
1

Dynamic Searchable Public-Key Ciphertexts with
Fast Performance and Practical Security

Peng Xu, Xia Gao, Wei Wang, Willy Susilo, Qianhong Wu, Hai Jin

Abstract

Public-key encryption with keyword search (PEKS) allows a sender to generate keyword-searchable ciphertexts using
a receiver’s public key and upload them to a server. Upon receiving a keyword-search trapdoor from the receiver, the
server finds all matching ciphertexts. Due to the characteristics of public-key encryption, PEKS is inherently suitable
for the application of numerous senders. Hence, PEKS is a well-known method to achieve secure keyword search over
the encrypted email system. However, we find that without a keyword-search trapdoor, the traditional concept of PEKS
still allows the server to have the obvious advantage to distinguish ciphertexts in practice. In other words, the traditional
PEKS cannot guarantee the well-recognized semantic security in practice. To solve this problem, this paper defines a new
concept called dynamic searchable public-key encryption (DSPE). It can hide the relationships between keyword-searchable
ciphertexts and their corresponding encrypted files, and guarantee semantic security in both theory and practice. In addition,
it allows the server to delete the intended ciphertexts according to the receiver’s requirement. Then, we construct a DSPE
instance with provable semantic security in the random oracle model. In terms of performance, the proposed instance also
has the advantage that it only requires sublinear complexity to determine all matching ciphertexts or to delete the intended
ciphertexts. Finally, we experimentally demonstrate the practicability of the instance.

Index Terms

Public-key Encryption with Keyword Search, Semantic Security, Dynamic Searchable Public-Key Encryption, Random
Oracle

I. INTRODUCTION

CLOUD email system allows an enterprise to build an email system with much cheaper cost than the traditional
on-premises solution. In 2017, the Radicati Group [1] showed the worldwide revenue forecast for Cloud Business

Email, from 2017 to 2021. Figure 1 shows that the Cloud Business Email market is expected to generate nearly 43 billion
by 2021. Hence, Cloud email system is a promising and important application due to its advantageous features. However,
the honest-but-curious cloud platform makes users worry about their emails’ privacy. To solve this problem, encrypting
emails in public key setting has been recognized as a secure method by many famous companies, like Symantec, Voltage,
Proofpoint and so on. The traditional public-key encryption (PKE) can keep the privacy of emails to the cloud platform.
But it also makes the receivers of emails lose their capabilities to delegate keyword searches to the cloud platform. Boneh
et al. first addressed this problem and proposed a new concept called public-key encryption with keyword search (PEKS)
[2].

Copyright © June 2017 The Radicati Group, Inc. Reproduction Prohibited

THE RADICATI GROUP, INC.
A TECHNOLOGY MARKET RESEARCH FIRM

Cloud Business Email Market, 2017-2021

http://www.radicati.com Cost – US $3,000 by company P.O. or $2,500 by credit card

An in-depth analysis of the Cloud Business Email market, including:

Cloud Business Email – Installed Base and Revenue Market Share by Provider, Four-Year
Forecasts, Breakouts by Region, Business Size, and Platform Type.

Hosted Microsoft Exchange – Installed Base and Revenue Market Share by Hosting Provider,
Four-Year Forecasts, Breakouts by Region and Business Size.

Dedicated vs. Multi-Tenant – Installed Base Breakout by Hosting Provider, and Four-Year
Forecast.

Google Apps – Installed Base and Revenue Market Share, Four-Year Forecast, Breakouts by
Region and Business Size.

In-depth analysis of key Cloud Business providers: Amazon Web Services, GoDaddy, Google,
HyperOffice, IBM, Intermedia, Microsoft, NaviSite, and Rackspace.

This report is intended for Organizations, Service Providers, Vendors, and Investors who need to make
informed decisions about the Cloud Business Email market.

$19,543	
$24,738	

$30,189	
$36,284	

$43,027	

$0	

$10,000	

$20,000	

$30,000	

$40,000	

$50,000	

2017	 2018	 2019	 2020	 2021	

Cloud	Business	Email	Revenue	Forecast	($M),	
2017-2021	

Figure 1: The worldwide revenue forecast for Cloud Business Email (unit: Million) [1].

PEKS has the advantage that all senders can generate keyword-searchable ciphertexts with a receiver’s public key
and upload these ciphertexts to a server. The receiver can delegate the keyword search to the server. Specifically, each

P. Xu, X. Gao and H. Jin are with the Services Computing Technology and System Lab, Cluster and Grid Computing Lab, School of Computer
Science and Technology, Huazhong University of Science and Technology, Wuhan, China. Emails: xupeng@mail.hust.edu.cn, 1040238358@qq.com,
hjin@mail.hust.edu.cn.

W. Wang is with the Cyber-Physical-Social Systems Lab, School of Computer Science and Technology, Huazhong University of Science and
Technology, Wuhan, China. Email: viviawangww@gmail.com.

W. Susilo is with the Institute of Cybersecurity and Cryptology, School of Computing and Information Technology, University of Wollongong,
Australia. Email: wsusilo@uow.edu.au.

Q. Wu is with the School of Electronic and Information Engineering, Beihang Univerisity, Beijing, China. Email: qianhong.wu@buaa.edu.cn.

2

sender separately encrypts his files and the extracted keywords using the receiver’s public key, and sends the generated
ciphertexts to the server; then, the receiver sends a keyword-search trapdoor to the server to retrieve the encrypted
files with the expected keywords. Finally, the server finds all matching keyword-searchable ciphertexts, and sends the
corresponding encrypted files to the receiver, and the receiver decrypts these files.

Head

1()SPCHS W

1 2 3() () () ()PEKS W PEKS W PEKS W PKE F

1()SPCHS ID
1()Enc ID

1()SPCHS W
2()SPCHS ID

2()Enc ID
1()SPCHS W
3()SPCHS ID

3()Enc ID
2()SPCHS W
1()SPCHS ID

1()Enc ID
3()SPCHS W
3()SPCHS ID

3()Enc ID

The Visual Connection

The Encrypted File PEKS Ciphertexts

The Hidden Chain of A Keyword

The Hidden Chain of A File Identity

Figure 2: The Classic Appication of PEKS. Symbol PEKS(Wi) denotes the keyword-searchable ciphertext generated
by PEKS for keyword Wi. Symbol PKE(F) denotes the encrypted file F using a traditional public-key encryption
scheme. Symbol || denotes the concatenation of strings.

In the previous works on PEKS, all keyword-searchable ciphertexts of a file must visually connect with the file’s
ciphertext, as shown in Figure 2. These connections make the function of deleting the searchable ciphertexts of an
intended file easy. However, they imply that the server trivially knows that the keyword-searchable ciphertexts connected
to the same file contain different keywords and the total number of keyword-searchable ciphertexts of a file. This leaked
information breaks the semantic security of keywords [2] such that some keyword searchable ciphertexts are trivially
distinguishable in the view of the server.

To address this problem, our basic idea is to hide the visible connections between keyword-searchable ciphertexts
and the encrypted files. More specifically, suppose each file has a file identifier. In this scenario, a complete searchable
ciphertext of a file consists of a keyword-searchable ciphertext, a file-identifier-searchable ciphertext and an encrypted
file identifier of the file. Each searchable ciphertext and its encrypted file are separate, and all searchable ciphertexts
are stored in a random order. Upon receiving a keyword-search trapdoor, the server identifies all matching keyword-
searchable ciphertexts, decrypts the corresponding file identifiers and determines the corresponding encrypted files (the
remaining operations are the same as those of the original PEKS). To delete all searchable ciphertexts of an intended file,
the receiver first generates a file-delete trapdoor with the file’s identifier and sends the trapdoor to the server; secondly,
the server identifies all matching file-identifier-searchable ciphertexts and deletes the corresponding complete ciphertexts.Head

1()SPCHS W

1 2 3() () () ()PEKS W PEKS W PEKS W PKE F

1()SPCHS ID
1()Enc ID

1()SPCHS W
2()SPCHS ID

2()Enc ID
1()SPCHS W
3()SPCHS ID

3()Enc ID
2()SPCHS W
1()SPCHS ID

1()Enc ID
3()SPCHS W
3()SPCHS ID

3()Enc ID

Head

1()SPCHS W 1()SPCHS W 1()SPCHS W

2()SPCHS W

()nSPCHS W

 2()SPCHS W

()nSPCHS W

Head

1()SPCHS W 1()SPCHS W

2()SPCHS W

()nSPCHS W

 2()SPCHS W

()nSPCHS W

The Visual Connection

The Encrypted File PEKS Ciphertexts

The Hidden Chain of A Keyword

The Hidden Chain of A File Identity

The Hidden Chain of A Keyword

The Hidden Chain of A Keyword

Figure 3: The Main Idea of SPCHS. Symbol SPCHS(Wi) denotes the keyword-searchable ciphertext generated by
SPCHS for keyword Wi. The dashed arrows denote the hidden relations.

