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Anti-SAT: Mitigating SAT Attack on Logic Locking
Yang Xie, Member, IEEE and Ankur Srivastava, Senior Member, IEEE

Abstract—Logic locking is a technique that’s proposed to
protect outsourced IC designs from piracy and counterfeiting
by untrusted foundries. A locked IC preserves the correct
functionality only when a correct key is provided. Recently, the
security of logic locking is threatened by a new attack called
SAT attack, which can decipher the correct key of most logic
locking techniques within a few hours [1] even for a reasonably
large key-size. This attack iteratively solves SAT formulas which
progressively eliminate the incorrect keys till the circuit is
unlocked. In this paper, we present a circuit block (referred
to as Anti-SAT block) to enhance the security of existing logic
locking techniques against the SAT attack. We show using a
mathematical proof that the number of SAT attack iterations to
reveal the correct key in a circuit comprising an Anti-SAT block
is an exponential function of the key-size thereby making the
SAT attack computationally infeasible. Besides, we address the
vulnerability of the Anti-SAT block to various removal attacks
and investigate obfuscation techniques to prevent these removal
attacks. More importantly, we provide a proof showing that
these obfuscation techniques for making Anti-SAT un-removable
would not weaken the Anti-SAT block’s resistance to SAT attack.
Through our experiments, we illustrate the effectiveness of our
approach to securing modern chips fabricated in untrusted
foundries.

Index Terms—Logic Locking, SAT Attack, Hardware IP Pro-
tection, Hardware Security

I. INTRODUCTION

NOWADAYS, chip design and fabrication are normally
conducted by different facilities in a global supply

chain. Most integrated circuit (IC) design companies are now
adopting a fab-less model: they outsource the chip fabrication
to offshore foundries while concentrating their effort and
resource on the chip design. IC fabrication outsourcing en-
ables IC design companies to access advanced semiconductor
technology at a low cost. However, the outsourced design
faces various security threats since the offshore foundry might
not be trustworthy. Attacks by untrusted foundries on the
outsourced IC design can take on many forms, such as
Intellectual Property (IP) piracy [2], counterfeiting [3] and
hardware Trojans [4]. These security threats (also known as
supply chain attacks) pose a significant economic risk to most
IC design companies.

Logic locking [5] is a technique that is proposed to thwart
the aforementioned supply chain attacks. The basic idea is to
insert additional key-controlled logic gates (key-gates), key-
inputs and an on-chip memory into an IC design to hide its
original functionality, as shown in Fig. 1. The key-gate can
be implemented using XOR/XNOR gates [5], [6], [7], MUX
gates [7], [8], [9], [10] and Look-Up-Tables (LUTs) [11], [12],
[13]. The key-inputs are connected to the on-chip memory and
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Fig. 1. Logic locking techniques: (a) Overiew; (b) An original netlist; (c)
XOR/XNOR based logic locking; (d) MUX based logic locking; (e) LUT
based logic locking.

Fig. 2. A basic overview of Anti-SAT block enhanced logic locking.

the locked IC preserves the correct functionality only when
a correct key is set to the on-chip memory. To prevent the
untrusted foundry from probing the key values of a running
chip, a tamper-proof chip protection shall be implemented.

A. Motivation

The security of logic locking is threatened if the correct key
values into the key-gates are accessible to or can be learned
within a practical time by the malicious foundries. Recently,
Subramanyan et al. [1] proposed a satisfiability checking
based attack (SAT attack) that can effectively break most logic
locking techniques proposed in [5], [6], [7], [11], [14] within
a few hours even for a reasonably large key-size. The insight
of the SAT attack is to iteratively solve a sequence of SAT
formulas which can progressively eliminate the incorrect keys
till all the wrong key combinations have been eliminated.
The SAT attack is powerful because it guarantees that upon
termination it can always reveal the correct key. This severe
security threat motivates this work to develop a secure logic
locking design which can thwart the SAT attack.

B. Main Contribution

In this work, we have developed a relatively lightweight
circuit block (referred to as Anti-SAT block) that can be
embedded into a design to mitigate the SAT attack. The basic
structure of our Anti-SAT block is shown in Fig. 2. While
a portion of keys (key-inputs A) is connected to the original
circuit to obfuscate its functionality, another portion of keys
(key-inputs B) is connected to the Anti-SAT block to thwart



the SAT attack. The Anti-SAT block is designed in a way that
the total number of SAT attack iterations (and thus the total
execution time) to reveal the correct key in the Anti-SAT block
is an exponential function of the key-size in the Anti-SAT block.
A slight increase in key-size can lead to exponentially increase
in SAT attack complexity. Therefore, the Anti-SAT block can
be integrated into a design to efficiently enhance its resistance
to the SAT attack. The contribution of this work is as follows.
• We propose an Anti-SAT circuit block to mitigate the

SAT attack on logic locking. We illustrate how to con-
struct the functionality of the Anti-SAT block and use
a mathematically rigorous approach to prove that if
chosen correctly, the Anti-SAT block makes SAT attack
computationally infeasible (exponential in key-size).

• The Anti-SAT block can be integrated into the original
netlist to enhance its resistance to the SAT attack. A
secure integration method is proposed which ensures that
the SAT attack complexity is maintained after integration.

• The Anti-SAT block might be subject to attacks that
intend to identify and nullify it, which are called re-
moval attacks. In this work we highlight the unique
functional and structural attributes of the Anti-SAT block
that could be exploited for removal attacks. Based on that
we investigate a unified obfuscation technique to hide
the functionality and structure of the Anti-SAT block.
More importantly, we provide a proof showing that the
obfuscation technique would not weaken the Anti-SAT
block’s resistance to SAT attack.

• Rigorous analysis and experiments on 6 circuits from
ISCAS85 and MCNC benchmark suites have been con-
ducted to validate the effectiveness of our proposed
technique in improving the security of existing logic
locking techniques.

The rest of the paper is organized as follows. Section II
provides a review on logic locking and SAT attack. Section III
proposes the Anti-SAT block design and demonstrates its re-
sistance against the SAT attack. Section IV outlines the unique
functional and structural attributes of the Anti-SAT block
that could be exploited for removal attacks and investigates
corresponding obfuscation methods. Section V describes the
overall Anti-SAT based logic locking design flow. Experiments
and results are shown in Section VI. Section VII discusses
related works, followed by conclusion in Section VIII.

