
CAKE:
Code-based Algorithm for Key Encapsulation

Paulo S. L. M. Barreto1,2, Shay Gueron3,4, Tim Güneysu5,6, Rafael Misoczki7,
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Abstract. Current widely-used key-exchange (KE) mechanisms will be
vulnerable to quantum attacks when sufficiently strong quantum com-
puters become available. Therefore, devising quantum-resistant replace-
ments that combine efficiency with solid security guarantees is an im-
portant and challenging task. This paper proposes several contributions
towards this goal. First, we introduce “CAKE”, a key-encapsulation al-
gorithm based on the QC-MDPC McEliece encryption scheme, with two
major improvements: a) the use of ephemeral keys that defeats a recent
reaction-attack against MDPC decoding of the corresponding encryp-
tion scheme and b) a highly efficient key-generation procedure for QC-
MDPC-based cryptosystems. Then, we present an authenticated key-
exchange protocol based on CAKE, which is suitable for the Internet
Key-Exchange (IKE) standard. We prove that CAKE is IND-CCA se-
cure, that the protocol is SK-Secure, and suggest practical parameters.
Compared to other post-quantum schemes, we believe that CAKE is a
promising candidate for post-quantum key-exchange standardization.
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1 Introduction

The currently deployed public-key cryptosystems rely on the difficulty of number
theory problems (e.g., factorization), and discrete logarithm problems [38, 31].
These problems will be efficiently solved by large quantum computers [41], thus
turning those schemes completely useless in a not-so-distant future. Therefore,
it is of great relevance to devise and deploy alternative schemes that can sur-
vive the advent of large quantum computers and, ideally, still offer reasonable
performance.

In this context code-based cryptography is a promising alternative. It relies on
the well-known decoding problem [3], believed to be hard even against quantum
adversaries [4], and on the indistinguishability of its public key from random, a
problem that strongly depends on the code family. The best-known code-based
scheme, namely the McEliece encryption scheme [29], suggests binary Goppa
codes as the code family. However, this choice has two main drawbacks: a) Goppa
codes may not be the optimal security choice given a recent distinguisher for
certain Goppa codes [13] and b) they require very large public keys (of several
megabytes size).

To address these issues, the QC-MDPC McEliece scheme [32] was introduced
replacing Goppa codes by Quasi-Cyclic Moderate-Density Parity-Check (QC-
MDPC) codes. This approach led to key sizes that are comparable to RSA
keys, and approximated the distinguishing problem to the decoding problem.
These features attracted great attention from the community (see [20, 43, 44,
11], just to mention a few) including a mention in the preliminary European
recommendations for post-quantum cryptography [25].

Despite their promising features, QC-MDPC codes need to be handled care-
fully due to the probabilistic nature of MDPC decoding (which is inherited from
Low-Density Parity-Check (LDPC) codes [16]): there is some probability that
the MDPC decoding may fail. This property can be leveraged to mount an at-
tack on some schemes. Indeed, Guo, Johansson and Stankovski [17] presented
an interesting reaction attack (GJS attack) against the QC-MDPC McEliece en-
cryption scheme. In this attack, the adversary carefully crafts error patterns and
observes whether (or not) the decoding process fails. The adversary can recover
the private key by collecting the decoding failure rate of various error patterns.
This is possible only because the parameters suggested in [32] ensured (through
exhaustive simulation) a decoding failure rate (DFR) of 10−7. The simplest way
to foil this attack is to choose parameters such that DFR ≤ 2−λ, where λ is
the security level of the scheme. However, the difficulty with this strategy is to
formally prove that a given parameter set attains a given DFR. Empirical ob-
servations indicated that the DFR of MDPC codes decreases exponentially, and
secure parameters could be achieved by increasing the code length of [32] by 30%
or 40%. However, with no formal proof for this property, the GJS attack might
prevent wide adoption of QC-MDPC McEliece for asymmetric encryption.

Contributions. To date neither an MDPC-based key exchange protocol nor
any MDPC-based encryption scheme has been proposed that defeats the GJS
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attack. This paper provides several contributions that address this and other
problems:

X It introduces CAKE, a new key encapsulation mechanism (KEM), based on
QC-MDPC codes. It differs from the QC-MDPC McEliece encryption scheme
in two respects: a) the key generation process is significantly faster at the cost
of longer public keys, and b) completely defeats the GJS attack by employing
ephemeral keys (i.e., new keys are generated at each key exchange).

X It proposes an authenticated key exchange protocol based on CAKE that is
suitable for the Internet Key Exchange (IKE), similarly to what was done
done for lattices [33].

X It proves that CAKE is CCA secure and the protocol is SK secure [9].

The full version of this paper will include a discussion of implementation
aspects, including strategies to deploy our proposal in an isochronous way.

Related Work. Lattice-based cryptography has a long record of academic works
[34], including promising KE protocols. The NewHope scheme [1] provides good
performance and is based on the Ring-LWE problem [26] (a ring variant of the
Learning-With-Errors (LWE) problem [37]). It improves over previous work by
Bos, Costello, Naherig and Stebilla [7] which is an implementation of Peikert’s
proposal [33] for TLS. Frodo [6] is a key exchange scheme based on the LWE
problem itself at the price of larger parameters and lower performance. Cryp-
tography based on isogenies of supersingular elliptic curves seems to be another
promising way to devise KE protocols [22, ?] offering small public-keys but not
so attrative latency. The only known code-based key encapsulation mechanism
(KEM) scheme is McBits [5]. It builds on the work of [35], and lives in the
classical McEliece setting with binary Goppa codes and enormous public keys.

