

4Nσ2+(1− N
2n )

)
 . (80)

Expressions for the success probability of multiple linear cryptanalysis under adjusted multiple right and wrong
key randomisation hypotheses corresponding to sampling with and without repetitions were obtained in [7].
These expressions were obtained for large values of `. The validity condition of ` > 50 was mentioned in [7].
This condition arises due to the requirement of approximating the central chi-squared distribution by a normal
distribution. Following [7], assume that C(m) = 0, C = λ`

2n and λ ≥ 1. To approximate the central chi-square

distribution by a normal distribution as in [7] it is required to replace γ by (2`− 1) +
√

2(2` − 1)ϕa. Proceeding
as in Section 7.1.4, it can be shown that the resulting expressions for PS that are obtained are identical to the
expressions of PS for both sampling with and without replacement as can be obtained from Equation (25) of [7].

8 Dependence of PS on N

We have obtained various expressions for the success probability in terms of the data complexity N and the
advantage a. For a fixed value of a, it is perhaps intuitive that the success probability is a monotone increasing
function of N . On the other hand, the nature of the expressions for PS shows a complicated dependence on N .
It is of interest to exactly characterise the conditions under which PS indeed increases monotonically with N .
We perform this task in the present section.

8.1 Multidimensional Case

Consider the general expression for the success probability PS as given by (56). The subsequent expressions for
success probability with/without replacement and under different possible combinations of standard/adjusted
multidimensional key randomisation hypotheses are all obtained as special cases of (56). In (56), the quantities
s0, s1 and γ are constants which are independent of N and only σ and δ(md) depends on N as shown in (54) and
(55). Further, from (54) and (55), it is clear that σ is a decreasing function of N for both the cases of with and
without replacements, whereas δ(md) is an increasing function in both cases.

We analyse the behaviour of PS as a function of N and identify the situations where PS is a monotonic
increasing function of N .

Theorem 4. Consider PS to be given by (56) where s0, s1 and γ are positive and independent of N while σ > 0
is a monotone decreasing function of N and δ(md) is a monotone increasing function of N .

1. Suppose s2
0 ≥ s2

1. Then PS is an increasing function of N for all N > 0.
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2. Suppose s0 < s1. Then PS is a decreasing function of N if and only if

C(md) <

√
γ
(

2`s2
0 + σ2

(md)

) [
γ
(

2`s2
0 + σ2

(md)

)
+ 2`+1(2` − 1)(s2

1 − s2
0)
]
− γ

(
2`s2

0 + σ2
(md)

)
.

Proof. We proceed by taking derivatives with respect to N . Since σ is a decreasing function of N ,
dσ2

(md)

dN < 0.

Similarly, as δ(md) is an increasing function of N ,
dδ(md)

dN > 0.

dPS
dN

= φ

(2`s2
0 + σ2

(md))((2
` − 1) + δ(md))− (2`s2

1 + σ2
(md))γ

(2`s2
0 + σ2

(md))
√

2((2` − 1) + 2δ(md))

×
((2` − 1) + δ(md))

dσ2
(md)

dN + (2`s2
0 + σ2

(md))
dδ(md)

dN − γ
dσ2

(md)

dN

(2`s2
0 + σ2

(md))
√

2((2` − 1) + 2δ(md))
−
{

(2`s2
0 + σ2

(md))((2
` − 1) + δ(md))−

(2`s2
1 + σ2

(md))γ
}
{√

2((2` − 1) + 2δ(md))
dσ2

(md)

dN +
2(2`s20+σ2

(md)
)√

2((2`−1)+2δ(md))

dδ(md)

dN

}
{

(2`s2
0 + σ2

(md))
√

2((2` − 1) + 2δ(md))
}2


= φ

(2`s2
0 + σ2

(md))((2
` − 1) + δ(md))− (2`s2

1 + σ2
(md))γ

(2`s2
0 + σ2

(md))
√

2((2` − 1) + 2δ(md))

×
((2` − 1) + δ(md) − γ)

dσ2
(md)

dN + (2`s2
0 + σ2

(md))
dδ(md)

dN

(2`s2
0 + σ2

(md))
√

2((2` − 1) + 2δ(md))
−
{

(2`s2
0 + σ2

(md))((2
` − 1) + δ(md))−

(2`s2
1 + σ2

(md))γ
} {(

2((2` − 1) + 2δ(md))
) dσ2

(md)

dN + 2(2`s2
0 + σ2

(md))
dδ(md)

dN

}
{

(2`s2
0 + σ2

(md))
√

2((2` − 1) + 2δ(md))
}2√

2((2` − 1) + 2δ(md))