II. BACKGROUND

A. Logic Locking

Logic locking is a technique that inserts a set of key-gates
and key-inputs into an IC design to protect it from supply chain
attacks by untrusted foundries. Recent years have seen various
logic locking techniques based on different key-gate types and
key-gate insertion algorithms. According to the key-gate types,
they can be classified into three major categories: XOR/XNOR
based logic locking [5], [6], [7], MUX based logic locking [7],
[8], [9], [10] and LUT based logic locking [11], [12], [13], as
shown in Fig. 1 (b-e). Other key-gate types such as AND/OR
gates [14] and special logic cones [16] have also been inves-
tigated. Among all, the XOR/XNOR based logic locking has

Fig. 3. Illustration of the iterative SAT attack process. Wrong key combina-
tions are iteratively identified by a set of DIOs till no new ones exist. WKi

is the set of wrong key combinations identified by i-th DIO.

received the most attention mainly due to its simple structure
and low performance overhead. Various XOR/XNOR based
logic locking algorithms have been proposed to identify the
optimal locations for inserting the key-gates. The simplest
algorithm is the random insertion [5], where key-gates are dis-
tributed randomly into the netlist. In [7], a fault-analysis based
insertion algorithm was proposed which inserts the key-gates
at locations that can maximally affect the primary outputs.
It ensures that the functionality of the locked circuit (with
a wrong key) would deviate substantially from the original
one. In [6], an interference-analysis based insertion algorithm
was proposed which places the key-gates at locations with
complex interferences among them such that a correct key
cannot be easily sensitized to the primary outputs. In [10],
a logic-cone analysis based insertion algorithm was proposed
to increase the number of key-gates per logic cone to thwart
an exhaustive search based key-learning attack. The security
objective of these logic locking techniques is to increase the
output corruptibility (i.e., produce more incorrect outputs for
more input patterns) given an incorrect key, and to prevent
effective key-learning attacks.

B. SAT Attack

SAT attack [1] is a newly proposed attack on logic locking
which can effectively break most existing logic locking tech-
niques. Here we introduce the attack model and describe the
insight and algorithm of the SAT attack.

1) Attack Model: The SAT attack model [1] assumes that
the attacker is an untrusted foundry whose objective is to
obtain the correct key of a locked circuit. The malicious
foundry has access to the following two components:
• A locked gate-level netlist, which can be obtained by

reverse-engineering a GDSII layout file. This is available
because the fabrication is done by the untrusted foundry
which has the layout details provided by the designer.
The locked netlist is represented as ~Y = fl( ~X, ~K) with
primary inputs ~X , key inputs ~K and primary outputs ~Y .
Its SAT formula in conjunctive normal form (CNF) is
represented as C( ~X, ~K, ~Y ).

• An activated functional chip, which can be obtained from
open market. This IC can be used to evaluate a set of
input patterns and observe their correct output patterns
as a black box model ~Y = eval( ~X).

2) Attack Insight: The key idea of the SAT attack is to
reveal the correct key using a small number of carefully
selected inputs and their correct outputs observed from an
activated functional chip. These special input/output pairs are
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referred to as distinguishing input/output (DIO) pairs. Each
DIO can identify a subset of wrong key combinations and
all together they guarantee that only the correct key can be
consistent with these correct I/O pairs. This implies that a key
that correctly matches the inputs to the outputs for all the DIOs
must be the correct key.

Definition 1 (Wrong key combination). Consider the
logic function ~Y = fl( ~X, ~K) and its CNF SAT formula
C( ~X, ~K, ~Y ). Let ( ~X, ~Y ) = ( ~Xi, ~Yi), where ( ~Xi, ~Yi) is a cor-
rect I/O pair. The set of key combinations WKi which result in
an incorrect output of the logic circuit (i.e., ~Yi 6= fl( ~Xi, ~K),
∀ ~K ∈ WKi) is called the set of wrong key combinations
identified by the I/O pair ( ~Xi, ~Yi). In terms of SAT formula,
it can be represented as C( ~Xi, ~K, ~Yi) = False, ∀ ~K ∈WKi.

Definition 2 (Distinguishing input/output (DIO) pair). As
noted above, the SAT attack shall solve a set of SAT formulas
iteratively. In each iteration, it shall find a correct I/O pair
to identify a subset of wrong key combinations until none of
these are left. An I/O pair at i-th iteration is a DIO, denoted
as ( ~Xd

i ,
~Y di ), if it can identify a unique subset of wrong key

combinations that cannot be identified by the previous i − 1
DIOs, i.e., WKi 6⊂ (∪j=i−1j=1 WKj), where WKi is the set of
wrong key combinations identified by the DIO at i-th iteration.

The crux of the SAT attack algorithm relies on finding the
DIOs iteratively to identify unique wrong key combinations
(see Definition 2) until no further ones can be found. At this
point, the set of all DIOs together can identify all wrong key
combinations thereby revealing the correct one. An illustration
of the SAT attack process is shown in Fig. 3. In each iteration,
the SAT attack will find a new DIO that can rule out a subset of
wrong key combinations WKi. Notice that each iteration can
identify unique wrong key combinations that are not belong to
the ones discovered previously, i.e., WKi 6⊂ (∪j=i−1j=1 WKj).
The attack terminates when all wrong key combinations are
identified.

Take the XOR/XNOR based locked circuit in Fig. 1(c) as an
example. At first iteration, the I/O pair ( ~Xd

1 ,
~Y d1 ) = (00, 10)

is a DIO because it can rule out wrong key combinations
~K = (01), (10), and (11) as these key combinations will result
in incorrect outputs (y1y2) = (11), (00) and (01), respectively.
Since this single I/O observation has already ruled out all
incorrect key combinations, we have revealed the correct key
~K = (00). In general, a small number of DIOs (compared to
all possible I/O pairs) are usually enough to infer the correct
key [1]. As a result, the SAT attack is efficient because it only
requires a small number of iterations to find these DIOs.

3) Attack Algorithm: As noted above, the central theme
of SAT attack algorithm is to iteratively find DIOs to rule
out wrong key combinations till no new ones can be found.
Here we briefly introduce the SAT attack algorithm for finding
the DIOs. Firstly, the algorithm will formulate a SAT formula
that can be solved by state-of-the-art SAT solvers. The SAT

Algorithm 1 SAT Attack Algorithm [1]
Input: C and eval
Output: ~KC

1: i := 1;
2: Gi := True;
3: Fi := C( ~X, ~K1, ~Y1) ∧ C( ~X, ~K2, ~Y2) ∧ (~Y1 6= ~Y2);
4: while sat[Fi] do
5: ~Xd

i := sat assignment ~X [Fi];
6: ~Y d

i := eval( ~Xd
i );

7: Gi+1 := Gi ∧ C( ~Xd
i ,
~K, ~Y d

i );
8: Fi+1 := Fi ∧ C( ~Xd

i ,
~K1, ~Y

d
i ) ∧ C( ~Xd

i ,
~K2, ~Y

d
i );

9: i := i+ 1;
10: end while
11: ~KC := sat assignment ~K(Gi);

formula Fi at i-th iteration is:

Fi :=C( ~X, ~K1, ~Y1) ∧ C( ~X, ~K2, ~Y2) ∧ (~Y1 6= ~Y2)

(

j=i−1∧
j=1

C( ~Xd
j , ~K1, ~Y

d
j )) ∧ (

j=i−1∧
j=1

C( ~Xd
j , ~K2, ~Y

d
j ))

(1)

where ~X, ~K1, ~K2, ~Y1 and ~Y2 are variables, ( ~Xd
j ,
~Y dj ), j =

1, ..., i − 1 are DIOs found in previous i − 1 iterations. A
detailed explanation of this formula can be found in [1].
Basically, this formula determines whether there still exist
unique wrong key combinations that haven’t been identified
by all previous i − 1 DIOs . If Fi is satisfiable, it means
that such wrong key combinations still exist. By solving the
SAT formula, the SAT solver will generate an assignment to
the input variable ~X = ~Xd

i , which is the distinguishing input
needed to form a new DIO. After ~Xd

i is obtained, it is fed into
an activated functional chip obtained from the open market and
the correct output ~Y di is observed. This correct I/O pair forms
the i-th DIO ( ~Xd

i , ~Y di ) which can be used to eliminate new
wrong key combinations. The processing of finding DIOs is
continued till no new ones can be found (assuming after λ
iterations). At this point, a correct key can be obtained by
solving the following SAT formula G:

G :=

λ∧
i=1

C( ~Xd
i ,
~K, ~Y di ) (2)

Basically it finds a key ~K which satisfies the correct function-
ality for all the DIOs. This must be the correct key since no
other DIOs exist at this point (see Definition 2).

