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Abstract

Private set intersection (PSI) allows two parties, who each hold a set of items, to compute the
intersection of those sets without revealing anything about other items. Recent advances in PSI
have significantly improved its performance for the case of semi-honest security, making semi-
honest PSI a practical alternative to insecure methods for computing intersections. However,
the semi-honest security model is not always a good fit for real-world problems.

In this work we introduce a new PSI protocol that is secure in the presence of malicious
adversaries. Our protocol is based entirely on fast symmetric-key primitives and inherits impor-
tant techniques from state-of-the-art protocols in the semi-honest setting. Our novel technique
to strengthen the protocol for malicious adversaries is inspired by the dual execution technique
of Mohassel & Franklin (PKC 2006). Our protocol is optimized for the random-oracle model,
but can also be realized (with a performance penalty) in the standard model.

We demonstrate our protocol’s practicality with a prototype implementation. To securely
compute the intersection of two sets of size 220 requires only 13 seconds with our protocol, which
is ∼ 12× faster than the previous best malicious-secure protocol (Rindal & Rosulek, Eurocrypt
2017), and only 3× slower than the best semi-honest protocol (Kolesnikov et al., CCS 2016).

1 Introduction

Private set intersection (PSI) allows two parties with respective sets X and Y to compute the
intersection X ∩ Y , without revealing the remaining elements in X or Y . PSI and closely related
protocols have numerous applications including auctions [NPS99], remote diagnostics [BPSW07],
DNA searching [TKC07], social network check-ins, private contact discovery [Mar14], botnet de-
tection, advertising [PSSZ15], and many others.

PSI is a special case of secure two-party computation. One may consider two adversarial models
for secure computation: the semi-honest model, where the protocol is protected against adversaries
who follow the protocol but try to learn as much as possible from the messages they have seen;
and the malicious model, where the protocol is protected against adversaries who may arbitrarily
deviate from the protocol. Over the last several years there has been significant progress made in
efficient PSI protocols for the semi-honest model. In this work, we focus on the more demanding
malicious security model.

1.1 Paradigms for PSI

To put our results into context, we review different approaches for PSI, with a special emphasis on
those approaches which achieve malicious security.
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Based on Oblivious Transfer. Pinkas, Schneider & Zohner (PSZ) [PSZ14] proposed a tech-
nique for PSI that relies heavily on oblivious transfers (OT). Using modern OT extension pro-
tocols [IKNP03, KK13, ALSZ13, KOS15], it is possible to perform millions of OT instances per
second, almost entirely from cheap symmetric-key cryptographic operations.

The PSZ approach for PSI has been improved in a series of works [PSSZ15, PSZ16, OOS16,
KKRT16], with the protocol of Kolesnikov et al. [KKRT16] currently being the fastest PSI protocol
against semi-honest adversaries. There have been modifications of the protocol [OOS16] that
provide security against a restricted class of malicious adversaries (i.e., the protocol protects against
a malicious Alice only), but so far there has been no success in leveraging this most promising PSI
paradigm to provide security in the full malicious security model.

Based on Bloom Filters. Dong, Chen & Wen [DCW13] describe an approach for PSI based on
representing the parties’ sets as Bloom filters. This approach also relies heavily on OT extension,
and is reasonably efficient (though not as fast as the PSZ paradigm above).

The authors of [DCW13] described a protocol that was claimed to have security against mali-
cious adversaries, but that was later found to have bugs [Lam16, RR17]. In a prior work [RR17],
we gave a protocol based on Bloom filter encodings that indeed has security against malicious ad-
versaries. Previously this protocol was the fastest in the malicious security model. In [RR17] we
also argued that the use of Bloom filters in this paradigm is likely to have an inherent dependence
on the random-oracle model.

Based on Diffie-Hellman. One of the first protocols proposed for PSI is due to Meadows [Mea86]
and fully described by Huberman, Franklin & Hogg [HFH99]. It uses a simple modification of the
Diffie-Hellman key agreement protocol to achieve PSI in the presence of semi-honest adversaries.
De Cristofaro, Kim & Tsudik [DKT10] showed how to augment the protocol to provide security
against malicious adversaries.

The main benefit of this Diffie-Hellman paradigm is its extremely low communication com-
plexity. Indeed, protocols in this paradigm have by far the smallest communication complexity.
However, the Diffie-Hellman paradigm requires expensive public-key operations for each item in the
parties’ sets, making them much slower than the OT-based approaches that require only a constant
number of public-key operations.

Other paradigms. Freedman, Nissim & Pinkas [FNP04] proposed an approach for PSI based
on oblivious polynomial evaluation. This technique was later extended to the malicious setting
[DMRY09, HN10, FHNP14]. The idea behind these protocols is to construct a polynomial Q whose
roots are Alice’s items. The coefficients of Q are homomorphically encrypted and sent to the Bob.
For each of Bob’s items y, he homomorphically evaluates ŷ := r ·Q(y) + y for a random r. When
Alice decrypts the result, she will see ŷ = y for all y in the intersection. These protocols require
expensive public-key operations for each item.

Huang, Evans & Katz [HEK12] discuss using general-purpose secure computation (garbled
circuits) to perform PSI. Later improvements were suggested in [PSZ14, PSSZ15]. At the time of
[HEK12], such general-purpose PSI protocols in the semi-honest setting were actually faster than
other special-purpose ones. Since then, the results in OT-based PSI have made special-purpose
PSI protocols significantly faster. However, we point out that using general-purpose 2PC makes it
relatively straight-forward to achieve security against malicious adversaries, since there are many
well-studied techniques for general-purpose malicious 2PC.

Kamara et al. [KMRS14] presented techniques for both semi-honest and malicious secure PSI
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in a server-aided model. In this model the two parties who hold data enlist the help of an untrusted
third party who carries out the majority of the computation. Their protocols are extremely fast
(roughly as fast as the plaintext computation) and scale to billions of input items. In our work,
we focus on on the more traditional (and demanding) setting where the two parties do not enlist a
third party.

1.2 Our Results

From the previous discussion, we see that the fastest PSI paradigm for semi-honest security (due
to PSZ) has no fully malicious-secure variant. We fill this gap by presenting a protocol based on
the PSZ paradigm that achieves malicious-secure private set intersection.

We start with the observation that in the PSZ paradigm the two parties take the roles of “sender”
and “receiver,” and it is relatively straight-forward to secure the protocol against a malicious
receiver [OOS16]. Therefore our approach is to run the protocol in both directions, so that each
party must play the role of receiver at different times in the protocol. This high-level idea is inspired
by the dual-execution technique of Mohassel & Franklin [MF06]. In that work, the parties perform
two executions of Yao’s protocol in opposite directions, taking advantage of the fact that Yao’s
protocol is easily secured against a malicious receiver. In that setting, the resulting dual-execution
protocol achieves malicious security but leaks one adversarially-chosen bit. In our setting, however,
we are able to carefully combine the two PSI executions in a way that achieves the usual notion of
full malicious security.

Because our protocol is based on the fast PSZ paradigm, it relies exclusively on cheap symmetric-
key cryptography. We have implemented our protocol and compare it to the previous state of the
art. We find our protocol to be 12× faster than the previous fastest malicious-secure PSI protocol
of [RR17], on large datasets. Our implementation can securely compute the intersection of million-
item sets in only 12.6 seconds on a single thread (2.9 seconds with many threads).

Finally, as mentioned above, the previous fastest malicious PSI protocol [RR17] appears to rely
inherently on the random-oracle model. We show that our protocol can be instantiated in the
standard model. Both our standard model and random-oracle optimized protocols are faster than
[RR17] in the LAN setting, with our latter protocol being the fastest across all settings.

2 Preliminaries

2.1 Notation

Alice is the sender and Bob is the receiver who learns the intersection. Alice holds the set X and
Bob Y , where X,Y ⊆ {0, 1}σ. For simplicity, we assume |X| = |Y | = n. The computational and
statistical security parameters are denoted as κ and λ. Let [m] := {1, ...,m}.

2.2 Security for Secure Computation

We define malicious security with the standard notation for secure computation. Namely, our
protocol is malicious secure in the universal composability (UC) framework of Canetti [Can01].
This simulation based paradigm defines security with respect to two interaction,

• Real interaction: a malicious adversary A attacks the honest party who runs the protocol π.
An environment Z chooses the honest party’s input and is forwarded their final output of π.
Z may arbitrarily interact with A. The protocol is in a hybrid world where A and the honest
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Parameters: σ is the bit-length of the parties’ items. n is the size of the honest parties’ sets.
n′ > n is the allowed size of the corrupt party’s set.

