
Long-Term Secure Time-Stamping using
Preimage-Aware Hash Functions?

(Full Version)

Ahto Buldas1,2, Matthias Geihs3, and Johannes Buchmann3

1 Tallinn University of Technology, Tallinn, Estonia.
2 Cybernetica AS, Tallinn, Estonia.

3 Darmstadt University of Technology, Darmstadt, Germany.

Keywords: Long-Term Security, Timestamps, Preimage Aware Hash Functions

Abstract. Commonly used digital signature schemes have a limited life-
time because their security is based on computational assumptions that
will potentially break in the future when more powerful computers are
available. In 1993, Bayer et al. proposed a method for prolonging the life-
time of a digital signature by time-stamping the signature together with
the signed document. Based on their idea long-term timestamp schemes
have been developed that generate renewable timestamps. To minimize
the risk of a design failure that affects the security of these schemes, it
is important to formally analyze their security. However, many of the
proposed schemes have not been subject to a formal security analysis
yet. In this paper, we address this issue by formally analyzing the secu-
rity of a hash-based long-term timestamp scheme that is based on the
ideas of Bayer et al. Our analysis shows that the security level of this
scheme degrades cubic over time, a security loss that needs to be taken
into account when the scheme is used in practice.

1 Introduction

1.1 Motivation

More and more information is generated and stored in digital form. In many
cases it is important to ensure the integrity of this information. For example,
in the case of electronic health records, it is indispensable that unintentional
changes to the health records can be detected. Most commonly, integrity of
such sensitive information is protected using digital signature schemes. However,
digital signature schemes used today can provide security only for a limited time
period. Their security is based on computational assumptions, which means that
they provide security only as long as the computational resources of an attacker

? This work has been co-funded by the DFG as part of project S6 within the CRC
1119 CROSSING. A short version of this paper is published in the proceedings of
ProvSec 2017 [3].

are insufficient to solve a given computational problem. The widely used RSA
digital signature scheme [13], for example, is broken if an attacker can find
the prime factors of large integers. Using current computers, this seems to be
infeasible. However, large integers can efficiently be factored using a quantum
computer.

To mitigate the security risk, in 1993 Bayer et al. [1] proposed a method
for prolonging the security period of a digital signature beyond the validity
of the corresponding digital signature scheme. Their idea is to timestamp the
signature together with the signed document in order to prove that a signature
for that document was known when the corresponding signature scheme was still
considered secure. Timestamps can be viewed as a digital signature themselves
and have a limited security period as well. In order to protect the validity of
the initial signature over a long time period, timestamps must therefore also be
renewed periodically.

To understand the security of long-term integrity protection using timestamp
renewal, a security model must be provided for such a scheme. Unfortunately,
Bayer et al. did not provide a security model for their scheme. In fact, the
security of long-term timestamp schemes has not been formally analyzed until
recently. In [10], Geihs et al. analyze the security of long-term timestamp schemes
that use digital signature schemes and rely on trusted timestamp services. Their
analysis is done in the random oracle model and shows that the security level of
such long-term timestamp schemes degrades over time. An alternative method
for time-stamping uses hash functions and relies on the availability of a trusted
public repository. The security of long-term timestamp schemes based on this
time-stamping method has not been studied yet.

1.2 Contribution

In this work we analyze the security of long-term timestamp schemes that use
hash-based timestamps. We present a security model that is based on the ideal
primitive model proposed by Dodis et al. [9]. The ideal primitive model is a
more refined model compared to the random oracle model used by Geihs et
al. [10]. Based on the ideal primitive model, we define the notion of extractable
time-stamping, which engages important aspects of existing security notions for
timestamp schemes and at the same time appears very suitable for analyzing the
security of long-term timestamp schemes. By our security analysis we establish
a bound on the security level of hash-based long-term timestamp schemes that
degrades cubic over time. Furthermore, we provide a framework for obtaining
numeric estimations of the security loss in a practical scenario. Such a frame-
work is valuable for engineers who design systems that rely on long-term digital
evidence.

1.3 Organization

In Section 2, we briefly discuss fundamentals on cryptographic security proofs,
recall the definition of preimage-aware hash functions, and finally describe time-

2

stamp schemes and long-term timestamp schemes in more detail. In Section 3, we
define what it means for a hash-based timestamp scheme to be extractable. We
show how to construct an extractable timestamp scheme using a preimage aware
hash function and provide a bound on the security level of this construction.
Then, in Section 4, we define what it means for a long-term timestamp scheme
to be extractable and construct a hash-based long-term timestamp scheme that
uses hash-based timestamp schemes for protection renewal. We prove a bound
on the security level of this construction in terms of the security level of the used
timestamp schemes. In Section 5, we use the results of our security analysis to
evaluate the security level of hash-based long-term time-stamping in a practical
scenario. In Section 6, we conclude our work and propose research directions for
future work.

2 Preliminaries

2.1 Computational Security

Most commonly used cryptographic schemes provide computational security. A
cryptographic primitive is computationally secure if for a probabilistic adversary
that is given a certain amount of computational resources the probability to
break the security of the scheme is negligible. Such an adversary can be thought
of as a program that runs on a computing machine, formally modeled, for exam-
ple, as a Turing Machine [15] or a Quantum Turing Machine [8]. The resources
of such an adversary are measured in terms of the number of operation steps
performed by the machine. Let p be an integer. By the class of p-step adversaries
we mean all programs that halt after at most p steps.