The SAT attack algorithm is shown in Algorithm 1. It starts
by first solving the line one of the SAT formula (1) and as
iterations progress it adds the clauses comprised in line two
of the formula (1). It stops when the resulting SAT formula is
unsatisfiable indicating no further DIOs exist. The correct key
is obtained by finding a key value which satisfies the correct
I/O behavior of all the DIOs (SAT formula (2)). This algorithm
is guaranteed to find the correct key. Please refer to [1] for
any further theoretical details.

III. ANTI-SAT BLOCK DESIGN

The efficiency of SAT attack can be evaluated by the total
execution time:

T =

λ∑
i=1

ti (3)
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Fig. 4. Anti-SAT block configuration: (a) Type-0 Anti-SAT: always outputs 0
if key values are correct; (b) Type-1 Anti-SAT: always outputs 1 if key values
are correct. (c) Integrating the Type-0 Anti-SAT block into a circuit.

where λ is the total number of SAT attack iterations and ti
is the SAT solving time for i-th iteration. Consequently, the
SAT attack can be mitigated if ti is large and/or λ is large. λ
depends on the key-size and key location in the locked circuit.
However, simply increasing the key-size or trying different key
locations may not effectively thwart the SAT attack. As shown
in the SAT attack results [1], even with large number of keys
(50% area overhead), for six previously proposed key-gate
insertion algorithms [5], [6], [7], [11], [14], 86% benchmarks
on average can still be unlocked in 10 hours.

To mitigate the SAT attack, we propose to insert a relatively
light-weight circuit block (referred to as Anti-SAT block) that
can efficiently increase the number of iterations λ so as to
increase the total execution time T .

A. Configurations of Anti-SAT

Fig. 4(a) and Fig. 4(b) illustrate two configurations of the
proposed Anti-SAT block, referred to as type-0 Anti-SAT and
type-1 Anti-SAT. They consist of two logic blocks g and g,
which share the same set of inputs ~X = (X1...Xn). The
functionalities of g and g are complementary. A set of key-
gates (XORs 1) are inserted at the inputs of two logic blocks,
denoted as ~Kl1 = (K1...Kn) and ~Kl2 = (Kn+1...K2n).
Hence the key-size is 2n. The output of g and g are fed into
an AND2 gate (for Fig. 4(a)) or an OR2 gate (for Fig. 4(b))
to form the final single-bit output Y . As a result, we have
Y = g( ~X ⊕ ~Kl1) ∧ g( ~X ⊕ ~Kl2) for type-0 Anti-SAT and
Y = g( ~X ⊕ ~Kl1) ∨ g( ~X ⊕ ~Kl2) for type-1 Anti-SAT.

1) Constant-output Property: one basic property of Anti-
SAT block is that when the key vector is correctly set, the

1Note that here we are using only XOR gates as key-gates for the sake
of ease of explanation. The key-gates used could be either XOR or XNOR
gates (+ inverters) based on a user-defined key [7]. The usage of inverters
can remove the association between key-gate types and key-values (e.g. the
correct key into an XOR gate can be either 0 or 1). Besides, the synthesis
tools can “bubble push” the inverters to their fan-out gates and an attacker
cannot easily identify which inverters are part of the key-gates [7]. Therefore,
the attacker cannot obtain the correct key-values by simply inspecting the
key-gate types.

output Y is a constant. Specifically, given a correct key,
Y always outputs value 0 for type-0 Anti-SAT (Fig. 4(a))
and always outputs value 1 for type-1 Anti-SAT (Fig. 4(b)).
Otherwise, when a wrong key is given, Y can output either
1 or 0 depending on the inputs ~X . This property enables it
to be integrated into the original circuit. Fig. 4(c) shows an
example of integrating a type-0 Anti-SAT into a circuit. As
seen, the inputs of Anti-SAT block ~X are from the wires in
the original circuit. The output Y is connected into the original
circuit using an XOR gate. When a correct key is provided,
the output Y always equals to 0 (so the XOR gate behaves
as a buffer) and thus will not affect the functionality of the
original circuit. If a wrong key is provided, Y can be 1 for
some inputs (so the XOR gate behaves as an inverter) and thus
can produce a fault in the original circuit. Similarly, the type-
1 Anti-SAT block can be integrated into the original circuit
using an XNOR gate.

2) Correct Keys: Since the Anti-SAT block has 2n keys, the
total number of wrong key combinations is 22n− c, assuming
there exists c correct key combinations. To ensure the constant-
output property, the correct keys for the Anti-SAT block would
be the ones that make type-0 Anti-SAT always output 0 and
type-1 Anti-SAT always output 1. This happens when i-th
key-bit from ~Kl1 and i-th key-bit from ~Kl2 have the same
value, so the number of correct key combinations c = 2n for
both types of Anti-SAT blocks and the number of wrong key
combinations is 22n − 2n.

In the subsequent sections, we provide details on construct-
ing the Anti-SAT block (i.e., the functionality of g) and its
impact on SAT attack complexity. We provide a rigorous
mathematical analysis which gives a provable lower bound to
the number of SAT attack iterations. For some constructions
of g, this lower bound is exponential in the key-size thereby
making the SAT-attack complexity very high.

B. Complexity Analysis of SAT Attack on Anti-SAT

Here we analyze the complexity of SAT attack on the Anti-
SAT block (assuming this is the circuit being attacked to
decipher the 2n key bits).
Terminology: Given a Boolean function g(~L) with n inputs,
assuming there exists p input vectors that make g equal to one
(1 ≤ p ≤ 2n − 1), we can classify the input vectors ~L into
two groups LT and LF , where

LT = {~L|g(~L) = 1}, (|LT | = p)

LF = {~L|g(~L) = 0}, (|LF | = 2n − p)
(4)

We denote LT as the on-set of function g, LF as the off-set
of function g, and p as the size of on-set.

The function g and its complementary function g are used
to construct the Anti-SAT block as shown in Fig. 4.

Theorem 1. Assuming the size of on-set p of function g is
sufficiently close to 1 or sufficiently close to 2n−1, the number
of iterations needed by the SAT attack to decipher the correct
key is lower bounded by 2n.

Proof for Type-0 Anti-SAT: As shown in Section II-B, the
SAT attack algorithm will iteratively find a DIO ( ~Xd

i , Y di )
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to identify wrong key combinations in the Anti-SAT block
until all wrong key combinations are identified. In the i-
th iteration, the corresponding DIO can identify a subset of
wrong key combinations, denoted as WKi. Notice that for
any input combinations (including the distinguishing inputs
~Xd
i ), the correct output (when provided the correct key) is

0 for type-0 Anti-SAT. Therefore, a wrong key combination
~K = ( ~Kl1, ~Kl2) ∈ WKi which was identified by ( ~Xd

i , Y di )
must produce the Anti-SAT block output incorrectly as 1. This
condition is described below.

