
On Improving Integer Factorization and Discrete
Logarithm Computation using Partial

Triangulation

Fabrice Boudot

fabrice.boudot@orange.fr

Abstract. The number field sieve is the best-known algorithm for fac-
toring integers and solving the discrete logarithm problem in prime fields.
In this paper, we present some new improvements to various steps of the
number field sieve. We apply these improvements on the current 768-
bit discrete logarithm record and show that we are able to perform the
overall computing time in about 1260 core·years using these improve-
ments instead of 2350 core·years using the best known parameters for
this problem. Moreover, we show that the pre-computation phase for a
768-bit discrete logarithm problem, that allows for example to build a
massive decryption tool of IPsec traffic protected by the Oakley group 1,
was feasible in reasonable time using technologies available before the
year 2000.

Keywords: discrete logarithm, integer factorization, number field sieve,
sparse linear algebra

1 Introduction

1.1 The discrete logarithm problem

The hardness of the discrete logarithm problem in prime fields is one of the most
used assumptions in asymmetric cryptography, alongside with the hardness of
integer factorization and discrete logarithm computations on elliptic curves. The
security of well-known cryptographic primitives, such as the Diffie-Hellman key
exchange protocol [12], the El-Gamal encryption [13], and the Digital Signature
Algorithm [14], are based on the discrete logarithm problem, and these primitives
are used in the most used security protocols such as TLS, IPsec or SSH.

The discrete logarithm problem over prime fields can be defined as follows.
Let p be a large prime number and let q = p− 1. Let g be an element of order q
in Zp. Let y be an element of Zp. We have to find a number x ∈ [0, q−1], named
the discrete logarithm of y in base g modulo p, that is such that y ≡ gx mod p.

When p is large enough, the best algorithm to solve the discrete logarithm
problem is the number field sieve [29]. The asymptotic complexity of this al-
gorithm, when p has no specific form, is Lp(1/3, (64/9)1/3 + o(1)), where Lp is
defined by

Lp(α, c) = exp(c(ln p)α(ln ln p)1−α)

The most time consuming part of this algorithm consists in computing a
database of small discrete logarithms that only depends on the modulus p. Once
this database has been computed, the resolution of discrete logarithms modulo
p requires comparatively a very small amount of computing power [1]. Many
security protocols use a small set of predefined prime moduli: for example, the
IKE protocol used to create cryptographic keys in the IPsec protocol uses only
one common modulus for a given security size. It means that the computation
of the database of discrete logarithms for such modulus and its public release
would allow anyone, even with a very small computing power, to decrypt the
IPsec traffic encrypted with this modulus.

1.2 Records for the discrete logarithm problem in prime fields

Until recently, the discrete logarithm record in prime fields was about 200 bits
below the integer factorization record:

– In 2005, the discrete logarithm record was held by Joux and Lercier [18] who
computed a 431-bit discrete logarithm, whereas Franke, Kleinjung et al. [3]
have factored a 663-bit integer.

– A few years later and until 2014, Thorsten Kleinjung held both records: he
sets the discrete logarithm record to 530 bits in 2007 [22], and joined an
international team that factored a 768-bit RSA challenge in 2009 [25].

The best-known algorithms to factor large integers and to solve discrete log-
arithms are both called the number field sieve. The two algorithms have a lot of
steps in common, and the main difference is that we have to solve a large sys-
tem of equations modulo a large prime q to solve discrete logarithms, while we
only have to solve this system modulo 2 to factor a large integer. This difference
partly explains the 200-bit gap between the two records.

Another reason explains this gap: the scientific community has given much
more attention to factorization records instead of discrete logarithm records, and
the record breakers have used much more computing power for their factorization
records that for discrete logarithms. For example, the 768-bit RSA record has
been done using 1500 core·years of computing power taken from various sites
during a two-year period, whereas the corresponding 530-bit discrete logarithm
record was computed using only 17 core years.

This lack of interest for discrete logarithm records was in contradiction with
the practical impact of records. If the factorization of an RSA challenge is an
outstanding scientific achievement, it only allows an attacker with several million
of dollars of hardware to reproduce such computation and break the RSA key
of only one user. But if the pre-computation of the database of logarithms of a
popular modulus is done and is publicly released, then anyone is able to decrypt
the corresponding traffic and a state agency can perform massive decryptions of
these communications.

After being neglected for several years, the discrete logarithm record in prime
fields has recently received much more attention. In 2014, Bouvier et al. [7] have

2

set the record to 596 bits. Then, in 2016, Kleinjung [27] et al. have computed
a discrete logarithm modulo a 768-bit strong prime. In addition, a discrete log-
arithm modulo a 1024-bit prime has been done by [17] in a special case where
the modulus has particular weaknesses.

Two targets appeared to be the most wanted pre-computations for cryptan-
alysts, as these two moduli belong to widely used standards:

– The first one is the 768-bit strong prime that defines the Oakley group 1 used
in IKE [28]. This group was the default security association recommended
when the IPsec standard was established in the late 1990’s and, according
to [1], is still used by 5.8% of servers running IKEv2.

– The other one is the 1024-bit strong prime that defined the Oakley group 2.
Although the worldwide ComSec authorities have asked to withdraw 1024-
bit keys since 2010, this group is still used by default by 65% of the servers
for IPsec and by 25% of the servers for the SSH protocol according to [1].

The goal of this paper is to carefully study the pre-computation phase for
a 768-bit prime and to bring some theoretic improvements to the number field
sieve. We compare our results to the current record set by Kleinjung [27] and
show that the overall computing power to perform such pre-computation can be
divided by a factor of about two using the same source code.

1.3 Organization of the paper

In this paper, we first recall in section 2 the state of the art to perform dis-
crete logarithms using the number field sieve. Then we present some new ideas
to improve the efficiency of the algorithm and provide parameters and precise
estimates to perform the pre-computation for a 768-bit modulus in different
settings.

In section 3, we show that the filtering step can be seen as a simple trian-
gulation process. Then we present a new algorithm to perform the filtering step
that transforms the original system of equations into a partial triangular system.
This new vision of the filtering step leads to new ideas for the other parts of the
algorithm.

After some observations on the triangulation process, we present in section
4 some new types of parameterizations for the sieving step. These parameter-
izations involve the use of huge composite special-q and improve the overall
performance of the algorithm.

In section 5, we improve the linear algebra step by applying the idea of the
double-matrix product introduced in [26] on our system of equations after a
partial triangulation.

Finally, in section 6, we provide estimations on the ability to perform the
pre-computation step for a 768-bit discrete logarithm before the year 2000.

1.4 Results

We compare our results to the 768-bit discrete logarithm record established in
June 2016 by Kleinjung et al. [27] and the 1024-bit special discrete logarithm

3

performed in [17]. In order to make reliable comparisons that do not depend on
implementation quality or CPU performance, we use the same publicly available
code on the same architecture:

– For the sieving phase, we use the lattice sieving code written by Franke and
Kleinjung [4].

– For the linear algebra phase, we use the latest version of the implementation
of the Block Wiedemann algorithm provided by CADO-NFS [8].

Although it is not an optimal choice, we keep most of the parameters used
in [27] to ensure that the optimizations presented here only come from our
mathematical improvements.

Result 1: the sieving phase The use of huge composite special-q’s presented in
section 4 allows to save about 50% of the sieving time compared to the re-
sult given in [27] : after only 2000 core·years of computation (instead of 4000
core·years in [27]), we get enough relations to build a similar matrix in terms of
size and density.

Result 2: the linear algebra phase By using the multi-matrix product on partially
triangularized matrices presented in section 5, we estimate that the linear algebra
phase can be performed in 144 core·years instead of 308 core·years if the CADO-
NFS code was used to perform the linear-algebra step in [27].

Result 3: optimized results In [27], the authors propose optimized parameters
that reduce the overall computing time to 2400 core·years if the best available
code were used to perform this computation. We present optimized parame-
ters using our improvements that reduce the overall computing time to 1260
core·years: 900 core·years of sieving and 360 core·years of linear algebra.

Result 4: back to the twentieth century The use of a fixed 768-bit prime modulus
was the default level of security implemented in various standards written in the
late 1990’s. We give parameters that allow performing the pre-computation of the
database of logarithms in less than 2.5 years using super computers presented
on the Top500 list [35] issued in November 2000. This shows that state-level
agencies were technically able to perform massive decryption of communications
protected by standards such as IPsec/IKE at the time where these standards
have been written and approved.

2 The Number Field Sieve for Discrete Logarithms

We briefly recall here how discrete logarithms can be computed using the number
field sieve, with a particular highlight on information that is used later in this
paper.

We can divide the computation into two phases:

4

– The first phase is the pre-computation of a database of discrete logarithms
of elements with small norms. For a given prime field, defined by a prime
modulus p, this pre-computation has to be done once and for all.