Definition 1. For ε : N→ [0, 1], we say a cryptographic scheme is ε(p)-secure,
if any p-step adversary breaks the scheme with probability at most ε(p).

We remark that in the traditional view of cryptography the step count of
an adversary is sometimes also referred to as the computation time of the ad-
versary. In particular, no distinction between real time and computation steps
is usually made. Furthermore, the class of computing machines considered is
usually assumed to be the class of Turing Machines. We will see in Section 4
that for analyzing long-term security of cryptographic schemes it is useful to
distinguish between real time and computational steps and to consider that the
computational technology used by an adversary may change over time.

2.2 Hash Functions

A hash function H : {0, 1}∗ → {0, 1}n is a function that converts bitstrings
of arbitrary length to n-bit digests. By a hash chain c, we mean a sequence
c[1], c[2], . . . , c[m] of 2n-bit strings and an m-bit string ι that is called the shape
of c. The bits of ι are denoted by ι[1], . . . , ι[m]. Every c[k] consists of two n-bit

halfs denoted by c[k]0 and c[k]1. By x
c
 r we mean that:

3

– H(c[1]) = r

– H(c[k + 1]) = c[k]ι[k], for every k ∈ {1, . . . ,m− 1}
– H(x) = c[m]ι[m]

For example, a hash chain can be seen as a path through a hash tree [12] from
a leaf to the root (Figure 1).

r

c[1]0

c[2]0

...
...

c[2]1

c[3]0 c[3]1

c[1]1

...
...

Fig. 1. A hash tree that contains hash chain c = [c[1]0‖c[1]1, c[2]0‖c[2]1, c[3]0‖c[3]1] of

shape ι = [0, 1, 0], where for any x with H(x) = c[3]0, x
c
 r.

Preimage Awareness. Informally, a hash function H is called preimage aware
(PrA) if whenever somebody first outputs as hash value y and later comes up
with a preimage x, H(x) = y, then it must have known x when outputting y.
The notion of preimage aware hash functions was formalized by Dodis et al. [9]
for hash functions HP that use an ideal primitive P . The primitive is ideal in the
sense that it can only be called via an oracle P that records all calls made to P
in an advice string adv. More formally, for HP to be preimage aware, there must
exist an efficient algorithm E (the so-called extractor) which when given y and
the list adv of calls to the ideal primitive P , outputs x such that HP (x) = y, or ⊥
if the extraction failed. The adversary tries to find x and y so that E(adv, y) 6= x
and y = HP (x).

Definition 2 (Preimage Aware). Let ε : N3 → [0, 1]. A function HP is ε-
secure preimage aware (PrA) if for every pE , pA, and q, there is a pE -step
extractor E, such that for every pA-step adversary A that makes at most q calls
to Ex,

AdvPrA
P,H(A, E) = Pr

[
ExpPrA

P,H(A, E) = 1
]
≤ ε(pE , pA, q) .

4

Algorithm 1: The Preimage Awareness (PrA) experiment ExpPrA
P,H(A, E).

x← AP,Ex;

y ← HP (x);
if y ∈ Q and V[y] 6= x then

return 1;
else

return 0;

oracle P(m):
z ← P (m);
adv← adv||(m, z);
return z;

oracle Ex(y):
x← E(y, adv);
Q← Q ∪ {y};
V[y]← x;
return x;

2.3 Time-Stamping

Digital time-stamping was first proposed by Haber and Stornetta [11]. It is used
to prove that a given data object existed at a certain point in time. In the
following we describe a hash-based timestamp scheme based on their ideas [11,
1] and survey various security models that have been proposed for such a scheme.

Scheme Description. The following hash-based timestamp scheme is associ-
ated with a hash function H and a set of allowed hash chain shapes S. It uses
a trusted repository Rep that accepts hash value queries. If Rep receives a hash
value query r, it publishes r so that everybody can verify that r existed at this
point in time t.

The time-stamping procedure is divided into rounds. During each round, a
timestamp server receives a set of bitstrings {x1, . . . , xn} from clients. At the
end of each round it runs algorithm Stamp to generate timestamps for these
bitstrings and returns the timestamps to the clients. Algorithm Verify is used to
verify timestamps.

Stamp: On input of bitstrings x1, . . . , xn (n ≤ |S|), a hash tree [12] is computed
from leaves x1, . . . , xn. Let r be the root of that hash tree and ci be the hash
chain corresponding to the path from leaf xi to the root r (cf. Figure 1).
The timestamp server publishes the root hash r at the repository Rep and
for i ∈ {1, . . . , n}, sends ci as the response to request xi. Hash chain ci is
also called a timestamp for bitstring xi.

Verify: On input x, hash chain c, and a hash value r published at the repository,
it is checked that c has allowed shape, shape(c) ∈ S, and c is a hash chain from

x to r, x
c
 r. The algorithm outputs 1 if these conditions hold, otherwise

the algorithm outputs 0.

Security Model. Intuitively, security of a timestamp scheme means that an
adversary cannot back-date any x, i.e., generate an x and a hash chain c such
that Verify(x, c, r) = 1 for an r published at Rep before the generation of x. Such
a condition is formalized, for example, in [7, 5], where a two-stage adversary
A = (A1,A2) is considered. At the first phase of the attack, A1 stores hashes
into the repository Rep in an arbitrary way. At the second stage, A2 presents

5

an unpredictable x, a hash chain c, and selects an r published at Rep so that
Verify(x, c, r) = 1. The unpredictability of x is essential as otherwise x could
have been pre-computed by A1 before r is published and hence x could in fact
be older than r.