Organization. This paper is organized as follows. Section 2 presents the
preliminary concepts, Section 3 introduces CAKE, a new unauthenticated key
encapsulation mechanism (KEM) based on QC-MDPC codes, Section 4 presents
an authenticated key exchange protocol based on CAKE, Section 5 proves that
CAKE is IND-CCA secure and the corresponding authenticated key exchange
protocol is SK secure, Section 6 discusses practical security and suggests param-
eters. Section 7 presents our conclusions.

2 Preliminaries

Definition 1 (Linear codes). The Hamming weight of a vector x ∈ Fn2 is the
number wt(x) of its nonzero components. A binary (n, r)-linear code C of length
n, co-dimension r and dimension k = (n− r) is a k-dimensional vector subspace
of Fn2 . It is spanned by the rows of a matrix G ∈ Fk×n2 , called a generator matrix
of C. Equivalently, it is is the kernel of a matrix H ∈ Fr×n2 , called parity-check

matrix, i.e. C = {c | HcT = 0}. The codeword c ∈ C of a vector m ∈ F(n−r)
2 is

c = mG. The syndrome s ∈ Fr2 of a vector e ∈ Fn2 is sT = HeT .
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Definition 2 (Quasi-cyclic code). An (n, r)-linear code is quasi-cyclic (QC)
if there is some integer n0 such that every cyclic shift of a codeword by n0 places
is again a codeword.

When n = n0r, for some integer r, it is possible and convenient to have
both generator and parity check matrices composed by r × r circulant blocks.
A circulant block is completely described by its first row (or column) and the
algebra of r × r binary circulant matrices is isomorphic to the algebra of poly-
nomials modulo xr − 1 over F2, enabling efficient computations. For example, a
parity-check matrix H of an (n0r, r)-quasi-cyclic code can be represented as:

H = [H0| . . . |Hn0−1], where: Hi =

hi,0 . . . hi,r−1

...
. . .

...
hi,1 . . . hi,0

 ∈ Fr×r2

Definition 3 (QC-MDPC codes). An (n0, r, w)-QC-MDPC code is a quasi-
cyclic code of length n = n0r, codimension r admitting a parity-check matrix
with constant row weight w = O(

√
n log n).

3 CAKE: A QC-MDPC KEM with Fast Key-Generation

In this section we introduce CAKE – an unauthenticated key-encapsulation
mechanism based on QC-MDPC codes. The strategy to present our scheme as
an unauthenticated KEM follows works such as NewHope [6] and BCNS [7].
In this way, authentication and key exchange features are decoupled, allowing
flexibility to select (and eventually replace) the choice for each feature. Section
4 describes one way to add the authentication layer on top of CAKE.

CAKE resembles the QC-MDPC McEliece encryption scheme [32] but also
has important differences. While QC-MDPC McEliece intends to use long term
keys, CAKE relies on ephemeral keys. This means that a new key pair is gener-
ated at each key exchange, thus completely defeating the GJS attack [17] which
depends on observing a large number of decoding failures for a same private key.
Given the new requirement of generating a key pair at every key exchange, a
major challenge consisted of investigating novel strategies to accelerate MDPC
key generation. After several attempts, we came up with a simple and elegant
solution. In contrast to QC-DMPC McEliece (and any quasi-cyclic McEliece vari-
ant), CAKE does not compute a polynomial inversion in the cyclic ring (xr−1),
then multiply it by the sparse private matrix to hide the private code struc-
ture. Instead, CAKE hides the private code structure by simply multiplying it
by any random, dense polynomial. This turns CAKE key generation as efficient
as QC-MDPC encryption. The drawback of this strategy is the doubled size of
the public key since the public key will not have an identity block; an accept-
able cost given the significant speedup. Finally, we make use of a simple variant
of McEliece, as presented in [10]. We swap the roles of message and random-
ness in the encryption process to avoid a costly polynomial inversion. A detailed
description of this message-randomness tweak is provided in Appendix B.
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A key encapsulation mechanism (KEM) is composed by three algorithms:
Gen which outputs a public encapsulation key pk and a private decapsulation
key sk, Encaps which takes as input an encapsulation key pk and outputs
a ciphertext C and a symmetric key K, and Decaps which takes as input a
decapsulation key sk and a ciphertext C and outputs a symmetric key K or a
decapsulation failure symbol ⊥. For more details on KEM definitions, we refer
the reader to [12]. The standard security definitions for a KEM are given in
Appendix C.

For a target security level λ, let r be a prime such that (xr−1)/(x−1) ∈ F2[x]
is irreducible, let dv be an odd integer and let t be an integer such that decoding
t errors with a uniformly chosen binary linear error-correcting code of length
n = 2r and dimension r, as well as recovering a base of column weight dv given
an arbitrary base of a QC-MDPC code of the same length and dimension, both
have a computational cost in Ω(exp(λ)). See Section 6 for a detailed discussion
on how to securely select such parameters. We now define CAKE as follows:

Algorithm 1. CAKE.Gen:

- Input: λ, the target quantum security level.