=

φ

(
(2`s20+σ2

(md)
)((2`−1)+δ(md))−(2`s21+σ2

(md)
)γ

(2`s20+σ2
(md)

)
√

2((2`−1)+2δ(md))

)
{

(2`s2
0 + σ2

(md))
√

2((2` − 1) + 2δ(md))
}2√

2((2` − 1) + 2δ(md))[{
((2` − 1) + δ(md) − γ)

dσ2
(md)

dN
+ (2`s2

0 + σ2
(md))

dδ(md)

dN

}{
(2`s2

0 + σ2
(md))

(
2((2` − 1) + 2δ(md))

)}
−{

(2`s2
0 + σ2

(md))((2
` − 1) + δ(md))− (2`s2

1 + σ2
(md))γ

}
×{(

2((2` − 1) + 2δ(md))
) dσ2

(md)

dN
+ 2(2`s2

0 + σ2
(md))

dδ(md)

dN

}]
.

Now,

φ

(
(2`s20+σ2

(md)
)((2`−1)+δ(md))−(2`s21+σ2

(md)
)γ

(2`s20+σ2
(md)

)
√

2((2`−1)+2δ(md))

)
{

(2`s2
0 + σ2

(md))
√

2((2` − 1) + 2δ(md))
}2√

2((2` − 1) + 2δ(md))

> 0.
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This implies that dPS
dN > 0 if and only if g(N) > 0 where

g(N) =

{
((2` − 1) + δ(md) − γ)

dσ2
(md)

dN
+ (2`s2

0 + σ2
(md))

dδ(md)

dN

}{
(2`s2

0 + σ2
(md))

(
2((2` − 1) + 2δ(md))

)}
−

{
(2`s2

0 + σ2
(md))((2

` − 1) + δ(md))− (2`s2
1 + σ2

(md))γ
}{(

2((2` − 1) + 2δ(md))
) dσ2

(md)

dN
+

2(2`s2
0 + σ2

(md))
dδ(md)

dN

}
=

{{
((2` − 1) + δ(md) − γ)

}{
(2`s2

0 + σ2
(md))

(
2((2` − 1) + 2δ(md))

)}
−{

(2`s2
0 + σ2

(md))((2
` − 1) + δ(md))− (2`s2

1 + σ2
(md))γ

}{(
2((2` − 1) + 2δ(md))

)}} dσ2
(md)

dN
+{{

(2`s2
0 + σ2

(md))
}{

2(2`s2
0 + σ2

(md))
(

(2` − 1) + δ(md)

)
+ 2(2`s2

0 + σ2
(md))δ(md)

}
−{

(2`s2
0 + σ2

(md))((2
` − 1) + δ(md))− (2`s2

1 + σ2
(md))γ

}{
2(2`s2

0 + σ2
(md))

}} dδ(md)

dN

= 2`γ(s2
1 − s2

0)
(

2((2` − 1) + 2δ(md))
) dσ2

(md)

dN
+ 2(2`s2

0 + σ2
(md))×{

(2`s2
0 + σ2

(md))δ(md) + (2`s2
1 + σ2

(md))γ
} dδ(md)

dN
.

Case s2
0 ≥ s2

1: Since s2
1 − s2

0 ≤ 0, 2`γ
(
2((2` − 1) + 2δ(md))

)
> 0 and

dσ2
(md)

dN < 0, therefore

2`γ(s2
1 − s2

0)
(

2((2` − 1) + 2δ(md))
) dσ2

(md)

dN
> 0.

Similarly, as
dδ(md)

dN > 0 and 2(2`s2
0 + σ2

(md))
{

(2`s2
0 + σ2

(md))δ(md) + (2`s2
1 + σ2

(md))γ
}
> 0, we have

2(2`s2
0 + σ2

(md))
{

(2`s2
0 + σ2

(md))δ(md) + (2`s2
1 + σ2

(md))γ
} dδ(md)

dN
> 0.

So, g(N) > 0 for all N and consequently, dPS
dN > 0 for all N implying that PS is a strictly increasing function of

N .

Case s2
0 < s2

1: From (54) and (55), we can write

δ(md) =
C(md)

A+B + σ2
(md)

, (81)

where

A =

{
0; for sampling with replacement;
2−`(1− 2`); for sampling without replacement,

and

B =

{
2`s2

0; for sampling with replacement;
2`s2

0 − 2−`(1− 2`); for sampling without replacement.
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dδ(md)

dN
= − C(md)

{A+B + σ2
(md)}2

dσ2
(md)

dN
= −

δ2
(md)

C(md)
·
dσ2

(md)

dN
.