The basic idea is effective in traditional PEKS schemes, but it is ineffective in PEKS schemes with both fast search
performance and semantic security. This scheme is called SPCHS and was first proposed by Xu et al.[3]. In SPCHS, as
shown in Figure 3, all searchable ciphertexts containing the same keyword, despite being in different files, are linked
by a hidden chain, and a hidden relation links from a public Head to all the first searchable ciphertexts of these chains.
When deleting a keyword-searchable ciphertext of a file, the corresponding chain of the keyword is broken, such that
the keyword cannot be searched again. A similar problem also appeared in the early works of searchable symmetric-key
encryption, such as in [4]. The problem was first solved by [5] in 2012, but our paper is the first to consider the problem
in the field of PEKS.

A. Our Final Ideas

To solve the above problem, we first extend our basic idea to support fast keyword and file-identifier searches by
constructing hidden relationships among searchable ciphertexts, as shown in Figure 4. All keyword-searchable ciphertexts

3

Head

1()SPCHS W

1 2 3() () () ()PEKS W PEKS W PEKS W PKE F

1()SPCHS ID
1()Enc ID

1()SPCHS W
2()SPCHS ID

2()Enc ID
1()SPCHS W
3()SPCHS ID

3()Enc ID
2()SPCHS W
1()SPCHS ID

1()Enc ID
3()SPCHS W
3()SPCHS ID

3()Enc ID

The Visual Connection

The Encrypted File PEKS Ciphertexts

The Hidden Chain of A Keyword

The Hidden Chain of A File Identity
Figure 4: An Example of Our First Idea. Suppose there are three files ID1, ID2 and ID3; file ID1 has keywords
W1 and W2, file ID2 has keyword W1, and file ID3 has keywords W3 and W1. Each box denotes a complete
searchable ciphertext, which consists of three parts. Symbol SPCHS(Wi/IDj) denotes the keyword/file-identifier-
searchable ciphertext generated by SPCHS for keyword Wi or file identifier IDj . Symbol Enc(IDi) denotes a ciphertext
that can decrypt the file identifier IDi by the corresponding keyword-search trapdoor.

of the same keyword are linked by a hidden chain. All file-identifier-searchable ciphertexts of the same file are also linked
by a hidden chain, and a hidden relation links from a public Head to all the first searchable ciphertexts of these chains.
With a keyword-search or file-delete trapdoor and the public Head, the server finds the first matching ciphertext by the
corresponding relation from the Head at first. Secondly, another relation can be disclosed by the found ciphertext to guide
the server to find the next matching ciphertext. By continuing in the same way, the server quickly finds all matching
ciphertexts.

Second, to delete all searchable ciphertexts of a file, it is easy to delete all file-identifier-searchable ciphertexts of
the file, but it is challenging to securely delete all keyword-searchable ciphertexts of the file and repair the broken
chains. With a file-delete trapdoor, all keyword- and file-identifier-searchable ciphertexts of the file can be quickly found
using the above mentioned idea. Since the found file-identifier-searchable ciphertexts have no relationship with other
files’ searchable ciphertexts, they can be directly deleted. However, deleting the found keyword searchable ciphertexts
breaks the corresponding chains. To repair a broken chain, a straightforward method needs to know the former and latter
keyword-searchable ciphertexts of the deleted ciphertext, and then link the former and latter ciphertexts to construct a
complete chain. Clearly, this method is not compatible with semantic security since without the keyword-search trapdoor
of a keyword, no one knows any information about the hidden chain corresponding to the keyword.

To overcome this challenge, we divide a complete deletion operation into two steps, logical and physical deletion.
When deleting the keyword-searchable ciphertexts of a file, these ciphertexts are logically deleted by first tagging them
with a special label. Upon receiving a keyword-search trapdoor, the server not only finds all matching keyword-searchable
ciphertexts but also physically deletes their already tagged ciphertexts and repairs the broken chain. Clearly, this method
avoids the above contradiction.

B. Our Work

We formally define the concept of dynamic searchable public-key encryption (DSPE) and its semantic security at
first. DSPE is a general concept that includes not only the previous concepts of PEKS and SPCHS but also two new
features: (1) each searchable ciphertext contains an encrypted file identifier and one can decrypt the file identifier with
the corresponding keyword-search trapdoor; (2) with a file-delete trapdoor, the searchable ciphertexts of a file can be
identified and deleted. It is worth noting that the first feature enables DSPE to construct a hidden connection between
searchable ciphertexts and their corresponding encrypted files. Hence, DSPE can achieve semantic security not only in
theory but also in practice.

The semantic security of DSPE is defined for all keywords, file identifiers and hidden relations. This means that
(1) without any keyword-search or file-delete trapdoor, no one can distinguish any two searchable ciphertexts, and no
information about the hidden relations is leaked, and (2) with a keyword-search or file-delete trapdoor, one can only
disclose the corresponding relations, and the matching ciphertexts leak no information about the rest of the ciphertexts.

4

In contrast, the semantic security of PEKS is defined only for all keywords, and the semantic security of SPCHS is
defined only for all keywords and hidden relations.

Following the formal definition of DSPE, this paper constructs a DSPE instance in which all searchable ciphertexts
contain the hidden relationships shown in Figure 3. With the file-delete trapdoor of a file, the hidden chain of the file
can be disclosed, and all ciphertexts of the file can be rapidly found and logically deleted. With a keyword-search
trapdoor, the hidden chain of the coresponding keyword can be disclosed, and all ciphertexts of the keyword can be
rapidly found. Simultaneously, identified ciphertexts that have been logically deleted by previous deletion operations are
physically deleted, and the corresponding chain is repaired. Based on the computational bilinear Diffie-Hellman (CBDH)
assumption [6], the instance is proven semantically secure in the random oracle (RO) model. In summary, our DSPE
instance has the following advantages: fast search and delete performance and semantic security in both theory and
practice.

C. Organization

Section II defines DSPE and its semantic security. Section III instantiates DPSE and proves the semantic security of
the constructed instance. Section IV experimentally demonstrates the performance of our DSPE instance for searching
keywords and deleting ciphertexts. Related work on PEKS is reviewed in Section V. This paper is concluded in Section
VI.

II. MODELING DSPE

This section formalizes the model of DSPE and defines its security notion. In DSPE, suppose that each file has a
unique file identifier ID and contains several keywords. Intuitively, DSPE extends SPCHS by defining two new algorithms
DeleteTrapdoor and Delete, which generate a file-delete trapdoor and delete the intended ciphertexts, respectively. In
addition, DSPE extends the encryption algorithm of SPCHS by adding a file identifier as an input, such that the generated
ciphertext can be searched by a file-delete trapdoor and decrypt the file identifier with the corresponding keyword-search
trapdoor.