- Output: the sparse private key (h0, h1) and the dense public key (g0, g1).

0. Given λ, set the parameters r, dv, t as described above.

1. Choose h0, h1
$←F2[x]/〈xr − 1〉 both of (odd) weight dv.

2. Choose g
$←F2[x]/〈xr − 1〉 of odd weight (so wt(g) ≈ r/2).

3. Compute (g0, g1)← (g · hT1 , g · hT0 ).

Let H and G be the quasi-cyclic matrices built from (r − 1) cyclic shifts of
(h0, h1) and (g0, g1) respectively. It is easy to see that G ·HT = 0 and therefore
they satisfy the condition to be a generator and a parity-check matrix of the
given code: G · HT = [g · hT1 | g · hT0 ] · [h0 | h1]T = g · hT1 · hT0 + g · hT0 · hT1 =
g · (hT1 · hT0 + hT0 · hT1 ) = 2 · g · hT0 · hT1 = 0. It is also important to show that g,
as created above, is always invertible (thus not risking to generate a public-code
which is in fact a sub-code of the private one) and this is proven in Appendix A.

The encapsulation and decapsulation algorithms make use of three hash func-
tions G : {0, 1}n → {0, 1}r, C : {0, 1}∗ → {0, 1}`H and H : {0, 1}`H → {0, 1}`H ,
where `H is the digest length of a hash function that offers λ bits of collision-
resistance security against a quantum adversary. The first has the task of gener-
ating randomness for the scheme, the second compresses the sparse error vector
into a digest of `H bits and the third is a length-preserving hash that provides
“plaintext confirmation” as in [21]. The shared symmetric key is obtained via
another hash function K : {0, 1}2n → {0, 1}`K , where `K is the desired key
length. Public and private key are n bits long and the cryptogram is (n + `H)
bits long.
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Algorithm 2. CAKE.Encaps:

- Input: the dense public key (g0, g1).
- Output: the encapsulated key K and the cryptogram C = (c, d).

1. Generate an error pattern e0, e1
$←F2[x]/〈xr − 1〉 of total weight t.

2. Set e = (e0, e1), then compute m = G(e), d0 = C(e) and d = H(d0).
3. Compute c = (c0, c1)← (m · g0 + e0,m · g1 + e1).
4. Compute K ← K(c, e) and set C = (c, d).

Algorithm 3. CAKE.Decaps:

- Input: the sparse private key (h0, h1) and the cryptogram C.
- Output: the decapsulated key K or a failure symbol ⊥.

1. Compute the syndrome s← c0 · hT0 + c1 · hT1 .
2. Try to decode s to recover an error vector e′ = (e′0, e

′
1).

3. If wt(e′) 6= t or decoding fails, output ⊥ and halt.
4. Compute m′ = G(e′), d′0 = C(e′) and d′ = H(d′0).
5. Compute c′ ← (m′ · g0 + e′0,m

′ · g1 + e′1).
6. If c′ 6= c ∨ d′ 6= d, output ⊥ and halt.
7. Compute K ← K(c, e′).

Figure 1 illustrates CAKE as a protocol of messages exchanged between an
Initiator, who starts the key exchange process, and a Responder.

Initiator Responder

(h0, h1, g0, g1)← CAKE.Gen(λ)
(g0,g1)−−−−−−−−−−−→

(K,C) := CAKE.Encaps(g0, g1)
C←−−−−−−−−−−−

K/⊥ := CAKE.Decaps(h0, h1, C)

Fig. 1: CAKE Key Encapsulation Mechanism

4 An Authenticated Key Exchange Protocol From CAKE

In this section, we discuss one way to extend CAKE to an authenticated key ex-
change protocol. This discussion intends to demonstrate that CAKE ephemeral
keys are not a limitation for its integration into real-world key exchange proto-
cols and also allows us to discuss interesting security properties required in the
real world, such as perfect forward secrecy, which are usually managed in levels
of abstraction above the simple key encapsulation building-block.
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The construction here described is based on the well-known SIGn-and-MAc
(SIGMA) protocol design [24], which is adopted by the Internet Key Exchange
(IKE) protocol [19], part of the IPSec standard [40]. The simplest SIGMA proto-
col is known as Σ0 and is proven to be secure (in terms to be discussed in Section
5.2) when instantiated with Diffie-Hellman key agreement [9]. Our proposal es-
sentially leverages a result presented by Peikert which demonstrated that Σ0

can be proven secure with any IND-CPA KEM [33], instead of being restricted
to Diffie-Hellman.

As in [33], the key exchange protocol here described is parametrized by an
(IND-CPA-secure) key encapsulation mechanism KEM with key space K, a dig-
ital signature scheme SIG, a pseudorandom function f : K× {0, 1} → K0, and a
message authentication code MAC with key space K0 and message space {0, 1}∗.
A successful execution of the protocol outputs a secret key in K0. In our work,
we explicitly defines CAKE as the KEM scheme. For the sake of flexibility, we do
not specify any particular signature, MAC or pseudorandom function although
they all need to meet some minimum security notion (the signature and MAC
must be EUF-CMA secure and f must be a secure pseudorandom function; see
Section 5). We assume that each party has a long-term signing key for SIG whose
corresponding verification key is publicly available and associated to its identity
ID. This can be done in terms of certificate authorities and common public-key
infrastructure.