Therefore,

g(N) = 2`γ(s2
1 − s2

0)
(

2((2` − 1) + 2δ(md))
) dσ2

(md)

dN
− 2(2`s2

0 + σ2
(md))×{

(2`s2
0 + σ2

(md))δ(md) + (2`s2
1 + σ2

(md))γ
}
δ2

(md)

C(md)

dσ2
(md)

dN

=
f(N)

C(md)

dσ2
(md)

dN
(say),

where,

f(N) = 2`γ(s2
1 − s2

0)
(

2((2` − 1) + 2δ(md))
)
C(md) − 2(2`s2

0 + σ2
(md))×{

(2`s2
0 + σ2

(md))δ(md) + (2`s2
1 + σ2

(md))γ
}
δ2

(md).

In this case PS is decreasing if and only if f(N) > 0.
Let us simplify the expression of f(N) to get a condition on C(md). Assume

ζ = 2`s2
0 + σ2

(md) and ξ = 2`s2
1 + σ2

(md).

Then,

f(N) = γ(ξ − ζ)
(

2((2` − 1) + 2δ(md))
)
C(md) − 2ζ

{
ζδ(md) + ξγ

}
δ2

(md)

= γ(ξ − ζ)
(

2((2` − 1) + 2δ(md))
)
δ(md)

(
A+B + σ2

(md)

)
− 2ζ

{
ζδ(md) + ξγ

}
δ2

(md)

= 2δ(md)

[
γ(ξ − ζ)((2` − 1) + 2δ(md))

(
A+B + σ2

(md)

)
− 2ζ

{
ζδ(md) + ξγ

}
δ(md)

]
= 2δ(md)

[
γ(ξ − ζ)(2` − 1)

(
A+B + σ2

(md)

)
+ 2γ(ξ − ζ)

(
A+B + σ2

(md)

)
δ(md) − 2ζ2δ2

(md)−

2ζξγδ(md)

]
= −2δ(md)

[
2ζ2δ2

(md) − 2γ
{

(ξ − ζ)
(
A+B + σ2

(md)

)
− ζξ

}
δ(md) − γ(ξ − ζ)(2` − 1)

(
A+B + σ2

(md)

)]
.

Since, −2δ(md) < 0, therefore f(N) > 0 if and only if

2ζ2δ2
(md) − 2γ

{
(ξ − ζ)

(
A+B + σ2

(md)

)
− ζξ

}
δ(md) − γ(ξ − ζ)(2` − 1)

(
A+B + σ2

(md)

)
< 0. (82)

The discriminant of the quadratic equation in δ(md) is given by

4∆2 = 4

[
γ2
{

(ξ − ζ)
(
A+B + σ2

(md)

)
− ζξ

}2
+ 2γζ2(ξ − ζ)(2` − 1)

(
A+B + σ2

(md)

)]
> 0.

Therefore, both the roots of the quadratic is real. Let r1 < r2 be the two roots of the above quadratic equation.
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Then (82) holds if and only if r1 < δ(md) < r2, where

r1 =
γ
{

(ξ − ζ)
(
A+B + σ2

(md)

)
− ζξ

}
−∆

ζ2

=
γ
{

2`(s2
1 − s2

0)
(
A+B + σ2

(md)

)
− (2`s2

0 + σ2
(md))(2

`s2
1 + σ2

(md))
}
−∆

(2`s2
0 + σ2

(md))
2

and

r2 =
γ
{

2`(s2
1 − s2

0)
(
A+B + σ2

(md)

)
− (2`s2

0 + σ2
(md))(2

`s2
1 + σ2

(md))
}

+ ∆

(2`s2
0 + σ2

(md))
2

.