Definition 1 (DSPE). Let W and ID be the keyword and file-identifier spaces, respectively. A DSPE scheme consists
of seven algorithms:
• Setup(1k,W, ID): Take a security parameter 1k, W and ID as inputs and probabilistically generate a pair of

master public-and-secret keys (PK,SK), where PK includes W , ID and the ciphertext space C;
• StructureInitialization(PK): Take PK as input and probabilistically initialize a hidden structure by generating

its private and public parts (Pri,Pub);
• Encryption(PK, w, id,Pri): Take PK, a keyword w ∈ W , a file identifier id ∈ ID and a hidden structure’s

private part Pri as inputs, probabilistically generate a searchable ciphertext C ∈ C with the hidden structure of
Pri, and update Pri;

• SearchTrapdoor(SK, w): Take SK and a keyword w ∈ W as inputs and generate the corresponding keyword-
search trapdoor Tw;

• DeleteTrapdoor(SK, id): Take SK and a file identifier id ∈ ID as inputs and output a file-delete trapdoor Tid
of id;

• Search(PK,Pub,C, Tw′): Take PK, a hidden structure’s public part Pub, all searchable ciphertexts C and
a keyword-search trapdoor Tw′ of keyword w′ as inputs, disclose partial relations for guidance to identify the
ciphertexts containing keyword w′ with the hidden structure of Pub, decrypt the identified ciphertexts and output
the contained file identifiers;

• Delete(PK,Pub,C, Tid′): Take PK, a hidden structure’s public part Pub, all searchable ciphertexts C and
a file-delete trapdoor Tid′ of file id′ as inputs, disclose partial relations for guidance to find out the ciphertexts
containing file id′ with the hidden structure of Pub, and delete the found ciphertexts.

Additionally, a DSPE scheme must be consistent in the following two senses: (1) given any keyword-search trapdoor Tw′
and any hidden structure’s public part Pub, all ciphertexts of keyword w′ with the hidden structure Pub can be found
by algorithm Search(PK,Pub,C, Tw′); (2) similarly, given any file-delete trapdoor Tid′ and any hidden structure’s
public part Pub, algorithm Delete(PK,Pub,C, Tid′) finds all ciphertexts of file id′ with the hidden structure Pub.

Our DSPE definition also implies the traditional definition of PEKS if no hidden structure is initialized and the input
parameters Pri and Pub, respectively, of algorithms Encryption and Delete are null.

In the application of DSPE, a receiver sets up DSPE by running algorithm Setup. Each sender initializes a hidden
structure before the initial time to generate a searchable ciphertext using algorithm StructureInitialization, generates
searchable ciphertexts for his files using algorithm Encryption, and uploads these ciphertexts to a server. Algorithm
SearchTrapdoor enables the receiver to generate a keyword-search trapdoor. Upon receiving this trapdoor, the server
runs algorithm Search for all senders’ structures to obtain the file identifiers, which identify the files containing the

5

queried keyword. Similarly, upon receiving a file-delete trapdoor generated by algorithm DeleteTrapdoor from the
receiver, the server runs algorithm Delete for all senders’ structures to delete the searchable ciphertexts of the intended
file.

The goal of the semantic security of DSPE is to resist adaptively chosen keyword, file-identifier and structure attacks
(SS-CKFSA). As in the semantic security of SPCHS, a probabilistic polynomial-time (PPT) adversary A is allowed to
know the master public key and all structures’ public parts, query the trapdoors for adaptively chosen keywords, and query
the private parts for adaptively chosen structures. In addition, SS-CKFSA security allows the adversary A to query the
trapdoors for adaptively chosen file identifiers and to query the searchable ciphertexts for adaptively chosen keywords, file
identifiers and structures, including the targets that the adversary would like to be challenged. The adversary chooses two
challenge triples, in which each triple consists of a keyword, a file identifier and a structure. SS-CKFSA security means
that given a ciphertext of one of the two challenge triples, the adversary cannot determine which challenge keyword or
which challenge file identifier or which challenge structure the challenge ciphertext corresponds to, if the adversary does
not know the two challenge keywords search trapdoors, the two challenge file identifiers’ delete trapdoors, and the two
challenge structures private parts.

Definition 2 (SS-CKFSA Security). Suppose there are N ∈ N hidden structures at most . A DSPE scheme is SS-CKFSA
secure, if any PPT adversary A has only a negligible advantage AdvSS-CKFSA

DSPE,A to win in the following SS-CKFSA game:
• Setup Phase: A challenger sets up the DSPE scheme using algorithm Setup to generate a pair of master public-

and-secret keys (PK,SK), initializes N hidden structures using algorithm StructureInitialization N times (let
PSet be the set of all public parts of these N hidden structures), and sends PK and PSet to A;

• Query Phase 1: Adversary A adaptively issues the following queries several times.
– Search-Trapdoor Query QSTrap(w): Taking a keyword w ∈ W as input, the challenger returns the keyword-

search trapdoor of keyword w;
– Delete-Trapdoor Query QDTrap(id): Taking a file identifier id ∈ ID as input, the challenger returns the

file-delete trapdoor of file id;
– Privacy Query QPri(Pub): Taking a hidden structure’s public part Pub ∈ PSet as input, the challenger

returns the corresponding private part;
– Encryption Query QEnc(w, id,Pub): Taking a keyword w ∈ W , a file identifier id and a hidden structure’s

public part Pub as inputs, the challenger generates and returns a searchable ciphertext of keyword w and file
identifier id with the hidden structure Pub.

• Challenge Phase: A sends two challenge triples (w∗0 , id
∗
0,Pub∗0) ∈ W × ID × PSet and (w∗1 , id

∗
1,Pub∗1) ∈

W ×ID×PSet to the challenger. The challenger randomly chooses d ∈ {0, 1} and returns a challenge ciphertext
C∗d of (w∗d, id

∗
d,Pub∗d) to A.

• Query Phase 2: It is the same as Query Phase 1. Note that both in Query Phase 1 and Query Phase 2, adversary
A cannot query the corresponding private parts of Pub∗0 and Pub∗1, the keyword-search trapdoors of w∗0 and w∗1 ,
and the file-delete trapdoors of id∗0 and id∗1.

• Guess Phase:A sends a guess d′ to the challenger. We say thatA wins if d = d′ and let AdvSS-CKFSA
DSPE,A = Pr[d = d′]− 1

2
be the advantage of A to win in the above game.

III. INSTANTIATING DSPE
Let x $← X denote an element x being randomly sampled from the set X. Let ê : G × G → GT be a bilinear map,

where G and GT denote two multiplicative groups of prime order q. Let g be a generator of G. Let ê be an efficiently
computable and non-degenerate function with the bilinearity property ê(ga, gb) = ê(g, g)ab, where (a, b)

$← Z∗q and
ê(g, g) is a generator of GT . Let BGen(1k) be an efficient bilinear map generator that takes a security parameter
1k as input and probabilistically generates (q,G,GT , g, ê). Let W and ID be the keyword and file identifier spaces,
respectively. SupposeW

⋂
ID = ∅. Let |ID| denote the binary length of ID. Suppose a deleted file identifier will never

be re-used. A DSPE instance is then constructed as follows:
• Setup(1k,W, ID): Take a security parameter 1k, W and ID as inputs, compute (q,G,GT , g, ê) ← BGen(1k),

pick s
$← Z∗q , set p = gs, set the ciphertext space C ⊆ {0, 1}2k × G × {0, 1}1+k+|ID| × {0, 1}k, choose three

cryptographic hash functions H1 : {0, 1}∗ → G, H2 : GT → {0, 1}k and H3 : GT → {0, 1}1+k+|ID|, and finally
generate the master public key PK = (q,G,GT , g, ê, p,H1,H2,H3,W, ID, C) and the master secret key SK = s.

• StructureInitialization(PK): Take PK as input, pick u $← Z∗q , set Pri = (u) and Pub = gu, and initialize a
hidden structure by generating its private and public parts (Pri,Pub). Note that Pri is a variable list formed as
{u, (w,Pt[u,w]), (id, P t[u, id])|w ∈ W, id ∈ ID, P t[u,w/id] ∈ {0, 1}k}, which is initialized as (u).