Key exchange protocols are multiparty protocols activated by messages that
are locally processed, leading to new messages being triggered. A session is an
invocation of this protocol. Each session is associated to a unique session ID
(denoted as sid) and a party can be called the Initiator (with identity IDI) who
first activates the session or the Responder (identity IDR) who is activated upon
receiving a message. For a more detailed discussion on key exchange protocol
definitions we refer to [8]. Figure 2 describes how CAKE can be plugged into an
authenticated key exchange protocol, similarly as done in [33].

The protocol assumes that Initiator and Responder possess identities IDI

and IDR, respectively. Initiator generates a unique session identifier sid and a
CAKE key pair (sk = (h0, h1), pk = (g0, g1)), and sends (sid, pk) to Responder,
who generates a key K and a ciphertext C using the encapsulation method.
The pair (K0,K1) is generated from K using the pseudorandom function f . The
tuple (1, sid, pk, C) is signed using Responder’s signing key and a MAC tag is
generated from (1, dif, IDR) using key K1. The signature, tag, IDR, sid and
C is sent to Initiator, who tries to decapsulate C. In case of success, Initiator
reconstructs (K0,K1) and verifies both signature and MAC tag. If it succeeds,
Initiator signs the tuple (0, sid, C, pk) and generates a MAC tag for the tuple
(0, sid, IDI). Signature, tag, sid and IDI are sent to Responder who verifies both
signature and tag. If it succeeds, the public output is the tuple (IDI , sid, IDR)
and the local output is the shared key K0. If any process fails, the public output
is (abort, IDI , sid) and (abort, IDR, sid), and the key exchange is restarted.
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Initiator Responder

IDI IDR

sid

(sk, pk) :=CAKE.Gen(λ)
sid,pk−−−−−−−−−−−→

(K,C) := CAKE.Encaps(pk)

K0 := fK(0), K1 := fK(1)

α := SIG.SignR(1, sid, pk, C)

β := MAC.TagK1(1, sid, IDR)
sid,C,IDR,α,β←−−−−−−−−−−−

k or ⊥ := CAKE.Decaps(sk, C)

K0 := fK(0), K1 := fK(1)

> or ⊥ := SIG.V erifyR(α)

> or ⊥ := MAC.V erifyK1(β)

γ := SIG.SignI(0, sid, C, pk)

δ := MAC.TagK1(0, sid, IDI)
sid,IDI ,γ,δ−−−−−−−−−−−→

> or ⊥ := SIG.V erifyI(γ)

> or ⊥ := MAC.V erifyK1(δ)

Public output: (IDI , sid, IDR) Public output: (IDI , sid, IDR)

Local output: (K0) Local output: (K0)

Fig. 2: SIGMA-like Authenticated Key Exchange From CAKE KEM

5 Formal Security Assessment

In this section, we prove that CAKE is IND-CCA secure and that the authenti-
cated key-exchange protocol described in Section 4 is SK-Secure.

5.1 CAKE IND-CCA Security

We will provide two main security results regarding CAKE, but we first introduce
a definition regarding generic encryption schemes.

Definition 4. Consider a probabilistic PKE with randomness set R. We say
that PKE is γ-spread if for a given key pair (sk, pk), a plaintext m and a string
y in the ciphertext domain, we have

Pr[u
$←R | y = Encpk(m,u)] ≤ 2−γ ,

for a certain γ ∈ R.
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The definition above is presented as in [21], but note that in fact this cor-
responds to the notion of γ-uniformity given by Fujisaki and Okamoto in [15],
except for a change of constants. In other words, a scheme is γ-spread if it is
2−γ-uniform.

Proposition 1. The KEM scheme CAKE has the same correctness error ε as
the underlying PKE. Moreover, let PKE be γ-spread. Then for any IND-CCA
adversary A against CAKE that makes at most qG many queries to the random
oracle G, at most qK many queries to the random oracle K, and qD queries to
the decryption oracle, there exists a OW-CPA adversary B against PKE, running
in approximately the same time as A, such that

AdvIND−CCAKEM (A) ≤ qK · (ε+ 2−γ) + (qG + 1) · AdvOW−CPAPKE (B).

Proof. The theorem follows quite straightforwardly from [21, Cor. 3.6]. Namely,
our protocol fits into the FO⊥ framework for transforming a public-key encryp-
tion scheme into a KEM. The proof uses standard techniques (i.e. a sequence of
games) and shows that breaking IND-CCA security of the KEM would lead to
break the OW-CPA security of the underlying encryption scheme. ut

Note that the value d included in the KEM cryptogram is not necessary for
the security result above, but it is a crucial factor to provide security in the
Quantum Random Oracle Model (QROM), given by the next proposition.

Proposition 2. The KEM scheme CAKE has the same correctness error ε as
the underlying PKE. Moreover, for any quantum IND-CCA adversary A against
CAKE that makes at most qG, qH, qK many queries to, respectively, random
oracles G,H and K, and qD (classical) queries to the decryption oracle, there
exists a quantum OW-CPA adversary B against PKE, running in approximately
the same time as A, such that

AdvIND−CCAKEM (A) ≤ 4(qK + qH) ·
√
qDqH · ε+ qG ·

√
AdvOW−CPAPKE (B).

