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Abstract. As an invited speaker of the ACISP 2017 conference, Dongxi
Liu recently introduced a new lattice-based encryption scheme (joint
work with Li, Kim and Nepal) designed for lightweight IoT applications,
and announced plans to submit it to the NIST postquantum compe-
tition. The new scheme is based on a variant of standard LWE called
Compact-LWE, but is claimed to achieve high security levels in consid-
erably smaller dimensions than usual lattice-based schemes. In fact, the
proposed parameters, allegedly suitable for 138-bit security, involve the
Compact-LWE assumption in dimension only 13.

In this note, we show that this particularly aggressive choice of param-
eters fails to achieve the stated security level. More precisely, we show
that ciphertexts in the new encryption scheme can be decrypted using
the public key alone with > 99.9% probability in a fraction of a second
on a standard PC, which is not quite as fast as legitimate decryption,
but not too far off.

Keywords: Compact-LWE, lattice-based cryptography, cryptanalysis,
lattice reduction, IoT.

1 Introduction

Lattice-based cryptography stands out as one of the main candidates for con-
structing quantum-secure cryptographic primitives, thanks to its versatility (al-
most all cryptography, from encryption and signatures all the way to predicate
encryption and FHE, can be instantiated under lattice assumptions) and its
strong postquantum security guarantees (such as worst-case to average-case re-
ductions) [Pei15]. However, early provably secure lattice-based schemes, such as
Regev’s encryption scheme from standard LWE [Reg05], tended to be quite in-
efficient, due to the large key sizes needed to achieve security, and to a lesser
extent the need to sample from distributions like discrete Gaussians, which is
difficult to do in a secure and efficient manner.

As a result, there has been a movement towards increasingly optimized
lattice-based schemes, with the goal of making lattice-based cryptography a
viable alternative to current RSA and discrete logarithm-based deployments,
preferably even on low-end and constrained devices. Those schemes are often
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based on variants of the LWE problem with much smaller key sizes (such as Ring-
LWE [LPR10]; one could also see NTRU-based constructions as belonging to this
category, although NTRU itself predates LWE-based cryptography) and incor-
porate a range of speed-ups for practical implementations. For encryption in par-
ticular, recent proposals include NewHope [ADPS17], NTRU Prime [BCLvV16],
Lizard [CKLS16] and Kyber [BDK+17]. They have been implemented on a wide
range of platforms, and although the security guarantees they offer may not be
quite as strong as standard LWE-based schemes, they are very conservatively
designed, and their security claims are unlikely to be falsified short of spectacular
advances in the analysis of lattice problems.

On the other hand, in the quest for faster lattice-based cryptography, more
exotic variants of LWE and more aggressive parameter choices have also been
considered in the literature, and occasionally been broken. This includes a col-
lection of more or less artificial parameter choices for Ring-LWE [Pei16], LWE
variants with very small matrix entries [HM17], so-called “overstretched” vari-
ants of NTRU [ABD16, KF17] and more.

A recent example of a particularly aggressive parameter choice for a scheme
based on a non-standard LWE variant is the Compact-LWE encryption scheme
of Liu, Li, Kim and Nepal [LLKN17], which was awarded an invited talk slot at
the ACISP 2017 conference [Liu17], and which the authors plan to enter into the
NIST postquantum competition. The scheme is designed for IoT applications,
and does achieve rather impressive performance on low-cost embedded microcon-
trollers. However, it does so based on the use of surprisingly small parameters; in
particular, the computations are carried out in dimension 13. According to the
authors’ analysis, the scheme should nevertheless offer 138 bits of security, due to
their underlying assumption being immune to usual attacks against lattice-based
constructions.

Our contributions. Analyzing the security of LWE variants is important,
particularly when they are proposed for use in very concrete real world settings,
as is the case for Liu et al.’s Compact-LWE assumption and the corresponding
encryption scheme. Unfortunately, our analysis reveals that the security claims
of the proposed scheme are overly optimistic.

More precisely, plaintexts in Compact-LWE encryption are masked by a low-
weight linear combination of the vectors in the public key (essentially a subset
sum). Due to the very low dimension of the problem, we find that it is easy
to recover the coefficients of this subset sum given only a ciphertext and the
corresponding public key. Based on experiments using the Sage computer alge-
bra software on a desktop PC, we find that our algorithm correctly decrypts
a ciphertext with the public key alone in a fraction of a second with > 99.9%
success rate. The source code for the entire attack is provided as an appendix
to this paper.
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2 Preliminaries

2.1 Notation

The authors of [LLKN17] denote by Z` denote the set of integers {0, 1, . . . , `−1},
for any positive integer `. Although this notation can be regarded as question-
able, we use it in this note for the sake of consistency with the original paper.