Y di = g( ~Xd
i ⊕ ~Kl1) ∧ g( ~Xd

i ⊕ ~Kl2) = 1

⇔ (g( ~Xd
i ⊕ ~Kl1) = 1) ∧ (g( ~Xd

i ⊕ ~Kl2) = 0)

⇔ (( ~Xd
i ⊕ ~Kl1) ∈ LT ) ∧ (( ~Xd

i ⊕ ~Kl2) ∈ LF )

(5)

Basically Equation (5) states that the wrong key identified
in the i-th iteration must be such that its output Y di should
be 1. This implies that both g and g must evaluate to 1. This
means that the input to g, which is ~Xd

i ⊕ ~Kl1, should be in
LT and the input to g, which is ~Xd

i ⊕ ~Kl2, should be in LF .
Since ~Xd

i ⊕ ~Kl1 is the input vector to g, for any given ~Xd
i ,

we can always find a key ~Kl1 such that ~Xd
i ⊕ ~Kl1 ∈ LT .

Basically ~Xd
i ⊕ ~Kl1 flips some of the bits of ~Xd

i (for which
corresponding ~Kl1 bits are 1) while keeping other bits the
same (for which corresponding ~Kl1 bits are 0). Hence for a
given ~Xd

i , we can always choose ~Kl1 such that the resulting
input to g is in LT . However note that |LT | = p in Equa-
tion (4). Hence for any given ~Xd

i , we can select ~Kl1 in p
different ways such that ~Xd

i ⊕ ~Kl1 ∈ LT .
Similarly, for any given ~Xd

i , we can always find a key ~Kl2

such that ~Xd
i ⊕ ~Kl2 ∈ LF . Note that |LF | = 2n − p in

Equation (4). Hence for any given ~Xd
i , we can select ~Kl2

in 2n − p different ways such that ~Xd
i ⊕ ~Kl2 ∈ LF .

Now, as noted above, for a given ~Xd
i , a wrong key ~K =

( ~Kl1, ~Kl2) should be such that ~Xd
i ⊕ ~Kl1 ∈ LT and ~Xd

i ⊕
~Kl2 ∈ LF . The total number of ways in which we can select
such a wrong key is p · (2n − p).

Now in any given iteration i, for a given Xd
i , the maximum

number of incorrect keys identified is p ·(2n−p). This follows
naturally from the discussion above. This is the maximum
number because it is very much possible that some of these
keys were identified in previous iterations. Hence the total
number of unique wrong keys UKi identified in iteration i is
upper-bounded by p · (2n − p). This is noted in the equation
below.

p · (2n − p) ≥ UKi (6)

The SAT attack works by iteratively removing all incorrect
keys till only the correct ones are left (assuming after λ
iterations). Hence the following holds true.

λ(p · (2n − p)) ≥
λ∑
i=1

UKi (7)

Since
∑λ
i=1 UKi is the total number of wrong key combi-

nations, its value is 22n − 2n as discussed in Section III-A2.
Equation (7) can be rewritten as follows.

λ ≥ 22n − 2n

p(2n − p)
(8)

We denote this lower bound on λ as λl. When p → 1 or
p→ 2n − 1, we have the lower bound as follows:

λl =
22n − 2n

p(2n − p)
→ 22n − 2n

1× (2n − 1)
= 2n (9)

�

Proof for Type-1 Anti-SAT: For type-1 Anti-SAT, the correct
output (when provided the correct key) is always 1. Therefore,
a wrong key combination ~K = ( ~Kl1, ~Kl2) ∈WKi which was
identified by ( ~Xd

i , Y di ) must produce the incorrect output as 0.
This condition is described below.

Y di = g( ~Xd
i ⊕ ~Kl1) ∨ g( ~Xd

i ⊕ ~Kl2) = 0.

⇔ (g( ~Xd
i ⊕ ~Kl1) = 0) ∧ (g( ~Xd

i ⊕ ~Kl2) = 1)

⇔ (( ~Xd
i ⊕ ~Kl1) ∈ LF ) ∧ (( ~Xd

i ⊕ ~Kl2) ∈ LT )

(10)

Based on the discussion in the proof for type-0 Anti-SAT, we
know that for any given ~Xd

i , we can select ~Kl1 in 2n − p
different ways such that ~Xd

i ⊕ ~Kl1 ∈ LF . Also, for any given
~Xd
i , we can select ~Kl2 in p different ways such that ~Xd

i ⊕
~Kl2 ∈ LT . As noted in Equation (10), for a given ~Xd

i , a wrong
key ~K = ( ~Kl1, ~Kl2) should be such that ~Xd

i ⊕ ~Kl1 ∈ LF

and ~Xd
i ⊕ ~Kl2 ∈ LT . The total number of ways in which

we can select such a wrong key is p · (2n − p), which is
exactly the same as the one for type-0 Anti-SAT. Therefore,
the subsequent analysis would be the same as the analysis for
type-0 Anti-SAT and we can obtain the same lower bound λl
as shown in Equation (9).

�

As seen in Equation (9), if we choose a g function such
that p is either very low or very high then the SAT attack
would at least require an exponential number of iterations
in n. Since the key-size of Anti-SAT is 2n, the number of
SAT attack iterations is also an exponential number in the
key-size of Anit-SAT when g is correctly configured. One
possible choice of g is indicated in Fig. 5(a) where g is chosen
to be a simple n-input AND gate. For AND gates p = 1
which clearly results in exponential complexity of SAT attack
in n. Experimental results to indicate that shall be shown in
Section VI-A. Moreover, we can see that the lower bound λl
is tight when p = 1 or p = 2n−1. This is because that for a n-
input Anti-SAT block, the total number of input combinations
is 2n so the number of iterations to find distinguishing inputs is
upper-bounded λ ≤ 2n. This combined with the Equation (9)
shows that the lower bound is tight when p = 1 or p = 2n−1.

C. Integrating A Circuit with Anti-SAT

When the Anti-SAT block is integrated into a circuit, a set
of wires in the original circuit are connected to the inputs
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Fig. 5. Anti-SAT block design and obfuscation. (a) one possible construction
of function g to ensure large number of SAT attack iterations; (b) an additional
key-gate is inserted for functional obfuscation.

~X of the Anti-SAT block and the output Y of the Anti-SAT
block is integrated to a wire in the original circuit (as shown
in Fig. 4(c)). If ~X are connected to wires that are highly
correlated (e.g. two nets with identical logic), then the overall
security of the block shall be reduced because less possible
input combinations can occur at the inputs of the Anti-SAT
block. The location for Y is also important. An incorrect
key causes Y = 1 for some inputs (for type-0 Anti-SAT).
This incorrect output must impact the overall functionality
of the original circuit. Otherwise the logic will continue to
function correctly despite of wrong key inputs. In conclusion,
the best location of the Anti-SAT block is such that the inputs
~X are highly independent and Y has high observability at
the POs (i.e., changes in Y can be observed by the POs of
the original circuit). Here we propose a secure integration
method: n inputs of the Anti-SAT block ~X are connected to
n PIs of the original circuit. The output Y is connected to a
wire which is randomly selected from wires that have the top
30% observability. The randomness of the location of Y can
assist in hiding the output wire of the Anti-SAT block and
preventing it from being identified and nullified. The impact
of the Anti-SAT integration location on the overall security
shall be evaluated in the experiments (Section VI-A3).