The security definitions of [7, 5] model the future as a computationally effi-
cient stochastic process which may not be the case in the real world. There are
no arguments against the future documents having arbitrary distributions. Addi-
tionally, the success of A is defined as the average over such a distribution and it
might still be easy to backdate fixed documents. Having such arguments in mind,
extraction-based security definitions for time-stamping have been explored in [6].
Intuitively, such conditions say that whenever A1 publishes a hash r to Rep and
later A2 outputs a document x and a hash chain c with Verify(x, c, r) = 1, then
x must have been “known” by A1 when r was stored in Rep. Formally, this is
expressed by assuming the existence of an extraction algorithm E that depends
on A1 and outputs a set of bitstrings X such that if A2 outputs (x, c) with
Verify(x, c, r) = 1 for some r ∈ Rep, then x ∈ X with overwhelming probability.

In Sections 3 and 4 we propose extraction-based security definitions for time-
stamp schemes and long-term timestamp schemes in the ideal primitive model.
We then analyze the security of the hash-based long-term timestamp scheme
described in Section 2.4 based on these definitions.

2.4 Long-Term Time-Stamping

We describe a long-term timestamp scheme that is based on the idea of Bayer
et al. to extend the lifetime of a digital signature by using timestamps [1]. Here
we assume that timestamp schemes TS = {TSi}i are available for usage over
time. Each timestamp scheme TSi ∈ TS is associated with a start time tsi and
a breakage time tbi . The start time defines when the scheme becomes available
and the breakage time defines after which time the timestamps created using
this scheme are not considered valid anymore. Additionally, we assume the ex-
istence of a repository Rep that is used for publishing root hash values. The
long-term timestamp scheme is defined by algorithm Stamp for creating an ini-
tial timestamp, algorithm Renew for renewing a timestamp, and algorithm Verify
for verifying a timestamp.

Stamp: This algorithm gets as input a timestamp scheme identifier i and a se-
quence of bitstrings x1, . . . , xn. It creates timestamps for the bitstrings using
scheme TSi by computing (r, c1, . . . , cn)← TSi.Stamp(x1, . . . , xn). Then, the
root hash r is published together with identifier i at the repository Rep. Let t
be the time when r was published. For j ∈ {1, . . . , n}, the algorithm responds
to request xj with timestamp Tj = [(i, cj , r, t)].

Renew: This algorithm gets as input a timestamp scheme identifier i′ and a
sequence of bitstrings and timestamps (x1, T1), . . . , (xn, Tn). The algorithm
renews the timestamps using scheme TSi′ as follows. First, it computes new
timestamps (r, c1, . . . , cn) ← TSi′ .Stamp(x1‖T1, . . . , xn‖Tn). Then, it pub-
lishes the root hash r together with the timestamp scheme identifier i′ at

6

the repository Rep. Let t be the time when r is published. For j ∈ {1, . . . , n},
the algorithm sends (i′, cj , r, t) as the response to request (xj , Tj). The client
receiving (i′, cj , r, t) updates its timestamp by appending (i′, cj , r, t) to Tj .

Verify: This algorithm takes as input a bitstring x, a long-term timestamp T =
(C1‖ . . . ‖Cn), where Cj = (ij , cj , rj , tj), a time t, a reference R to the trusted
repository Rep, and a set of admissible timestamp schemes TS = {TSi}i. For
j ∈ {1, . . . , n}, it is verified that TSij .Verify((x‖C1‖ . . . ‖Cj−1), cj , rj) = 1,
(ij , rj) ∈ R[tj], and tbij > tj+1. The algorithm outputs 1 if these conditions
hold, otherwise it outputs 0.

3 Extractable Time-Stamping

In the following we define extractable time-stamping for timestamp schemes
as described in Section 2.3. Informally, extractability of a timestamp scheme TS
means that if a root hash r is published at the repository at time t and later some-
one comes up with a bitstring x and a hash chain c such that TS.Verify(x, c, r) =
1, then x must have been known at time t. Our notion of extractable time-
stamping is reminiscent of PrA hash functions [9] and knowledge-binding com-
mitments [6]. After the definition of extractable timestamp schemes, we analyze
the security of the timestamp scheme from Section 2.3 instantiated using a PrA
hash function.

3.1 Definition

More formally, extractability of a timestamp scheme TSP with an ideal primitive
P is defined using an experiment ExpExTs (Algorithm 2). In this experiment an
adversary A publishes root hashes at the repository. The adversary also uses the
ideal primitive P and queries to P are recorded in an advice string adv. The
definition of extractable time-stamping requires the existence of an extractor E
with the following properties. Whenever A publishes a root hash r, the extractor
E extracts from r and the advice adv, a set of supposedly timestamped bitstrings
X. At the end, A outputs a bitstring x, a timestamp c, and a root hash r. It
wins if c is valid for x and r, r was published, and x was not extracted.

Definition 3 (Extractable Time-Stamping). Let ε : N3 → [0, 1]. A time-
stamp scheme TSP using ideal primitive P is ε-secure extractable (ExTs) if for
all integers pE , pA, and qE , there is a pE -step extractor E, such that for every
pA-step adversary A that makes at most q calls to Rep,

AdvExTs
P,TS (A, E) = Pr

[
ExpExTs

P,TS (A, E) = 1
]
≤ ε(pE , pA, q) .