Proof. The theorem follows quite straightforwardly from [21, Cor. 4.4]. Namely,
our protocol fits into the QFO⊥ framework for transforming a public-key en-
cryption scheme into a KEM. Again, the proof uses a sequence of games, but in
the quantum random oracle model (i.e. hash functions are modeled as quantum
random oracles) and shows that breaking IND-CCA security of the KEM would
lead to break the OW-CPA security of the underlying encryption scheme. ut
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5.2 SK Security of Authenticated Key Exchange from CAKE

The security notion targeted by our SIGMA-like construction and also by [33]
is known as SK Secure1, which stands for session-key secure [9]. Informally,
this notion translates into: “the adversary does not learn anything about the
session key by interacting with the protocol” and enables the establishment of
secure channels (usually the ultimate goal of sharing a key). In the following
paragraphs, we give an overview on SK Security.

According to [9], a key exchange protocol is a multiparty protocol where each
party runs one or more copies of the protocol. A session is a local procedure
resulting from a protocol activation at a party. The activation of a protocol at a
party has three inputs (P, sid, d): the local party P , the unique session identifier
sid and the intended peer address d. A party can be activated as an Initiator or
as a Responder (upon an incoming message). The output of a session is a public
triple (P, sid,Q), where Q is the intended peer identity and a secret session key.
In case of failure, the output is a special failure symbol. Sessions have a local
state which is erased after the session completes. Besides, each party may have
an additional long-term state (composed by long-term signing keys, for example)
which is visible to multiple sessions and is not erased after session completion.

The adversarial model is called the “unauthenticated-links model (UM)” and
allows the attacker to have full control over the communication channel, thus
being able to intercept, delay, inject, drop, or change any message exchanged.
In short, it is a fully-capable man-in-the-middle attacker. Besides, the attacker
is also allowed to start key exchange sessions and, more importantly, is able to
perform all three session exposure attacks:

– Session-state reveal: targets a still incomplete session. The adversary
learns the state of that particular session (not including any long-term se-
crets accessible to all sessions, such as long-term signing keys).

– Session-key queries: targets a complete session and allows the adversary
to learn its corresponding session key.

– Party corruption: the attacker learns all information possessed by the
party (including long-term secrets accessible to all sessions, such as long-
term signing keys).

An important concept in this model is session expiration. When a session
expires, the attacker is not allowed to perform session-state reveal or session-key
queries, although is fully able to corrupt a party. A key-exchange protocol which
is secure even after a party corruption is said to enjoy perfect forward secrecy
(PFS). Another relevant concept is the one of matching session.

1 This security notion was originally introduced in [8]. The main difference between [8] and [9]
is that in the former there was an implicit requirement that the identities of the parties must
be known to each other beforehand, while the latter attains a more realistic (internet-oriented)
scenario where the identities of the parties are not initially known and only becomes known after
the protocol run evolves (this model is called the “post-specified peer model” and is the one used
in our proposal).
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Definition 5. Let (P, sid) be a complete session with public output (P, sid,Q).
The session (Q, sid) is called the matching session of (P, sid) if either:

1. (Q, sid) is not completed; or
2. (Q, sid) is completed and its public output is (Q, sid, P ).

Finally, the actual concept of SK Secure relies on the attacker’s ability of
distinguishing a session key from random. This is done through the test session
game that allows the attacker to choose any session which has not been exposed
(by any of the session exposure attacks above) nor its matching session, and runs
the following game used in the formal SK secure definition.

Game 1 (Test Session) Let U be an adversary of the key exchange protocol π.
In the test-session game, the key exchange protocol oracle toss a coin b← {0, 1}
and returns a valid session key k if b = 0 or returns a sequence of random bits
if b = 1. The experiment finishes by the adversary U outputting b′ ∈ {0, 1}, a
guess on the value of b.

Definition 6 (SK Secure). A key exchange protocol π is SK Secure in the
post-specified peer model with unauthenticated links if the following holds for any
adversary:

1. π satisfies that both uncorrupted parties output the same session key.
2. The probability that U guesses b correctly in Game 1 is 1

2 + ε, where ε is a
negligible fraction in the security parameter.

Having provided this overview on SK Security, we can finally prove the pro-
tocol described in Section 4 attains such a security notion.

Theorem 1. The key exchange protocol described in Section 4 is SK Secure in
the post-specified peer model with unauthenticated links assuming that:

1. The key exchange protocol described in Section 4 satisfies that both uncor-
rupted parties output the same session key;

2. CAKE scheme is IND-CPA secure;
3. SIG and MAC are existentially unforgeable under chosen message attack and

that the function f is a secure pseudorandom function.