D. Combined with Conventional Logic Locking Techniques

As noted before, conventional logic locking techniques as
indicated in Fig. 1 try to avoid an unauthorized user who
does not have a key from accessing the chip’s functionality.
They attempt to insert key gates in a way to force the chip to
deviate substantially from the actual functionality whenever
a wrong key is provided. These techniques are not immune
to SAT attack (as noted in [1] and also indicated in our
simulations). While our Anti-SAT block can provide provable
measures to increasing the SAT attack complexity, they may
not necessarily cause substantial deviation in the chip func-
tionality for incorrect keys. Hence an unauthorized end user
may still be able to use the chip correctly for “many” inputs
(but not all). Therefore, conventional logic locking techniques
need to be combined with our Anti-SAT block designs for
achieving foolproof logic locking. Moreover, the key-gates
inserted at the original circuit can make the Anti-SAT block
less distinguishable with the original circuit. Without these
key-gates in the original circuit, an attacker has less difficulty
to locate the Anti-SAT block by inspecting the only key-inputs
into the Anti-SAT block.

In this work, the original circuit is locked using the secure
logic locking (SLL), a interference-based logic locking algo-
rithm [6]. This technique has been shown to be secure against
ATPG attack [6] while obfuscating the original functionality.

IV. ANTI-SAT BLOCK OBFUSCATION

Since the Anti-SAT block is independent (logically) of the
locked circuit, it may be removed or nullified by an attacker
if it is identified, thereby leaving only the locked circuit.
Then, the SAT attack can be launched to unlock the circuit
without the Anti-SAT block. These attacks are referred to as
removal attacks. In this section, we first highlight the unique
functional and structural attributes of the Anti-SAT block
which might reveal its location. Then, we summarize potential
removal attacks which exploit these attributes to identify and
nullify the Anti-SAT block. Finally we investigate a unified
obfuscation based on [12] which try to hide the functional
and structural traces of the Anti-SAT block at the same time.
Most importantly, we provide a rigorous proof showing that
the obfuscation method would not weaken the resistance of
the Anti-SAT block to SAT attack.

A. Removal Attacks on Anti-SAT

1) Functional Attributes Based Removal Attacks: In Anti-
SAT, the logic blocks g and g have complementary function-
ality. An attacker can simulate the circuit and find potential
complementary pairs of signals leading to potential identifica-
tion of the Anti-SAT block. Moreover, in order to guarantee
exponential number of SAT attack iterations, the function g
shall be configured to have very small on-set size p. Assuming
p = 1, the outputs of g/g would be 0/1 for most of the time
even when wrong keys are provided for the Anti-SAT block.
In other words, the outputs of g and g will have very high
signal skews of opposite polarities. This functional attribute is
exploited by Signal Probability Skew (SPS) attack [15]. The
basic idea of SPS attack is to find a gate whose inputs have
high signal skews of opposite polarities. Such gate is of great
possibility to be the output gate G in the Anti-SAT block as
shown in Fig. 5(a). Thus, the functional attribute of Anti-SAT
provides a hint for attackers to identify the location of the gate
G and its output signal Y of the Anit-SAT block.

2) Structural Attributes Based Removal Attacks: In the
Anti-SAT block, the internal wires in g and g do not have
connections with the locked circuit. This makes the Anti-SAT
block a relatively isolated and separable structure. When the
size of the Anti-SAT block is roughly known, it’s possible for
an attacker to utilize a partitioning algorithm to partition the
whole circuit into two parts while ensuring that small partition
has about the same size as the Anti-SAT block. If a large
portion of gates of the Anti-SAT block is moved to the small
partition, then the attacker will have less difficulty to identify
the Anti-SAT block.

B. Unified Anti-SAT Obfuscation Technique

To mitigate the vulnerability of Anti-SAT to various removal
attacks, we apply a unified obfuscation technique based on
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(b)

Fig. 6. Design withholding and entanglement technique: (a) design withhold-
ing and (b) wire entanglement.

design withholding and entanglement as proposed in [12].
Fig. 6 illustrate the basic idea of design withholding and
entanglement.

In design withholding (Fig. 6(a)), a portion of design is
replaced with a set of LUT’s to ensure that the original
design detail is not available to the untrusted foundry. Hence,
design withholding technique can be used to hide both the
functionality and implementation detail of the Anti-SAT so
that removal attacks that exploits the functionality attributes
(e.g. signal skews) cannot be performed.

Design entanglement is another obfuscation technique that
aims at obfuscating the interconnect structure of an IC design
by using a wire-entanglement module as shown in Fig. 6(b).
As shown, the basic idea of wire-entanglement module is
to entangle n target wires with r obfuscation wires using
MUX-based interconnect network. When the selection bits of
the MUXes are correctly configured, the wire-entanglement
module will represent the original interconnection. The wire-
entanglement module is useful for obfuscating the interconnect
structure between the Anti-SAT block and the original netlist.
The target wires and obfuscation wires can be selected from
both the original netlist and the Anti-SAT block and a correct
key into the MUXes selection bits will recover the original
interconnection. With the wire-entanglement module, the inter-
connections between the Anti-SAT block and the locked circuit
will be increased and it’s difficult for an attacker to partition
and isolate the Anti-SAT block from the locked circuit.

Fig. 7 illustrates the overall obfuscation for Anti-SAT based
on design withholding and wire entanglement. The design
withholding technique is used to hide the functionality of
the Anti-SAT block and part of the original netlist so that
SPS attack which is based on signal skew analysis cannot be
performed. Moreover, wire-entanglement technique is used to
obfuscate the interconnection between the original circuit and
the Anti-SAT block to prevent the partitioning-based attack.
These two obfuscation techniques will inevitably increase the

Fig. 7. Anti-SAT obfuscation based on design withholding and wire entan-
glement.

performance overhead. However, we present it as the first
unified obfuscation technique to make various removal attacks
on the Anti-SAT block harder. A more light-weight solution
may be explored in future research.

C. SAT-attack Resistance of Anti-SAT After Obfuscation

In Section IV-B, a unified obfuscation technique for Anti-
SAT block based on [12] is discussed. It basically obfuscates
the Anti-SAT block by adding additional logic gates and
key-inputs. Here we use a rigorous proof to shows that the
resistance of Anti-SAT block would not be weakened after
when obfuscation technique is applied. In other words, adding
addition key-gates and key-inputs will not reduce the number
of SAT attack iterations required to decipher the Anti-SAT
block.

The outline of the proof is as follows:
1) We show that after adding one extra key-gate at internal

wires of the Anti-SAT, the number of SAT-attack itera-
tions required to unlock the Anti-SAT block would not
be reduced.

2) We then show that the proof in 1) can be extended to
the case when nobf extra key-gate are added to the Anti-
SAT block for obfuscation.