• On input (Receive, sid, Y ) from Bob where Y ⊆ {0, 1}σ, ensure that |Y | ≤ n if Bob is
honest, and that |Y | ≤ n′ if Bob is corrupt. Give output (bob-input, sid) to Alice.

• Thereafter, on input (Send, sid, X) from Alice where X ⊆ {0, 1}σ, likewise ensure
that |X| ≤ n if Alice is honest, and that |X| ≤ n′ if Alice is corrupt. Give output
(Ouput, sid, X ∩ Y ) to Bob.

Figure 1: Ideal functionality for private set intersection (with one-sided output)

party have access to the ideal Fencode functionality of Figure 2. We define real[π,Z,A] to
be the output of Z in this interaction.

• Ideal interaction: a malicious adversary S and an honest party interact with the ideal FPSI

functionality of Figure 1. The honest party forwards the input provided by the environment
Z to the FPSI functionality and returns their output to Z. We define ideal[FPSI,Z,S] to be
the output of Z in this interaction.

The protocol π UC-securely realizes FPSI if: for all PPT adversaries A, there exists a PPT
simulator S, such that for all PPT environments Z:

real[π,Z,A] ≈ ideal[FPSI,Z,S]

where “≈” denotes computational indistinguishable.

3 Overview of PSZ Paradigm

Pinkas, Schneider, and Zohner [PSZ14] (hereafter PSZ) introduced a paradigm for PSI that is
secure against semi-honest adversaries. There have since been several improvements made to this
general paradigm [PSSZ15, KKRT16, OOS16]. In particular, the implementation of [KKRT16] is
the fastest secure PSI protocol to date. Adapting this paradigm to the malicious security model is
therefore a natural direction.

In this section, we describe the PSZ paradigm, and discuss what prevents it from achieving
malicious security.

3.1 High-Level Overview

The PSZ paradigm works as follows. First, for simplicity suppose Alice has n itemsX = {x1, . . . , xn}
while Bob has one item y. The goal of private set inclusion is for Bob to learn whether y ∈ X,
and nothing more. We abstract the main step of the protocol as an oblivious encoding step,
which is similar in spirit to an oblivious pseudorandom function [FIPR05]. The parties interact so
that Alice learns a random mapping F , while Bob learns only F (y). The details of this step are
not relevant at the moment. Then Alice sends F (X) = {F (x1), . . . , F (xn)} to Bob. Bob can check
whether his value F (y) is among these values and therefore learn whether y ∈ {x1, . . . , xn}. Since
F is a random mapping, the other items in F (X) leak nothing about the set X.

The protocol can be extended to a proper PSI protocol, where Bob has a set of items Y =
{y1, . . . , yn}. The parties simply perform n instances of the private set inclusion protocol, one for
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each yi, with Alice using the same input X each time. This leads to a PSI protocol with O(n2)
communication.

To reduce the communication cost, the parties can agree on a hashing scheme that assigns their
items to bins. In PSZ, they propose to use a variant of Cuckoo hashing. For the sake of example,
suppose Bob uses cuckoo hashing with two hash functions to assign his items to bins. In cuckoo
hashing, Bob will assign item y to the bin with index either h1(y) or h2(y), so that each bin contains
at most one item. Alice will assign each of her items x to both bins h1(x) and h2(x), so that each of
her bins may contain several items. Overall, for each bin Alice has several items while Bob has (at
most) one, so they can perform the private set inclusion protocol for each bin. There are of course
many details to work out, but by using this main idea the communication cost of protocol can be
reduced to O(n).

3.2 Insecurity against Malicious Adversaries

The PSZ protocol and its followups are proven secure in the semi-honest setting, but are not secure
against malicious adversaries. There are several features of the protocol that present challenges in
the presence of malicious adversaries:

• Even if the “oblivious encoding” subprotocol is made secure against malicious adversaries, the
set-inclusion subprotocol does not become malicious-secure. The technical challenge relates
to the problem of the simulator extracting inputs from a malicious Alice. The simulator
sees only the random mapping F and the items {F (x1), . . . , F (xn)} sent by Alice. For the
simulator to extract Alice’s effective input, the mapping F must be invertible. However, the
oblivious encoding instantiations generally do not result in an invertible F .

• In the PSZ protocol, Bob uses cuckoo hashing to assign his items to bins. Each item y may
be placed in two possible locations, and the final placement of item y depends on all of Bob’s
other items. A corrupt Alice may exploit this in the protocol to learn information about
Bob’s set. In particular, Alice is supposed to place each item x in both possible locations
h1(x) and h2(x). A corrupt Alice may place x only in h1(x). Then if x turns out to be in
the intersection, Alice learns that Bob placed x in h1(x) but not h2(x). As just mentioned,
whether Bob places an item according to h1 or h2 depends on all of Bob’s items, so it is
information that cannot be simulated in the ideal world.

• In the O(n2) PSI protocol, Alice is supposed to run many instances of the simple set-inclusion
protocol with the same set X each time. However, a malicious Alice may use different sets
in different instances. In doing so, she can influence the output of the protocol in ways that
cannot be simulated in the ideal world.

4 Oblivious Encoding

As discussed in the previous section, the PSZ paradigm uses an oblivious encoding step. In
Figure 2 we define an ideal functionality for this task. Intuitively, the functionality chooses a
random mapping F , allows the receiver to learn F [c] for a single c, and allows the sender to learn
F [c] for an unlimited number of c’s. However, if the sender is corrupt, the functionality allows
the sender to choose the mapping F (so that it need not be random). This reflects what our
instantiations of this functionality are able to achieve.

We describe two instantiations of this functionality that are secure in the presence of malicious
adversaries.
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Parameters: two parties denoted as Sender and Receiver. The input domain {0, 1}σ and
output domain {0, 1}` for a private F .

1. [Initialization] Create an initially empty associative array F : {0, 1}σ → {0, 1}`.

2. [Receiver Encode] Wait for a command (Encode, sid, c) from the Receiver, and record
c. Then:

3. [Adversarial Map Choice] If the sender is corrupt, then send (RecvInput, sid) to
the adversary and wait for a response of the form (Deliver, sid, Fadv). If the sender is
honest, set Fadv = ⊥. Then:

4. [Receiver Output] If Fadv = ⊥ then choose F [c] uniformly at random; otherwise set
F [c] := Fadv(c), interpreting Fadv as a circuit. Give (Output, sid, F [c]) to the receiver.
Then:

5. [Sender Encode] Stop responding to any requests by the receiver. But for any number
of commands (Encode, sid, c′) from the sender, do the following:

• If F [c′] doesn’t exist and Fadv = ⊥, choose F [c′] uniformly at random.

• If F [c′] doesn’t exist and Fadv 6= ⊥, set F [c′] := Fadv(c
′).

• Give (Output, sid, c′, F [c′]) to the sender.

Figure 2: The Oblivious Encoding ideal functionality Fencode

In the programmable-random-oracle model. Orrù, Orsini & Scholl [OOS16] describe an
efficient 1-out-of-N oblivious transfer protocol, for random OT secrets and N exponential in the
security parameter. The protocol is secure against malicious adversaries. In order to model an
exponential number of OT secrets, they give an ideal functionality which is identical to ours except
that the adversary is never allowed to choose the mapping. Hence, their protocol also realizes
our functionality as well (the simulator simply chooses Fadv = ⊥ so that the functionality always
chooses a random mapping).

Their protocol is proven secure in the programmable random-oracle model. Concretely, the cost
of a single OT/oblivious encoding in their protocol is roughly 3 times that of a single semi-honest
1-out-of-2 OT.

In the standard model. In the standard model, it is possible to use a variant of the semi-honest
oblivious encoding subprotocol from PSZ. The protocol works as follows, where the receiver has
input c:

• The sender chooses 2σ random κ-bit strings: m[1, 0],m[1, 1], . . . ,m[σ, 0],m[σ, 1].

• The parties perform σ instances of OT, where in the ith instance the sender provides inputs
m[i, 0],m[i, 1], the receiver provides input ci and receives m[i, ci].

• The receiver computes output
⊕

i PRF(m[i, ci], c), where PRF is a secure pseudorandom func-
tion with ` bits of output.