– The second phase is the computation of the discrete logarithm of y = gx mod
p, using the database of discrete logarithms pre-computed during the first
part [17]. The computing power needed to compute one individual logarithm
is very small compared to the one used to perform the pre-computation.

This means that when a prime field is widely used, then a public release
of a pre-computed database of discrete logarithms will allow anyone, even with
a small amount of computing power, to compute individual logarithms in this
prime field.

In the following, we describe the different steps of the pre-computation of the
database of discrete logarithms of elements with small norms.

2.1 Polynomial selection

The goal of this step is to select a pair of bivariate homogeneous polynomials f
and g that share a common root m : 1 modulo p. When we are given many such
pairs, we select the polynomial pair that has the highest probability that f(a, b)
and g(a, b) are both smooth with respect to a given bound and when (a, b) is
randomly selected in an area of a given size.

There are two efficient methods to find such polynomials. The first one was
given by Kleinjung [24], enhanced in [2] and finds two polynomials (f, g) with
deg(g) = 1. This method can also be used for integer factorization. The second
one has been given by Joux and Lercier [19] and finds two polynomials (f, g),
such that f has very small coefficients and deg(g)=deg(f) − 1. It requires to
compute roots of a polynomial modulo the prime p, and hence cannot be used
for integer factorization.

According to the complexity analysis of the number field sieve, the best value
for the sum of the degrees of the polynomials mainly depends on the size of the
considered modulus. For integer factorization, the default parameters given in
[8] show that deg(f)+deg(g) = 6 is well suited for 370-bit to 680-bit moduli,
while deg(f)+deg(g) = 7 is the best choice for moduli of greater size.

As the Joux-Lercier method gives a polynomial pair with deg(f)+deg(g) an
odd integer, such a pair is usually worse than a Kleinjung pair when the optimal
degree sum is even but gives the best pair when the optimal degree sum is odd.

2.2 The Sieving step

Relations During the sieving step, we collect a huge number of coprime pairs
of integers (a, b) such that f(a, b) and g(a, b) are both smooth with respect to
the following definition :

f(a, b) =
∏
i

pi<Ff

peii ×
≤nf∏
i=1

Ff<Pi<Lf

Pi g(a, b) =
∏
i

qi<Fg

qfii ×
≤ng∏
i=1

Fg<Qi<Lg

Qi

5

where :

– Ff (resp. Fg) is called the algebraic (resp. rational) factor base bound, and
each prime number pi (resp. qi) is less than this factor base bound ;

– Lf (resp. Lg) is called the algebraic (resp. rational) large prime bound,
and each prime number Pi (resp. Qi) is less than this large prime bound.
Moreover, the number of these large primes Pi (resp. Qi) is not greater that
nf (resp. ng).

For simplicity, we still refer to an algebraic side for quantities relative to the
polynomial f and a rational side for g even if g, in some cases, is not of degree
equals to 1.

The number of relations we have to find is close to the sum of the number of
primes below Lf and the number of primes below Lg.

The relation search process The relation search works as follows:

– Define a sieving zone : We restrict ourselves to examine coprime pairs (a, b)
which belong to the sieving area [−A,A] × [1, B]. The size of this sieving
area is chosen in order to find enough relations.

– Divide the work in several pieces : The practical search of relations is divided
in several independent jobs. We detail in the following how to divide the work
using the lattice sieving.

– Find properties by sieving : Each job identifies properties of each point (a, b),
e.g. if f(a, b) or g(a, b) is divisible by a given prime pi, and collects this
information by computing the size of the cofactor Cf (resp. Cg) such that
f(a, b)/Cf (resp. g(a, b)/Cg) is smooth with respect to the factor base bound
Ff (resp. Fg).

– Select candidates : We select points (a, b) such that the cofactors Cf and
Cg are small enough. Usually we choose the pairs for which Cf < L

nf

f and

Cg < L
ng
g .

– Final selection : We keep a candidate (a, b) if it fulfills the smoothness con-
dition defined by the parameters Ff , Fg, Lf , Lg, nf and ng.

The lattice sieving In the lattice sieving [31], each job handles pairs that
belong to the lattice of points (a, b) such that a − br ≡ 0 mod q, called the
special-q lattice, where r is a root of f modulo q. The pair (q, r) is usually called
the special-q. This lattice is defined by a reduced basis of two vectors u and v,
and the job handles pairs (a, b) = iu + jv.

For efficiency, the considered pairs are not those which belong to the original
sieving zone, but those where (i, j) belongs to an area [−I/2, I/2]× [1, J], where
I is a power of two and defined such that the coverage of the lattice points is
as close as possible to the original sieving zone. Using the sieving by vectors
technique [15], we can identify quickly the pairs (a, b) in the special-q lattice
such that p divides f(a, b).

6

When we use a lattice sieving, we only consider pairs (a, b) such that the
considered special-q divides f(a, b), and these particular pairs have a greater
probability to be smooth than an average pair in the original sieving zone. But
we have to take care of duplicates of relations that appear e.g. when a pair (a, b)
is such that two special-q divide f(a, b). Such pairs might be found twice by two
independent jobs, and duplicates must be removed during the next step.

Some variations of the lattice sieving We recall here two variations of the
lattice sieving that have been used in other works, and that we use in this paper.

– Composite special-q’s: Usually, the special-q values are taken in a range of
prime numbers that begins just above the algebraic factor base bound, and is
large enough to generate enough relations. Nevertheless, it is possible to use
special-q’s that are not prime or are less than the algebraic factor base bound.
This feature is included in the version 5 of Franke-Kleinjung implementation
of the lattice sieve [4] and has been used for example in [21]. But the use
of such special-q’s tends to generate many more duplicate relations, and so
should be used with caution.

– One-side sieving: In a traditional sieving, a pair is selected when both co-
factors Cf and Cg are small enough. But as the size of the moduli increases,
such selection becomes tighter and selecting by considering only one cofactor
can be sufficient. By using only one side, we save the time of sieving on the
other side while keeping a reasonable number of candidates. The smoothness
test for this second side on can be done efficiently using Bernstein trees [5],
as it has been used in [16], [26] and [27].

2.3 From relations to equations

Each pair (a, b) leads to an equation modulo q, where q = p− 1. This equation
links linearly virtual discrete logarithms of ideals in the maximal order of Q(α)
(where α is a root of the polynomial f), virtual discrete logarithms of ideals in
the maximal order of Q(β) (where β is a root of the polynomial g), and virtual
discrete logarithms of Ns ≤ deg(f) + deg(g) Schirokauer maps [33].

The relation (a, b), where f(a, b) and g(a, b) can be written as:

f(a, b) =

Nf∏
i=1

peii , pi < Lf g(a, b) =

Ng∏
i=1

qfii , qi < Lg

leads to the following linear modular equation :

Nf∑
i=1

ei log
(
If (pi, r

(f)
i)
)

+

Ng∑
i=1

fi log
(
Ig(qi, r

(g)
i)
)

+

Ns∑
i=1

λi log (Λi) + J ≡ 0 mod q

where

7

– If (p, r) is a prime ideal of Z[α] of norm p. When p does not divide the
discriminant of f , If (p, r) is the ideal generated by p and α − r, where r is
a root of f modulo p. The cases where p divides the discriminant of f give
other types of prime ideals. For more details see for example chapter 4.8 in
[11].

– Λi is a Schirokauer map, and comes in this equation to deal with units in the
maximal orders of Q(α) and Q(β). The number of Schirokauer maps used
for each polynomial is equal to the rank of its group of units.

– J is the sum of the virtual discrete logarithms of the inverse of the ideal
generated by 1 and α in the maximal order of Q(α) and the inverse of the
ideal generated by 1 and β in the maximal order of Q(β).

The number U of unknown logarithms that appear in these equations is
bounded by Umax, which is the sum of the number of prime ideals in the maximal
order of Q(α) of norm less than Lf , the number of prime ideals in the maximal
order of Q(β) of norm less than Lg, and the number of Schirokauer maps. As
there exists on average one prime ideal for each prime number p, this sum Umax
is close to π(Lf) + π(Lg), where π(n) is the number of prime numbers less than
n.

So, when the number R of unique relations collected during the sieving step is
greater than U , we obtain a system of R equations and U unknowns and, hoping
that U of these equations are linearly independent, this system admits a non-
zero solution, which gives some of the values for the discrete logarithms of small
prime ideals in the maximal orders of Q(α) and Q(β) and of the Schirokauer
maps. These values are the entries of the database of discrete logarithms which
is later used to compute efficiently individual logarithms.

2.4 The filtering Step

We now have to solve a system of R linear equations in Zq with U unknowns.
We define d, the density of the system, as the average number of unknowns with
non-zero coefficients in the linear equations. As non-zero coefficients only appear
when a prime ideal occurs in the factorization of f(a, b) or g(a, b), this system
is sparse, meaning that d � U . Such systems can be solved using the Block
Wiedemann algorithm [36], for a computational cost proportional to (d + α) ·
R2, where α depends on the interconnect quality of the supercomputer used to
perform this algorithm.