3.2 Security Analysis

We analyze the security of the hash-based timestamp scheme from Section 2.3.
We first recall various properties of hash chain shapes [4] which are useful for
analyzing the security of hash-based timestamp schemes.

7

Algorithm 2: The extractable time-stamping experiment ExpExTs
P,TS (A, E).

(x, c, r)← AP,Rep;
if TS.Verify(x, c, r) = 1, r ∈ R, and
x 6∈ L[r] then

return 1;
else

return 0;

oracle P(m):
z ← P (m);
adv← adv||(m, z);
return z;

oracle Rep(r):
X ← E(adv, r);
R← R ∪ {r};
L[r]← X;
return X;

Definition 4. We say that a timestamp scheme associated with allowed shapes
S is N -bounded if |S| ≤ N .

Definition 5. An N -bounded timestamp scheme is said to be shape-compact,
if the length of allowed hash chains does not exceed 2 log2N .

Next we proof a bound on the security of the hash-based timestamp scheme from
Section 2.3 if instantiated as N -bounded and shape compact.

Theorem 1. The timestamp scheme from Section 2.3 instantiated as N -bounded
and shape compact and with an ε-secure PrA hash function HP is ε′-secure ex-
tractable with

ε′(pE , pA, q) = ε

(
α · pE

2N log2N
, β · (pA + 2qN log2N), 2qN log2N

)
,

for some small constants α and β.

A detailed proof of Theorem 1 can be found in Appendix A. The log2N term
can be eliminated if a more efficient tree-extractor is used.

Theorem 2. The timestamp scheme from Section 2.3 instantiated as N -bounded
and shape compact and with an ε-secure PrA hash function HP is ε′-secure ex-
tractable with

ε′(pE , pA, q) = ε
(α · pE

2N
, β · (pA + 2Nq), 2Nq

)
,

for some small constants α and β.

Proof (Sketch). The list extractor used in the proof of Theorem 1, extracts a
separate hash chain for each leaf of the hash tree. This means that each of the
inner nodes of the tree are extracted many times. The efficiency of the extraction
can be improved by avoiding redundant extraction of hash chains that partially
overlap. This is what the tree extractor does and it leads to the improved security
bound.

8

4 Extractable Long-Term Time-Stamping

In this section we propose a security model for the hash-based long-term time-
stamp scheme described in Section 2.4. First, we define a model of time and
an adversary model suitable for our security analysis. Then, we define what it
means for a long-term timestamp scheme to be extractable. Finally, we prove
a security bound for the long-term timestamp from Section 2.4 based on the
security level of the timestamp schemes used for timestamp renewal.

4.1 Model of Real Time and Computation

To model the breakage of a hash function or a hash-based timestamp scheme,
we cannot use the traditional (timeless) security because it does not make sense
to say that before tbi the hash function is secure but after tbi it is not secure
anymore. However, in reality hash functions that have been considered secure in
the past may appear insecure at a later point because the computational power
of real world adversaries typically increases over time as well as new attacking
algorithms, which were not known before tbi , may be discovered. In order to
model adversaries that increase their abilities over time, we assume that the
class Mt of computing machines available at a time t widens when t increases,
i.e., Mt ⊂ Mt′ for t < t′. Using our approach we can model, for example, that
at some point quantum computers become available.4

Model of Real Time. To realize our adversary model we must be able to
set in relation computation time with other events (e.g., the arise of a new
computational technology) happening at given points in time. Therefore, we
require a model of real time in contrast to conventional security models, where
time is commonly considered the same as the number of steps performed by the
adversary.

In recent literature, various methods for modeling real time have been pro-
posed. Schwenk [14] and Geihs et al. [10], for example, model real time by defin-
ing a global clock that advances whenever the adversary performs work. Another
model of real time has been proposed by Canetti et al. [2]. They work in a com-
putational framework that supports concurrency and define a global clock that
runs concurrently to all other processes and ticks at a defined rate.

For our paper we follow the time formalism used by Schwenk [14] and Geihs
et al. [10]. That is, we use a global clock Clock that holds state time, initialized
to 0. Here, we give the adversary the control over advancing time. It may do
so by calling Clock(t) as an oracle and if t > time, the clock is advanced to
time = t (Algorithm 3). We remark that by advancing time, the adversary also
burns computation power and triggers events in the security experiment.

4 We remark that while our model considers quantum computing, quantum commu-
nication is not considered.

9

Model of Computation. As described in the previous section, we consider
adversaries AClock that are associated with a global clock Clock. We bound the
computational power of adversary A with respect to the time defined by Clock.
For ρ : N → N, we say A is ρ-step-bounded if at any time t, it performed less
than ρ(t) computation steps. We say A is ρ-call-bounded if at any time t, it
performed less than ρ(t) oracle calls.

To allow for modeling that computational technology progress over time, we
define an adversary AClock as a sequence (AClock

0 ,AClock
1 ,AClock

2 , . . .) of machines
such that At ∈ Mt, where Mt is the class of computing machines available at
time t. Executing AClock at time = t means executing the component AClock

t .
The adversary AClock

t then runs until it calls Clock(t′) after which the control
is given to AClock

t′ . Here, AClock
t′ gets access to the internal state of AClock

t . An
extractors E is also defined as a sequence (E0, E1, E2, . . .) such that Et ∈Mt, but
the components do not have access to the clock-oracle. Calling an extractor E
at time = t means calling Et.