• Encryption(PK, w, id,Pri): Take PK, a keyword w ∈ W , a file identifier id ∈ ID and a hidden structure’s
private part Pri as inputs, pick r

$← Z∗q , and perform the following steps to generate and output the searchable
ciphertext C = (Lw, Lid, Lr, Dw, Did):

6

1) Retrieve record (w,Pt[u,w]) by w in Pri, set Lr = gr;
2) If the record does not exist, add (w,Pt[u,w]

$← {0, 1}k) into Pri, and set Lw = H2(ê(p,H1(w))
u) and

Dw = H3(ê(p,H1(w))
r)⊕ (0||id||Pt[u,w]);

3) Otherwise, pick Pw
$← {0, 1}k, set Lw = Pt[u,w] and Dw = H3(ê(p,H1(w))

r) ⊕ (0||id||Pw), update
Pt[u,w] = Pw in Pri;

4) Retrieve record (id, P t[u, id]) by id in Pri;
5) If the record does not exist, add (id, P t[u, id]

$← {0, 1}k) into Pri, and set Lid = H2(ê(p,H1(id))
u) and

Did = H2(ê(p,H1(id))
r)⊕ Pt[u, id];

6) Otherwise, pick Pid
$← {0, 1}k, set Lid = Pt[u, id] and Did = H2(ê(p,H1(id))

r)⊕Pid, update Pt[u, id] = Pid
in Pri.

• SearchTrapdoor(SK, w): Take SK and a keyword w ∈ W as inputs and generate a keyword-search trapdoor
Tw = H1(w)

s of keyword w.
• DeleteTrapdoor(SK, id): Take SK and a file identifier id ∈ ID as inputs and generate a file-delete trapdoor
Tid = H1(id)

s of file identifier id.
• Search(PK,Pub,C, Tw′): Take PK, a hidden structure’s public part Pub, all searchable ciphertexts C and a

keyword-search trapdoor Tw′ of keyword w′ and perform the following steps:
1) Initialize an empty set I, two variables i = 0 and j = 0, and two temporary pointers Pt = H2(ê(Pub, Tw′))

and Pt′ = NULL;
2) Set i = i+1, seek a ciphertext Ci = (Liw, L

i
id, L

i
r, D

i
w, D

i
id) having Liw = Pt in C. If the ciphertext does not

exist then return I and abort;
3) Set (Tag||id||Pt) = Di

w ⊕H3(ê(L
i
r, Tw′));

4) If Tag = 0, add id into I, set j = i and Pt′ = Pt, and go to step 2);
5) If Tag = 1 and i = 1, set j = i and Pt′ = Pt, and go to step 2);
6) If Tag = 1 and i > 1, update the previously found ciphertext Cj = (Ljw, L

j
id, L

j
r, D

j
w, D

j
id) by setting

Dj
w = Dj

w ⊕ (0||0|ID|||Pt′ ⊕ Pt), physically delete the ciphertext Ci and go to step 2);
• Delete(PK,Pub,C, Tid′): Take PK, a hidden structure’s public part Pub, all searchable ciphertexts C and a

file-delete trapdoor Tid′ of file identifier id′ as inputs and perform the following steps:
1) Initialize a temporary pointer Pt = H2(ê(Pub, Tid′));
2) Seek a ciphertext C = (Lw, Lid, Lr, Dw, Did) having Lid = Pt in C;
3) If the ciphertext does not exist, return ⊥ and abort;
4) Otherwise, logically delete the ciphertext by updating its Dw = Dw ⊕ (1||0k+|ID|), set Pt = Did ⊕

H2(ê(Lr, Tid′)) and go to step 2).

u= gPub

1 2 1 1ˆ((, ()))uwL e p w 1 2 1 1ˆ((, ()))uidL e p id rrL g
1 3 1 1 1 1ˆ((, ())) (0 || || [,])rwD e p w id Pt u w
1 2 1 1 1ˆ((, ())) [,]ridD e p id Pt u id 1 1,w idC ：

1 1[,]=wL Pt u w 2 2 1 2ˆ((, ()))uidL e p id rrL g
1 3 1 1 2 1ˆ((, ())) (0 || || [,])rwD e p w id Pt u w
2 2 1 2 2ˆ((, ())) [,]ridD e p id Pt u id 1 2,w idC ：

1 1[,]=wL Pt u w
3 2 1 3ˆ((, ()))uidL e p id rrL g

1 3 1 1 3 1ˆ((, ())) (0 || || [,])rwD e p w id Pt u w
3 2 1 3 3ˆ((, ())) [,]ridD e p id Pt u id 1 3,w idC ：

Have the same value

Have the same value

Figure 5: An Example. Note that in each ciphertext, parameter Pt[u,w1] is randomly chosen before generating Dw1

according to step 2) and 3) of algorithm Encryption, and parameter r will be randomly chosen.

An Example. Suppose a receiver has generated the master public and secret keys using algorithm Setup. A sender
would like to generate searchable ciphertexts for files id1, id2 and id3, and these files have the same keyword w1. The
sender runs algorithm StructureInitialization to initialize a hidden structure with parameters (Pri = u,Pub = gu).

7

Then he takes (w1, id1), (w1, id2) and (w1, id3) as inputs to run algorithm Encryption and generates searchable
ciphertexts Cw1,id1 , Cw1,id2 and Cw1,id3 , which are uploaded to a server, as shown in Figure 5.

Since ciphertext Cw1,id1 is the first of keyword w1, the generated Lw1 of Cw1,id1 by step 2) of algorithm Encryption
implies a hidden relationship with Pub. The hidden relationship can be disclosed by steps 1) and 2) of algorithm Search
with keyword-search trapdoor Tw1

. In addition, ciphertexts Cw1,id1 , Cw1,id2 and Cw1,id3 construct a hidden chain by step
3) of algorithm Encryption. In other words, the part Dw1

of the former ciphertext encrypts a point Pt[u,w1] having
the same value as the part Lw1

of the latter ciphertext. Also, by using keyword-search trapdoor Tw1
, the hidden chain

can be disclosed by steps 3) and 4) of algorithm Search. Similarly, there are hidden relationships existing between
Pub and parts Lid1 , Lid2 and Lid3 of those ciphertexts, according to step 5) of algorithm Encryption. These hidden
relationships can be disclosed by step 1) of algorithm Delete using the corresponding file-delete trapdoors.

Suppose the receiver would like to delete ciphertext Cw1,id2 . He generates file-delete trapdoor Tid2 using algorithm
DeleteTrapdoor. With trapdoor Tid2 , the server logically deletes ciphertext Cw1,id2 using algorithm Delete. In other
words, part Dw1

of ciphertext Cw1,id2 is modified to Dw1
= H3(ê(p,H1(w1))

r)⊕ (1||id2||Pt[u,w1]). Upon receiving
keyword-search trapdoor Tw1

, the server physically deletes ciphertext Cw1,id2 and repairs the broken chain by step 6) of
algorithm Search.

Consistency. The essence of proving the consistency of our instance is to prove that the corresponding ciphertexts can
be found with a keyword-search or file-delete trapdoor. In other words, with a keyword-search trapdoor Tw or a file-delete
trapdoor Tid, the server can sequentially compute some pointers directed at the intended ciphertexts. The consistency of
our instance is formally proved as follows.

Theorem 1. Suppose that except with a negligible probability in parameter k, the hash functions H1, H2 and H3 are
collision free. The above DSPE scheme is consistent, also except with a negligible probability in parameter k.