The filtering step [32, 9] transforms this system into another system which is
easier to solve, by reducing the number of relations and the number of unknowns
in the system and trying to minimize the quantity (d+ α) ·R2.

Basic operations We define the weight of an unknown as the number of equa-
tions where this unknown has a non-zero coefficient. We can perform these trans-
formations on the system to simplify it:

8

– Remove singletons: If an unknown has a weight equal to one, we remove the
equation where this unknown appears. This always reduces the number of
equations R and the total of non-zero coefficients in the system d · R, and
thus reduces the computational cost.

– Purge equations: while R is greater than U , we can remove an equation
without losing the property that the solutions of the system are the wanted
discrete logarithms. For example, if we remove an equation with several
unknowns of weight two, these unknowns become singletons and we can
remove them.

– Merge equations: we can remove one unknown by performing one round of a
Gauss-Jordan elimination: if an unknown is of weight w, we carefully choose
one equation containing this unknown (called the pivot) and subtract it from
the w − 1 other equations containing this unknown.

Strategy The filtering step begins with several rounds of singletons removal:
one round of singletons removal (i.e. remove equations containing an unknown
of weight one) makes new singletons appears. So we run several rounds until no
more unknown of weight one remains into the matrix. Then we purge equations
until only a little excess R−U remains. A classical strategy is to keep an excess
rate (R−U)/U of about 10%. Details and improvements of the purge step have
been studied in [6].

Then, merges are performed according to the Markowitz criterion [30], which
selects the unknown and the associated pivot that minimizes the increase of the
density d of the system. Cavallar [9] has proposed an algorithm that efficiently
performs the merge algorithm. Moreover, she optimizes the application of a pivot
using a minimum spanning tree that reduces in some cases the increase of the
density. In the following of this paper, we ignore this optimization.

We stop the merge phase when the expected running time of the linear alge-
bra step is minimal. If we use the Block Wiedemann algorithm, with an expected
running time equal to (d+α) ·R2, we stop when the increase of the density d is
no longer balanced by the decrease of the matrix size R, thus when m ≈ 2(d+α)
where m is the weight increase.

The stopping point of the merge phase highly depends on the way the linear
algebra phase is done. We explain in the following that the double-matrix prod-
uct technique introduced by [26] changes the running time of the algorithm and
hence changes the location of this stopping point.

The filtering step ends with a final purge step, where the R − U heaviest
equations are removed, and outputs a final system with R = U .

The double-matrix product We recall here an idea introduced in [23]. We can
write the system of linear modular equations in the matrix form M ·x ≡ 0 mod q,
where M is an R × R matrix. Each row represents an equation, each column
represents an unknown, and each entry is the coefficient of an unknown in an
equation. Let MR be the matrix of relations, i.e. the matrix representing the
system of equations after the singleton removal and the purge phase. The merge

9

phase, which combines equations (i.e. rows of the matrix) linearly, can be seen
as a left multiplication by a matrix MF , i.e. the final matrix M output by the
filtering step can be written as M = MF ·MR. The linear combination of rows
creates m zero columns in M that can be removed by multiplying M by an
extraction matrix ME , leaving a (R−m)× (R−m) matrix M = M ·ME .

The most consuming part of the Block Wiedemann algorithm consists in
performing at each iteration the matrix-vector multiplication V ′ = M · V . It is
suggested in [23, 26] to perform this multiplication by first computing Vt = MR ·
V , where MR = (MR ·ME), and then computing V ′ = MF · Vt. The theoretical
cost of a matrix-vector multiplication, i.e. the number of basic operations on
vector entries, is proportional to the weight w(M) of the matrix, which is the
number of non-zero entries in the matrix M . When the double-matrix product
is performed, the cost of one iteration is w(MF) + w(MR) instead of w(M). As
MF and MR are very sparse matrices, w(M) is close to w(MF) ·w(MR), and as
w(MF)+w(MR)� w(M), the double-matrix product technique is theoretically
more efficient than the classical matrix-vector product.

In a practical point of view, the real time of a matrix-vector product consists
not only in the time to perform basic operations on vector entries, but also in
cache misses, i.e. the time needed to unload a page of memory that handles some
matrix or vector data and load another page, and interconnect time to broadcast
data to multiple nodes when a distributed memory cluster is used. As MF and
MR are more sparse than M , leading to proportionally more cache misses, and
as Vt must also be broadcast during a double-matrix product computation, most
of the theoretical advantage of the double-matrix product can be lost in practice.

Nevertheless, the main advantage of the double-matrix product is that it
changes the stopping point of the filtering phase: instead of stopping the merge
when the density of M becomes too large, we can go further and keep merging
unknowns while the density of the matrix MF remains reasonable. We can also

create several successive matrices M
(i)
F such that M =

(∏
iM

(i)
F

)
· MR, as

suggested in [26]. As a consequence, the final number of remaining unknowns U
is lowered when using the double-matrix product technique and hence reduces
the number of iterations needed in the Block Wiedemann algorithm.

2.5 The Linear Algebra Step

We do not pretend here to explain in detail the Block Wiedemann algorithm,
for more details, see [34]. We just recall here some aspects of the algorithm.

First, the system we want to solve is modified: the unknowns corresponding to
the virtual logarithm of the Schirokauer maps create dense columns in the matrix
M , i.e. columns where coefficients are random-like numbers in Zq, whereas the
other columns are small and sparse (most coefficients are zeros, and non-zero
coefficients are very small). We cut the matrix M in two parts: Msparse which
contains the small sparse columns andMdense which contains the columns related
to the Schirokauer maps. Then we solve Msparse · x + Mdense · y = 0 instead of
solving M · x = 0. More details can be found in [20, 17].

10

We first choose two parameters µ and ν. Taking µ = ν = 16 is a usual
parametrization. The most consuming part of the algorithm is to compute iter-
atively ν independent Krylov sequences Vi+1 = Msparse · Vi for i up to rk(M) ·
(1/ν + 1/µ) + o(1), and to store the µ first coefficients of Vi. Then, a linear
generator for the ν sequences is computed with an algorithm whose time and
memory complexity depends on ν and µ. Finally, a solution to the system can
be computed thanks to the previously generated data in small time compared
to the Krylov sequence generation, as explained in [17]. The parameters µ and
ν are chosen to offer a good compromise between the time needed to compute
the Krylov sequence and the time and memory required to perform the linear
generator computation.

2.6 Expansion of the database of logarithms

The linear algebra phase outputs a solution to the system of equations, which
consists in the virtual logarithms of the Schirokauer maps and the discrete loga-
rithms of ideals which are represented in the final matrix output by the filtering
step. But, to this point, discrete logarithms of ideals that have been eliminated
from the matrix by the merge, by the purge or by the singleton removal are still
unknown.

We now restart from the original equations output by the sieving phase.
We notice that, for some of these equations, there is only one unknown that
has not been solved by the linear algebra phase. So this unknown can easily be
found thanks to the considered equation. This expands the number of unknowns
that have been solved, and this process can be iterated to find new equations
with only one unsolved unknown. After several such steps, all the unknowns are
solved, and we are given a full database of discrete logarithms that appear at
least once in the original equations output by the sieving phase.

The previous algorithm only works when particular circumstances that en-
sure that there is still equations with only one unsolved unknown at each itera-
tion. The next section explains the conditions under which this algorithm works,
conditions that are always met in practical cases.

3 Partial Triangulation of Systems of Equations

In this section, we give a graph representation of the merge phase and give a
sufficient condition that ensures the success of the algorithm given in section 2.6.
Then, we present another way to consider the merging phase of the filtering step
that leads us to several optimizations for the filter step and the linear algebra
phase.

3.1 Graph representation of the merge phase

Let us first define a graph representation of a merge phase once this phase has
been computed using classical methods as described in section 2.4.

11

Definition 1. The graph representation G of a merge phase is an oriented graph
whose vertices are the original equations and whose edges link the pivot for a
given unknown of weight w to the w−1 other equations containing this unknown.

Then, we give a definition of the condition that ensures that the algorithm
described in section 2.6 succeeds.

Definition 2. A graph representation G is said to be cycle-free if the non-
oriented graph G̃ whose edges corresponds to the oriented edges of G contains
no cycle.

Before explaining why this condition is sufficient to ensure the success of the
algorithm, let us introduce more definitions on the relations, i.e. for the vertices
of the graph. Note that these definitions have only a sense if the graph G is
cycle-free, i.e. only contains chains that have a starting point and an end point.

Definition 3. A level-1 pivot is a relation represented by a vertex r in G such
that r is never an end point for edges in G. A level-i pivot is a relation represented
by a vertex r in G such that r is the end point of a chain of length equal to i− 1
but is never the end point of a chain of length greater than i− 1.

Definition 4. A base relation is a relation represented by a vertex r in G such
that r is never a starting point for any edge in G.