2.2 The Compact-LWE Encryption Scheme

Liu et al. [LLKN17] propose an encryption scheme based a variant of the LWE
problem in which the errors are scaled by a fixed secret value, and the sample
vectors a have small coefficients. The underlying hardness assumption, called De-
cision Compact-LWE, is exactly the semantic security of the encryption scheme,
so we omit its definition, and simply describe the encryption scheme itself di-
rectly.

Public parameters. The public parameters of the scheme are given the tu-
ple of positive integers pp = (q, n,m, t, w, b), which should satisfy the following
constraints:

n+ 1 < m < n2, 2b(b log2 b+ 1) < q and 2 log2 b < n.

Key generation. Sample s uniformly at random from Zn
q and choose sk, r, p

from Zq subject to the following constraints:

t ≤ p, sk · (t− 1) + wrp < q, b < r,

and the integers sk, p, q are pairwise coprime. The private key is then K =
(s, sk, r, p).

To construct the public key, sample m vectors a1, . . . ,am uniformly at ran-
dom from Zn

b , and m noise values e1, . . . , em uniformly at random from Zr.
Compute the corresponding Compact-LWE samples as follows:

(ai, bi) =
(
ai, 〈ai, s〉+ sk−1q · p · ei mod q

)
,

where sk−1q ∈ Zq denotes the multiplicative inverse of sk modulo q. The public
key PK then consists of the collection of all pairs (ai, bi) for 1 ≤ i ≤ m.

We note that the key generation algorithm is not completely well-defined
by the above (and hence by the original paper [LLKN17]), since the precise
distribution of (sk, r, p) is not specified. In our experiments, we generate them
as follows: r is first picked uniformly at random such that 2 ≤ r < q/(wt); then
p is sampled uniformly among integers coprime to r such that t ≤ p < q/(rw);
and finally, sk is sampled uniformly among integers coprime to r and p such that
1 ≤ sk < (q−wrp)/(t− 1). However, other distributions should have little or no
impact on the effectiveness of our attack.
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Table 1. Parameters proposed by Liu et al. [LLKN17] for their Compact-LWE en-
cryption scheme.

q t m w n b

232 216 74 86 13 16

Encryption. Let v be a value from the plaintext space Zt. The encryption
algorithm produces a ciphertext c = Enc(PK, v) in Zn+1

q as follows.
Choose w indices i1, . . . , iw in {1, . . . ,m} uniformly and independently at

random (in particular, they are not necessarily distinct), and let:

(a, b) =

w∑
k=1

(
aik , bik

)
be the sum of the corresponding Compact-LWE samples from the public key
PK. Then, output the ciphertext c given by:

c = (a, v − b mod q).

Decryption. Given a ciphertext c = (a, x), the decryption algorithm recovers
the corresponding plaintext Dec(K, c) = v ∈ Zt as follows:

v = sk−1p ·
(
sk ·

(
〈a, s〉+ x

)
mod q

)
mod p,

where sk−1p denotes the multiplicative inverse of sk modulo p.

Proposed parameters. The authors of [LLKN17] propose to instantiate their
schemes with the parameters given in Table 1. As noted in the introduction, the
most remarkable aspect of those parameters is the extremely small dimension
n = 13 in which the computations are carried out. This makes the scheme quite
fast and compact, but raises concerns regarding security, which the next section
will show are well-warranted.

3 Attack on Compact-LWE Encryption

In this section, we describe our attack on the encryption scheme of §2.2. More
precisely, we show that it is possible to decrypt ciphertexts using only the infor-
mation contained in the public key.

As we have have seen, ciphertexts are of the form (a, v − b mod q) where
(a, b) is the sum of w randomly chosen elements (Compact-LWE samples) from
the public key. To decrypt, it suffices to recover the correct linear combination
of public key elements used to compute the ciphertext. Now, the plaintext v is
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small (it satisfies 0 ≤ v < t), whereas the ciphertext mask value b is a full-size
value in Zq. Therefore, one can try to decrypt a ciphertext (a, x) by looking for
a vector of coefficients u = (u1, . . . , um) such that:

a =

m∑
i=1

uiai in Zn, x is close to −
m∑
i=1

uibi modulo q,

and the vector u is small (in fact, the correct linear combination satisfies ui ≥ 0
for all i and

∑
ui = w). The problem of finding such a vector u can be expressed

as a lattice problem.

Attack strategy. More precisely, denote by A ∈ Zm×n the matrix whose rows
are the public key vectors ai, and b ∈ Zm the column vector of the bi’s. Then,
we can consider the lattice L ⊂ Zm+n+2 generated by the rows of the following
matrix, which depends only on the ciphertext (a, x), the public key PK and the
public parameters pp:

M = M(pp,PK,a, x) =

1 0 κa x
0 tIm −κA b
0 0 0 q


where κ is some suitably large constant, say κ = q. Now if u ∈ Zm is the vector
of coefficients used to construct the ciphertext (a, x), i.e. (a, x) = (uTA, v −
〈u, b〉 mod q), then the following vector ũ belongs to the lattice L:

ũ = (1, tu1, . . . , tum, 0, . . . , 0, v) = (1, tu,0, v).