Proof. The proof follows Theorem 6.1 of [33]. The first item is about the correct-
ness of the scheme and boils down to ensure that both parties derive the same
session key. This is guaranteed by the correctness of the underlying key encapsu-
lation mechanism (CAKE) and the unforgeability of the signature scheme (see
third item below) required to ensure that the key corresponds to the decapsula-
tion of the given ciphertext. As in [33], we remark that the security of the MAC
and the pseudorandom function are not needed for such a correctness proof.
The second item is achieved by Proposition 1 (or Proposition 2 in the QROM),
which actually demonstrates that CAKE is IND-CCA secure, a (stronger) se-
curity notion that automatically ensures IND-CPA as well. The third item is
achieved by construction, i.e. by selecting a MAC and a signature scheme that
are EUF-CMA and the function f that is a secure pseudorandom function. ut
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Remark on Perfect Forward Secrecy. Key exchange protocols based on
asymmetric encryption, such as key-transport protocols, are usually not able to
achieve PFS. This happens because if a party is compromised, then its long-term
encryption keys are also compromised, allowing the adversary to recover past
session keys by decrypting previously exchanged ciphertexts. We remark that
this is not the case of the protocol described in Section 4 given the fact we use
ephemeral asymmetric encryption keys. Hence, since they are part of the session
state, they will also be erased in an event of session expiration. Signing keys
are the actual long-term keys in our proposal and their leakage does not affect
previous sessions. The same argument holds for CAKE as long as the ephemeral
encryption keys are guaranteed to be erased after key-exchange completion.

6 Practical Security Assessment

This section discusses the practical security aspects of our proposal.

6.1 Hard Problems and Security Reduction

Let R be the ring F2[x]/〈xr − 1〉. For every h ∈ R and any positive integer t,
let E(h, t) denote the uniform distribution over {e0 + e1h | e0, e1 ∈ R,wt(e0) +
wt(e1) = t}. For any positive integer w, let K(w) denote the uniform distribution
over {h1h

−1
0 | h0, h1 ∈ R,wt(h0) + wt(h1) = w}.

The KEM of §3 is secure as long as both distributions E(h, t) and K(w) are
computationally indistinguishable from the uniform distribution over R. From
the practical viewpoint, this means that r, w, t must be chosen such that the
following two problems are intractable:

Problem 1. Given s, h ∈ R, find e0, e1 ∈ R such that wt(e0) + wt(e1) = t and
e0 + e1h = s.

Problem 2. Given h ∈ R, find h0, h1 ∈ R such that wt(h0) + wt(h1) = w and
h1 + h0h = 0.

Problem 1 and Problem 2 are respectively the problems of decoding t errors and
finding a codeword of weight w in an arbitrary quasi-cyclic code of dimension r
and length n = 2r.

In the current state of the art, the best known techniques for solving those
problems are variants of Prange’s Information Set Decoding (ISD) [36].

6.2 Information Set Decoding

The best asymptotic variant of ISD is due to May and Ozerov [28], but it has
a polynomial overhead which is difficult to estimate precisely. In practice, the
BJMM variant [2] is probably the best for relevant cryptographic parameters.
The work factor for classical (i.e. non quantum) computing of any variant A
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of ISD for decoding t errors (or finding a word of weight t) in a binary code of
length n and dimension k can be written

WFA(n, k, t) = 2ct(1+o(1))

where c depends on the algorithm, on the code rate R = k/n and on the error
rate t/N . It has been proven in [42] that, asymptotically, for sublinear weight
t = o(n) (which is the case here as w ≈ t ≈

√
n), we have c = log2

1
1−R for all

variants of ISD.

In practice, when t is small, using 2ct with c = log2
1

1−R gives a remarkably
good estimate for the complexity. For instance, non asymptotic estimates derived
from [18] gives WFBJMM(65542, 32771, 264) = 2263.3 “column operations” which
is rather close to 2264. This closeness is expected asymptotically, but is circum-
stantial for fixed parameters. It only holds because various factors compensate,
but it holds for most MDPC parameters of interest.

Exploiting the Quasi-Cyclic Structure. Both codeword finding and decod-
ing are a bit easier (by a polynomial factor) when the target code is quasi-cyclic.
If there is a word of weight w in a QC code then its r quasi-cyclic shifts are in
the code. In practice, this gives a factor r speedup compared to a random code.
Similarly, using Decoding One Out of Many (DOOM) [39] it is possible to pro-
duce r equivalent instances of the decoding problem. Solving those r instances
together saves a factor

√
r in the workload.

Exploiting Quantum Computations. As commented in [4], Grover’s al-
gorithm fully applies to Prange algorithm. Effectively, this halves the above
asymptotic exponent for Prange algorithm. Later, it was proven in [23] that
more involved variants of ISD could achieve a better exponent but also the im-
provement was disappointingly away from the factor 2 that could be expected.
In the sequel, we will estimate the quantum security by dividing the classical
exponent by two. This is probably conservative but a more precise evaluation
would not be significantly different.

Practical Parameter Selection. We denote WF(n, k, t) the workfactor of
the best ISD variant for decoding t errors in a binary code of length n and
dimension k. In the following we will consider only codes of transmission rate
0.5, that is length n = 2r and dimension r. In a classical setting, the best solver
for Problem 1 has a cost WF(2r, r, t)/

√
r and the best solver for Problem 2

has a cost WF(2r, r, w)/r. As remarked above, with WF(2r, r, t) ≈ 2t we obtain
a crude but surprisingly accurate, parameter selection rule. To reach λ bits of
quantum security, we choose w, t and r such that

λ ≈
t− 1

2 log2 r

2
≈ w − log2 r

2
. (1)
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6.3 Defeating the GJS reaction attack

Both CAKE and the authenticated key exchange protocol described in Section
4 requires ephemeral KEM key pair, i.e. a KEM key generation is performed for
each key exchange. As a result, the GJS reaction attack is inherently defeated: a
GJS adversary would have (at most) a single opportunity to observe decryption,
thus not being able to create statistics about different error patterns. We note
that, for efficiency purposes, an initiator may want to precompute KEM key pairs
before engaging in key exchange sessions. We remark that policies to securely
store the pregenerated KEM key pair must be in place, in order to avoid that
an adversary access a KEM key pair to be used in a future communication.