• To obtain the encoding of any value c′, the receiver can compute
⊕

i PRF(m[i, c′i], c
′).
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For security against a corrupt receiver, the simulator can extract c from the receiver’s OT inputs.
We can then argue that all other oblivious encodings look random to the receiver. Indeed, for every
c′ 6= c, there is a position i in which c′i 6= ci, so the corresponding encoding

⊕
i PRF(m[i, c′i], c

′)
contains a term PRF(m[i, c′i], c

′) that is random from the receiver’s point of view.
For security against a corrupt sender, the simulator can extract the m[i, b] values from the

sender’s OT inputs. It can then hard-code these values into a circuit Fadv(c) =
⊕

i PRF(m[i, ci], c)
and send this circuit to the ideal functionality.

The cost of this protocol is σ instances of OT per oblivious encoding. Since the protocol uses
OTs with chosen secrets (not random secrets chosen by the functionality), it can be instantiated
in the standard model.1

5 A Warmup: Quadratic-Cost PSI

The main technical idea for achieving malicious security is to carefully apply the dual execution
paradigm of Mohassel & Franklin [MF06] to the PSZ paradigm for private set intersection. In this
section we give a protocol which contains the main ideas of our approach, but which has quadratic
complexity. In the next section we describe how to apply a hashing technique to reduce the cost.

5.1 Dual Execution Protocol

The main idea behind our approach is as follows (a formal description is given in Figure 3):

1. The parties perform an encoding step similar to PSZ, where Alice acts as receiver. In more
detail, the parties invoke Fencode once for each of Alice’s items. Alice learns JxjKBj , where xj
is her jth item and J · KBj is the encoding used in the jth instance of Fencode. Note that Bob

can obtain JvKBj for any v and any j, by appropriately querying the functionality.

2. The parties do the same thing with the roles reversed. Bob learns JyiKAi , where yi is his ith
item and J · KAi is the encoding. As above, Alice can obtain any encoding of the form JvKAj .

At this point, let us define a common encoding:

JvKi,j
def
= JvKAi ⊕ JvKBj

The important property of this encoding is:

• If Alice knows JvKBj then she can compute the common encoding JvKi,j for any i.

• If Alice does not know JvKBj , then it is actually random from her point of view. It is therefore
hard for her to predict common encoding JvKi,j for any i.

A symmetric condition holds for Bob. Now the idea is for the parties to compute all of the common
encodings that they can deduce from these rules. Then the intersection of these encodings will
correspond to the intersection of their sets. In other words (continuing the protocol overview):

3. Alice computes a set of encodings E = {JxjKi,j | i, j ∈ [n]}, and sends it to Bob.

1Modern OT extension protocols can be optimized for OT of random secrets, but it is not known how to make
this special case less expensive while avoiding the programmable-random-oracle model.
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4. Bob likewise computes a set of encodings and checks which of them appear in E. These
encodings correspond to the intersection. More formally, Bob outputs:

Z = {yi ∈ Y | ∃j ∈ [n] : JyiKi,j ∈ E}

We note that in this protocol, only Bob receives output. In fact, it turns out to be problematic
if Bob sends an analogous set of encodings to Alice. In Section 6.7 we discuss in more detail the
problems associated with both parties receiving output.

5.2 Security

The protocol achieves malicious security:

Theorem 1. The protocol in Figure 3 is a UC-secure protocol for PSI in the Fencode-hybrid model.

We defer giving a formal proof for this protocol in favor of a single proof of our final protocol
in the next section. Instead, we sketch the high-level idea of the simulation.

When Alice is corrupt, the simulator plays the role of Fencode and therefore observes Alice’s
inputs to the functionality during Step 2. Let xj denote Alice’s jth input to Fencode, in which she
learns JxjKBj . Let X̃ = {x1, . . . , xn}. We can make the following observations:

• Suppose Bob has an item y 6∈ X̃. In the protocol, Alice will send a set of encodings E, and
Bob will search this set for encodings JyKi,j , for certain i, j values. But by the definition of

X̃, Alice does not know any encoding of the form JyKBj , and so with high probability cannot
guess any encoding which will cause Bob to include y in the output. In other words, we can
argue that Alice’s effective input is a subset of X̃.

• Suppose for simplicity Bob’s input happens to be X̃. This turns out to be the most interesting
case for the proof. Bob will randomly permute these items and obtain an encoding of each
one. Let π be the permutation such that Bob learns JxjKAπ(j). Now Bob will be looking in the

set E for common encodings of the form JxjKπ(j),∗. Note that from the definition of X̃, Alice

can only produce valid encodings of the form JxjK∗,j . It follows that Bob will include a
value xj in his output if and only if Alice includes encoding JxjKπ(j),j ∈ E.

Since the distribution of π is random, the simulator can simulate the effect. More precisely, the
simulator chooses a random π and sets X∗ = {xj | JxjKπ(j),j ∈ E}. It is this X∗ that the simulator
finally sends to the ideal functionality. In the above, we were considering a special case where Bob’s
input happens to be X̃. However, this simulation approach works in general.

The simulation for a malicious Bob is simpler, and it relies on the fact that common encodings
look random, for values not in the intersection.

The protocol is correct as long as there are no spurious collisions among common encodings.
That is, we do not have any xj ∈ X and yi ∈ Y \X for which JxjKi,j = JyiKi,j (which would cause
Bob to erroneously place yi in the intersection). The probability of this happening for a fixed xj , yi
is 2−`, if the encodings have length `. By a union bound, the total probability of such an event is
n22−`. We set ` = λ+ 2 log n to ensure this error probability is at most 2−λ.

5.3 Encode-Commit Protocol

In addition to the approach described above, we present an alternative protocol based on Fencode and
commitments that offers communication/computation trade-offs. Fundamentally, the dual execu-
tion protocol above first restricts Alice to her set by requiring her to encode it as {Jx1KB1 , ..., JxnKBn}.
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Parameters: Fencode is the Oblivious Encoding functionality with input domain {0, 1}σ output
bit length λ+ 2 log n.

On Input (Send, sid, X) from Alice and (Receive, sid, Y ) from Bob, where X,Y ⊆ {0, 1}σ
and |X| = |Y | = n. Each party randomly permutes their set.

1. [A Encoding] For i ∈ [n], Bob sends (Encode, (sid,A, i), yi) to Fencode who sends
(Output, (sid,A, i), JyiKAi ) to Bob and (Output, (sid,A, i)) to Alice.

For j ∈ [n], Alice sends (Encode, (sid,A, i), xj) to Fencode and receives
(Output, (sid,A, i), JxjKAi ) in response.

2. [B Encoding] For i ∈ [n], Alice sends (Encode, (sid,B, i), xi) to Fencode who sends
(Output, (sid,B, i), JxiKBi ) to Alice and (Output, (sid,B, i)) to Bob.

For j ∈ [n], Bob sends (Encode, (sid,B, i), yj) to Fencode and receives
(Output, (sid,B, i), JyjKBi ) in response.

3. [Output] Alice sends the common encodings

E = {JxjKAi ⊕ JxjKBj | i, j ∈ [n]}

to Bob who outputs
{yi | ∃j : JyiKAi ⊕ JyiKBj ∈ E}

Figure 3: Malicious-secure n2 PSI.

In some sense this encoding operation can be viewed as Alice committing to her inputs. The prop-
erty that we need from the B encoding are: 1) J∗KB must allow the simulator to extract the set
of candidate xj values; 2) provides a binding proof to the value xj . Continuing to view J∗KB as a
commitment, the dual execution protocol instructs Alice to then decommit (prove she was bound
to xj) to these values by sending all JxjKBj encodings to Bob, but masked under JxjKAi so that the
commitment can only be “decommitted” if Bob knows one of these encodings of xj .

Taking this idea to its conclusion, we can formulate a new protocol where Alice simply commits
to her inputs by sending Comm(x1; r1), ...,Comm(xn; rn) to Bob in lieu of Figure 3 Step 2, where
Comm is a standard (non-interactive) commitment scheme. The final step of the protocol is for
her to send the decommitment rj masked under the encodings of xj

E =
{

JxjKAi ⊕ rj | i, j ∈ [n]
}

In the event that Bob knows JxjKAi , i.e. his input contains yi = xj , he will be able to recover the
decommitment value rj and decommit Comm(xj ; rj), thereby inferring that xj is in the intersection.

The security proof of this protocol follows the same structure as before. For the more interesting
case of a malicious Alice, we require an extractable commitment scheme. The simulator is able
to extract the set X̃ = {x1, ..., xn} from the commitments Comm(x1; r1), ...,Comm(xn; rn) and
sends X∗ = {xj | JxjKAπ(j) ⊕ rj ∈ E} to the functionality. The correctness of this simulation

strategy follows from the sketch in the previous section by viewing Comm(xj ; rj) as equivalent to
the encoding J∗KBj and rj as equivalent to JxjKBj .