Indeed, we have:

(1,u, α) ·M =
(
1, tu, κ(a− uTA), x+ 〈u, b〉+ αq

)
=
(
1, tu,0, v + (α+ β)q

)
where β is the quotient in the Euclidean division of (x+〈u, b〉) by q. By choosing
α+ β = 0, we obtain that ũ ∈ L as desired.

Thus, the correct vector u corresponds to a vector in the lattice L, which is
moreover relatively short: all of its coefficients are bounded by a small multiple
of t, and are in particular a lot smaller than q. Conversely, consider a lattice
vector ũ′ ∈ L whose first coefficient is 1, and satisfying ‖ũ′‖ < q/2. Clearly, ũ′

must be of the form (1,u′, α′) ·M for some u′ ∈ Zm and α′ ∈ Z. Thus:

ũ′ =
(
1, tu′, κ(a− (u′)TA), x+ 〈u′, b〉+ α′q

)
,

and we must have a − (u′)TA = 0, since otherwise the vector ũ′ would have
coefficients of absolute value at least κ = q, contradicting the bound on the
norm. As a result, the vector u′ must be of the form u + z, where z is in the
left kernel of the matrix A ∈ Zm×n. This gives:

ũ′ =
(
1, tu + tz,0, v + 〈z, b〉 mod∗ q

)
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where we denote by mod∗ the centered modulo operator (the last coefficient is

necessarily of that form due to the constraint on the norm of ũ′. Note furthermore
that since b = As + sk−1q · p · e mod q, we have:

〈z, b〉 ≡ zTAs + sk−1q · p〈z, e〉 ≡ sk−1q · p〈z, e〉 (mod q).

Consider now a short vector ũ′, in the sense that its magnitude is roughly
that of ũ or smaller. Then, in particular, z should be a very short vector in the
left-kernel of A (because t(u + z) is short), and we can thus expect

∣∣〈z, e〉∣∣ to
be small, say less than half of wr, the bound satisfied by 〈u, e〉 (one expects a
better bound because contrary to u, z need not have all positive coefficients).
Moreover, the last coefficient

v′ = v + sk−1q · p〈z, e〉 mod∗ q

of ũ′ should also be small, say less than q/(2sk). In that case, we have sk · v′ ≡
sk · v + p〈z, e〉 (mod q), and if v is in the first half of the allowed range, i.e.
0 ≤ v < (t−1)/2, the right-hand side is bounded by sk · (t−1)/2+wrp/2 < q/2,
implying that the congruence is in fact an equality over Z. In particular, 〈z, e〉
must be a multiple of sk, and therefore v = v′ mod p. In practice, this relation
holds almost all the time even for large values of v, because the scalar product
〈z, e〉 is usually much smaller than wr/2.

The above means that if we can find a short vector ũ′ in L with its first
coefficient equal to 1, we should be able to recover the plaintext up to a possible
multiple of p. Moreover, a similar argument shows that even shorter vectors in
L should be of the form (0, z′,0, γ′) where z′ is a very short element in the
left-kernel of A and γ′ = sk−1q · p〈z′, e〉 mod∗ q is a multiple of p.

Description of the attack. Based on the analysis above, we suggest the fol-
lowing heuristic approach to decrypt a given ciphertext c = (a, x): compute the
matrix M(pp,PK,a, x) generating the lattice L as above, and apply the LLL
algorithm [LLL82] to obtain a reduced basis ũ1, . . . , ũ`. We denote by vi the
last coefficient of ũi for all i. Then, find the first vector ũj in that basis whose
first coefficient is non zero; it will always be ±1 so up to a sign change, we can
assume that it is 1. Let also g be the gcd of all the vi’s for i < j. If g ≥ t, we have
recovered g = p and can therefore return vj mod g as the candidate plaintext.
Otherwise, we return vj directly, since in that case we usually have g = 0 and the
short basis vectors correspond to short vectors z in the left-kernel of A that are
also orthogonal to e. This gives the heuristic attack described as Algorithm 1.

Experimental results. We implemented the attack of Algorithm 1 in the com-
puter algebra system SageMath [SM16] using the code provided in Appendix A.
The LLL reduction is Sage is carried out using the fplll library [FPL16].