6.4 How to Choose MDPC Parameters

If we denote λ the (quantum) security parameter, then both t and w must be
close to 2λ, as in (1). In addition, to ensure decoding, we expect the product tw
to grow as r log r. Putting everything together we obtain{

t ≈ 2λ+ log2(2λ)

w ≈ 2λ+ 2 log2(2λ)

and r will grow as λ2/ log λ. The exact value of r needs to be checked, by simu-
lation, and increased to a point where the decoding failure rate is acceptable.

Finally, we choose r such that 2 is primitive modulo r. First, this will force
r to be prime, thwarting the so-called squaring attack [27]. Also, it implies that
xr − 1 only has two irreducible factors (one of them being x − 1). This is an
insurance against an adversary trying to exploit the structure of F2[x]/〈xr − 1〉
when xr − 1 has small factors, other than x− 1.

The parameters suggested in Table 1 consider the security attacks discussed
in Section 6. In addition, the block size r is chosen so that state-of-the-art bit
flipping decoding has a failure rate not exceeding 10−6. The last column shows
the public and private key size which are both n bits long.

λ n0 n r w t key size (bits)

128 2 65,542 32,771 274 264 65,542

96 2 39,706 19,853 206 199 39,706

64 2 20,326 10,163 142 134 20,326

Table 1: QC-MDPC suggested parameters for λ bits of quantum security.
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7 Conclusion

This paper introduced CAKE, an IND-CCA secure key encapsulation mechanism
(KEM) based on QC-MDPC codes. CAKE uses ephemeral keys and therefore
inherently defeats the recent GJS attack [17]. Since key generation is performed
for every key exchange, we devised an efficient MDPC key generation, which is
much faster than the original method proposed for the MDPC McEliece encryp-
tion scheme [32].

Performance-wise, CAKE offers a competitive solution. The public key is n
bits long and the cryptogram is (n+ `H) bits long, corresponding to the band-
width of the first and second messages depicted in Figure 1, respectively. The
key generation cost is dominated by two sparse-dense modular polynomial mul-
tiplications, and does not require any polynomial inversion as usually seen in
code-based cryptosystems. The cost of encapsulation is dominated by four hash
computations over n, n, `H and 2n bits respectively (except to the third one,
all other hash computations receive sparse vectors as inputs, which can be rep-
resented in a compact form to reduce the hash input size) and two dense-dense
modular polynomial multiplications. The cost of decapsulation is dominated
by two sparse-dense polynomial modular multiplications, a decoding attempt,
and four hash computations (again over n, n, `H and 2n bits, respectively). In
summary, besides MDPC decoding, CAKE relies on modular polynomial mul-
tiplications and hash computations, so we can expect efficient implementations
on a wide range of platforms. A comprehensive assessment of implementation
aspects will be discussed in the full version of this paper.

CAKE compares well with other post-quantum key-exchange schemes. Com-
paring to Goppa-based McBits [5], the only other currently known code based
KEM, we note that CAKE enjoys public keys whose size is orders of magni-
tude smaller. From a security perspective, we note that Goppa codes may not
be optimal, as evidenced by a distinguisher for certain (i.e., high-rate) Goppa
codes [13].

Recent works [22, ?] have shown that isogenies in supersingular elliptic curves
can be used to devise efficient key exchange mechanisms. In particular, those
constructions have the benefit of achieving small public key sizes. However, this is
a much more recent trend and caution should be exercised as they have not gone
through nearly as similar scrutiny as code-based cryptosystems, first appeared
almost 40 years ago, have endured.

When comparing with lattice-based schemes, e.g., [7], [1] and [6], CAKE and
the lattice-based protocols show some similarities. All of them suffer from de-
coding failures (lattice schemes usually have a lower failure probability though).
Also, the use of ephemeral keys for key exchange is not new in the literature; [1]
discusses the security loss inherent to key cache ([14] presents a comprehensive
analysis on the security impact of key reuse for Ring-LWE). Besides, they offer
unbalanced cost between the parties, what may lead to great flexibility (e.g.,
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in a certain application, the role of Initiator/Responder could be predefined de-
pending on the expected computational power of the parties). In terms of total
bandwidth cost, CAKE’s traffic requires 2/3 of the traffic presented in [6], but is
1.3 and 3 times larger than that of [7] and [1], respectively. While such compar-
isons are certainly useful, we point out that lattice-based schemes are not the
immediate “competitors” of CAKE, because they are based on a different class
of hard problems. We note that the transition to post-quantum cryptography is
an unprecedented move, thus, relying on a single, silver-bullet class of crypto-
graphic problems (e.g., lattices) is a very risky strategy, whilst considering a set
of well-studied constructions seems a considerably safer choice in the long term.