Figure 1 represents the graph representation of the merge step for a toy exam-
ple. In this example, unknowns x1, . . . , x5 have been merged and only unknowns
x6, . . . , x9 lie into the final system solved by the linear algebra step.

When values have been found for these unknowns, the expansion algorithm
finds the values for x1, . . . , x5 in two steps: during the first step, the algorithm
uses three equations R8, R7 and R2, that contains only one merged unknown,
to compute the value of this unknown. These three equations respectively gives
values for the three unknowns x2, x3 and x4. These three equations come from the
three relations that are level-1 pivots. During the second step, the two equations
R4 and R3 that come from the level-2 pivots are respectively used to find the
values for the two remaining unknowns x1 and x5.

Finally, the four equations R1, R5, R6 and R9 come from the four base
equations and form the final matrix once pivots have been added or subtracted
to remove merged unknowns.

To prove the success of the algorithm given in section 2.6 is straightforward
once we have divided the set of the pivots into different levels and see that each
pivot of level i solves one new unknown during the iteration i of the algorithm.

3.2 Partial triangular systems

We say that a system of R equations and R unknowns can be put into a m-
partial triangular form if we can write this system of equations as MR · x = 0,
where MR is a m-partial triangular matrix, i.e. the m×m submatrix containing

12

Original set of equations:

x1 + x5 + x6 + x7 + x9

x4 + x7 + x8

x4 + x5 + x6 + x9

x1 + x2 + x7 + x8

x3 + x5 + x6 + x7 + x9

x4 + x6 + x7 + x8 + x9

x3 + x8 + x9

x2 + x6 + x7

x3 + x6 + x9

R1 : = 0
R2 : = 0
R3 : = 0
R4 : = 0
R5 : = 0
R6 : = 0
R7 : = 0
R8 : = 0
R9 : = 0

merged unmerged

Graph representation of the merge step:

Level-1
pivots

R2

R7

R8

Level-2
pivots

R3

R4

Base
equations

R6

R5

R1

R9

Final equations:

R6 − R2 x6 + x9

R5 − R3 + R2 − R7 2x7 − x9

R1 − R3 − R4 + R2 + R8 x6 +2x7

R9 − R7 x6 − x8

: = 0
: = 0
: = 0
: = 0

Partial triangulation of the original system of equations:

R1 x1 + x5 + x6 + x7 + x9

R2 x4 + x7 + x8

R3 x4 + x5 + x6 + x9

R4 x2 + x1 + x7 + x8

R5 x3 + x5 + x6 + x7 + x9

R6 x4 + x6 + x7 + x8 + x9

R7 x3 + x8 + x9

R8 x2 + x6 + x7

R9 x3 + x6 + x9

: = 0
: = 0
: = 0
: = 0
: = 0
: = 0
: = 0
: = 0
: = 0

merged unmerged

Fig. 1. Merge of equations and graph representation

13

the m first rows and the m first columns of MR is triangular : MR(i, j) = 0
when 1 ≤ i < j ≤ m and MR(i, i) 6= 0 when 1 ≤ i ≤ m. For example, figure 1
gives the 5-partial triangular form of the system of equations, once equations
and unknowns have been properly sorted.

When a system of equations has been written in a m-partial triangular form,
it can be solved using the following steps:

– Merge : The m first rows of MR are used as pivots and are added or sub-
tracted to the R −m last rows so that an (R −m)×m zero block appears
in the lower left part of the matrix. This elimination can be seen as the left
multiplication of MR by an (R−m)×R matrix MF , such that M = MF ·MR,
and M is a (R−m)× U matrix whose m first columns are zero.

– Columns removal : As the m first columns of M are zero, we rewrite MR by
removing its first m columns, leading to an R×(R−m) matrix denoted MR.
When multiplied by the (R−m)×R matrix MF , it gives the (R−m)×(R−m)
final matrix M , i.e. the matrix obtained when the m first columns of M are
removed.

– Linear algebra : We solve the equation M · x = 0. If an iterative algorithm
is used such as the Block Wiedemann algorithm or the Lanczos algorithm,
one can take advantage that M can be written as M = MF ·MR. This gives
solutions for the U −m last unknowns.

– Expansion : each of the m first unknowns is successively found using the
mth equation of the partial triangular system.

Partial triangulation can be seen as another way to perform the merging
step: it defines a matrix MF that combines the original equations in order to
remove rows and columns in the final matrix. We present in the next section a
very fast algorithm to perform a partial triangularization on a matrix.

3.3 A greedy algorithm to find a triangular form

Let MR be a matrix representing a system of equations. We assume in this
section that we are given a set of m unknowns for which we want to find a m-
partial triangular system. We give in the next section an easy way to build such
set of unknowns. By analogy with the classical merge step, we can call these m
unknowns the merged unknowns. Without loss of generality, we can assume that
these m merged unknowns are represented by the m first columns of MR.

Here is an algorithm to transform the system of equations into a m-partial
triangular system.

1. Global initializations
– Let MR be the set of original equations
– Let P = {} be the set of pivot equations
– Let U = {1, . . . ,m} be the unknown indices to be merged
– Let Z = {} be the unknowns indices already merged
– Let W (r) = 1 be the weight for each equation r in MR

– Let P (u) = undef be the pivot chosen for each unknown u

14

– Let ` = 0
2. Loop initializations

– Increase the loop counter ` by one
– Let C(u) = {} be the pivot candidates for each unknown u

3. Find candidates: for each r in MR

– If r has only one unknown u in U : add r to C(u)
4. Choose candidates : for each u in U such that C(u) is not empty

– Set r0 as an element of C(u) with minimal weight W (r0)
– Set P (u) = r0
– Remove r0 from MR and add it to P
– Remove u from U and add it to Z

5. Recompute weights : for each r in MR

– Set W (r) = 1 +
∑
u∈KW (P (u)) where K is the set of unknowns in r.

6. Go to 2. while U is empty (success) or while nothing happened in the loop
(fail)

7. Sort the unknowns in MR and P according to the order of the unknowns
indices in Z

8. Write equations in P in that order, then the remaining equations in MR

Note that in this algorithm, W (r) represents the number of equations that
are added or subtracted together when a Gauss-Jordan elimination is performed
to remove unknowns in the equation r whose indices lies in Z and when the pivot
used to remove the unknown u is P (u). According to definition 3, a pivot P (u)
that has been chosen at the loop iteration ` is a level-` pivot. The value W (r)
is computed in step 5 for each relation that still belongs to MR, using values
W (P (u)) for relations P (u) that have been removed from MR during previous
loops.

The matrix MF such that the final matrix M is equal to MF ·MR has exactly∑
r∈MR

W (r) non-zero coefficients, where MR is the set of equations given by
the base relations. The choice of r0 with minimal weight for each pivot ensures
that the weight of MF is minimal for the set of unknowns Z.

3.4 Selecting the set of unknowns to be merged

In this section, we discuss briefly on the method we can use to find the set U
of m unknowns for which we find a m-partial triangular system thanks to the
previous algorithm, trying to find such a set with the greatest possible value m.
At first sight, to find the set U with maximal possible cardinal m seems to be a
hard problem. So we restrict ourselves to a non-optimal algorithm that finds a
non-optimal set U which is nevertheless greater than the one found with classical
versions of the sieving step.

To find this set U , we first sort all the unknowns with respect to their weight,
i.e. the number of equations that hold this unknown. We begin with a relatively
small value of m and set U as the m first sorted unknowns, i.e. the m unknowns
with the smallest weight. We run the triangulation algorithm; while this algo-
rithm succeeds, m is progressively increased and the new set U is tested until
the triangulation algorithm fails. We then set m as the greatest value for which
the triangulation algorithm succeeds, and U as the m first sorted unknowns.

15

4 Sieving with Composite Special-q’s

In this section, we use our observations on the graph representation of the merg-
ing phase to explain why the special-q lattice sieving usually prevents us from
building small systems of equations. We discuss the techniques used in record
computations, such as the pre-computation for discrete logarithms for a 1024-bit
special prime [17] and for a 768-bit strong prime [27]. Then, we explain that the
use of very large composite special-q’s gives better results than the techniques
previously used and present the results of our experiments that compare these
techniques.

4.1 Prime special-q’s and partial triangulation

When we want to get a small matrix, a reasonable goal for the filtering step is to
eliminate every unknown representing large primes and keep only the unknowns
representing primes that belong to the factor base.

When we use the lattice sieving for integer factorization, we choose special-
q’s as prime numbers that lie into the set of algebraic large primes. With this
choice, we generate relations that give equations that always hold an unknown
representing a special-q.

The partial triangular algorithm from section 3 needs enough level-1 pivots
to succeed. But, if the set of the merge ideals are the large primes, the only
level-1 pivots come from equations where no extra large prime is found on both
sides. Moreover, no level-1 pivot can be found for large primes that are not
used as special-q. So, if we use a traditional parameterization for the lattice
sieving and try to perform the partial triangulation on the entire set of unknowns
representing large primes, this partial triangulation usually fails because of the
lack of enough level-1 pivots.