Proof: Referring to Definition 1, a DSPE scheme must be consistent in the following two senses: (1) given any
keyword-search trapdoor Tw′ and any hidden structure’s public part Pub, all the ciphertexts of keyword w′ with the
hidden structure Pub can be found using algorithm Search(PK,Pub,C, Tw′); (2) given any file-delete trapdoor Tid′
and any hidden structure’s public part Pub, algorithm Delete(PK,Pub,C, Tid′) finds all the ciphertexts of file id′

with the hidden structure Pub.
To prove the consistency in the first sense, without loss of generality, it can be proven that given the keyword-

searchable trapdoor Twi
= H(wi)

s of keyword wi ∈ W and the hidden structure’s public part Pub = gu, algorithm
Search(PK,Pub,C, Twi) finds all ciphertexts of keyword wi with the hidden structure Pub. According to algorithm
Encryption, all ciphertexts of keyword wi in the hidden structure Pub construct a hidden chain, and the first ciphertext
(let it be C1

wi
= (L1

wi
, L1

id, L
1
r, D

1
wi
, D1

id)) of the chain has L1
wi

= H2(ê(p,H1(wi))
u). According to the first step of

algorithm Search, it is easy to find that Pt = L1
wi

. Hence, the first ciphertext of keyword wi can be found. To find
the remaining ciphertexts of keyword wi, the third step of algorithm Search decrypts a pointer that has the same
value as the first part of the next ciphertext of keyword wi. In other words, the pointer is directed toward the next
ciphertext of keyword wi. Hence, algorithm Search(PK,Pub,C, Twi) can find the second ciphertext of keyword wi.
By continuing in this manner, all ciphertexts of keyword wi with the hidden structure Pub can be found. In addition,
to complete the proof, we must consider the special case that some ciphertexts of keyword wi will be deleted from the
hidden chain when running algorithm Search(PK,Pub,C, Twi

). Hence, we must prove that the hidden chain will be
repaired well before the next running of algorithm Search(PK,Pub,C, Twi

). According to the fifth step of algorithm
Search, the first ciphertext of the hidden chain never be deleted. When deleting a middle ciphertext of the hidden
chain, the sixth step of algorithm Search repairs the hidden chain. For example, suppose that there are three ciphertexts
C1
wi

= (L1
wi
, L1

id, L
1
r, D

1
wi
, D1

id), C
2
wi

= (L2
wi
, L2

id, L
2
r, D

2
wi
, D2

id) and C3
wi

= (L3
wi
, L3

id, L
3
r, D

3
wi
, D3

id) in the hidden
chain, D1

wi
encrypts L2

wi
, and D2

wi
encrypts L3

wi
. Upon deleting ciphertext C2

wi
, the sixth step updates ciphertext C1

wi
,

such that D1
wi

encrypts L3
wi

(not L2
wi

). In other words, it results in ciphertext C1
wi

being relinked to ciphertext C3
wi

,
so the repaired hidden chain is also workable. In this way, we can prove that algorithm Search(PK,Pub,C, Twi) is
correct.

Compared with the proof in the first sense, it is easy to prove consistency in the second sense. Hence, the details are
omitted here.

Security Proof. The SS-CKFSA security of our DSPE instance relies on the CBDH assumption [6], which is defined
as follows.

Definition 3 (The CBDH Assumption.). The CBDH problem in BGen(1k) = (q,G,GT , g, ê) is defined as the probability
of any PPT algorithm B to compute the value ê(g, g)abc when given (ga, gb, gc), where (a, b, c)

$← Z∗3q . Let PrCBDH
B (1k)

denote that probability. We say that the CBDH assumption holds in BGen(1k) if the probability PrCBDH
B (1k) is negligible

in parameter k.

For the security proof, we prove that if an adversary can break the SS-CKFSA security of our DSPE instance in the
RO model, then an algorithm can be constructed to solve the CBDH problem in BGen(1k). Formally, we have the

8

following Theorem 2.

Theorem 2. Suppose that there are at most N ∈ N hidden structures and the sizes of the keyword space W and file-
identifier space ID are polynomial. Let the hash functions H1, H2 and H3 be modeled as three random oracles QH1

(·),
QH2

(·) and QH3
(·), respectively. Suppose a PPT adversary A wins in the SS-CKFSA game of the above DSPE scheme

with advantage AdvSS-CKFSA
DSPE,A , in which A makes at most q1 queries to Oracle Query QH1

(·), at most q2 queries to Oracle
Query QH2

(·), at most q3 queries to Oracle Query QH3
(·), at most qs queries to Search-Trapdoor QueryQSTrap(·),

at most qd queries to Delete-Trapdoor Query QDTrap(·), at most qp queries to Privacy Query QPri(·) and at most qe
queries to Encryption Query QEnc(·). Then, there is a PPT algorithm B that solves the CBDH problem in BGen(1k)
with probability greater than

66 ·AdvSS-CKFSA
DSPE,A

e6 · (qs + qd + qp)6 · (q3 + qe) · (|W|+ |ID|) ·N · σ2

, where e is the base of natural logarithms.

Proof: To prove this theorem, we construct a PPT algorithm B that plays the SS-CKFSA game with adversary A and
utilizes the capability of A to solve the CBDH problem in BGen(1k) = (q,G,GT , g, ê) with probability PrCBDH

B (1k).
Let coin σ← {0, 1} denote the operation that picks coin ∈ {0, 1} according to probability Pr[coin = 1] = σ (the specified
value of σ will be determined later). The constructed algorithm B in the SS-CKFSA game is as follows.
• Setup Phase: Algorithm B takes (q,G,GT , g, ê, ga, gb, gc) and spaces (W, ID) as inputs and performs the following

steps:
1) Initialize the five lists H1List = ∅ ⊆ {W, ID}×G×Z∗q × {0, 1}, H2List = ∅ ⊆ GT × {0, 1}k, H3List =

∅ ⊆ GT × {0, 1}1+k+|ID|, Pt = ∅ ⊆ {W, ID} ×G× {0, 1}k and SList = ∅ ⊆ G× Z∗q × {0, 1};
2) Initialize N hidden structures by repeating the following steps for i ∈ [1, N]:

a) Pick ui
$← Z∗q and coini

$← {0, 1};
b) If coini = 1, set Pubi = gb·ui ;
c) Otherwise, set Pubi = gui ;

3) Set PSet = {Pubi|i ∈ [1, N]} and SList = {(Pubi, ui, coini)|i ∈ [1, N]};
4) Set the master public key PK = (q,G,GT , g, ê, p = ga,W, ID, C), and send PK and PSet to adversary A;

• Query Phase 1: Adversary A adaptively issues the following queries multiple times.
– Oracle Query QH1(w/id): Taking a keyword w or a file identifier id (which has never been queried before) as

input, algorithm B picks x $← Z∗q and coin σ← {0, 1}, adds (w/id, z = gx, x, coin) into H1List and outputs z
if coin = 0, otherwise adds (w/id, z = gc·x, x, coin) into H1List and outputs z;

– Oracle Query QH2
(v): Taking a value v ∈ GT (which has never been queried before) as input, algorithm B

picks y $← {0, 1}k, adds (v, y) into H2List and outputs y;
– Oracle Query QH3

(v): Taking a value v ∈ GT (which has never been queried before) as input, algorithm B
picks y $← {0, 1}1+k+|ID|, adds (v, y) into H3List and outputs y;

– Search-Trapdoor Query QSTrap(w): Taking a keyword w ∈ W as input, algorithm B queries oracle QH1
(w)

if w has never been queried before, retrieves (w, z, x, coin) according to w from H1List, outputs ga·x if
coin = 0, otherwise aborts and outputs ⊥;

– Delete-Trapdoor Query QDTrap(id): Taking a file identifier id ∈ ID as input, algorithm B queries oracle
QH1(id) if id has never been queried before, retrieves (id, z, x, coin) according to id from H1List, outputs
ga·x if coin = 0, otherwise aborts and outputs ⊥;

– Privacy Query QPri(Pub): Taking a hidden structure’s public part Pub ∈ PSet as input, algorithm B retrieves
(Pub, u, coin) according to Pub from SList, outputs u if coin = 0, otherwise aborts and outputs ⊥;

– Encryption Query QEnc(w, id,Pubi): Taking a keyword w ∈ W , a file identifier id ∈ ID and a hidden
structure’s public part Pubi as inputs, algorithm B queries oracle QH1(w) or QH1(id) if w or id have never
been queried before, retrieves (w, zw, xw, coinw) and (id, zid, xid, coinid) from H1List according to w and
id, respectively, retrieves (Pubi, ui, coini) from SList according to Pubi, picks r $← Z∗q , computes Lr = gr

and performs the following steps:
1) Seek (w,Pubi, P t[ui, w]) by w and Pubi in Pt;
2) If it does not exist, add (w,Pubi, P t[ui, w]