4.2 Security Definition

We define extractable long-term time-stamping using an experiment ExpExLTs

(Algorithm 3). Similar to the definitions of PrA hash functions and extractable
time-stamping without renewal, our definition of extractable long-term time-
stamping uses an ideal primitive P which can only be called via an oracle P that
records all calls to P in an advice string adv. The experiment also involves a
global clock Clock as described in Section 4.1.

The experiment involves an adversary A and an extractor E . The adversary
A may publish root hash values r at the repository Rep at any time by calling
Rep(r). When Rep is called with root hash r at time t, it records r associated
with t in a global table R (i.e., R[t] ← R[t] ∪ {r}, where initially R[t] = {}).
Additionally, the extractor E on input adv and r extracts a set of bitstrings X
that is stored associated with time t in a table L (i.e., L[t] ← L[t] ∪ X, where
initially L[t] = {}). The goal of the adversary A is to produce (x, T, t) such
that T is a valid long-term timestamp for bitstring x and time t, and x was not
extracted at time t (i.e., Verify(x, c, t, R) = 1 and x 6∈ L[t]).

Definition 6 (Extractable Long-Term Time-Stamping). Let M describe
the available machines classes and TS describe the available timestamp schemes.
Let ε : N4 → [0, 1]. A long-term timestamp scheme LTSP , which uses an ideal
primitive P , is ε-secure extractable (for M and TS) if for all bounds ρE , ρA, and
q, there is a ρE -bounded extractor E ∈ M, such that for every ρA-step-bounded
and q-call-bounded adversary A ∈M, and for every time t:

AdvExLTs
P,LTS,TS(A, E , t) = Pr

[
ExpExLTs

P,LTS,TS(A, E , t) = 1
]
≤ ε(ρE , ρA, q, t) .

10

Algorithm 3: The extractable long-term time-stamping experiment
ExpExLTs

P,LTS,TS(A, E , t∗).
(x, T, t)← AClock,P,Rep;
if LTS.Verify(x, T, t, R,TS) = 1, x 6∈ L[t], time ≤ t∗ then

return 1;
else

return 0;

oracle Clock(t):

if t > time then
time← t;

oracle P(m):
z ← P (m);
adv← adv||(m, z);
return z;

oracle Rep(r):
X ← E(adv, r);
t← time;
R[t]← R[t]‖r;
L[t]← L[t]‖X;
return X;

4.3 Security Analysis

Before we analyze the security of the long-term timestamp scheme described in
Section 2.4, we adapt the notion of extractable time-stamping from Section 3 to
the long-term setting where the class of computing machines available changes
over time.

Definition 7 (Extractable Time-Stamping (Refined)). Let ME and MA

be classes of machines and ε : N3 → [0, 1]. We say a non-renewable timestamp
scheme TS is ε-secure extractable for adversaries of MA and extractors of ME
if for all integers pE , pA, and qE , there exists a pE -step extractor E ∈ME , such
that for every pA-step adversary A ∈MA that makes at most q calls to Rep:

AdvExTs
P,TS (A, E) ≤ ε(pE , pA, q) .

We now prove a bound on the security level of the long-term timestamp
scheme described in Section 2.4 in terms of the security level of the available
timestamp schemes.

Theorem 3. Let M describe the available computing machine classes and TS =
{TSPi }i describe the available timestamp schemes, which use an ideal primitive
P . If for every i, TSPi is εi-secure extractable for adversaries of Mtbi

and extrac-
tors of Mtsi

, then the long-term timestamp scheme described in Section 2.4 is
ε-secure extractable with

ε(ρE , ρA, q, t) =
∑

i∈{i:tbi≤t}

εi
(
α · ρE(tbi), β ·

(
ρA(tbi) + q(tbi)ρE(t

b
i)
)
, q(tbi)

)
,

for some small constants α and β.

A detailed proof of Theorem 3 can be found in Appendix B.

11

5 Evaluation

We evaluate which protection level the long-term timestamp scheme described
in Section 2.4 provides in a practical scenario. For our evaluation we consider
a scenario where data is protected over a time period of Y years. The security
level of the long-term timestamp scheme is evaluated in terms of the security
level of the hash functions that are used to instantiate the available timestamp
schemes. Here, we assume that all used hash functions have the same security
level during their validity period, where by security level we mean a bound on
the success probability of an adversary.

5.1 Scenario

We assume that a set TS = {TSPi }i of available hash-based timestamp schemes,
where for each i, HP

i is the hash function used by TSPi . We assume that the
PrA-security of a hash function derives from the ratio of the adversary power pA
and the extractor power pE , and is influenced by the number of repository calls
q and a base security level δ. Concretely, we assume that each hash function Hi

is ε-secure PrA until its breakage time tbi with ε(pE , pA, q) = pA
pE
qδ. Furthermore,

we assume that each timestamp scheme TSi is N -bounded and shape compact,
which means that each timestamp round up to N timestamps are generated.
For our practical security analysis we neglect the constants α and β derived in
Theorem 2 and Theorem 3 as they are in most cases close to 1.

By Theorem 2 we obtain that each timestamp scheme TSi is ε′-secure ex-
tractable until time tbi with

ε′(pE , pA, q) ≤ ε
(pE

2N
, pA + 2Nq, 2Nq

)
=
pA + 2Nq

pE
(2N)2qδ .