The communication and computation complexity for both of these protocols is O(n2). However,
we will later show that the concrete communication/computation overheads of these two approaches
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result in interesting performance trade-offs. Most notable is that the commitment based approach
requires less computation at the expense of additional communication, making it more efficient in
the LAN setting.

6 Our Full Protocol

After constructing a quadratic-cost PSI protocol, the PSZ paradigm is for the parties to use a
hashing scheme to assign their items into bins, and then perform the quadratic-cost PSI on each
bin. We review this approach here, and discuss challenges specific to the malicious setting.

6.1 Hashing

Cuckoo hashing and its drawbacks. The most efficient hashing scheme in PSZ is Cuckoo
hashing. In this approach, the parties agree on two (or more) random functions h1 and h2. Alice
uses Cuckoo hashing to map her items into bins. As a result, each item x is placed in either bin
B[h1(x)] or B[h2(x)] such that each bin has at most one item. Bob conceptually places each of his
items y into both bins B[h1(y)] or B[h2(y)]. Then the parties perform a PSI for the items in each
bin. Since Alice has only one item per bin, these PSIs are quite efficient.

Unfortunately, this general hashing approach does not immediately work in the malicious se-
curity setting. Roughly speaking, the problem is that Bob may place an item y into bin B[h1(y)]
but not in B[h2(y)]. Suppose Alice also has item y, then y will appear in the output if and only if
Alice’s cuckoo hashing has chosen to place it in B[h1(y)] and not B[h2(y)]. Because of the nature
of Cuckoo hashing, whether an item is placed according to h1 or h2 event depends in a subtle way
on all other items in Alice’s set. As a result, the effect of Bob’s misbehavior cannot be simulated
in the ideal world.

Simple hashing. While Cuckoo hashing is problematic for malicious security, we can still use
a simple hashing approach. The parties agree on a random function h : {0, 1}∗ → [m] and assign
item x to bin B[h(x)]. Then parties can perform a PSI for each bin. Note that under this hashing
scheme, the hashed location of each item does not depend on other items in the set. Each item has
only one “correct” location.

Note that the load (number of items assigned) of any bin leaks some information about a party’s
input set. Therefore, all bins must be padded to some maximum possible size. A standard balls-
and-bins argument shows that the maximum load among the m = O(n/ log n) bins is O(log n) with
very high probability.

Phasing. In the standard-model variant of our protocol, the oblivious encoding step scales linearly
with the length of the items being encoded. Our random-oracle protocol also has a weak dependence
on the representation length of the items which is affected by the size of the sets. Hence, it is
desirable to reduce the length of these items as much as possible.

Pinkas et al. [PSSZ15] described how to use a hashing technique of Arbitman et al. [ANS10]
called phasing (permutation-based hashing) to reduce the length of items in each bin. The idea is
as follows. Suppose we are considering PSI on strings of length σ bits. Let h be a random function
with output range {0, 1}d, where the number of bins is 2d. To assign an item x to a bin, we write
x = xL‖xR, with |xL| = d. We assign this item to bin h(xR)⊕ xL, and store it in that bin with xR
as its representation. Arbitman et al. [ANS10] show that this method of assigning items to bins
results in maximum load O(log n) with high probability.
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Note that the representations in each bin are σ− d bits long — shorter by d bits. Importantly,
shrinking these representations does not introduce any collisions. This is because the mapping
phase(xL‖xR) = (h(xR) ⊕ xL, xR) is a Feistel function and therefore invertible. So distinct items
will either be mapped to distinct bins, or, in the case that they are mapped to the same bin, they
must be assigned different representations. Hence the PSI subprotocol in each bin can be performed
on the shorter representations.

The idea can be extended as follows, when the number m of bins is not a power of two (here h
is taken to be a function with range [m]):

phaseh,m(x) =
(
h(bx/mc) + x mod m, bx/mc

)
phase−1h,m(b, z) = zm+ [h(z) + b mod m]

We show that phasing is a secure way to reduce the length of items, in the presence of malicious
adversaries.

6.2 Aggregating Masks Across Bins

Suppose we apply the simple hashing technique to our quadratic PSI protocol. The resulting
protocol would work as follows.

1. First, the parties hash their n items into m = O(n/ log n) bins. With high probability each
bin has at most µ = O(log n) items. Bins are artificially padded with dummy items to a fixed
size of µ items.

2. For each bin the parties perform the quadratic-cost PSI protocol from Section 5. Each party
acts as Fencode sender and receiver, and computes common encodings of the items. For each
bin, Alice sends all µ2 = O(log2 n) encodings to Bob, who computes the intersection.

The total cost of this protocol is therefore mµ2 = O(n log n), a significant improvement over the
quadratic protocol.

We present an additional optimization which reduces the cost by a significant constant factor.
Our primary observation is that in order to hide the number of items in each bin, the parties must
pad the bins out to the maximum size µ. However, this results in their bins containing mostly
dummy items (in our range of parameters, around 75% are dummy items).

When Alice sends her common encodings in the final step of the protocol, she knows that the
encodings for dummy items cannot contribute to the final result. If she had a way to avoid sending
these dummy encodings, it would reduce the number of encodings sent by roughly a factor of 4.

Hence, we suggest an optimization in which Alice aggregates her encodings across all the bins,
and send only the non-dummy encodings to Bob, as a unified collection. Similarly, Bob need not
check Alice’s set of encodings for one of his dummy encodings. So Bob computes common encodings
only for his actual input items.

To show the security of this change, we need only consider Bob’s view which has been slightly
altered. Suppose Alice chooses a random value d to be a “universal” dummy item in each bin.
Since this item is chosen randomly, it is negligibly likely that Bob would have used it as input to
any instance of Fencode where he was the receiver. Hence, the common encodings of dummy values
look random from Bob’s perspective. Intuitively, the only common encodings we removed from
the protocol are ones that looked random from Bob’s perspective (and hence, had no effect on his
output, with overwhelming probability).

Note that it is not secure to eliminate dummy encodings within a single quadratic-PSI. This
would leak how many items Alice assigned to that bin. It is not secure to leak the number of items
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Parameters: X is Alice’s input, Y is Bob’s input, where X,Y ⊆ {0, 1}σ. m is the number of bins and
µ is a bound on the number of items per bin. The protocol uses instances of Fencode with input length
σ − log n, and output length λ+ 2 log(nµ), where λ is the security parameter.

1. [Parameters] Parties agree on a random hash function h : {0, 1}σ → [m] using a coin tossing
protocol.

2. [Hashing]

(a) For x ∈ X, Alice computes (b, x′) = phaseh,m(x) and adds x′ to bin BX [b] at a random
unused position p ∈ [µ].

(b) For y ∈ Y , Bob computes (b, y′) = phaseh,m(y) and adds y′ to bin BY [b] at a random unused
position p ∈ [µ].

Both parties fill unused bin positions with the zero string.

3. [Encoding] For bin index b ∈ [m] and position p ∈ [µ]:

(a) Let x′ be the value in bin BX [b] at position p. Alice sends (Encode, (sid,B, b, p), x′) to
the Fencode functionality which responds with (Output, (sid,B, b, p), Jx′KBb,p). Bob receives
(Output, (sid,B, b, p)) from Fencode.

(b) Let y′ be the value in bin BY [b] at position p. Bob sends (Encode, (sid,A, b, p), y′) to
the Fencode functionality which responds with (Output, (sid,A, b, p), Jy′KAb,p). Alice receives
(Output, (sid,A, b, p)) from Fencode.

4. [Output]

(a) [Alice’s Common Mask] For each x ∈ X, in random order, let b, p be the bin index
and position that x′ was placed in during Step 2a to represent x. For j ∈ [µ], Alice sends
(Encode, (sid,A, b, j), x′) to Fencode and receives (Output, (sid,A, b, j), Jx′KAb,j) in response.
Alice sends

Jx′KAb,j ⊕ Jx′KBb,p
to Bob. Let E denote the nµ encodings that Alice sends.