$← {0, 1}k) to Pt, compute Dw = QH3
(ê(ga, zw)

r) ⊕
(0||id||Pt[ui, w]) and perform the following steps:

a) If coinw = 1
∧
coini = 1, set Lw

$← {0, 1}k;
b) If coinw = 0

∧
coini = 1, set Lw = QH2

(ê(ga, gb)xw·ui);
c) If coini = 0, set Lw = QH2

(ê(ga, zw)
ui);

9

3) Otherwise, pick Pw
$← {0, 1}k, set Lw = Pt[ui, w], compute Dw = QH3

(ê(ga, zw)
r) ⊕ (0||id||Pw) and

update Pt[ui, w] = Pw;
4) Seek (id,Pubi, P t[ui, id]) by id and Pubi in Pt;
5) If it does not exist, add (id,Pubi, P t[ui, id]

$← {0, 1}k) to Pt, compute Did = QH2(ê(g
a, zid)

r)⊕Pt[ui, id]
and perform the following steps:

a) If coinid = 1
∧
coini = 1, set Lid

$← {0, 1}k;
b) If coinid = 0

∧
coini = 1, set Lid = QH2

(ê(ga, gb)xid·ui);
c) If coini = 0, set Lid = QH2

(ê(ga, zid)
ui);

6) Otherwise, pick Pid
$← {0, 1}k, set Lid = Pt[ui, id], compute Did = QH2

(ê(ga, zid)
r) ⊕ Pid and update

Pt[ui, id] = Pid;
7) Output the searchable ciphertext C = (Lw, Lid, Lr, Dw, Did);

• Challenge Phase: Adversary A sends two challenge tuples (w∗0 , id
∗
0,Pub∗0) and (w∗1 , id

∗
1,Pub∗1) to algorithm B;

B randomly chooses d ∈ {0, 1} and performs the following steps:
1) Query QH1

for the elements in (w∗0 , id
∗
0, w

∗
1 , id

∗
1) that have never been queried before;

2) If there is any element in (w∗0 , id
∗
0,Pub∗0, w

∗
1 , id

∗
1,Pub∗1) whose coin = 0 in H1List and SList, then abort

and output ⊥;
3) Generate the challenge ciphertext C∗d = (Lw∗d , Lid∗d , Lr∗d , Dw∗d

, Did∗d
) as follows:

a) Set Lr∗d = gb, Dw∗d

$← {0, 1}1+k+|ID| and Did∗d

$← {0, 1}k;
b) Seek (w∗d,Pub∗d, P t[u

∗
d, w

∗
d]) by w∗d and Pub∗d in Pt;

c) If it does not exist, add (w∗d,Pub∗d, P t[u
∗
d, w

∗
d]

$← {0, 1}k) to Pt, set Lw∗d
$← {0, 1}k;

d) Otherwise, pick Pw∗d
$← {0, 1}k, set Lw∗d = Pt[u∗d, w

∗
d] and update Pt[u∗d, w

∗
d] = Pw∗d ;

e) Seek (id∗d,Pub∗d, P t[u
∗
d, id

∗
d]) by id∗d and Pub∗d in Pt;

f) If it does not exist, add (id∗d,Pub∗d, P t[u
∗
d, id

∗
d]

$← {0, 1}k) to Pt, set Lid∗d
$← {0, 1}k;

g) Otherwise, pick Pid∗d
$← {0, 1}k, set Lid∗d = Pt[u∗d, id

∗
d] and update Pt[u∗d, id

∗
d] = Pid∗d ;

4) Send the challenge ciphertext C∗d to A;
• Query Phase 2: This phase is the same as Query Phase 1. Note that in Query Phase 1 and Query Phase 2,

adversary A cannot query the corresponding private parts of Pub∗0 and Pub∗1, the corresponding search trapdoors
of w∗0 and w∗1 , and the corresponding delete trapdoors of id∗0 and id∗1.

• Guess Phase: Adversary A sends a guess d′ to the challenger. Algorithm B randomly chooses a record (v, y) in
H3List, retrieves the record (w∗d, g

b·xw∗
d , xw∗d , coinw∗d) according to w∗d from list H1List, and solves the CBDH

problem by computing and returning v1/xw∗
d .

Suppose algorithm B does not abort in the above SS-CKFSA game. Under this assumption, we have the following
facts:
• It is easy to find that all the above phases, excluding the encryption query QEnc(w, id,Pubi) in Query Phase and

the generation of the challenge ciphertext in Challenge Phase, are indistinguishable from a real SS-CKFA game.
• In Query Phase, an encryption query QEnc(w, id,Pubi) will not generate a real ciphertext if the corresponding
coin values are coinw = 1 or coinid = 1 when coini = 1. However, this exception cannot be found by adversary
A if he does not query QH2(ê(g, g)

abc·xwui) or QH2(ê(g, g)
abc·xidui) in Query Phase 1 or Query Phase 2.

• In Challenge Phase, the challenge ciphertext is incorrectly generated, but adversary A cannot find this incor-
rectness (or exception) if he does not query QH2(ê(g, g)

abc·xw∗
d
u∗d), QH2(ê(g, g)

abc·xid∗
d
u∗d), QH2(ê(g, g)

abc·xid∗
d)

or QH3
(ê(g, g)

abc·xw∗
d) for d ∈ {0, 1} in Query Phase 1 or Query Phase 2. Therefore, adveresary A has no

advantage to win the above game since the challenge ciphertext in this case is independent of the challenge tuples
(w∗0 , id

∗
0,Pub∗0) and (w∗1 , id

∗
1,Pub∗1).

• Recall that adversary A has advantage AdvSS-CKFSA
DSPE,A to win the SS-CKFSA game. Let Query be the event that

adversary A issues the above mentioned queries in Query Phase or Challenge Phase. Correspondingly, let Query
be the opposite event of Query. We have

AdvSS-CKFSA
DSPE,A

= Pr[d = d′]− 1

2
= Pr[d = d′|Query] · Pr[Query]+

Pr[d = d′|Query] · Pr[Query]− 1

2

= (Pr[d = d′|Query]− 1

2
) · Pr[Query]

10

Furthermore, it implies that Pr[Query] > AdvSS-CKFSA
DSPE,A .

• According to the coin values of all keywords, file identifiers and hidden structures, the maximum number of possible
queries in the event Query is (|W|+ |ID|) ·N · σ2. Hence, the probability of the event that adversary A queries
QH3

(ê(g, g)
abc·xw∗

d) is greater than 1
(|W|+|ID|)·N ·σ2 · AdvSS-CKFSA

DSPE,A . This implies that algorithm B has probability
greater than 1

(q3+qe)·(|W|+|ID|)·N ·σ2 ·AdvSS-CKFSA
DSPE,A to solve the CBDH problem.

Let Abort denote the event that algorithm B does not abort in the above game. According to the above game, the
probability of the event Abort only relies on the following three parts: (1) the probability σ; (2) the number of times
adversary A queries trapdoors QSTrap and QDTrap and privacy QPri; (3) the coin values of all elements in the challenge
tuples. We have that Pr[Abort] = (1− σ)qs+qd+qp · σ6. Let σ = 6

qs+qd+qp+6 and Pr[Abort] ≈ (6
e·(qs+qd+qp))

6, where
e is the base of natural logarithms.

Finally, we have that algorithm B approximately has probability greater than

66 ·AdvSS-CKFSA
DSPE,A

e6 · (qs + qd + qp)6 · (q3 + qe) · (|W|+ |ID|) ·N · σ2

to solve the CBDH problem, where e is the base of natural logarithms.

IV. PERFORMANCE

We coded our DSPE instance and tested the time costs of algorithm Search to find the matching ciphertexts and
physically delete some ciphertexts. Table I shows the system parameters, including computer hardware, system software
and the chosen elliptic curve. Assume that there are 104 searchable ciphertexts, each ciphertext contains one of the
keywords shown in Table II, and the number of ciphertexts containing the same keyword is approximately equal to the
real frequency of the corresponding keyword multiplied by 104.

Table I: System parameters.