For both sampling with and without replacement we have A+B + σ2
(md) = 2`s2

0 + σ2
(md). Therefore we have,

∆2 =

[
γ2
{

2`(s2
1 − s2

0)
(

2`s2
0 + σ2

(md)

)
−
(

2`s2
0 + σ2

(md)

)(
2`s2

1 + σ2
(md)

)}2
+

2γ
(

2`s2
0 + σ2

(md)

)2
2`(s2

1 − s2
0)(2` − 1)

(
2`s2

0 + σ2
(md)

)]
= γ

(
2`s2

0 + σ2
(md)

)3 [
γ
(

2`s2
0 + σ2

(md)

)
+ 2`+1(2` − 1)(s2

1 − s2
0)
]

r1 = −

(
2`s2

0 + σ2
(md)

)√
γ
(

2`s2
0 + σ2

(md)

) [
γ
(

2`s2
0 + σ2

(md)

)
+ 2`+1(2` − 1)(s2

1 − s2
0)
]

+ γ
(

2`s2
0 + σ2

(md)

)2

(2`s2
0 + σ2

(md))
2

= −

√
γ
(

2`s2
0 + σ2

(md)

) [
γ
(

2`s2
0 + σ2

(md)

)
+ 2`+1(2` − 1)(s2

1 − s2
0)
]

+ γ
(

2`s2
0 + σ2

(md)

)
(2`s2

0 + σ2
(md))

and

r2 =

√
γ
(

2`s2
0 + σ2

(md)

) [
γ
(

2`s2
0 + σ2

(md)

)
+ 2`+1(2` − 1)(s2

1 − s2
0)
]
− γ

(
2`s2

0 + σ2
(md)

)
(2`s2

0 + σ2
(md))

Using (81), r1 < δ(md) < r2, r1 < 0 and C(md) > 0, we obtain

r1 <
C(md)

2`s2
0 + σ2

(md)

< r2 ⇔ 0 < C(md) < r2(2`s2
0 + σ2

(md)).

Therefore, PS is a decreasing function if and only if f(N) > 0 if and only if C(md) < r2, i.e.,

C(md) <

√
γ
(

2`s2
0 + σ2

(md)

) [
γ
(

2`s2
0 + σ2

(md)

)
+ 2`+1(2` − 1)(s2

1 − s2
0)
]
− γ

(
2`s2

0 + σ2
(md)

)
.

Under Standard Multidimensional Key Randomisation Hypotheses: In this scenario, both s1 = s0 =

0. By Condition 1 of Theorem 4, both P
(md,wr,std)
S and P

(md,wor,std)
S are increasing functions of N .
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Under Adjusted Multidimensional Wrong Key Randomisation Hypotheses: In this scenario, s2
1 =

1
2n+`

(
1− 1

2`

)
and s0 = 0. By Condition 2 of Theorem 4, both P

(md,wr,wadj)
S and P

(md,wor,wadj)
S are monotonic

decreasing functions of N if and only if

C(md) <

√
γ

{
γσ2

(md) +
(2` − 1)2

2n+`−1

}
− γσ.

Under Adjusted Multidimensional Right Key Randomisation Hypotheses: In this scenario, s1 = 0

and s2
0 = C−C(md)

22`
. By Condition 1 of Theorem 4, both P

(md,wr,radj)
S and P

(md,wor,radj)
S are increasing functions

of N .

Under Adjusted Multidimensional Key Randomisation Hypotheses: In this scenario, s2
1 = 1

2n+`

(
1− 1

2`

)
and s2

0 = C−C(md)

22`
. By Condition 2 of Theorem 4, both P

(md,wr,adj)
S and P

(md,wor,adj)
S are monotonic decreasing

functions of N if and only if s1 > s0 and

C(md) <

√
γ
(
s2

0 + σ2
(md)

)[
γ
(
s2

0 + σ2
(md)

)
+ 2(2` − 1)

(
1

2n

(
1− 1

2`

)
− s2

0

)]
− γ

(
s2

0 + σ2
(md)

)
.

8.2 Multiple Case

Consider the general expression for the success probability PS in the multiple case, as given by (60). The
subsequent expressions for success probability with/without replacement and under standard/adjusted multiple
key randomisation hypotheses are all obtained as special cases of (60). In (60), the quantities s0, s1 and γ are
constants which are independent of N and only σ and δ(m) depends on N as shown in (58) and (59). Further,
from (58) and (59), it is clear that σ2

(m) is a decreasing function of N for both the cases of sampling with and
without replacements, whereas δ(m) is an increasing function in both cases.

Theorem 5. Consider PS to be given by (60) where s0, s1 and γ are positive and independent of N while σ > 0
is a monotone decreasing function of N and δ(m) is a monotone increasing function of N .

1. Suppose s2
0 ≥ s2

1. Then PS is an increasing function of N for all N > 0.

2. Suppose s0 < s1. Then PS is a decreasing function of N if and only if

C(m) <

√
γ
(

4s2
0 + σ2

(m)

) [
γ
(

4s2
0 + σ2

(m)

)
+ 8`

(
s2

1 − s2
0

)]
− γ

(
4s2

0 + σ2
(m)

)
.