Furthermore, by Theorem 3 we obtain that the long-term timestamp scheme is
ε′′-secure long-term extractable with

ε′′(ρE , ρA, q, t) ≤
∑
i∈It

ε′
(
ρE(t

b
i), ρA(tbi) + q(tbi)ρE(t

b
i), q(t

b
i)
)

≤
∑
i∈It

ρA(tbi) + q(tbi)ρE(t
b
i) + 2Nq(tbi)

ρE(tbi)
(2N)2q(tbi)δ

≤
∑
i∈It

(
ρA(tbi)

ρE(tbi)
+

(
2N

ρE(tbi)
+ 1

)
q(tbi)

)
(2N)2q(tbi)δ .

We assume that the adversary and the extractor have the same computation

power, i.e., ρA(t)
ρE(t)

= 1, and we observe that any reasonable extractor E extracts

at least 2N bitstrings before the breakage time of a scheme, i.e., ρE(t
b
i) ≥ 2N .

Let time be denoted in years and assume that each year at most L new time-
stamp schemes become available, and at most R root hashes are published at the
repository, i.e., |It| = |{i : tbi ≤ t}| ≤ tL and q(t) ≤ tR. We obtain the following
bound on the security level of the long-term timestamp scheme:

ε′′(ρE , ρB , q, t) ≤ 12t3(NR)2Lδ .

12

5.2 Results

In Figure 2 we show the security level of the long-term timestamp scheme for
different time spans Y and parameters N , L, R, and δ. The default parameters
are Y = 100, L = 10, N = 232, R = 365, and δ = 2−192.

By the upper left graph of Figure 2, we observe a cubic security loss over time
for the case that the security level of the used hash function remains constant.
Using a base security level of δ = 2−192 for the hash function, the security level
of the long-term timestamp scheme after 1 year is 2−104, after 10 years it drops
to 2−94, and after 100 years it drops to 2−84. There is a linear loss in security
for increasing the number L of short-term timestamp schemes used per year, as
depicted in the upper right graph. Allowing a larger number R of hash values
to be published at the repository results in a quadratic security loss, as can be
seen in the middle left graph. The number N of timestamps that can be issued
per root hash is an important factor because in practice it may be large. The
security level decreases quadratically when N is increased, as can be seen in the
middle right graph. Using N = 216 results in security level 2−116 after 100 years,
while using N = 248 results in security level 2−52. Finally, the bottom graph
shows how the security of the long-term timestamp scheme depends linear on
the base security level δ of the used hash functions.

6 Conclusions and Future Work

We have formally analyzed the security of hash-based long-term time-stamping
as proposed by Bayer et al. [1]. We prove that the security level of the discussed
scheme degrades cubic over time if the security level of the used cryptographic
primitives remains constant. This shows that long-lived systems need to be de-
signed using a certain security margin. Our analysis provides a framework for
analyzing the security level of similar schemes.

For future work it would be interesting to see whether the security bound
proved by us can be improved and the security loss over time can be reduced.
It would also be interesting to establish a security model for long-term time-
stamping that does not rely on idealized assumptions such as a random oracle
or an ideal primitive.

References

1. Bayer, D., Haber, S., Stornetta, W.S.: Improving the efficiency and reliability of
digital time-stamping. In: Capocelli, R., De Santis, A., Vaccaro, U. (eds.) Sequences
II: Methods in Communication, Security, and Computer Science. pp. 329–334.
Springer New York, New York, NY (1993)

2. van Breugel, F., Chechik, M. (eds.): CONCUR 2008 - Concurrency Theory, 19th
International Conference, CONCUR 2008, Toronto, Canada, August 19-22, 2008.
Proceedings, Lecture Notes in Computer Science, vol. 5201. Springer (2008)

13

50 100

85

90

95

Y

−
lo

g
2
(ε
′′
)

100 101 102 103

80

85

L

−
lo

g
2
(ε
′′
)

102 103 104 105 106

70

80

90

R

−
lo

g
2
(ε
′′
)

20 30 40 50

60

80

100

120

log2(N)

−
lo

g
2
(ε
′′
)

200 300 400
0

100

200

300

− log2(δ)

−
lo

g
2
(ε
′′
)

Fig. 2. Evaluation of the security level ε′′ of long-term time-stamping when run for Y
years, and with parameters L, R, N , and δ. Here, L is the number of new short-term
timestamp schemes per year, R is the number of published root hashes per short-term
scheme, N is the number of documents covered by one root hash, and δ is the base
security level of the hash functions.

14

3. Buldas, A., Geihs, M., Buchmann, J.A.: Long-term secure time-stamping using
preimage-aware hash functions (short version). In: Provable Security: 11th Interna-
tional Conference, ProvSec 2017, Xi’an, China, October 23-25, 2017, Proceedings.
Springer International Publishing (2017)

4. Buldas, A., Laanoja, R.: Security proofs for hash tree time-stamping using hash
functions with small output size. In: Boyd, C., Simpson, L. (eds.) Information
Security and Privacy - 18th Australasian Conference, ACISP 2013, Brisbane, Aus-
tralia, July 1-3, 2013. Proceedings. Lecture Notes in Computer Science, vol. 7959,
pp. 235–250. Springer (2013)

5. Buldas, A., Laur, S.: Do broken hash functions affect the security of time-stamping
schemes? In: Zhou, J., Yung, M., Bao, F. (eds.) Applied Cryptography and Network
Security, 4th International Conference, ACNS 2006, Singapore, June 6-9, 2006,
Proceedings. Lecture Notes in Computer Science, vol. 3989, pp. 50–65 (2006)