Now we first show that adding one addition key-gate for
obfuscation will not reduce the number of SAT attack iter-
ations required for unlocking the Anti-SAT. Without loss of
generality, we insert the extra key-gate as shown in Fig. 5(b)

Theorem 2. Assuming a new key-gate K2n+1 is inserted into
the Anti-SAT block (with p = 1) for obfuscation (as shown in
Fig. 5(b)), the number of SAT attack iterations needed by the
SAT attack to decipher the correct key will remain to be 2n.

Proof: To show that the total number of SAT attack iterations
would still be 2n, here we show that any input combination
(with decimal value from 0 to 2n−1) is indeed a distinguishing
input ~Xd

i . It means that each of these input combinations can
identify a unique set of wrong keys that can only be identified
by it. In other words, to identify all wrong key combinations,
the SAT attack requires 2n DIOs (i.e., 2n iterations). The
outline of the proof is as follows. We first derive an equation
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Fig. 8. Analysis of SAT attack on Anti-SAT in Fig. 5(b) when an extra key-
gate is inserted for functional obfuscation. (a) Wrong key combinations (with
~K2n+1 = 0) identified when ~Xd

i = (00...00); (b) Wrong key combinations
(with ~K2n+1 = 0) identified when ~Xd

i = (00...01).

(Equation (12)) which represents the wrong key combinations
that can be identified by a DIO ( ~Xd

i ,
~Y di ). Based on this

equation, we figure out a one-to-one matching between an
input combination (anyone from 0 to 2n − 1) and a set of
unique wrong key combinations (Equation (15)). Therefore,
every input combination (from 0 to 2n−1) is a distinguishing
input and the SAT attack requires 2n iterations to use all DIOs
to identify all the wrong key combinations.

Let’s first derive the equation which represents the wrong
key combinations that can be identified by a DIO ( ~Xd

i ,
~Y di ).

Notice that for any input combinations (including the dis-
tinguishing inputs ~Xd

i ), the correct output (when provided a
correct key) is 0 for type-0 Anti-SAT. Therefore, a wrong key
combination which is identified by ( ~Xd

i ,
~Y di ) must result in

incorrect output ~Y di = 1. This condition ( ~Xd
i , ~Y di = 1) is

equivalent to:

[(K2n+1 = 0) ∧ (g( ~Xd
i ⊕ ~Kl1) = 1) ∧ (g( ~Xd

i ⊕ ~Kl2) = 1)]

∨[(K2n+1 = 1) ∧ (g( ~Xd
i ⊕ ~Kl1) = 0) ∧ (g( ~Xd

i ⊕ ~Kl2) = 1)]
(11)

This is equivalent to

[(K2n+1 = 0) ∧ ( ~Xd
i ⊕ ~Kl1 ∈ LT ) ∧ ( ~Xd

i ⊕ ~Kl2 ∈ LF )]
∨[(K2n+1 = 1) ∧ ( ~Xd

i ⊕ ~Kl1 ∈ LF ) ∧ ( ~Xd
i ⊕ ~Kl2 ∈ LF )]

(12)

Basically, Equation (12) indicates that any key combinations
satisfying this equation would be a wrong key combination
because it will result in a wrong output Y di = 1 for a given
distinguishing input ~Xd

i . Notice that because the function g in
Fig. 5(b) is an n-input AND gate, we have

LT = {(11...11)}, LF = Bn \ LT (13)

where Bn is the set of all n-bit boolean vectors, and Bn \LT
means every combinations of an n-bit Boolean vector except
(11...11).

Now we show the one-to-one matching between an input
combination (from 0 to 2n − 1) and a set of unique wrong
key combinations. Based on Equation (12), we can see that
when K2n+1 = 0, to satisfy Equation (12), we need to ensure
~Xd
i ⊕ ~Kl1 ∈ LT and ~Xd

i ⊕ ~Kl2 ∈ LF . Since LT has only
one vector (11...11), for any ~Xd

i , we only have one way of

selecting ~Kl1 to make ~Xd
i ⊕ ~Kl1 = (11...11), that is ~Kl1 =

¬ ~Xd
i (bit-wise negation), i.e.,

~Kl1[j] = ¬ ~Xd
i [j], j = 1...n (14)

On the other hand, since LF = Bn \LT , for any ~Xd
i , we have

2n − 1 ways to select ~Kl2 such that ~Xd
i ⊕ ~Kl2 ∈ LF , those

are ~Kl2 ∈ Bn \ ¬ ~Xd
i .

Therefore, when K2n+1 = 0, the set of wrong key combi-
nations identified by ( ~Xd

i , Y
d
i ) is:

( ~Kl1 = ¬ ~Xd
i , ~Kl2 ∈ (Bn \ ¬ ~Xd

i ),K2n+1 = 0) (15)

To illustrate above equation, Fig. 8 shows the wrong key
combinations (with ~K2n+1 = 0) identified by two DIOs
( ~Xd

1 = 00...00, Y d1 = 1) and ( ~Xd
2 = 00...01, Y d2 = 1). From

Equation (15) and Fig. 8, we can see that since ~Kl1 = ¬ ~Xd
i ,

there exists an one-to-one matching between each pair of ~Xd
i

and ~Kl1. In other words, any ~Xd
i value (from 0 to 2n−1) can

identify a unique set of wrong key combinations in a form
of Equation (15). It’s unique because that ~Kl1 = ¬ ~Xd

i and
different ~Xd

i would result in different ~Kl1. Therefore, every
input combination (from 0 to 2n − 1) is a distinguishing
input because it can identify a unique set of wrong key
combinations that can only be identified by it. Thus, the SAT
attack requires 2n DIOs (i.e., 2n iterations) to identify all
wrong key combinations.

�

Theorem 3. Assuming nobf new key-gates are inserted into
the Anti-SAT block (with p = 1) for obfuscation, the number
of SAT attack iterations needed by the SAT attack to decipher
the correct key will be at least 2n.

The proof for Theorem 2 shows that after adding a new
key-gate to the Anti-SAT block for obfuscation(Fig. 5(b)), the
number of SAT attack iterations remains to be 2n. Notice
that this conclusion is also true when nobf additional key-
gates are inserted to the Anti-SAT for obfuscation Let’s denote
the extra keys for obfuscation as ~Kobf and its correct key is
~KC
obf . Based on Eqn. (15), we can conclude that any Anti-SAT

input combination is a distinguishing input ~Xd
i because it can

identify a unique set of wrong keys which is:

( ~Kl1 = ¬ ~Xd
i , ~Kl2 ∈ (Bn \ ¬ ~Xd

i ), ~Kobf = ~KC
obf ) (16)

and this set of wrong keys can only be identified by this
input ~Xd

i . Hence the SAT attack requires at least 2n DIOs
(i.e., 2n iterations) to identify all wrong key combinations.
Therefore, adding additional key-gates at different locations
for obfuscation will not weaken the Anti-SAT’s resistance to
the SAT attack.