This paper also presents an SK secure authenticated key exchange proto-
col based on CAKE, which is suitable for the Internet Key Exchange (IKE),
similarly to [33]. We prove that CAKE is IND-CCA secure, and that the au-
thenticated protocol is SK secure. Moreover, we demonstrate that our proposal
achieves perfect forward secrecy, despite the fact it is based on asymmetric en-
cryption (key transport schemes with static encryption keys do not attain PFS,
for example).

Taking all these considerations into account, we believe that CAKE is a
promising candidate for post-quantum key exchange standardization.
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A Efficiently Sampling Invertible Elements from
F2[x]/〈xr − 1〉

In this section, we prove that one can efficiently sample an invertible element
from F2[x]/〈xr−1〉 by taking any polynomial h

$←F2[x]/〈xr−1〉 such that wt(h)
is odd.

Lemma 1. Let h ∈ F2[x] have even weight. Then h is not invertible modulo
xr − 1.

Proof. We show that (x − 1) | h by induction on wt(h). For wt(h) = 0 trivially
(x − 1) | h. Assume that (x − 1) | h whenever wt(h) = 2k for some k > 0.
Now consider any h ∈ F2[x] with weight wt(h) = 2(k+ 1), and take two distinct
terms xi, xj of h such that i < j. Define h′ = h− xi − xj , so that wt(h′) = 2k.
Then (x − 1) | h′ by induction, i.e. h′ = (x − 1)h′′ for some h′′ ∈ F2[x]. Hence
h = h′+xi+xj = (x−1)h′′+xi(xj−i+1) = (x−1)h′′+xi(x−1)(xj−i−1+· · ·+1) =
(x− 1)(h′′ + xi(xj−i−1 + · · ·+ 1)), and therefore (x− 1) | h. ut

Theorem 2. Let r a prime such that (xr−1)/(x−1) ∈ F2[x] is irreducible. Then
any h ∈ F2[x] with deg(h) < r is invertible modulo xr − 1 iff h 6= xr−1 + · · ·+ 1
and wt(h) is odd.

Proof. Take a term xi of h. Then wt(h+xi) = wt(h)−1 is even, and by Lemma 1
(x− 1) | (h+ xi). Hence h mod (x− 1) = xi mod (x− 1) = 1, meaning that h is
invertible modulo x− 1.

Now, because (xr−1)/(x−1) = xr−1 + · · ·+1 is irreducible, if deg(h) < r−1
then gcd(h, xr−1+· · ·+1) = 1, and if deg(h) = r−1, then gcd(h, xr−1+· · ·+1) =
gcd(h+xr−1 + · · ·+ 1, xr−1 + · · ·+ 1) = 1, since deg(h+xr−1 + · · ·+ 1) < r− 1.
Hence h is invertible modulo xr−1 + · · ·+ 1.

Therefore, the combination of the inverses of h modulo x − 1 and modulo
xr−1 + · · · + 1 via the Chinese remainder theorem is well defined, and by con-
struction it is the inverse of h modulo (x− 1)(xr−1 + · · ·+ 1) = xr − 1. ut

Corollary 1. One can efficiently sample an invertible element from F2[x]/〈xr−
1〉 by taking any polynomial h

$←F2[x]/〈xr − 1〉 such that wt(h) is odd. ut

B Underlying Cryptosystem and Properties

In this section, we briefly discuss the cryptosystem underlying CAKE, and its
properties.

The scheme follows almost completely the “classical” McEliece framework,
but with a twist. In fact, as mentioned in Section 3, we interpret McEliece
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encryption as having the message conveyed in the error vector, rather than
the codeword; that is, if m is the plaintext and u the randomness we have
Enc(m,u) = uG+m rather than mG+ u. This technique is not new, following
the lines of Micciancio’s work in [30] and having already been used in a code-
based scheme by Cayrel et al. in [10]. Furthermore, we are able to guarantee the
γ-spread property for it. Recall the definition of γ-spread PKE as in Definition 4.
It is easy to show that this variant of McEliece satisfies this definition, since it
was proved in [10] that the scheme is γ-uniform for γ = 2−r, where r is the code
dimension as per our notation (more in general, γ = q−r for a cryptosystem
defined over Fq).

C Standard KEM Security Definitions

Below we present the IND-CCA security definition for a KEM.

Definition 7. The adaptive chosen-ciphertext attack game for a KEM proceeds
as follows:

1. Query a key generation oracle to obtain a public key pk.

2. Make a sequence of calls to a decryption oracle, submitting any string C of
the proper length. The oracle will respond with Decaps(sk, C).

3. Query an encryption oracle. The oracle runs Encaps(pk) to generate a pair
(K̃, C̃), then chooses a random b ∈ {0, 1} and replies with the “challenge”
ciphertext (K∗, C̃) where K∗ = K̃ if b = 1 or K∗ is a random string of
length ` otherwise.

4. Keep performing decryption queries. If the submitted ciphertext is C∗, the
oracle will return ⊥.

5. Output b∗ ∈ {0, 1}.

The adversary succeeds if b∗ = b. More precisely, we define the advantage of A
against KEM as

AdvIND−CCAKEM (A, λ) =
∣∣∣Pr[b∗ = b]− 1

2

∣∣∣. (2)

We say that a KEM is secure if the advantage AdvIND−CCAKEM of any polynomial-
time adversary A in the above CCA attack model is negligible.

The IND-CPA security notion is defined exactly as above, except that the
adversary is not allowed to perform any decryption queries.
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