(b) [Bob’s Common Mask] Similarly, for y ∈ Y , let b, p be the bin index and posi-
tion that y′ was placed in during Step 2b to represent y. For j ∈ [µ], Bob sends
(Encode, (sid,B, b, j), y′) to Fencode and receives (Output, (sid,B, b, j), Jy′KBb,j) in response.
Bob outputs{

y ∈ Y
∣∣∣ ∃j ∈ [µ] : Jy′KAb,p ⊕ Jy′KBb,j ∈ E, where (b, y′) = phaseh,m(y)

}
Figure 4: Our malicious-secure Dual Execution PSI protocol.

in each bin. (It is for this reason that we still must perform exactly µ oblivious encoding steps per
bin.) However, it is safe to leak the fact that Alice has n items total. By aggregating encodings
across all bins we are able to use this common knowledge. Bob now sees a single collection of nµ
encodings, but does not know which bins they correspond to.

After making this change, Bob is comparing each of his nµ non-dummy encodings to each of
Alice’s nµ encodings. Without this optimization, he only compares encodings within each bin.
With more comparisons made among the common encodings, the probability of spurious collisions
increases. We must therefore increase the length of these encodings. A similar argument to the
previous section shows that if the encodings have length λ+ 2 log(nµ), then the overall probability
of a spurious collision is 2−λ.

12



6.3 Dual Execution Protocol Details & Security

The formal details of our dual execution protocol are given in Figure 4. The protocol follows the
high-level outline developed in this section. We use the following notation:

• JxKAb,p denotes an encoding of value x, in an instance of Fencode where Alice is sender, cor-
responding to position p in bin b. Each bin stores a maximum of µ items, so there are µ
positions.

• We write (b, x′) = phaseh,m(x) to denote the phasing operation (Section 6.1), where to store
item x we place representative x′ in bin b.

Theorem 2. The protocol in Figure 4 is UC-secure in the Fencode-hybrid model. The resulting
protocol has cost O(Cn log n), where C ≈ κ is the cost of one Fencode call on a σ − log n length bit
string.

Proof. We start with the case of a corrupt Bob. The simulator must extract Bob’s input, and
simulate the messages in the protocol. We first describe the simulator:

The simulator plays the role of the ideal Fencode functionality. The simulator does nothing
in Step 2 and Step 3a (steps where Bob receives no output). To extract Bob’s set, the
simulator observes all of Bob’s Fencode messages (Encode, (sid,A, b, p), y′b,p) in Step 3b. The

simulator computes Y = {phase−1h,m(b, y′b,p) | b ∈ [m], p ∈ [µ]} and sends it to the ideal FPSI

functionality which responds with the intersection Z = X ∩ Y .

Set Z∗ to be equal to Z along with arbitrary dummy items not in Y , so that |Z∗| = n. For
each z ∈ Z∗, compute (b, z′) = phasem,h(z) and insert z′ into a random unused position bin
BX [b]. For z ∈ Z∗ in random order, and j ∈ [µ], compute (b, z′) = phasem,h(z) and send

Jz′KAb,p ⊕ Jz′KBb,j to Bob, where these encodings are obtained by playing the role of Fencode.

To show that this is a valid simulation, we consider a series of hybrids.

Hybrid 0 The first hybrid is the real interaction as specified in Figure 3 where Alice honestly uses
her input X, and Fencode is implemented honestly.

Observe Bob’s commands to Fencode of the form (Encode, (sid,A, b, p), y′b,p) in Step 3b. Based

on these, define the set Ỹ = {phase−1h,m(b, y′b,p) | b ∈ [m], p ∈ [µ]}.

Hybrid 1 In this hybrid, we modify Alice to send dummy values to Fencode in Step 2a. Then
we further modify Alice to perform the hashing at the last possible moment in Step 4. The
simulation can obtain the appropriate encodings directly from the simulated Fencode. The hybrid
is indistinguishable by the properties of Fencode.

Hybrid 2 In Step 4a, for each x ∈ X the simulated Alice sends common encodings of the form
Jx′KAb,j ⊕ Jx′KBb,p, for some position p, where (b, x′) = phaseh,m(x). Suppose x 6∈ Ỹ . By con-

struction of Ỹ , Bob never obtained an encoding of the form Jx′KAb,j . This encoding is therefore
distributed independent of everything else in the simulation. In particular, the common encod-
ings corresponding to this x are distributed independently of the choice of (b, x′) and hence the
choice of x.

We therefore modify the hybrid in the following way. Before Alice adds the items of X to her
hash table in Step 4a, she replaces all items in X \ Ỹ (i.e., all items not in X ∩ Ỹ ) with fixed
dummy values not in Y . By the above argument, the adversary’s view is identically distributed
in this modified hybrid.
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The final hybrid works as follows. A simulator interacts with the adversary and determines a set
Ỹ , without using Alice’s actual input X. Then it computes X ∩ Ỹ and simulates Alice’s message
in Step 4a using only X ∩ Ỹ . Hence, this hybrid corresponds to our final simulator, where we send
Ỹ to the ideal FPSI functionality and receive X ∩ Ỹ in response.

We now turn our attention to a corrupt Alice. In this case the simulator must simply extract
Alice’s effective input (Alice receives no output from FPSI). The simulator is defined as follows:

The simulator plays the role of the ideal Fencode functionality. The simulator does noth-
ing in Step 2 and Step 3b. In Step 3a, the simulator intercepts Alice’s commands of
the form (Encode, (sid,B, b, p), x′b,p). The simulator computes a set of candidates X̃ =

{phase−1h,m(b, x′b,p) | b ∈ [m], p ∈ [µ]} and for x ∈ X̃ let c(x) denote the number of times that

phase−1h,m(b, x′b,p) = x for b ∈ [m], p ∈ [µ].

The simulator computes a hash table B as follows. For x ∈ X̃ and i ∈ c(x), the simulator
computes (b, x′) = phaseh,m(x) and places x′ in a random unused position in bin B[b].

Although |X̃| may be as large as mµ, by construction no bin will have more than µ items.
For each such x, let p(x) denote the set of positions of x in its bin.

Let E denote the set of values sent by Alice in Step 4a. The simulator computes

X∗ =
{
x ∈ X̃ | ∃j ∈ [µ], p ∈ p(x) :

Jx′KAb,j ⊕ Jx′KBb,p ∈ E
∧ (b, x′) = phaseh,m(x)

} (1)

where the encodings are obtained by playing the role of Fencode. The simulator sends X∗ to
the FPSI functionality.

Hybrid 0 The first hybrid is the real interaction as specified in Figure 3 where Bob honestly uses
his input X, and Fencode is implemented honestly.

Observe Alice’s commands to Fencode of the form (Encode, (sid,B, b, p), x′b,p) in Step 3a. Based

on these, define X̃ = {phase−1h,m(b, x′b,p) | b ∈ [m], p ∈ [µ]}.

Hybrid 1 In this hybrid, we modify Bob to send the zero string to Fencode in Step 2b. The
simulation can obtain all required encodings directly from the simulated Fencode. We also have
Bob perform his hashing not in Step 2b but at the last possible moment in Step 4b. The hybrid
is indistinguishable by the properties of Fencode.

Hybrid 2 The hybrid computes the output as specified in Step 4b. We then modify it to immedi-
ately remove all from this output which is not in X̃. The hybrids differ only in the event that
simulated Bob computes an output in Step 4b that includes an item y 6∈ X̃. This happens only
if Jy′KAb,j ⊕ Jy′KBb,p ∈ E, where (b, y′) = phaseh,m(y) and Bob places y′ in position p. Since y 6∈ X̃,

however, the encoding Jy′KBb,p is distributed uniformly. The length of encodings is chosen so that

the overall probability of this event (across all choices of y 6∈ X̃) is at most 2−λ. Hence the
modification is indistinguishable.

Hybrid 3 We modify the hybrid in the following way. When building the hash table in Step 4b,
the simulated Bob uses X̃ instead of his actual input Y . Each x ∈ X̃ is inserted c(x) times.
Then he computes the protocol output as specified in Step 4b; call it X∗. This is not what the
simulator gives as output — rather, it gives X∗ ∩ Y as output instead.
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The hashing process is different only in the fact that items of Y \ X̃ are excluded and replaced
in the hash table with items of X̃ \ Y (i.e., items in Y ∩ X̃ are treated exactly the same way).
Note that the definition of X̃ ensures that the hash table can hold all of these items without
overflowing. Also, this change is local to Step 4b, where the only thing that happens is Bob
computing his output. However, by the restriction added in Hybrid 2 , items in Y \ X̃ can never
be included in X∗. Similarly, by the step added in this hybrid, items in X̃ \ Y can never be
included in the simulator’s output. So this change has no effect on the adversary’s view (which
includes this final output).