Proof. The proof is similar to the proof of Theorem 4. The expression for PS in the case of multiple linear
cryptanalysis is given by (60) while that of multidimensional linear cryptanalysis is given by (56). In (56), first
replace 2`s2

0, 2`s2
1 and (2` − 1) + 2δ by Λ1s

2
0, Λ1s

2
1 and Λ2 + 2δ respectively and then replace Λ1s

2
0, Λ1s

2
1 and

Λ2 + 2δ by 4s2
0, 4s2

1 and ` + 2δ respectively to obtain (60). This shows the similarity between the expressions
for PS given by (60) and (56). Using this similarity, it is possible to do the computations as in the proof of
Theorem 4 to obtain the desired result.

Under Standard Multiple Key Randomisation Hypotheses: In this scenario, both s1 = s0 = 0. By

Condition 1 of Theorem 5, both P
(m,wr,std)
S and P

(m,wor,std)
S are increasing functions of N .
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Under Adjusted Multiple Wrong Key Randomisation Hypotheses: In this scenario, s2
1 = 2−n−2 and

s0 = 0. By Condition 2 of Theorem 5, both P
(m,wr,wadj)
S and P

(m,wor,wadj)
S are monotonic decreasing functions of

N if and only if

C(m) <

√
γσ2

(m)

{
γσ2

(m) + 2−(n−1)`
}
− γσ2

(m)

Under Adjusted Multiple Right Key Randomisation Hypotheses: In this scenario, s1 = 0 and s2
0 > 0.

By Condition 1 of Theorem 5, both P
(m,wr,radj)
S and P

(m,wor,radj)
S are increasing functions of N .

Under Adjusted Multiple Key Randomisation Hypotheses: In this scenario, s2
1 = 2−n−2 and s2

0 > 0.

By Condition 2 of Theorem 5, both P
(m,wr,adj)
S and P

(m,wor,adj)
S are monotonic decreasing functions of N if and

only if s1 > s0 and

C(m) <

√
γ
(

4s2
0 + σ2

(m)

) [
γ
(

4s2
0 + σ2

(m)

)
+ 8`

(
2−n−2 − s2

0

)]
− γ

(
4s2

0 + σ2
(m)

)
.

9 Conclusion

This work introduced the general key randomisation hypotheses and the standard/adjusted key randomisation
hypotheses can be obtained as special cases. Expressions for the success probabilities under the different settings
of multidimensional/multiple and sampling with/without replacement have been obtained. The dependence of
the success probability on the data complexity have been completely characterised. The statistical analysis has
been rigorous to the extent possible. Certain heuristic assumptions seem to be inherently unavoidable; these have
been identified and the difficulties in avoiding these heuristics have been carefully explained. We believe that the
current work provides a deeper understanding of statistical analysis of attack using several linear approximations
than what was previously known.
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A Some Results on Statistics

A.1 Multivariate Normal to Chi-square

This section looks at certain conditions under which XXt follows a (possibly non-central) chi-square distribution,
where X follows a multivariate normal distribution with singular variance-covariance matrix. The result can be
found in [29, Chapter 3.5].

Theorem 6. Let X = (X1, . . . , Xτ ) be N (µ,Σ), and let Bτ×τ be a symmetric matrix. Assume that, for η =
(η1, . . . , ητ ),

ηΣ = 0 ⇒ ηµt = 0,

where the superscript t denotes the transpose of a matrix. The XBXt has a (possibly non-central) chi-square
distribution if and only if

ΣBΣBΣ = ΣBΣ,

in which case the degrees of freedom if trace (BΣ) and the non-centrality parameter is µBµt.
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From the above theorem we can now lists the following assumptions under which XXt follows a (possibly
non-central) chi-square distribution with (τ − 1) degrees of freedom, where X follows a multivariate normal
distribution with singular variance-covariance matrix.

1. There exists an η such that
ηΣ = 0 ⇒ ηµt = 0.

2. Here B = Iτ .

3. Σ2 = Σ and the trace of Σ = τ − 1.

A.2 Approximating Non-central Chi-squared Distribution by Normal

The following result can be found in [18, Chapter 29.10].

Theorem 7. Let X be a random variable following a non-central chi-square distribution with ν degrees of freedom
and non-centrality parameter δ, i.e., X ∼ χ2

ν(δ). Then the standarized random variable

X − (ν + δ)√
2(ν + 2δ)

approximately follows a standard normal distribution if either

1. ν →∞, δ remaining constant, or

2. δ →∞, ν remaining constant.