4.2 Use of special-q’s in the factor base

In [27], Kleinjung et al. try to circumvent the special-q problem by choosing
special-q’s that belong to factor base. In this case, the number of choices for the
special-q’s is reduced and it becomes necessary to generate many relations per
special-q. This condition can only be achieved by increasing the lattice sieving
area [−I/2, I/2]× [1, J].

In [27], the size of the lattice sieving zone I × J is up to 240 instead of a
classical size of 231 for 768-bit integer factorization. This reduces the number of
relations found per second, as the increase of the lattice sieving zone by a factor
of four usually multiplies the sieving time by four while only multiplying the
number of relations by a factor close to two.

This method also limits the ability to reduce the size of the final matrix using
over-sieving, i.e. generating more relations than needed, because the special-q’s
used to generate these relations will be outside the factor base. This explains
why in table 2 in [27], the increase of the sieving effort from 2400 core·years to
4000 core·years reduces the matrix effort by only 26%.

16

4.3 Use of a large fraction of large primes as special-q’s

A completely different type of parameterization has been used for the 180-digit
record [7] and the 1024-bit SNFS experiment in [17]. In these two computations,
the special-q ranges cover a large fraction of the large primes: In [7], every al-
gebraic large prime is chosen as a special-q, and in [17], about three-quarters of
both algebraic and rational large primes are used as special-q’s.

This kind of parameterization creates a lot of duplicates, as most of the
large primes found in one relation will be used as special-q elsewhere during
the computation. This effect must be taken into account to evaluate the real
efficiency of the sieving phase.

Moreover, such parameterization cannot achieve the elimination of every
large prime during the filtering phase. For example, in [17], the size of the factor
base is about 16.106, whereas the final matrix has about 28.106 columns.

4.4 Sieving with huge composite special-q’s

We propose here another type of parameterization based on the use of huge
composite numbers as special primes, previously introduced in [21].

The first idea is to use composite special-q’s: the advantage of using composite
numbers is to decrease by one the number of large primes in every relation, as
the special-q is no longer a large prime but the product of two small primes.
Moreover, it removes the bad prime special-q effect that prevents the existence
of level-1 pivots, as every relation with exactly one large prime becomes a level-1
pivot.

The use of composite special-q’s generates more duplicates. Nevertheless, we
can take control over the generation of too many duplicates by noticing that
the percentage of unique relations is mostly driven by the ratio between the two
bounds of the special-q range. If q is taken among the composite numbers that
lie within the range [q1, q2] such that its prime factors are all greater than a given
bound (equal to 2048 in our experiments), then practical experiments show that
when q2/q1 is close to two, then the percentage of unique relations is around
60%.

Here comes the second idea: instead of using a small number of special-q’s
in order to respect the condition q2/q1 ≈ 2, we take very large values for q1 and
q2, even if these values become greater than the large prime bound. While the
parameterization used in [27] takes q2 close to the factor base bound Ff and a
lattice sieving area up to 240, we prefer to take q2 = q1/2 ≈ 500Ff and a lattice
sieving area equal to 231. With these two types of parameterizations, we search
for relations (a, b) where |a| and |b| are bounded by 220

√
Ff , but when we use

a huge composite special-q, we search for relations on points where f(a, b) is
divisible by a 500 times greater special-q.

4.5 Practical results

In this section, we present parameters and results for experiments on the pre-
computation for the 768-bit discrete logarithm [27] and the special 1024-bit

17

discrete logarithm [17] records, summarized in table 2. In order to measure the
improvements provided by the use of huge composite special-q’s, we keep most
of the parameters used in [27] and [17], even if some of these parameters are
probably not optimal. We tune our parameters in order to produce a final matrix
which has roughly the same size and the same density than the one computed
in the original computation.

Experiment 1 Experiment 2 Experiment 3

[27] This paper [27] This paper [17] This paper

Type of special-q’s Primes Compos. Primes Compos. Primes Compos.

Area size IJ 38-40 31 40 31 31 31
large primes (2,2) (2,2) (2,2) (2,2) (3,2)-(2,3) (2,2)
Special-q side f f f f f and g f

q1 190.106 75.109 190.106 35.109 150.106 950.106

q2 630.106 150.109 306.106 70.109 1560.106 2450.106

special-q’s 22.2 · 106 2.56 · 109 5.8 · 106 1.17 · 109 138 · 106 70 · 106

Time per q (sec) 2550–8750 24.85 8750 24.85 50.87 61.99
Time (core·y) 4000 2000 1625 900 222 138

relations unknown 10.51 · 109 unknown 5.97 · 109 520 · 106 301 · 106

unique 9.08 · 109 6.25 · 109 3.24 · 109 3.74 · 109 249 · 106 202 · 106

% unique unknown 59.5% unknown 62.6% 47.9% 67.1%

matrix size 23.5 · 106 23.5 · 106 32.7 · 106 32.1 · 106 28.5 · 106 28.1 · 106

matrix density 134 128 189 180 200 200
Sieving time saved 50 % 45 % 38 %

Fig. 2. Parameters and estimations for our experiments

Details about the simulation process which evaluates the size and the density
of the final matrix, as well as the rules to evaluate the computing power used,
are given in Appendix B.
DL768 – Experiment 1 We choose sieving parameters in order to build a
matrix with 23.5 million rows and columns with density d = 134, i.e. a matrix
similar to the one found in [27] after 4000 core·years of sieving. We take the
composite special-q’s in the range [75.109, 150.109] and use a lattice sieving area
where I = 216 (i.e. IJ = A = 31 using [27] notations). We use the composite
numbers whose factorization into prime numbers only holds primes greater than
2048. The running time of this sieving step is estimated to 2000 core·years. We
conclude that the huge composite technique allows us to save 50% of the sieving
step running time. Then, a simulation process (see Appendix B for details) is
done in order to evaluate the size and the density of the matrix that can be
built from relations found with our new parameters. This process shows that
this matrix has roughly the same characteristics than the one found in [27].
DL768 – Experiment 2 In this second experiment, we compare ourselves
to the optimal parameters given in [27] by choosing parameters that build a
matrix with 32.7 million rows and columns and with density d = 189. We take

18

the composite special-q’s in the range [35.109, 70.109] and use a lattice sieving
area where I = 216. Our parameters allow us to perform the sieving step in 900
core·years instead of 1625 core·years in [27] to find a similar matrix. The running
time of the sieving steps is reduced by roughly 45%.
SNFS1024 – Experiment 3 We now compare our parameterization method
to the one used in [17], where the sieving step has been done using most of the
large primes as special-q’s on both sides. We estimate that this sieving step can
be done in 207 core·years with parameters from [17] when code from [4] is used.
Once again we adjust our parameters in order to find a similar matrix, i.e. a
matrix with 28.5 million rows and columns with density d = 200. We take the
composite special-q’s in the range [950.106, 2450.106] and use a lattice sieving
area where I = 216. We choose factor bases Ff = Fg = 350 · 106 and allow only
two large primes on both sides. To be fair, we do not use the one side sieving
technique as it is not used in [17]. This sieving step can be performed in only
132 core·years, thus saving 36 % of the running time.

5 Solving Sparse Systems using Partial Triangulation

We have presented in the section 3 an algorithm to write the original matrix MR

in a m-partial triangular form that allows us to transform the original system
into a matrix equation M ·x = 0, where M = MF ·MR. In this section, we explain
how to use this special form to solve efficiently this matrix equation using the
Block Wiedemann algorithm by improving the efficiency of the matrix vector
multiplication of M by a vector V . As no code using this new technique has
been implemented yet, we only give estimates of the efficiency of this method
based on some reasonable assumptions.

5.1 A special multi-matrix product for partial triangular matrices

Figure 3 recalls the special form of the original system of R equations and R
unknowns once it has been transformed into a m-partial triangular form MR. In
this figure, there are `1 equations that are level-1 pivots and are dedicated to the
elimination of the coefficients of the first `1 unknowns in the remaining equations.
More generally, there are `i equations that are level-i pivots and dedicated to
the elimination of `i unknowns. Let n be the number of iterations needed to put
the matrix into a m-partial triangular form.

Let Si = 1 +
∑i−1
j=1 lj and Ti =

∑i
j=1 lj = Si+1 − 1, and m =

∑n
j=1 lj . Then:

– the rows from Si to Ti are the level-i pivots.
– For each i, the submatrix from rows between Si and Ti and columns between
Si and Ti is an identity matrix.

– For each i, the submatrix from rows between Si and Ti and columns between
Si+1 and m is a zero matrix.

For each i, we note Ci the submatrix from rows between Si+1 and R and
columns between Si and Ti. We also note Li = (−Ci, Id) as the (R− Ti)× (li +

19

MR =

MR

I

I

. . .