The final hybrid works as follows. A simulator interacts with the adversary and at some point
computes a set X∗, without the use of Y . Then the simulated Bob’s output is computed as
X∗ ∩ Y . Hence, this hybrid corresponds to our final simulator, where we send X∗ to the ideal FPSI

functionality, which sends output X∗ ∩ Y to ideal Bob.

Set Size for Malicious Parties As the ideal PSI functionality in Figure 1 indicates, our protocol
realized a slightly relaxed variant of traditional PSI that does not strictly enforce the size of a corrupt
party’s input set. The functionality allows an honest party to provide an input set of size n, but a
corrupt party to provide a set of size n′ > n. We now analyze why this is the case and what is the
exact relationship between n and n′.

Let us first consider the case of a malicious Bob who learns the intersection. The simulator
extracts a set based on the commands Bob gave when acting as Fencode receiver. Bob is given
mµ = O(n) opportunities to act as Fencode receiver, and therefore the simulator extracts a set of
size at most n′ = mµ = O(n). Concretely, when λ = 40, n = 220 and m = n/ log2 n, the optimal
bin size is µ = 68 and Bob’s maximum set size is n′ < 4n.

The situation for a malicious Alice is similar. As above, the simulator computes a set X̃ based
on commands Alice gives to Fencode when acting as receiver. The size of X̃ is therefore at most
mµ = O(n). The simulator finally extracts Alice’s input as X∗, a subset of X̃. Hence her input has
size at most n′ = mµ.

However, the situation is likely slightly better than this strict upper bound. Looking closer,
Alice can only send a set E of nµ (not mµ) common encodings in the final step of the protocol.
Each item x ∈ X̃ is associated with µc(x) common encodings, i.e. µ for each time she sends x in
a Fencode command as the receiver. So Alice is in the situation where if she wants more than n
items to be represented in the set E, then at least one item must have one of its possible encodings
excluded from E. This lowers the probability of that item being included in the final extracted
input X∗.

In general, suppose for each x ∈ X̃, Alice includes ki(x) encodings in her set E that are
associated with the ith time she acted as Fencode receiver with x. Hence

∑
x∈X̃

∑
i∈[c(x)] ki(x) ≤ nµ.

Inspecting the simulation, we see that the probability a particular x ∈ X̃ survives to be included
in X∗ is Pr[x ∈ X̃ ⇒ x ∈ X∗] = 1−

∏
∈[c(x)](1− ki(x))/µ or simply k1(x)/µ in the case c(x) = 1 (it

happens only if the simulator happens to place x in a favorable position in the hash table). Hence,
the expected size of X∗ is

∑
x∈X̃

∑
i∈[c(x)] ki(x)/(µc(x)) ≤ n.

6.4 Encode-Commit Protocol

We now turn our attention to the encode-commit style PSI protocol described in Section 5.3 and
outline how the optimizations of Section 6.1, 6.2 can be applied to it. Recall that the encode-commit
protocol instructs Bob to encode his items as Fencode receiver while Alice must send commitments
of her items. The final step of this protocol is for Alice to send decommitments of her values
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encrypted under the corresponding Fencode encodings.
It is straight forward to see that the hashing to bins technique of Section 6.1 is compatible

with the encode-commit style PSI. When the optimization of aggregating masks across bins from
Section 6.2 is applied, we observe that the situation becomes more complicated. Let us assume
that Alice now sends the commitment to her value y together with the decommitment r encrypted
under the encodings {Jy′KAb,p | p ∈ [µ]} where (b, y′) = phaseh,m(y). That is, for a random order of
y ∈ Y , Alice sends

Comm(y; r), {Jy′KAb,p ⊕ r | p ∈ [µ]}

to Bob. For each x ∈ X, Bob must trial decommit to all such Comm(y; r) with the decommitment
value (Jy′KAb,p(x)⊕r)⊕Jx′KAb(x),p(x). This would result in Bob performing O(n2) trial decommitments,
eliminating any performance benefits of hashing. This overhead can be reduced by requiring Alice
to send additional information that allows Bob to quickly identify which decommitment to try.
Specifically, we will use the Fencode encodings to derive two values, JvKtagb,p = PRF(JvKAb,p,tag)

and JvKencb,p = PRF(JvKAb,p,enc). The important property here is that given the encoding JvKAb,p,
both values can be derived, but without the encoding the two values appear pseudo-random and
independent. We now have Alice send

Comm(y; r), {Jy′Ktagb,p || (Jy′Kencb,p ⊕ r) | p ∈ [µ]}

Bob can now construct a hash table mapping Jx′Ktagb,p to (Jx′Kencb,p , x). Upon receiving a commitment
and the associated tagged decommitments, Bob can query each of Alice’s tags in the hash table. If
a match is found, Bob will add the associated x to the intersection if the associated Jx′Kencb,p value
is successfully used to decommits Comm(y; r).

6.5 Encode-Commit Protocol Details & Security

We give a formal description of the protocol in Figure 9. The protocol requires a non-interactive
commitment scheme. In Section A we discuss the security properties required of the commitment
scheme. At a high level, we require an extractable commitment scheme with a standard (standalone)
hiding requirement. In particular, we do not require equivocability. In the non-programmable
random oracle, the standard scheme H(x‖r) satisfies our required properties.

Theorem 3. The protocol in Figure 9 is UC-secure in the Fencode-hybrid model, when the underlying
commitment scheme satisfies Definition 4. The resulting protocol has cost O(Cn log n), where C ≈ κ
is the cost of one (sender) Fencode call on a σ − log n length bit string.

Proof. Due to the similarity to the previous proof we defer giving hybrids and simply describe the
simulators. We start with the case of a corrupt Bob. The simulator must extract Bob’s input,
and simulate the messages in the protocol. The simulator is nearly the same as in the previous
protocol:

The simulator plays the role of the ideal Fencode functionality. The simulator does noth-
ing in Step 2. To extract Bob’s set, the simulator observes all of Bob’s Fencode messages
(Encode, (sid,A, b, p), y′b,p) in Step 3. The simulator computes Y = {phase−1h,m(b, y′b,p) | b ∈
[m], p ∈ [µ]} and sends it to the ideal FPSI functionality which responds with the intersection
Z = X ∩ Y .

Set Z∗ to be equal to Z along with arbitrary dummy items not in Y , so that |Z∗| = n.
For each z ∈ Z∗, compute (b, z′) = phasem,h(z) and insert z′ into bin BX [b] at a random
unused position p ∈ [µ]. For z ∈ Z∗ in random order, compute (b, z′) = phasem,h(z) and
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send Comm(z; rz), {Jz′Ktagb,p || Jz′Kencb,p ⊕ rz} to Bob, where these encodings are obtained by
playing the role of Fencode.

Importantly, the simulator extracts Bob’s input in step 3 and thus knows the protocol output before
step 4. It can therefore send appropriate commitments and use dummy commitments for those that
are guaranteed not to be openable by Bob (those commitments whose decommitment values are
perfectly masked by random encodings). Security follows from standard standalone hiding of the
commitment scheme.

In the case of a corrupt Alice the simulator must simply extract Alice’s effective input (Alice
receives no output from FPSI). The simulator is defined as follows:

The simulator plays the role of the ideal Fencode functionality and initializes the commit-
ment scheme in extraction mode (i.e., fixes the coin tossing in step 1 to generate simulated
parameters). The simulator does nothing in Step 2 and Step 3. In Step 4, the simulator
extracts Alice’s commitments of the form Comm(x; rx) and inserts x′ in the bin BX [b] at a
random unused position p ∈ [µ], where (b, x′) = phasem,h(x). Let S denote the set of the µ
associated (tag || decommit) pairs. If there exists (T || D) ∈ S such that T = Jx′Ktagb,p and
Comm(x; rx) = Comm(x;D⊕ Jx′Kencb,p ), add x to the set X∗. The simulator sends X∗ to the
FPSI functionality.

We see here that the simulator extracts candidate inputs for Alice by extracting from her commit-
ments. Thus the protocol requires an extractable commitment scheme. This protocol also benefits
from restricting Alice to a set of size exactly n item, unlike the dual execution protocol which
achieves n items in exception and upper bounded by roughly n′ < 4n items.

6.6 Parameters

Let us now review the protocol as a whole and how to securely set the parameters. The parties
first agree on hashing parameters that randomly map their sets of n items into m bins with the
use of phasing. The bins are padded with dummy items to size µ = O(log n). The parties both act
as Fencode receiver to encode all mµ items in their bins, including dummy items. Each bin position
uses a unique Fencode session. For all non-dummy encodings, both parties compute µ = O(log n)
common encodings. If an item is in the intersection, exactly one of these µ encodings will be the
same for both parties. Alice then sends Bob all of these common encodings in a random order (not
by bins). Bob is able to identify the matching encodings and infer the intersection.