�

V. DESIGN FLOW OF ANTI-SAT BASED LOGIC LOCKING

Fig. 9 shows the overall design flow of Anti-SAT based logic
locking. Firstly, an original netlist is locked using conventional
logic locking techniques to form a locked netlist. The key-
gates inserted at the original netlist can cause substantial
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TABLE I
IMPACT OF p ON THE SECURITY LEVEL OF ANTI-SAT (WHEN n = 16)

p 1 81 243 2187 30375 63349 65293 65455 65535
Type-0 # Iterations - 10675 4760 901 273 898 4647 - -

Anti-SAT Time (s) timeout 16555.8 8746.12 174.743 3.24 307.104 12932.3 timeout timeout
Type-1 # Iterations - - 4853 877 285 881 4691 - -

Anti-SAT Time (s) timeout timeout 3559.96 55.108 3.148 187.896 1048.19 timeout timeout

Fig. 9. Design flow of Anti-SAT based Logic Locking.

functionality deviation for incorrect keys. Besides, it makes
Anti-SAT block less distinguishable with the original circuit
since key-gates are now inserted at both the original circuit and
the Anti-SAT block. Secondly, an Anti-SAT block is designed
by selecting type-0 or type-1 and tuning n and p of the logic
block g. In this work, we select type-0 Anti-SAT and construct
an n-bit baseline Anti-SAT block (n-bit BA) using an n-input
AND gate (p = 1) as the logic block g and an n-input NAND
gate as g to ensure large number of iterations. However notice
that this is not the only possible choice for g and g. As we have
shown in Section III-B, other function g that has sufficiently
large n and sufficiently small (or large) p can also guarantee
large number of iterations. Then, the baseline Anti-SAT is
integrated into the locked netlist using secure integration (as
described in Section III-C). After that, the Anti-SAT block is
obfuscated to counter potential removal attacks using design
withholding and wire entanglement techniques.

VI. EXPERIMENTS AND RESULTS

In this section, we evaluate the security level of our pro-
posed Anti-SAT blocks. The security level is evaluated by the
number of SAT attack iterations as well as the execution time
to infer the correct key. SAT attack tools and benchmarks used
are from [1]. The SAT attack tool uses the Lingeling [18]
SAT solver. The CPU time limit is set to 10 hours as [1]. The
experiments are running on an Intel Core i5-2400 CPU with
16GB RAM.

A. Anti-SAT Block Design
We firstly evaluate the security level of an Anti-SAT block

(Fig. 4) with respect to the on-set size p and the input-size

TABLE II
IMPACT OF n ON THE SECURITY LEVEL OF ANTI-SAT (WHEN p = 1)

n 8 10 12 14 16
Type-0 # Iterations 255 1023 4095 16383 -

Anti-SAT Time (s) 1.14569 20.024 324.727 4498.03 timout
Type-1 # Iterations 255 1023 4095 16383 -

Anti-SAT Time (s) 1.06 14.612 273.1 3658.76 timeout

TABLE III
COMPARISON BETWEEN SECURE AND RANDOM INTEGRATION.

n 8 12 16

Random
Avg. # Iteration 151 1748 11461
Avg. Time (s) 1.4296 162.529 10272.4

Secure
# Iteration 255 4095 -
Time (s) 3.452 759.924 timeout

n of function g. Both type-0 Anti-SAT (Fig. 4(a)) and type-
1 Anti-SAT (Fig. 4(b)) are evaluated. Then, we integrate the
Anti-SAT blocks into a circuit and validate the effectiveness
of our proposed secure integration approach by comparing it
with a random integration approach.

1) On-set size p: As shown in Equation (9), the lower
bound of SAT attack iterations λl required to unlock the Anti-
SAT block is related to both n and p. If n is fixed, λl is
maximized when p→ 1 or p→ 2n− 1. Table I illustrates the
impact of p on the security level of 16-bit Anti-SAT blocks
(type-0 and type-1). For both types of Anti-SAT, when p→ 1
and p → 216 − 1 = 65535, the SAT attack algorithm fails
to unlock the Anti-SAT block in 10 hours. This is because
that it requires a large number of iterations to rule out all the
incorrect key combinations. As p → 216/2 (the worst case),
the SAT attack begins to succeed using less and less iterations
and execution time for both types of Anti-SAT. This result
validates that for a fixed n, when p is very small or very
large, λ will be large and the SAT attack will fail within a
practical time limit.

2) Input-size n: As shown in Equation (9), λl is an ex-
ponential function of n when p is very low (p → 1) or very
high (p→ 2n−1). Table II shows the exponential relationship
between λ and n when p = 1 for type-0 and type-1 Anti-SAT
block. It can be seen that as n increases, the simulated SAT
iterations and execution time grows exponentially. Besides, the
number of iterations validates that the lower bound λl is tight
when p = 1, as discussed in Section III-B.

Comparing type-0 and type-1 Anti-SAT blocks, we can see
that although the number of SAT attack iterations needed to
decrypt these two types of Anti-SATs (for same n and p)
are almost the same, the execution time varies. The type-0
Anti-SAT generally requires more CPU time than the type-
1 Anti-SAT. This could be related to the SAT solver used,
which might solve the SAT formula of type-1 Anti-SAT more
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TABLE IV
BENCHMARK INFORMATION OF 6 CIRCUITS FROM ISCAS85 AND MCNC.

Circuit #PI #PO #Gates

Key-size
SLL n-bit
(5%) BA

c1355 41 32 546 29

2n

c1908 33 25 880 46
c3540 50 22 1669 86
dalu 75 16 2298 119
des 256 245 6473 336
i8 133 81 2464 130

efficiently. Therefore, we use type-0 Anti-SAT to construct the
n-bit BAs and n-bit OAs in the following experiments.

3) Secure Integration of Anti-SAT: Here we compare two
approaches of integrating the Anti-SAT block with the original
circuit, namely secure integration and random integration. For
the secure integration, n inputs of the Anti-SAT block ~X are
connected to n PIs of the original circuit. The output Y is
connected to a wire which is randomly selected from wires
that have the top 30% observability. The randomness of the
location of Y can assist in hiding the output of the Anti-SAT
block. For the random integration, the inputs ~X are connected
to random wires of the original circuit, and the output Y is
connected to a random wire. For both cases, the wire for Y
has a later topological order than that of the wires for ~X to
prevent combinational loop. Table III compares two integration
approaches when three n-bit BA (n = 8, 12, 16, p = 1) are
integrated into the c1355 circuit from ISCAS85. It can be seen
that for three Anti-SAT blocks, secure integration is better than
random integration as the former requires more iterations (∼
2×) and execution time (∼ 3×) for the SAT attack algorithm
to reveal the key. Therefore, in the following experiments, we
adopt the secure integration as the way to integrate the Anti-
SAT block into a circuit.

B. Anti-SAT Block Application

We evaluate the security level of the Anti-SAT block when
it’s applied to 6 circuits of different sizes from ISCAS85
and MCNC benchmark suites. The benchmark information is
shown in Table IV. We compare two logic locking configura-
tions as follows:
• SLL: The original circuit is locked using the secure

logic locking (SLL), a interference-based logic locking
algorithm [6]. This technique has been shown to be secure
against ATPG attack [6] while obfuscating the original
functionality.

• SLL (5%) + n-bit BA: In this configuration, the original
circuit is locked with SLL with 5% area overhead.
Besides, we integrate an n-bit BA into the locked circuit
using the secure integration (described in Section III-C).
For an n-bit BA, its key-size is kBA = 2n because 2n
keys are inserted at the inputs of g and g.