IC1

C2

Cn

0

0

`1 `2 `n

· · ·
(R−m)

Level-1 pivots

Level-2 pivots

Level-n pivots

(R−m) Base equations

...

Fig. 3. Matrix in its partial triangular form

R− Ti) matrix whose li first columns are the columns of −Ci and the (R− Ti)
remaining columns form an identity matrix.

The left multiplication of MR by L1 performs the Gauss-Jordan elimination
on the l1 first columns using the l1 first rows as pivots. This means that the
first l1 columns of the resulting matrix M1 = L1 ·MR are zero. Recursively, we
see that for all i up to n, the left-multiplication of Mi−1 by Li gives a matrix
Mi = Li ·Mi−1 beginning with Ti zero columns. As a consequence, the final
matrix Mn has R−m rows and only R−m non-zero columns and the matrix M
consisting of these R −m non-zero columns of Mn is the expected matrix after
merging. This matrix M is such that M = MF ·MR, where MF is the product
of the Li matrices : MF = Ln · · · · · L2 · L1.

This leads to the following algorithm, called the multi-matrix product algo-
rithm, that computes V ′, the result of the multiplication between the square
matrix M and a vector V of length R−m :

Set V1 = MR · V ;
for i to n do

Set Vi+1 = Li · Vi
end
Set V ′ = Vn+1;

5.2 Practical efficiency of the multi-matrix product

In this section, we show that the computation of the vector V ′ = M · V using
the multi-matrix product algorithm has roughly the same cost than the multi-
plication of the original matrix MR by a vector of length R. This means that
the use of the multi-matrix product does not change the time of a single of an
iteration while reducing the number of iterations needed.

20

Arithmetic cost We first evaluate the number of basic operations to perform
the multiplication. We consider that one basic operation is the addition or the
subtraction between two entries of the vector V (where one of them is rarely
multiplied by a coefficient of the matrix which is not 1 or -1). When we consider
the matrix MR of size R with w(MR) non-zero coefficients, the number of basic
operations is w(MR). For the multi-matrix product algorithm, we count w(MR)
basic operations for step 1, then w(Ci) basic operations for each step of the
loop in step 2. As w(MR) = w(MR) +

∑
w(Ci), the number of basic operations

to perform the multi-matrix product algorithm is equal to the number of basic
operations to multiply a vector V by the original matrix MR.

Dealing with inter-processor communications When we solve large sys-
tems, we frequently use clusters consisting of several processors linked with inter-
processor technologies. To compute the Krylov sequence, we have to perform at
each iteration the multiplication V ′ = MR · V . At the end of this computation,
each processor holds only a fragment of the vector V ′ and we have to broadcast
these fragments of V ′ to every processor before starting the next iteration. So
we have to broadcast a vector of length R at each iteration.

When we use the multi-matrix product algorithm, only the li first entries of
the vector Vi must be broadcast to the processors at each step of the loop to
let them compute their own fragment of Vi+1 from their fragment of Vi. And
at the end of the computation, the final vector that has to be broadcast has a
length equal to R − m. So at each iteration, we have to broadcast a total of
R−m+

∑
li = R entries, that is equal to the number of entries broadcast when

we perform V ′ = MR · V .

Conclusion The number of basic operations and the inter-processor commu-
nications needed to perform one iteration of the Block Wiedemann algorithm
using the multi-matrix product are equal to the operations and communications
needed to perform a classical product between the matrix MR and a vector of
length R. Throughout the rest of this paper, we assume that the computing
times for these two operations are equal, despite some differences can occur due
e.g. to differences in cache misses.

5.3 Cost optimization using a light merging phase

The m-partial triangulation and the multi-matrix product allow us to perform
the first part of the linear algebra phase, i.e. the generation of the Krylov se-
quence, such that :

– the number of required iterations is rk(M) · (1/ν+ 1/µ) +o(1), where rk(M)
is equal to R−m

– each iteration consists in a multi-matrix product whose cost is roughly equal
to the multiplication between the R×R matrix MR and the vector of length
R.

21

In this section, we transform the matrix MR into a modified matrix M ′R using
the merging algorithm presented in section 2.4 in order to reduce the practical
cost of the multi-matrix product.

From a theoretical point of view, the cost of the multi-matrix product is
equal to the number of basic operations to multiply a vector by M ′R, i.e. equal
to w(M ′R). The merging phase increases the weight of the matrix except when a
merge on an unknown of weight 2 is performed. So the merging technique that
minimizes the cost of the multi-matrix product is to perform all the merges on
unknowns of weight 2.

From a practical point of view, it is beneficial to perform the merging step
a little more: the increase of basic operations is balanced by the reduction of
the size of the matrix because this reduces the amount of inter-processor com-
munications. The optimal stopping point comes when the practical cost of one
iteration is reached.

5.4 Practical experiments

Figure 4 presents practical experiments on various sets of relations: The two
first experiments are done on simulated relations generated during the two first
experiments in section 4 of this paper. The third experiment is done relations
used in [17] to perform the pre-computation phase for a special 1024-bit prime.

We first use a classical implementation of the merging phase in order to
produce a matrix for the classical version of Block Wiedemann algorithm. Then,
we apply to the same set of relations our new ideas: we first perform a light
sieving in order to reduce the cost of a single iteration of the Block Wiedemann
algorithm. Then, we perform the partial triangulation to reduce the rank of the
matrix M . Finally, we compare the expected running time of the two methods.

Formulas used to estimate the computing time of a single iteration on 140
cores are given in Appendix B. The number of iterations is given when the
parameters of the Block Wiedemann algorithm are µ = ν = 2.

6 Back to the twentieth century

The results presented in this paper show that the pre-computation of a database
of discrete logarithms in order to break communications based on the security of
768-bit discrete logarithm is easily reachable today with an academic sized com-
puting power, thus show that such ability has been reached by state-level agencies
many years ago. This last experiment tries to evaluate if this pre-computation
was feasible by the year 2000, using the parameters presented in experiment 2.

The sieving step running time is estimated to 2000 core·years on a single
core at 2.2 Ghz. In the year 2000, the most powerful supercomputer was the
ASCI White at the Lawrence Livermore National Laboratory [35], consisting
of 8192 POWER3 processors running at 375 MHz. We can estimate that this
supercomputer can perform the sieving step in 2000×365×2200/375/8192 = 523
days.

22

Experiment 1 Experiment 2 Experiment 3

Classical merge

Matrix size 23.5 · 106 32.1 · 106 28.5 · 106

Matrix density 134 189 200
Iteration time on 140 cores 1.97 sec 3.62 sec 0.70 sec

Iterations 35.3 · 106 48.2 · 106 42.7 · 106

Total time (core·y) 308 730 132

New methods

Light Merged Matrix size 26.2 · 106 41.5 · 106 36.6 · 106

Light Merged Matrix density 100 100 100
Iteration time on 140 cores 1.73 sec 2.86 sec 0.59 sec

Rank after triangulation 12.5 · 106 19 · 106 18 · 106

Iterations 18.8 · 106 28.5 · 106 27 · 106

Total time (core·y) 144 362 71

Fig. 4. Practical experiments on partial trianguation

We must take into account that in the year 2000, large interconnected clusters
used today to perform the linear algebra step were not yet available. This kind of
computation was performed on vectorial supercomputers, and the most powerful
vectorial machine available in the year 2000 was the Hitachi SR8000-F1 with 112
vectorial nodes at Leibniz-Rechenzentrum with Rmax equals to 1035 GFlops/s
[35].

As a vectorial supercomputer has a direct access to the memory without
using different cache levels, the light filtering step is limited to perform merges
on unknowns of weight 2, leading to a matrix of size 44.3·106 and density d = 42.
We evaluate the time to perform one matrix-vector product to 422 days, using an
extrapolation of the results given in [10]. This extrapolation is given in Appendix
B.

Although these estimations can be seen as very crude, we can conclude that
the pre-computation of the database of discrete logarithm was reachable by a
state-level agency after two years and a half of computation around the year
2000, i.e. right after the IPsec standard was issued and recommended that 768-
bit was the default key size that must be implemented in every IPsec product.

7 Conclusion

Nowadays, the ComSec agencies recommend to not use public keys of size below
3072 bits in any way for systems based on the hardness of factorization or discrete
logarithms. Nevertheless, such small keys are still in use and even 1024-bit keys
are very common if not the majority in many practical applications. For the
deepest regret of the academic community, old key size standards remain in use
long after their withdrawal was recommended.

23

This paper, along with other recent works [17, 27], provides reliable estima-
tions on the hardness of the discrete logarithm problem for 768-bit key sizes.
Barely two years ago, such problem was evaluated to 36,500 core·years in [1] in a
context that pushed the authors to provide conservative estimations. Our paper
shows that this problem, thanks to some mathematical improvements, can be
solved using only 1250 core·years. Moreover, we show that a state-level agency
was able to perform the required computations from the year 2000.