We then ran the attack on a total of 10000 ciphertexts associated with ran-
dom plaintexts in Zt, divided into 100 sets of 100 ciphertexts, each set using
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Algorithm 1 Decryption attack on Compact-LWE

Input: public parameters pp = (q, n,m, t, w, b), public key PK = (A, b), cipher-
text (a, x)
Output: candidate plaintext v ∈ Z
1: set κ = q.
2: compute the matrix M = M(pp,PK,a, x).
3: apply the LLL algorithm to obtain a reduced basis (ũ1, . . . , ũ`) of the lattice

generated by the rows of M .
4: for all i, denote by ui (resp. vi) the first (resp. the last) component of ũi.
5: let j be the smallest index such that uj 6= 0 ũj is non zero.
6: let v = vj/uj
7: compute the greatest common divisor g of the last components of ũi for

1 ≤ i < j.
8: if g ≥ t, reduce v mod g.
9: return v.

a distinct randomly generated key pair: this is the experiment provided by the
function call testsubsetsumdecrypt(100,100) using the code of Appendix A.
In our experiment, 9995 ciphertexts out of 10000 (99.95%) were correctly de-
crypted, and the attack used an average CPU time of 62 milliseconds per ci-
phertext, on a single core of a 3.4 GHz Core i7-3770 desktop machine.

Thus, our machine can decrypt a bit over 16 ciphertexts per second without
the secret key. This is not quite as many as the ≈ 500 decryptions per second
claimed by the authors of [LLKN17] on their target platform with the secret key,
but not too far off. . .

4 Conclusion

In this paper, we showed that under the parameters suggested in the paper, ci-
phertexts of the encryption scheme given in [LLKN17] can be decrypted quickly
and efficiently in practice, using only information available in the public param-
eters of the scheme. In particular, the low value of n which was recommended
enabled us to use the LLL algorithm to solve the corresponding problem (essen-
tially a low weight vectorial knapsack) efficiently. The 138-bit security estimate
for the suggested parameters of Compact-LWE is thus clearly incorrect.

In fact, it is unlikely that the ways in which Compact-LWE differs from
standard LWE-based schemes offer any security advantage. For example, it is
easy to see that if the SIS problem can be solved in dimension n, one can easily
recover the secret Compact-LWE scaling parameter, and reduce the problem to
an LWE variant with an irregular sample matrix, which if anything should be
less secure than standard LWE, as evidenced by the findings of [HM17].

Although more work may be needed for a precise security evaluation of the
proposal, one can already confidently say that Compact-LWE does not look like
a strong contender in the upcoming NIST competition.
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overstretched NTRU assumptions - cryptanalysis of some FHE and graded
encoding schemes. pages 153–178, 2016.
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Appendix

A Implementation

# Compact -LWE parameters

q=2^32

t=2^16

m=74

w=86

n=13

b=16

R=Integers(q)

# ========================

def keygen ():

s=vector(R, [R.random_element () for _ in range(n)])

r=randint(2,ceil(q/w/t)-1)

p=0

while gcd(p,q)>1:

p=randint(t,ceil(q/r/w)-1)

sk=0

while gcd(sk,q)>1 or gcd(sk ,p)>1:

sk=randint(1,ceil((q-w*r*p)/(t-1)) -1)

return s,r,p,sk

def samplegen(s,r,p,sk):

A=random_matrix(ZZ ,m,n,x=0,y=b)

k=R(p)/R(sk)

e=vector(R, [randint(0,r-1) for _ in range(m)])

v=A*s + k*e

return A, v.change_ring(ZZ), e

def encrypt(A,v,mu):

a=vector(R,n)

x=R(mu)

for _ in range(w):

j=randint(0,m-1)

a+=A[j]

x-=v[j]

return a.change_ring(ZZ), x.lift()

# ========================
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def subsetsumdecrypt(A,v,a,x):

kappa=q

L=block_matrix(ZZ , \

[[1, 0, kappa*a.row(), x], \

[0, t*identity_matrix(m), -kappa*A, v.column ()], \

[0, 0, 0, q]])

L=L.LLL()

#index of first non -zero entry in the first column of L

idx=next((i for i,x in enumerate(L.column (0). list ()) if x!=0))

g=gcd(L[:idx ,-1]. list ())

cand=L[idx ,-1]/L[idx ,0]

if g>t:

cand=cand%g

return L, cands

def testsubsetsumdecrypt(trials =100, pairs =1):

succ=0

tottime =0.0

for npair in range(pairs):

s,r,p,sk=keygen ()

A,v,e=samplegen(s,r,p,sk)

succnow =0

for _ in range(trials ):

mu=randint(1,t-1)

a,x=encrypt(A,v,mu)

tm=cputime(subprocesses=True)

mucand=subsetsumdecrypt(A,v,a,x)[1]

tottime += float(cputime(tm))

if mu== mucand:

succnow +=1

succ+= succnow

print "Key pair %d complete. Success rate: %d/%d." % \

(npair ,succnow ,trials)

print "Successful recoveries: %d/%d (%f)." % \

(succ ,trials*pairs ,RR (100* succ/trials/pairs))

print "Average time: %f seconds." % (tottime/trials/pairs)
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