We compare the security level of two configurations when
the same number of keys are used in each configuration.
We investigate the sensitivity of SAT attack complexity on
the increase of key-size. For SLL, the extra key-gates are
inserted to the original circuit. For SLL(5%) + n-bit BA/OA,
the extra key-gates are used in the Anti-SAT block and

increasing the key-size also indicates increasing the input-
size n because we construct the BA with kBA = 2n. In
this experiment, we experiment the n-bit BA of input-size
nBA = 8, 10, 12, 14, 16, 18, 20. The key-sizes are shown in
Table IV.

The SAT attack results on two configurations w.r.t increas-
ing key-size are shown in Fig. 10. For each benchmark, the
top figure shows the SAT attack execution time and the bottom
figure shows the number of SAT attack iterations, both in
log scale. It can be seen that for SLL, increasing the key-
size cannot effectively increase SAT attack complexity. For
all benchmarks locked with SLL, they can be easily unlocked
using at most 67 iterations and 1070.85 seconds. On the other
hand, when the Anti-SAT blocks are integrated, the SAT attack
complexity increases exponentially with the key-size in the
Anti-SAT block. Finally, we can see that for all benchmarks,
the SAT attack fails to unlock the circuits within 10 hours
when a 16-bit BA is integrated (as shown by the fifth data
point w.r.t. x-axis).

C. Performance Overhead of the Anti-SAT Block

In our construction, a n-bit baseline Anti-SAT block consists
of logic blocks g and g, an AND2 gate, 2n+ 1 XOR/XNOR
gates. These extra logic gates will introduce performance over-
head such as area, power and delay. Different implementation
of g and g will result in different overhead. The performance
overhead will be increased when sub-optimal synthesis is
utilized to obfuscate the Anti-SAT block. In our experiments,
we utilize a n-bit AND gate and a n-bit NAND gate to
implement the function g and g, each consists of n−1 AND2
gates. The estimated area for a n-bit BA is 4n additional gates
while the number of SAT attack iteration required is 2n. It can
be seen that a slight increase in area overhead of the Anti-
SAT block can result in exponential increase in SAT attack’s
computation complexity. Besides, the size of the Anti-SAT
block does not scale with the benchmark size. It only scales
with the attacker’s computation power.

To counter removal attacks, we investigate both the design
withholding and entanglement techniques. These two obfusca-
tion techniques will inevitably increase the performance over-
head. However, we present it as the first unified obfuscation
technique to make various removal attacks harder. A more
light-weight solution may be explored in future research.

VII. RELATED WORK

A. SAT Attack Resilient Logic Locking

To increase the execution time of SAT attack, [19] proposed
to add an AES circuit (with a fixed AES key) into a locked
circuit. As the AES circuit (behaves as an one-way function)
is hard to be solved by a SAT solver, the SAT attack will fail
to find a satisfiable assignment within a practical time limit.
Although this approach is effective, the AES circuit leads to a
significant performance overhead since a standard AES circuit
implementation requires a large number of gates [20]. On the
contrary, we have shown that the Anti-SAT would result in a
much smaller overhead. A slight increase in the overhead for
Anti-SAT can make the SAT attack exponentially harder.
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Fig. 10. SAT attack results on 6 benchmarks with three logic locking configurations: SLL and SLL(5%) + n-bit BA. Timeout is 10 hours (3.6× 104 s). The
dashed lines are the curve fitting results when the SAT attack has time-outed after certain key-size.

In [21], a SAT attack resistant logic locking (SARLock)
technique was proposed which can make the attack iterations
grow exponentially in key-size. Though [21] and this work are
developed independently, they share a similar idea to defend
the SAT attack, which is to integrate an additional SAT-attack
resistant logic block into the locked circuit. Here we compare
two techniques and highlight the advantages of our proposed
Anti-SAT based logic locking. Firstly, the Anti-SAT block can
be configured differently (by tuning the functionality of logic
block g) while the SARLock has only one fixed configuration.
We can construct different Anti-SAT blocks by tuning the
parameters n and p to achieve the same lower bound of SAT
attack iterations. The AND/NAND configuration is a simple
illustration. The flexibility in configuration is a great advantage
because we don’t require a fixed structure like SARLock, and
hence its less likely to be identified. Secondly, in this work
we have studied the impact of locations for integrating the
Anti-SAT block and proposed a secure integration method
(Section III-C) which takes into account the need of hiding
the location of output wire Y of the Anti-SAT block. Last but
not least, we have proposed both functionality and structural
obfuscation techniques (Section IV) to protect the Anti-SAT
from the removal attacks such as the SPS attack and the
partitioning based attack.

B. SAT Attack on IC Camouflaging

IC camouflaging is a reverse-engineering prevention tech-
nique that hides a circuit’s functionality with camouflaging
cells. Camouflaging cells are logic cells that look alike but
have different functionalities (e.g. NAND, NOR and XOR).

Since each camouflaging cell can be modeled as a key-
controlled MUX gate with a set of possible functionalities
(e.g. NAND, NOR and XOR) as inputs, SAT attack can also
be applied to recover the functionality of the camouflaging
cells [22], [23]. To counter the SAT attack, various coun-
termeasures have been proposed [24], [25], which aim at
increasing the de-camouflaging effort exponentially harder in
the number of camouflaged gates.
• For [24], although only one n-input AND tree is inserted,

there exists a worst case such that only one iteration can
eliminate all wrong key combinations. This happens when
the distinguishing input for the AND tree is ( ~X=11...11).
This will eliminate all wrong key combinations because
any key that is not (00...00) will result in incorrect output
0. To avoid having this worst case, we choose to use a
complementary g and g structure.

• For [25], the basic idea is to add or remove a min-term
in the original circuit and then add a logic block (called
CamoFix) to provide a complementary min-term to fix it.
This is basically the complementary structure as the Anti-
SAT. A min-term is basically an AND tree. The technique
might only need to added one AND tree. However, to add
or remove a min-term in the original circuit, the original
circuit shall be re-synthesized and it might result in extra
overhead.

In terms of removal attack, both [24] and [25] would subject
to removal attacks if the AND tree structure is not obfuscated.
For [24], if the output of the AND tree is identified, it can be
simply nullified. For [25], removal attack is harder because
simply nullifying the AND tree output will result in error
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for one min-term. But since the error is only for one min-
term it might be tolerable for many applications. Therefore,
some degree of obfuscation to hide the AND tree structure is
necessary for all three techniques.

VIII. CONCLUSION

In this paper, we present a circuit block called Anti-SAT to
mitigate the SAT attack on logic locking. We show that the
iterations required by the SAT attack to reveal the correct key
in the Anti-SAT block is an exponential function of the key-
size in the Anti-SAT block. The Anti-SAT block is integrated
to a locked circuit to increase its resistance to the SAT attack.
A unified obfuscation techniques has been proposed to protect
the Anti-SAT block from removal attacks such as the SPS
attack and the partitioning based attack. Overall, our proposed
Anti-SAT based logic locking can effectively thwart the SAT
attack, the SPS attack and the partitioning based attack.
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