This observation questions ourselves on the ability for a state-level agency
to perform the pre-computation of the database of discrete logarithm for the
1024-bit strong prime used in the IPsec standard and thus its ability to perform
massive decryptions of IPsec communications. According to the conservative
estimations given in [1], this requires 45 million core years of computation. Right
after the release of [1], and unlike the authors’ views, the main tech companies
issued patches for their products to remove the use of 512-bit keys, sometimes
also for 768-bit keys, but chose to keep 1024-bit keys, pretending that such
estimation shows that this size is still secure in practice.

We believe that providing more reliable estimates on the 1024-bit discrete
logarithm problem can convince the tech companies to drop the use of 1024-bit
keys in their products in the case where these estimates will show that such
computation is feasible at a reasonable cost. But before trying to perform this
work, we suggest taking into account the following remarks. First, there is still
room for mathematical improvements on the number field sieve. As pointed out
by [27], some improvements (e.g. the one-side sieving) only arise when the key
length is large enough. We can assume that other improvements will be found
when we will consider performing computations for 1024-bit problems. Moreover,
the use of simulators instead of the computation of real records can help us to
understand what a state-level agency is able to do and limiting ourselves to
key sizes that are reachable with academic resources prevents us from studying
improvements for larger keys. Although the real computation of a factorization
or discrete logarithm can be seen as a tremendous waste of computing time, we
believe that these records remain useful, at least for proving the accuracy of our
simulators.

One can be surprised that so much effort has to be put to convince someone
that 1024-bit keys are insecure. But removing 1024-bit keys everywhere is a
difficult and risky task, as some old devices still in use do not support larger
keys. This is the reason why the main tech companies will engage in this upgrade
as late as possible, hoping that most of these old devices will be then replaced,
in order to limit the risks of major failures in their systems.

Therefore, we strongly encourage the academic community to put much more
effort on evaluating the security of its main cryptographic primitives even for
sizes that are well below the current minimal recommendations.

24

Acknowledgements

The author would like to thank Pierrick Gaudry, Emmanuel Thomé, and Paul
Zimmermann for their helpful and constructive comments that contributed to
improving this paper and for providing the computing power used to perform the
simulations presented in this paper. We also thank the people who contributed
to earlier versions of this work.

References

1. D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A. Halderman,
N. Heninger, D. Springall, E. Thomé, L. Valenta, B. VanderSloot, E. Wustrow,
S. Zanella-Béguelin, and P. Zimmermann. Imperfect forward secrecy: How Diffie-
Hellman fails in practice. In 22nd ACM Conference on Computer and Communica-
tions Security , Oct. 2015.

2. S. Bai, C. Bouvier, A. Kruppa, and P. Zimmermann. Better polynomials for GNFS.
In Mathematics of Computation, American Mathematical Society, 85, pp.12. , 2016.

3. F. Bahr, M. Böhm, J. Franke, T. Kleinjung. Factorization of RSA-200.
http://www.loria.fr/ zimmerma/records/rsa200 . May 2005.

4. F. Bahr, J. Franke, and T. Kleinjung, gnfs4linux,
Available at http://mersenneforum.org/showthread.php?p=169889.

5. D. J. Bernstein. How to find small factors of integers.
http://cr.yp.to/papers.html , june 2002.

6. C. Bouvier. The filtering step of discrete logarithm and integer factorization algo-
rithms. https://hal.inria.fr/hal-00734654, 2013.

7. C. Bouvier, P. Gaudry, L. Imbert, H. Jeljeli, and E. Thomé. Discrete logarithms in
GF(p) — 180 digits. E-mail to the NMBRTHRY mailing list,
http://listserv.nodak.edu/archives/nmbrthry.html, June 2014.

8. The CADO-NFS Development Team. CADO-NFS, An Implementation of the Num-
ber Field Sieve Algorithm, 2016. http://cado-nfs.gforge.inria.fr/

9. S. Cavallar, On the number field sieve integer factorization algorithm, Ph.D. thesis,
Universiteit Leiden, 2002.

10. S. Cavallar, B. Dodson, A. K. Lenstra, W. Lioen, P. L. Montgomery, B. Murphy, H.
te Riele, K. Aardal, J. Gilchrist, G. Guillerm, P. Leyland, J. Marchand, F. Morain, A.
Muffett, C. Putnam, and P. Zimmermann. Factorization of a 512-bit RSA modulus.
In B. Preneel, editor, EUROCRYPT 2000 volume 1807, of Lecture Notes in Computer
Science, pages 1–18. Springer, Heidelberg, 2000.

11. H. Cohen. A course in computational algebraic number theory. Springer-Verlag,
New York, 1993.

12. W. Diffie and M. Hellman. New Directions in Cryptography. In IEEE Trans. Info.
Theor. 22, 6, pp. 644–654, 1976.

13. T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In G. Blakley and D. Chaum, editors, Crypto 1984, volume 196 of Lecture
Notes in Computer Science, pages 10–18. Springer, Heidelberg, 1985.

14. FIPS PUB 186-4: Digital Signature Standard (DSS), July 2013.
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

15. J. Franke and T. Kleinjung. Continued fractions and lattice sieving. In Proceedings
of SHARCS 2005.
www.ruhr-uni-bochum.de/itsc/tanja/SHARCS/talks/FrankeKleinjung.pdf .

25

16. J. Franke, T. Kleinjung, F. Morain, and T. Wirth. Proving the primality of very
large numbers with fastECPP. I n D. A. Buell, editor, Algorithmic Number Theory
– ANTS-VI , volume 3076 of Lecture Notes in Computer Science , pages 194–207.
Springer, Heidelberg, 2004.

17. J. Fried, P. Gaudry, N. Heninger and E. Thomé. A kilobit hidden SNFS dis-
crete logarithm computation. Cryptology ePrint Archive, Report 2016/961, 2016.
http://eprint.iacr.org/.

18. A. Joux and R. Lercier. Discrete logarithms in GF(p) — 130 digits. E-mail to the
NMBRTHRY mailing list,
http://listserv.nodak.edu/archives/nmbrthry.html, June 2005.

19. A. Joux and R. Lercier. Improvements to the general number field sieve for dis-
crete logarithms in prime fields. A comparison with the Gaussian integer method.
Mathematics of Computation, 72(242):953–967 , 2003.

20. A. Joux and C. Pierrot. Nearly sparse linear algebra and application to discrete
logarithms computations. In A. Canteaut, G. Effinger, S. Huczynska, D. Panario, and
L. Storme, eds., Contemporary Developments in Finite Fields and Applications, pp.
119–144. World Scientific Publishing Company, 2016.

21. T. Kleinjung. Cofactorisation strategies for the number field sieve and an estimate
for the sieving step for factoring 1024-bit integers. SCHARCS 2006, Workshop on
Special Purpose Hardware for Attacking Cryptographic Systems, 2006.

22. T. Kleinjung. Discrete logarithms in GF(p) — 160 digits. E-mail to the NM-
BRTHRY mailing list,
http://listserv.nodak.edu/archives/nmbrthry.html, February 2007.

23. T. Kleinjung. Filtering and the matrix step in NFS. Workshop on Computational
Number Theory, , 2011.

24. T. Kleinjung. Polynomial selection. talk presented at the CADO workshop on inte-
ger factorization, http://cado.gforge.inria.fr/workshop/slides/kleinjung.pdf
, 2008.

25. T. Kleinjung, K. Aoki, J. Franke, A. K. Lenstra, E. Thomé, J. W. Bos, P. Gaudry,
A. Kruppa, P. L. Montgomery, D. A. Osvik, H. te Riele, A. Timofeev, and P. Zim-
mermann. Factorization of a 768-bit RSA modulus. In T. Rabin, editor, Crypto 2010,
volume 6223 of Lecture Notes in Computer Science, pages 333–350. Springer, Heidel-
berg, 2010.

26. T. Kleinjung, J. W. Bos, and A. K. Lenstra. Mersenne factorization factory. In
Advances in Cryptology - ASIACRYPT 2014 - 20th International Conference on the
Theory and Application of Cryptology and Information Security, Kaoshiung, Taiwan,
R.O.C., December 7-11, 2014. Proceedings, Part I , pages 358-377, 2014.

27. T. Kleinjung, C. Diem, A. K. Lenstra, C. Priplata, and C. Stahlke Computation of
a 768-bit prime field discrete logarithm. Cryptology ePrint Archive, Report 2017/067,
2017. http://eprint.iacr.org/.

28. IETF. RFC 2409. https://tools.ietf.org/html/rfc2409 , November 1998.
29. A. K. Lenstra and H. W. Lenstra Jr. The Development of the Number Field Sieve,

volume 1554 of Lecture Notes in Mathematics. Springer-Verlag, 1993.
30. H. Markowitz. The elimination form of the inverse and its application to linear

programming. Management Science 3 (3):255–269, 1957.
31. J. M. Pollard The lattice sieve. In Lenstra A.K., Lenstra H.W. (eds) The devel-

opment of the number field sieve. Lecture Notes in Mathematics, vol 1554. Springer,
Berlin, Heidelberg, 1993.