Hardware Intel Xeon CPU E5-2420 v2 @ 2.20GHz
OS CentOS

Program Library Pairing-Based Cryptography (PBC)
Mathematical Parameters

Elliptic Curve y2 = x3 + x

Base Field

878071079966331252243778198475404981580
688319941420821102865339926647563088022
295707862517942266222142315585876958231

7459277713367317481324925129998224791

Order 730750818665451621361119
245571504901405976559617

The default unit is decimal

Table II: The frequencies of some keywords.

No. Keyword Freq. No. Keyword Freq.
1 life 6.68% 2 child 6.8%
3 woman 6.91% 4 thing 8.12%
5 man 8.29% 6 day 8.73%
7 way 9.5% 8 people 13.98%
9 time 15.47% 10 year 15.52%

Figure 6 shows the time costs to search for 10 keywords. Since the search complexity of a keyword in our DSPE
instance is linearly related to the number of ciphertexts containing the keyword, the time costs of the keywords are
different. For example, the time cost is approximately 779 ms to search the keyword ”life”, which has the minimum
frequency, and the time cost is approximately 1799 ms to search keyword ”year”, which has the maximum frequency.

Figure 7 shows the time costs to physically delete some ciphertexts. Specifically, we test the time costs to physically
delete different numbers of ciphertexts. For example, the time cost is approximately 0.4 ms to physically delete 100
ciphertexts, and the time cost is approximately 4.3 ms to physically delete 1000 ciphertexts.

We do not test the time cost of algorithm Delete to logically delete some cipertexts since the related operations take
much less time than bilinear-map operation when seaching a keyword or physically deleting a ciphertext.

In summary, the search performance of our DSPE instance is linearly related to the number of ciphertexts containing
the queried keyword, and its physical delete performance is linearly related to the number of ciphertexts to be deleted.
Moreover, without considering the time cost to retrieve ciphertexts from storage, the two performance indicators are
independent of the total number of ciphertexts. Hence, it is clearer to demonstrate the performance of our DSPE scheme
by listing the time cost to find one matching ciphertext or to physically delete one ciphertext. According to our above

11

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9 10

Ti
m

e(
m

s)
Keyword No.

DSPE

Figure 6: The time costs to search keywords.

0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

3.6

4.0

4.4

100 200 300 400 500 600 700 800 900 1000

Ti
m

e
(m

s)

The number of ciphertexts

DSPE

Figure 7: The time costs to physically delete some ciphertexts.

experiments, the time cost to find one matching ciphertext is approximately 1.16 ms, and the time cost to physically
delete one ciphertext is approximately 0.004 ms.

V. RELATED WORKS

Most of the follow-up research to the seminal work on PEKS can be categorized as follows.
Traditional PEKS. Abdella et al. [7] revised the definition of PEKS’s consistency and constructed some transformations

among primitives related to PEKS. Crescenzo et al. [8] proposed a PEKS scheme using a variant of the quadratic
residuosity problem instead of a bilinear map. Khader [9] proposed the first PEKS scheme in the standard model.

PEKS with Functional Search. The related works include conjunctive search [10], [11], [12], [13], [14], [15], range
search [16], [17], [18], subset search [18], time-scope search [7], [19], similarity search [20], authorized search [21],
[22], equality test for heterogeneous ciphertexts [23], and fuzzy keyword search [24].

Secure Channel Free PEKS. The traditional PEKS schemes require a secure channel to transmit keyword-search
trapdoors. To remove this requirement, Baek et al. [15] proposed a secure channel-free PEKS (SCF-PEKS) scheme in
which all keyword-search trapdoors are encrypted using the designated server’s public key. Rhee et al. [25] proposed a
SCF-PEKS scheme to achieve the enhanced security model of [15]. Fang et al. [26] proposed a SCF-PEKS scheme in
the standard model. Emura et al. [27] proposed a SCF-PEKS scheme to resist adaptive attacks.

PEKS against Keyword Guessing Attack. Byun et al. first proposed the keyword guessing attack (KGA) [28] and
launched an effective attack on some PEKS schemes [10]. Jeong et al. [29] proved that any PEKS scheme satisfying
at least computationally indistinguishable consistency is subjected to KGA. Xu et al. [24] proposed a PEKS scheme
with fuzzy keyword search to resist KGA in some scenarios. Furthermore, Chen et al. [30], [31] sequentially proposed
two PEKS schemes to resist KGA and improve the performance. Sun et al. [32] proposed a new idea to resist KGA by
limiting the capability to generate searchable ciphertexts.

Efficient PEKS. In the above PEKS schemes, the search complexity is linearly related to the total number of ciphertexts.
To accelerate search performance, a chain-like structure is described in [33]. However, the proposed chain cannot guarantee
the semantic security. Bellare et al. [34] proposed deterministic PKE with rapid keyword search as if the keywords were
not encrypted. Subsequently, Bellare et al. [35] and Boldyreva et al. [36] independently proposed two deterministic
PKE schemes, which are secure in the standard model. Deterministic PEKS schemes are applicable when the keyword
space has a high min-entropy. Without sacrificing semantic security, Xu et al. [3] proposed the first PEKS scheme with
sublinear search complexity.

12

VI. CONCLUSION

When applying the previous works on PEKS in practice, all keyword-searchable ciphertexts of a file must visually
connect to the file’s ciphertext. This feature is convenient for deleting some intended searchable ciphertexts; however, it
is contradictory to the semantic security of keywords. In other words, one can trivially distinguish that the searchable
ciphertexts of the same file’s ciphertext contain different keywords. To solve this problem, we define a new concept,
called DSPE, to extend the traditional concept of PEKS. By contrast, this new concept allows (1) the generated searchable
ciphertexts to only have hidden connections with their files’ ciphertexts in practice, (2) all searchable ciphertexts to
construct some hidden structures to rapidly find the matching ciphertexts if one knows a keyword-search trapdoor, and
(3) some intended ciphertexts to be rapidly deleted if one knows a file-delete trapdoor. Finally, we construct a DSPE
instance to realize our aim, prove that the instance is semantically secure under the CBDH assumption in the RO model,
and demonstrate the practicability of the instance through experiments.

REFERENCES

[1] Radicati Group, Cloud Business Email Market, 2017-2021, http://www.radicati.com/wp/wp-content/uploads/2017/06/Cloud-Business-Email-Market-
2017-2021-Brochure.pdf, (2017)

[2] Boneh Dan, Crescenzo Giovanni Di, Ostrovsky Rafail, Persiano Giuseppe: Public Key Encryption with Keyword Search. In: Cachin C. and
Camenisch J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506-522. Springer, Heidelberg (2004)

[3] Xu Peng, Wu Qianhong, Wang Wei, Susilo Willy., Domingo-Ferrer Joseph, Jin Hai: Generating Searchable Public-Key Ciphertexts with Hidden
Structures for Fast Keyword Search. IEEE Transactions on Information Forensics and Security, 10(9), pp. 1993-2006 (2015)

[4] Curtmola Reza, Garay Juan, Kamara Seny, Ostrovsky Rafail: Searchable Symmetric Encryption: Improved Definitions and Efficient Constructions.
In: ACM CCS 2006, pp. 79-88. ACM (2006)

[5] Kamara Seny, Papamanthou Charalampos, Roeder Tom: Dynamic searchable symmetric encryption. In ACM Conference on Computer and
Communications Security, pp. 965976 (2012)

[6] Boneh Dan, Franklin Matt: Identity-Based Encryption from the Weil Pairing. In: Kilian J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213-239.
Springer, Heidelberg (2001)

[7] Abdalla Michel, Bellare Mihir, Catalano Dario, Kiltz Eike, Kohno Tadayoshi, Lange Tanja, Malone-Lee John, Neven Gregory, Paillier Pascal, Shi
Haixia: Searchable Encryption Revisited: Consistency Properties, Relation to Anonymous IBE, and Extensions. In: Shoup V. (ed.) CRYPTO 2005.
LNCS, vol. 3621, pp. 205-222. Springer, Heidelberg (2005)