By applying a bins into balls analysis, it can be seen that for m bins and n balls, the probability

of there existing a bin with more than µ items is ≤ m
∑n

i=µ+1

(
n
i

) (
1
m

)i (
1− 1

m

)n−i
. Bounding this

to be negligible in the security parameter gives the required bin size for a given n,m. By setting
m = O(n/ log n) and minimizing the overall cost, we obtain the set of parameters specified in
Figure 5 with statistical security λ = 40. We found that m = n/10 minimizes the communication
for our choices of n at the expense of increased computation when compared to m = n/4. As such,
we choose m = n/10 in the WAN setting where communication is the dominant cost and m = n/4
in the LAN setting where computation has increased importance.

6.7 Discussion

Challenges of Two Party Output An obvious question is whether our protocol be extended
to support two party output. In the semi-honest case, this is trivial, since the party who learns the
intersection first can simply report it to the other. In the malicious setting, the parties cannot be
trusted to relay this information faithfully.
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Set size n 28 212 216 220 224

LAN
µ 24 25 26 28 29
m 64 1024 16384 262144 4194304

WAN
µ 40 43 45 47 49
m 25 409 6553 104857 1677721

Figure 5: Hashing parameters µ,m for statistical security λ = 40.

A natural idea to solve this problem is to have Bob send all of his encodings to Alice, making the
protocol completely symmetric. We briefly describe the problem with this approach. Suppose Bob
behaves honestly with input set Y throughout most of the protocol. Let y0 ∈ Y be a distinguished
element. In the last step, he sends his common encodings to Alice, but replaces all the encodings
corresponding to y0 with random values.

Now Bob will learn X ∩ Y , but his effect on Alice will be that she learns only X ∩ (Y \ {y0}).
More generally, a malicious Bob can always learn X ∩ Y but cause Alice to receive output X ∩ Y ′
for any Y ′ ⊆ Y of Bob’s choice.

7 Performance Evaluation

We have implemented several variants of out main protocol, and in this section we report on its
performance. We denote our dual execution random-oracle protocol as DE-ROM and the encode-
commit random-oracle protocol as EC-ROM. Only the dual execution protocol was implemented
in the standard model and denoted as SM. We do not implement the encode-commit protocol in
the standard model due to the communication overhead of standard model commitments such as
[FJNT16], see 7.1 Communication Cost. All implementations are freely available at github.com/

osu-crypto/libPSI.
We give detailed comparisons to two leading malicious-secure PSI protocols: our previous

Bloom-filter-based protocol [RR17] and the Diffie-Hellman-based protocol of De Cristofaro, Kim
& Tsudik [DKT10]. We utilized the implementation provided by [RR17] of that protocol and
[DKT10]. All implementations were compared on the same hardware.

Implementation Details & Optimizations. We implemented our protocol in C++ and both
the standard-model and random-oracle instantiation of Fencode, to understand the effect of the
random-oracle assumption on performance.

We implement Fencode by directly utilizing [OOS16] in the ROM model or with several chosen
message 1-out-of-2 OTs [KOS15] in the standard model as specified by Section 4. When we in-
stantiate Fencode with [OOS16], we use the BCH-(511, 76, 171) linear code. As such, the Fencode

input domain is {0, 1}76. To support PSI over arbitrary length strings in the random-oracle model,
we use the hash to smaller domain technique of [PSZ16] in conjunction with phasing. The hashed
elements are 128 bits. This enables us to handle sets of size n such that 76 ≥ λ+log n, e.g. n = 236

with λ = 40 bits of statistical security. For larger set sizes and/or security level, a larger BCH code
can be used with minimal additional overhead. In the standard model, we perform PSI over strings
of length 32 and 64 bits due to hash to smaller domain requiring the random-oracle to extract.

We used SHA1 as the underlying hash function, and AES as the underlying PRF/PRG (counter
mode for a PRG) where needed. The random-oracle instantiation requires the OT-extension hash
function to be modeled as a random-oracle. We optimize the Fencode instantiations by not hashing
dummy items.
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Setting Protocol
Set size n

28 212 216 220 224
asymptotic

Total Online Total Online Total Online Total Online Total Online

LAN

[KKRT16]∗ 0.19 0.19 0.21 0.21 0.4 0.4 3.8 3.8 59 59 4n (ro)
[DKT10] 1.6 1.6 22.4 22.4 365 365 5630 5630 − − 6n (pk)
[RR17] 0.21 0.002 0.8 0.03 9.6 0.7 148 16 − − 4κn (ro)
Ours (EC-ROM) 0.13 0.004 0.19 0.06 0.94 0.69 12.6 11.3 239 218

4n log n (ro)
Ours (DE-ROM) 0.13 0.006 0.23 0.08 1.3 1.0 18 16 296 261
Ours (SM, σ = 32) 0.15 0.018 0.48 0.19 3.5 1.8 56 31 − −

6σn (crh)
Ours (SM, σ = 64) 0.19 0.034 0.84 0.31 8.0 3.7 134 35 − −

WAN

[KKRT16]∗ 0.56 0.56 0.59 0.59 1.3 1.3 7.5 7.5 107 106 4n (ro)
[DKT10] 1.7 1.7 23.2 23.2 367 367 5634 5634 − − 6n (pk)
[RR17] 0.97 0.14 5.3 0.95 69 13 1080 216 − − 4κn (ro)
Ours (EC-ROM) 0.67 0.26 1.5 1.1 16 15 255 254 3208 3194

4n log n (ro)
Ours (DE-ROM) 0.90 0.33 1.2 0.63 6.3 5.6 106 105 2647 2626
Ours (SM, σ = 32) 1.3 0.11 8.0 0.56 78 5.4 1322 115 − −

6σn (crh)
Ours (SM, σ = 64) 1.9 0.14 16.8 0.74 226 82 3782 164 − −

Figure 6: Single-threaded running time in seconds of our protocol compared to semi-honest [KKRT16]
and malicious [DKT10, RR17]. We report both the total and online running time. DE-ROM, EC-ROM
respectively denotes our dual execution and encode-commit model protocols. SM denotes the standard
model dual execution variant on input bit length σ. Cells with − denote trials that either ran out of memory
or took longer than 24 hours. (pk) denotes public key operations, (ro) denotes random oracle operations
and (crh) denotes correlation robust hash function operations. ∗ [KKRT16] is a Semi-Honest secure PSI
protocol. We show the [KKRT16] performance numbers here for comparison purposes.

Threads Protocol
Set size n

28 212 216 220 224

4

[DKT10] 0.61 6.9 95 1539 24948
[RR17] 0.15 0.52 5.8 84 −
Ours (EC-ROM) 0.14 0.15 0.4 4.4 72
Ours (DE-ROM) 0.14 0.17 0.6 7.0 93
Ours (SM, σ = 32) 0.14 0.24 1.3 17 −
Ours (SM, σ = 64) 0.15 0.37 2.7 40 −
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[DKT10] 0.33 2.2 29 458 7265
[RR17] 0.15 0.44 4.3 68 −
Ours (EC-ROM) 0.14 0.16 0.4 3.0 42
Ours (DE-ROM) 0.14 0.17 0.4 3.5 34
Ours (SM, σ = 32) 0.14 0.18 0.6 7.5 −
Ours (SM, σ = 64) 0.15 0.25 1.1 14.7 −

64

[DKT10] 0.11 1.2 19 315 5021
[RR17] 0.14 0.34 2.1 32 −
Ours (EC-ROM) 0.14 0.15 0.4 3.0 42
Ours (DE-ROM) 0.14 0.17 0.4 2.9 25
Ours (SM, σ = 32) 0.14 0.18 0.5 6.0 −
Ours (SM, σ = 64) 0.15 0.21 1.0 14 −

Figure 7: Total running times in seconds of our protocol compared to [DKT10, RR17] in the multi-threaded
setting. Cells with − denote trials that ran out of memory.