6. Buldas, A., Laur, S.: Knowledge-binding commitments with applications in time-
stamping. In: Okamoto, T., Wang, X. (eds.) Public Key Cryptography - PKC 2007,
10th International Conference on Practice and Theory in Public-Key Cryptogra-
phy, Beijing, China, April 16-20, 2007, Proceedings. Lecture Notes in Computer
Science, vol. 4450, pp. 150–165. Springer (2007)

7. Buldas, A., Saarepera, M.: On provably secure time-stamping schemes. In: Lee, P.J.
(ed.) Advances in Cryptology - ASIACRYPT 2004, 10th International Conference
on the Theory and Application of Cryptology and Information Security, Jeju Island,
Korea, December 5-9, 2004, Proceedings. Lecture Notes in Computer Science, vol.
3329, pp. 500–514. Springer (2004)

8. Deutsch, D.: Quantum theory, the church-turing principle and the universal quan-
tum computer. Proceedings of the Royal Society of London A: Mathematical, Phys-
ical and Engineering Sciences 400(1818), 97–117 (1985)

9. Dodis, Y., Ristenpart, T., Shrimpton, T.: Salvaging merkle-damg̊ard for practical
applications. In: Joux, A. (ed.) Advances in Cryptology - EUROCRYPT 2009, 28th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Cologne, Germany, April 26-30, 2009. Proceedings. Lecture Notes in
Computer Science, vol. 5479, pp. 371–388. Springer (2009)

10. Geihs, M., Demirel, D., Buchmann, J.A.: A security analysis of techniques for
long-term integrity protection. In: 14th Annual Conference on Privacy, Security
and Trust, PST 2016, Auckland, New Zealand, December 12-14, 2016. pp. 449–
456. IEEE (2016)

11. Haber, S., Stornetta, W.S.: How to time-stamp a digital document. In: Menezes,
A., Vanstone, S.A. (eds.) Advances in Cryptology - CRYPTO ’90, 10th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 11-
15, 1990, Proceedings. Lecture Notes in Computer Science, vol. 537, pp. 437–455.
Springer (1990)

12. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) Advances in Cryp-
tology - CRYPTO ’89, 9th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 20-24, 1989, Proceedings. Lecture Notes in Com-
puter Science, vol. 435, pp. 218–238. Springer (1989)

13. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

14. Schwenk, J.: Modelling time for authenticated key exchange protocols. In: Kuty-
lowski, M., Vaidya, J. (eds.) Computer Security - ESORICS 2014 - 19th European
Symposium on Research in Computer Security, Wroclaw, Poland, September 7-
11, 2014. Proceedings, Part II. Lecture Notes in Computer Science, vol. 8713, pp.
277–294. Springer (2014)

15

15. Turing, A.M.: On computable numbers, with an application to the entschei-
dungsproblem. Proceedings of the London mathematical society 2(1), 230–265
(1937)

A Proof of Theorem 1

An N -bounded shape compact timestamp scheme using an ε-secure PrA hash
function HP is ε′-secure extractable with

ε′(pE , pA, q) = ε

(
α · pE

2N log2N
, β · (pA + 2qN log2N), 2qN log2N

)
,

for some small constants α and β.

Proof. Let S be the set of allowed shapes associated with an N -bounded shape
compact timestamp scheme TS and let E be an extractor for HP that extracts
a preimage given a hash value and the ideal primitive calls. Such an extractor
exists if HP is PrA-secure. Using E as a black box, we construct a list extractor
L (Algorithm 4), which extracts timestamped bitstrings from published root
hash values. Having as input a P -query string adv and a bitstring r (a hash
value), the list extractor L extracts for every allowed hash-chain shape ι ∈ S,
the corresponding hash chain in a top-down way, starting from r. Due to the
shape-compactness, the step count of L is bounded by α·pE ·N ·maxι∈S length(ι) ≤
2 ·α · pE ·N log2(N), for some small constant α and if pE is a bound on the step
count of E .

Algorithm 4: List extractor L(adv, r).

for ι ∈ S do
x← E(adv, r), c← [], k ← 0;
while x 6= ⊥ and k < length(ι) do

k ← k + 1;
x← E(adv, xι[k]) (where x = x0‖x1);

L[r]← L[r] ∪ {x};
return L;

Let AP,Rep be an adversary that participates in the ExTs-experiment denoted
by ExpExTs

P,TS (A,L). We construct an adversary BP,Ex (Algorithm 5) that partici-

pates in the PrA-experiment ExpPrA
P,H(B, E) as follows. The adversary BP,Ex runs

algorithm AP,Rep, where calls to the repository Rep are simulated using algorithm
REx (Algorithm 6).

16

Algorithm 5: PrA adversary
BP,Ex.