[8] Crescenzo Giovanni Di, Saraswat Vishal: Public Key Encryption with Searchable Keywords Based on Jacobi Symbols. In: Srinathan K., Rangan
C.P. and Yung M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 282-296. Springer, Heidelberg (2007)

[9] Khader Dalia: Public key encryption with keyword search based on K-resilient IBE. In: Gervasi O. and Gavrilova M. L. (eds.) ICCSA 2007.
LNCS, vol. 4707, pp. 1086-1095. Springer, Heidelberg (2007)

[10] Park Dong Jin, Kim Kihyun, Lee Pil Joong: Public Key Encryption with Conjunctive Field Keyword Search. In: Lim C.H. and Yung M. (eds.)
WISA 2004. LNCS, vol. 3325, pp. 73-86. Springer, Heidelberg (2004)

[11] Golle Philippe, Staddon Jessica, Waters Brent: Secure Conjunctive Keyword Search over Encrypted Data. In: Jakobsson M., Yung M. and Zhou
J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 31-45. Springer, Heidelberg (2004)

[12] Ballard Lucas, Kamara Seny, Monrose Fabian: Achieving Efficient Conjunctive Keyword Searches over Encrypted Data. In: Qing S. et al. (eds.)
ICICS 2005. LNCS, vol. 3783, pp. 414-426. Springer, Heidelberg (2005)

[13] Hwang Yong Ho, Lee Pil Joong: Public Key Encryption with Conjunctive Keyword Search and Its Extension to a Multi-user System. In: Takagi
T., Okamoto Tatsuaki, Okamoto E. and Okamoto Takeshi (eds.) Pairing 2007. LNCS, vol. 4575, pp. 2-22. Springer, Heidelberg (2007)

[14] Takagi Tsuyoshi, Ryu Eun-Kyung: Efficient Conjunctive Keyword-Searchable Encryption. In: 21st International Conference on Advanced
Information Networking and Applications Workshops, pp. 409-414. IEEE (2007)

[15] Baek Joonsang, Safavi-Naini Reihaneh, Susilo Willy: Public Key Encryption with Keyword Search Revisited. In: Gervasi O. (ed.) ICCSA 2008.
LNCS, vol. 5072, pp. 1249-1259. Springer, Heidelberg (2008)

[16] Bethencourt John, Chan T-H.Hubert, Perrig Adrian, Shi Elaine, Song Dawn: Anonymous Multi-Attribute Encryption with Range Query and
Conditional Decryption. Technical Report CMU-CS-06-135 (2006)

[17] Shi Elaine, Bethencourt John, Chan T-H.Hubert, Song Dawn, Perrig Adrian: Multi-Dimensional Range Query over Encrypted Data. In: IEEE
S&P 2007, pp. 350-364. IEEE (2007)

[18] Boneh Dan, Waters Brent: Conjunctive, Subset, and Range Queries on Encrypted Data. In: Vadhan S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp.
535-554. Springer, Heidelberg (2007)

[19] Davis Darren, Monrose Fabian, Reiter Michael K.: Time-Scoped Searching of Encrypted Audit Logs. In: Lopez J., Qing S. and Okamoto E.
(eds.) ICICS 2004. LNCS, vol. 3269, pp. 532-545. Springer, Heidelberg (2004)

[20] Cheung David W., Mamoulis Nikos, Wong W.K., Yiu S.M., Zhang Ye: Anonymous Fuzzy Identity-based Encryption for Similarity Search. In:
Cheong O., Chwa K.-Y and Park K. (eds.) ISAAC 2010. LNCS, vol. 6505, pp. 61-72. Springer, Heidelberg (2010)

[21] Tang Qiang, Chen Xiaofeng: Towards asymmetric searchable encryption with message recovery and flexible search authorization. In: Li N. and
Tzeng W.G. (eds.) ASIACCS 2013, pp. 253-264, ACM (2013)

[22] Ibraimi Luan, Nikova Svetla, Hartel Pieter, Jonker Willem: Public-Key Encryption with Delegated Search. In: Lopez J. and Tsudik G. (eds.)
ACNS 2011. LNCS, vol. 6715, pp. 532-549. Springer, Heidelberg (2011)

[23] Yang Gguomin, Tan Chik How, Huang Qiong, Wong Duncan S.: Probabilistic Public Key Encryption with Equality Test. In: Pieprzyk J. (ed.)
CT-RSA 2010. LNCS, vol. 5985, pp. 119-131. Springer, Heidelberg (2010)

[24] Xu Peng, Jin Hai, Wu Qianhong, Wang Wei.: Public-Key Encryption with Fuzzy Keyword Search: A Provably Secure Scheme under Keyword
Guessing Attack. IEEE Transactions on Computers, 62(11), pp. 2266-2277 (2013)

[25] Rhee Hyun Sook, Park Jong Hwan, Susilo Willy, Lee Dong Hoon: Improved searchable public key encryption with designated tester. In Safavi-
Naini R. and Varadharajan V. (eds.) ASIACCS 2009, pp. 376-379, ACM (2009)

[26] Fang Liming, Susilo Willy, Ge Chunpeng, Wang Jiandong: A secure channel free public key encryption with keyword search scheme without
random oracles. In: Garay J.A., Miyaji A. and Otsuka A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 248258. Springer, Heidelberg (2009)

[27] Emura Keita, Miyaji Atsuko, Rahman Mohammad Shahriar, Omote Kazumasa: Generic constructions of secure-channel free searchable encryption
with adaptive security. Security and Communication Networks, 8(8), pp. 15471560 (2015)

[28] Byun Jin Wook, Rhee Hyun Suk, Park Hyun-A, Lee Dong Hoon: Offline keyword guessing attacks on recent keyword search schemes over
encrypted data. In: Jonker W. and Petkovi M. (eds) SDM 2006. LNCS, vol. 4165, pp. 75-83. Springer, Heidelberg (2006)

[29] Jeong Ik Rae, Kwon Jeong Ok, Hong Dowon, Lee Dong Hoon: Constructing PEKS schemes secure against keyword guessing attacks is possible?.
Computer Communications, 32(2), pp. 394-396 (2009)

13

[30] Chen Rongmao, Mu Yi, Yang Guomin, Guo Fuchun, Wang Xiaofen: Dual-Server Public-Key Encryption With Keyword Search for Secure Cloud
Storage. IEEE Transactions on Information Forensics and Security, 11(4): 789-798 (2016)

[31] Chen Rongmao, Mu Yi, Yang Guomin, Guo Fuchun, Huang Xinyi, Wang Xiaofen., Wang Yongjun: Server-Aided Public Key Encryption With
Keyword Search. IEEE Transactions on Information Forensics and Security, 11(12): 2833-2842 (2016)

[32] Sun Lixue, Xu Chun Xiang, Zhang Mingwu, Chen Kefei, Li Hongwei: Secure Searchable Public Key Encryption against Insider Keyword
Guessing Attacks from Indistinguishability Obfuscation. Science China Information Science, doi: 10.1007/s11432-017-9124-0 (2017)

[33] Camenisch Jan, Kohlweiss Markulf, Rial Alfredo, Sheedy Caroline: Blind and Anonymous Identity-Based Encryption and Authorised Private
Searches on Public Key Encrypted Data. In: Jarecki S. and Tsudik G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 196-214. Springer, Heidelberg
(2009)

[34] Bellare Mihir, Boldyreva Alexandra, O’Neill Adam: Deterministic and Efficiently Searchable Encryption. In: Menezes A. (ed.) CRYPTO 2007.
LNCS, vol. 4622, pp. 535-552. Springer, Heidelberg (2007)

[35] Bellare Mihir, Fischlin Marc Fischlin, O’Neill Adam, Ristenpart Thomas: Deterministic Encryption: Definitional Equivalences and Constructions
without Random Oracles. In: Wagner D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 360-378. Springer, Heidelberg (2008)

[36] Boldyreva Alexandra, Fehr Serge, O’Neill Adam : On Notions of Security for Deterministic Encryption, and Efficient Constructions without
Random Oracles. In: Wagner D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 335-359. Springer, Heidelberg (2008)