32. C. Pomerance and J. W. Smith Reduction of huge, sparse matrices over finite fields
via created catastrophes Experiment. Math., Volume 1, Issue 2, pp. 89-94, 1992.

26

33. O. Schirokauer. Virtual logarithms. J. Algorithms, 57(2):140–147, 2005.
34. E. Thomé. Subquadratic computation of vector generating polynomials and im-

provement of the block Wiedemann algorithm. J. Symbolic Comput., 33(5):757-775,
Jul. 2002.

35. Top500: TOP 500 Supercomputer Sites. http://www.top500.org.
36. D. Wiedemann. Solving sparse linear equations over finite fields. IEEE Transac-
tions on Information Theory, 32:54–62, 1986.

A A Simulator for the Number Field Sieve

In this paper, we present new types of parameterizations to perform the pre-
computation of databases of discrete logarithms. The efficiency of these parame-
terizations depends on the time needed to perform the sieving step and the time
to perform the linear algebra step. Making reliable estimations for these two steps
requires being able to predict the number of duplicates found during the sieving
step, then to predict the size of the final matrix when these parameterizations
are used.

We briefly describe here our simulation process and the way we predict the
number of duplicates and the size of the final matrix. This simulation process
has been tested on various examples and these experiments have shown that the
predicted values differ from real computations by less than 5%.

A.1 Generation of a sample of relations

We first randomly select special-q’s uniformly in the range [qmin, qmax] of
special-q’s we have chosen to perform the sieving step. The number of selected
special-q’s is chosen to generate several thousands of relations so that statistics
and extrapolations based on these relations become reliable. Then we use the
sieving code on the selected special-q’s to generate relations.

The evaluation of the time needed to perform the sieving step can be done
by multiplying the number of special-q’s found in the range [qmin, qmax] by the
average time needed to generate the sample relations for one special-q.

A.2 Simulation of the duplicate removal

Once these relations have been generated, we must take into account that some
of them are duplicates: we have to remove a relation from our sample if it may be
previously found during a full sieving step, i.e. if this relation contains a different
special-q which is lower than the one we have selected to generate our sample.

Note that it is easy to know if a relation will be a duplicate or not: we can
check from the decomposition into prime factors of f(a, b) if this relation can
be generated by previous special-q’s that lie in [q1, q[. If it is the case, we have
to check if (a, b) belongs to lattice sieving area or is outside of this area, by
computing the reduced base of this lattice and computing the coordinates of
(a, b) in this lattice. If at least one factor q′ of f(a, b) lies in [q1, q[and that (a, b)

27

belongs to the sieving area for this factor, then the relation is discarded as it is
a duplicate.

After simulating the duplicate removal, the remaining relations in our sample
can be considered as a statistically significant sample of the set of all relations
generated by the sieving step.

A.3 Simulation of the original matrix

We create a fake original matrix by generating rows (representing relations) that
have properties similar to real relations. The number of rows generated is equal
to the mean of unique relations per special-q in our sample multiplied by the
number of special-q we want to use in a whole sieve.

Here are the properties we have taken into account to generate each relation,
i.e. statistics extracted from our sample and applied to the generation of fake
rows of the matrix:

– The number (`1, `2) of large primes on each side (not counting the prime
special-q).

– The distribution of large primes for each set of relations with exactly (`1, `2)
large primes.

– The existence of a prime special-q and its expected distribution.
– The number (m1,m2) of medium primes lying between Mf (resp. Mg) and
Ff (resp. Mg), where Mf is the closest power of two to Ff/5, for each set of
relations with exactly (`1, `2) large primes.

– The distribution of medium primes for each set of relations with exactly
(`1, `2) large and (m1,m2) primes.

– The generation of small primes (below Mf and Mg) uses a random relation
from the sample and replaces each small prime by a small prime of the same
binary size.

A.4 Simulation of the filtering step and the linear algebra

The fake original matrix is used as input to the filter step using existing code for
the traditional filtering step or some new code if we use the partial triangulation.
This provides a final matrix whose size and density is very close to the real one.

This fake final matrix can be used to evaluate the overall time of the gener-
ation of the Krylov sequence by just running this generation on a few iterations
and extrapolating the generation time for the expected number of iterations. As
the partial triangulation code for Krylov is not available yet, we use estimations
based on assumptions explained in section 5.2.

B Time estimations for the main phases

B.1 Time estimations for the sieving step

The sieving code used in [27] has not been made publicly available yet and we
have no access to the clusters at the authors’ universities (nor accurate hardware

28

specifications of these clusters) used to perform the sieving step. In this setting,
to compare different parameterizations based on core·years on different clusters
introduces many biases, as a sieving code depends not only on the processor’s
frequency but also on cache sizes, RAM speed, NUMA properties, the use of
hyper-threading or CPU binding.

Most of the time in the sieving step is spent in two main parts:

– The first one consists in computing the vectors for each member of the factor
base used to perform the sieving by vectors. This part does not depend on
the size of the sieving area but only on the size of the factor base. As we have
chosen to keep the same factor base, the timing for this part is constant.

– The other one consists of scheduling hits, sieving small primes, applying the
scheduled hits and finding candidates. This part is linear with respect to the
size of the sieving area when the size of the factor base is fixed.

A practical experiment show that for I = 216 (corresponding to A = 31 in
[27]), about 20% of the time is spent on the first part and 80% on the second
part, thus estimates the time spent for one special-q in the sieving step when
the sieving area is equal to 2A as :

t(A) = K(20 + 80× 2A−31)

The scaling factor K must be set to K = 0.2485 seconds in order to re-
cover the value t(38) = 2550 seconds found in [27]. Note that in [27], the factor
base bound is reduced for the smaller values of q, leading to smaller times than
expected for A = 39 and A = 40.

B.2 Time estimations for the Krylov phase

Estimations for the Krylov phase, which is the most consuming part of the
Block Wiedemann algorithm, can be done by running a few iterations on the
simulated matrix. Our estimations are done on 8 nodes of the CATREL cluster
at LORIA, where each node holds two Xeon E5-2650 processors with 16 cores at
2.4GHz, linked with Infiniband technology that provides a full-duplex intercom-
munication at 56 Gb per second, and using the CADO-NFS code (version used
in [17]) to perform this phase. Each second spent on that cluster corresponds to
S = 16×8×2.4/2.2 = 140 seconds on a single core at 2.2 Ghz, used as standard
in [27]. We can extract from practical experiments on various matrices that the
time to perform a single iteration on a R×U matrix with row density d can be
modeled by T = S × (tc + tm + tx), where :

– tc = Kc · d ·R (Computing time)
– tm = Km ·R · U (Cache misses time)
– tx = Kx ·R (Interconnect time)

The three constants Kc = 4.77e− 10, Km = 8.29e− 17, Kx = 1.78e− 8 have
been computed using practical experiments on various matrices of various sizes
and densities.

29

Thanks to this model, we find that the generation of the Krylov sequence for
the final matrix of [27], with size R = 23.5 ·106 and density d = 134, using Block
Wiedemann parameters µ and ν such that µ = 2ν (i.e. the number of iterations
is close to 3R/2), costs 308 core·years using the CADO-NFS code on 8 nodes of
the CATREL cluster.

B.3 Time estimations for the Krylov phase on a Y2K
supercomputer

We estimate here the time needed to perform the Krylov step on the Hitachi
SR8000-F1 with 112 vectorial nodes at Leibniz-Rechenzentrum. According to
[35], the performance of this computer is estimated with the parameter Rmax
equals to 1035 GFlops/s. This estimation is done considering that the super-
computer Cray Y-MP C916 used in [10], with Rmax equals to 13.7 GFlops/s,
has run the Lanczos algorithm on a 6.7 · 106 matrix with density d = 62 in 9.5
days. The Lanczos algorithm computes on average 63.24 orthogonal vectors per
iteration, where one iteration consists in two multiplications of the matrix by a
64-bit vector (and other computations that are neglected here). As the number
of orthogonal vectors one has to compute is equal to the rank of the matrix,
the multiplication has been performed 2 × 6.7 · 106/63.24 = 211892 times in
[10], so one 64-bit matrix-vector product is done in 3.87 seconds. Using this
result we can estimate that one 768-bit matrix-vector product can be done in
3.87 × 44.3/6.7 × 42/62 × 768/64 × 13.7/1035 = 2.75 seconds on the Hitachi
SR8000-F1. With Block Wiedemann parameters µ = 16 and ν = 1, the gener-
ation of the Krylov sequence on the matrix of rank equal to 12.5 · 106 can be
done in 422 days.

30