(x, c, r)← AP,REx

;
ι← shape(c);
if ∃k : R[c[k]ι[k]] = 1, V[c[k]ι[k]] 6=
c[k + 1] then

return c[k + 1];
else

return x;

Algorithm 6: Rep simulator
REx(r).

for ι ∈ S do
x← Ex(r), k ← 0;
while x 6= ⊥ and
k < length(ι) do
k ← k + 1;
x← Ex(xι[k]);

L[r]← L[r] ∪ {x};
return L[r];

Note that whenever A succeeds in the ExTs-experiment, it finds (x, c, r) such

that x
c
 r, x ∈ R, and x 6∈ L[r]. This means there must be k such that HP (c[k+

1]) = c[k]ι[k] (where ι is the shape of c), but the extractor E failed to extract
c[k+ 1] from c[k]ι[k]. Therefore, after simulating A, the adversary B obtains the
hash chain c and finds the smallest k, such that R[c[k]ι[k]] = 1 and V[c[k]ι[k]] 6=
c[k+ 1], and outputs c[k+ 1], or, if no such k exists, outputs x. We observe that
B succeeds in the PrA experiment whenever A succeeds in the ExTs experiment,

AdvExTs
P,TS (A,L) ≤ AdvPrA

P,H(B, E) .

The step count of BP,Ex is O(pA + 2qRN log2N), where pA is the step count of
A and qR is the number of calls to Rep. It follows that

AdvExTs
P,TS (A,L) ≤ AdvPrA

P,H(B, E) ≤ ε(pE , α · (pA+ 2qRN log2N), 2qRN log2N) ,

for some small constant α and where pE is a bound on the step count of E . The
step count of L is pL = O(2pEN log2N). We obtain that the timestamp scheme
constructed from HP is ε′-secure extractable with

ε′(pL, pA, qR) = ε

(
β · pL

2N log2N
,α · (pA + 2qRN log2N), 2qRN log2N

)
,

for some small constant β. ut

B Proof of Theorem 3

Let M describe the available computing machine classes and TS = {TSPi }i de-
scribe the available timestamp schemes, which use ideal primitive P . For every
i, assume TSi is εi-secure extractable for adversaries of Mtbi

and extractors of
Mtsi

. Then the long-term timestamp scheme described in Section 2.4 is ε-secure
extractable with

ε(ρE , ρA, q, t) =
∑

i∈{i:tbi≤t}

εi
(
α · ρE(tbi), β · (ρA(tbi) + q(tbi)ρE(t

b
i)), q(t

b
i)
)

,

for some small constants α and β.

17

Proof. Let Li ∈ Mtsi
be the list extractor for TSi that exists because TSi is εi-

secure extractable for adversaries of Mtbi
and extractors of Mtsi

. Using the Li’s
as black boxes, we construct a long-term list extractor L ∈ M in the following
way (Algorithm 7). Having as input an ideal primitive advice string adv and a
bitstring r, the list extractor L decomposes r into a timestamp scheme identifier
i and a hash value r′, checks if scheme i can be used at the current time, and
if so, extracts a set of bitstrings X from r′ using list extractor Li. The step
count of L in this run is at most the step count of Li (plus a small simulation
overhead).

Algorithm 7: Long-term extractor L(adv, r)

r = (i, r′);

if tsi ≤ time < tbi then
return Li(adv, r′);

else
return ⊥;

Let A be any adversary that participates in the ExLTs experiment. For every
i, we construct an adversary B(i) (Algorithm 8) that participates in the ExTs

experiment as follows.5 The adversary BP,Rep(i) simluates a run of AClock,P,R where

the clock Clock is simulated using Algorithm 10 and the repository R is simu-
lated using Algorithm 9. The simulation is performed only while time does not
exceed the breakage time tbi . The adversary B(i) tries to find a moment t′′ < tbi
when A submits (j, r′′) to the repository to renew a tuple (x′, i, c′, r′, t′) valid
with scheme TSi and A submitted (i, r′) to the repository, but x′ has not been
extracted. This violates the ExLTs-condition for TSi.

5 We use the notation B(i) to distinguish between B(i) and the time-components B =
(B0,B1, . . .) of an adversary.

18

Algorithm 8: ExLTs adversary BP,Rep(i) .

(x, c, t)← AClock,P,R while time < tbi
until ∃j, x′, c′, r′, t′, r′′, t′′ such that
– (j, r′′) ∈ R[t′′] and tsj < t′′ < tbi , t

b
j,

– (x′, i, c′, r′, t′) ∈ L[t′′],
– Si.Verify(x′, c′, r′) = 1,
– (i, r′) ∈ R[t′] and tsi < t′ < tbi ,
– x′ 6∈ L[t′];

if ∃ such (j, x′, c′, r′, t′, r′′, t′′) then
return x′;

else
return ⊥;

Algorithm 9: Repository
simulator R(r).

r = (j, r′);
t← time;

if tsj ≤ t < tbj then
if j=i then

X ← Rep(r′);
else

X ← Lj(adv, r′);
else

X ← ⊥;

R[t]← R[t]‖r;
L[t]← L[t]‖X;
return X;

Algorithm 10: Clock simulator Clock(t).

if t > time then
time← t;

Define It = {i : tbi ≤ t}. We observe that whenever A is successful until time
t, one of {Bi : tbi ≤ t} is successful,

AdvExLTs
P,LTS (A,L, t) ≤

∑
i∈It

AdvExTs
P,TSi

(B(i),Li) .

Assume A is ρA-step-bounded and q-call-bounded, and assume L is ρL-bounded.
Then, for each i, the step count of B(i) is O(ρB(tbi)+q(tbi)ρL(tbi)). We obtain that
for every t,

AdvExLTs
P,LTS (A,L, t) ≤

∑
i∈It

AdvExTs
P,TSi

(B(i),Li)

≤
∑
i∈It

εi
(
α · ρL(tbi), β · (ρB(tbi) + q(tbi)ρL(tbi)), q(t

b
i)
)

,

for some small constants α and β.

19