The implementation of [DKT10] uses the Miracl elliptic curve library using Curve 25519 achiev-
ing 128 bit computational security. It is in the random-oracle model and is optimized with the
Fiat-Shamir sigma proofs. This implementation also takes advantage of the Comb method for fast
exponentiation (point multiplication) with the use of precomputed tables. The [DKT10] proto-
col requires two rounds of communication over which 5n exponentiations and 2n zero knowledge
proofs are performed. To increase performance on large set sizes, all operations are performed in a
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set size n asymptotic
28 212 216 220 224 Offline Online

[KKRT16]∗ 0.04 0.53 8 127 1956 2κ2 3n(β + κ)

[DKT10] 0.05 0.8 14 213 2356 0 6nφ+ 6φ+ nβ

[RR17] 1.9 23 324 4970 − 2κ2 + 2nκ2 2nκ log2(2nκ) + nβ

Ours (EC-ROM) 0.29 4.8 79 1322 22038 2κ2 3κn+ n(C +D logn+ log2 n)

Ours (DE-ROM) 0.25 3.5 61 1092 17875 2κ2 6κn+ βn logn

Ours (SM, σ = 32) 2.3 40 451 7708 −
2κ2 + 6σκn σn+ βn logn

Ours (SM, σ = 64) 5.3 92 1317 22183 −

Figure 8: The empirical communication cost for both parties when configured for the WAN setting, listed in
megabytes. Asymptotic costs are in bits. φ = 283 is the size of the elliptic curve elements. β ≈ λ+2 log n−1
bits is the size of the final masks that each protocol sends. C ≈ 2κ bits is the communication of performing
one commitment and D ≈ κ is the size of a non-interactive decommitment.

streaming manner, where data is sent as soon as it is ready.
The [RR17] implementation is also highly optimized including techniques such as hashing OTs

on demand and aggregating several steps in their cut and choose. To ensure a fair comparison, we
borrow many of their primitives such as SHA1 and AES.

Experimental Setup. Benchmarks were performed on a server equipped with 2 multi-core Intel
Xeon processors and 256GB of RAM. The protocol was executed with both parties running on
the same server, communicating through the loopback device. Using the Linux tc command we
simulated two network settings: a LAN setting with 10 Gbps and less than a millisecond latency;
and a WAN setting with 40 Mbps throughput and 80ms round-trip latency.

All evaluations were performed with computational security parameter κ = 128 and statistical
security λ = 40. We consider the sets of size n ∈ {28, 212, 216, 220, 224}. The times reported are
the average of 10 trials. Where appropriate, all implementations utilize the hardware accelerated
AES-NI instruction set.

7.1 Results & Discussion

Execution time, single-threaded. Figure 6 shows the running time of our protocol compared
with [DKT10] and [RR17] when performed with a single thread per party. We report both the
total running time and the online time, which is defined as the portion of the running time that is
input-dependent (i.e., the portion of the protocol that cannot be pre-computed).

Our experiments show that our ROM protocols’ total running times are significantly less than
the prior works, requiring 12.6 seconds to perform a set intersection for n = 220 elements in the
LAN setting. A 11.7× improvement in running time compared to [RR17] and a 447× improvement
over [DKT10]. Increasing the set size to n = 224, we find that our best protocol takes 239 seconds,
whereas [RR17] runs out of memory, and [DKT10] requires over 24 hours. When considering the
smallest set size of n = 28, our protocol remains the fastest with a running time of 0.13 seconds
compared to 0.21 and 1.6 for [RR17] and [DKT10] respectively. Our standard model dual execution
protocol is also faster than prior works when evaluated in the LAN setting, with a running time
2.6× faster than [RR17] for σ = 32 and 1.1× faster for σ = 64.

Our ROM protocol also scales very well in the WAN setting where bandwidth and latency are
constrained. For set size n = 28, all protocols require roughly 1 second with ours being slightly
faster at 0.9 seconds. When increasing to a set size of n = 220 the difference becomes much more
significant. Our DE-ROM protocol requires 106 seconds compared to 1080 for [RR17], a 10×
improvement. Our standard model protocol also has a fast online phase in the WAN setting due
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to the implementation moving a larger portion of the work to the offline as compared to the ROM
protocol.

Multi-threaded performance. Figure 7 shows the total running times in the multi-threaded
LAN setting. We see that our protocol parallelizes well, due to the fact that items are hashed
into bins which can be processed more or less independently. By contrast [RR17] uses a global
Bloom filter representation for all items, which is less amenable to parallelization. For inputs of
size n = 220 and 16 threads, our protocol is 23× faster than [RR17] and 153× that of [DKT10].
Increasing the number of threads from 1 to 16 speeds up our protocol by a factor of 5×, but theirs
by a factor of only 2×.

While the Diffie-Hellman-based protocol of [DKT10] is easily the most amenable to paralleliza-
tion (16 threads speeding up the protocol by a factor of 12.3× for n = 220), its reliance on expensive
public-key computations leaves it still much slower than ours.

Communication cost. Figure 8 reports both the empirical and asymptotic communication over-
head of the protocols. The most efficient protocol with respect to communication overhead is
[DKT10]. The dominant term in their communication is to have each party send 3n field elements.
The next most efficient is our DE-ROM protocol, requiring each party to send O(n) encodings
from Fencode. Concretely, for a set size of n = 220, our protocol requires 1.1 GB of communication,
roughly 5× greater than [DKT10]. However, on a modest connection of 40 Mbps, we find our
protocol to remain the fastest even when [DKT10] utilizes many threads. In addition, our protocol
requires almost 5× less communication than [RR17] (4.9GB).

When comparing our two ROM protocols, it can be seen that the dual execution technique
requires less communication and is therefore faster in the WAN setting. The main overhead of the
encode-commit protocol is the O(n log n) tag||decommitment values that must be sent. This is
of particular concern in the standard model where commitments are typically several times larger
than their ROM counterparts. In contrast, the dual execution protocol sends O(n log n) encodings
which can be less than half the size of a ROM decommitment.

One aspect of the protocols that is not reflected in the tables is how the communication cost is
shared between the parties. In our DE-COM protocol, a large portion of the communication is in
the encoding steps, which are entirely symmetric between the two parties. In [RR17] the majority
of the communication is done by the receiver (in the OT extension phase). Although the total
communication cost of [RR17] is roughly 5× that of our protocol, the communication cost to the
receiver is ∼ 10× ours.

Comparison with [RR17]. We provide a more specific comparison to the protocol of Rindal
& Rosulek [RR17]. Both protocols are secure against malicious adversaries; both rely heavily on
efficient oblivious transfers; neither protocol strictly enforces the size of a malicious party’s input
set (so both protocols realize the slightly relaxed PSI functionality of Figure 1).

We now focus on our random-oracle-optimized protocol, which uses the random-oracle instan-
tiation of Fencode. As has been shown, this protocol is significantly faster than that of [RR17]. We
give a rough idea of why this should be the case. In [RR17], the bulk of the cost is that the parties
perform an OT for each bit of a Bloom filter. With n items, the size of the required Bloom filter
is ∼ kn, where k is the security parameter of the Bloom filter. For technical reasons, k in [RR17]
must be the computational security parameter of the protocol (e.g., 128 in the implementation).
Overall, roughly ∼ nk oblivious transfers are required.

The bulk of the cost in our protocol is performing the instances of Fencode. In our random-
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oracle instantiation, we realize Fencode with the OT-extension protocol of [OOS16]. Each instance
of Fencode has cost roughly comparable to a plain OT. Our protocol requires mµ = O(n) such
instances. It is this difference in the number of OT primitives that contributes the largest factor
to the difference in performance between these two protocols.

We also observe that our standard model protocol is faster than [RR17] in the LAN setting for
σ = 32 and σ = 64. While it is true that [RR17] only weakly depends on σ, it is still informative
that our protocol remains competitive with the previous fastest protocol while eliminating the
random-oracle assumption. When considering the WAN setting, the communication overhead of
σmµ = O(σn) OTs limits our performance, resulting in σ = 32 being slightly slower than [RR17].

Comparison with OPE protocols. Our protocol is orders of magnitude faster than blind-RSA
based protocol of [DKT10], due to [DKT10] performing O(n) exponentiations. Traditional OPE-
based PSI also require O(n) exponentiations and their running time would be similarly high. There
are very recent OPE protocols based on OT but they still require O(n) OTs plus O(n/κ) relatively
expensive interpolations of degree-O(k) polynomials, totaling O(n log κ) operations. In contrast
our protocol requires O(n) OTs to be communicated and O(n log n) local OT computations.

Comparison with semi-honest PSI. An interesting point of comparison is to the state-of-
the-art semi-honest secure protocol of Kolesnikov et al. [KKRT16] which follows the same PSZ
paradigm. Figure 6 shows the running time of our protocol compared to theirs. For sets sizes up to
n = 212 our protocol is actually faster than [KKRT16] in the LAN setting which we attribute to a
more optimized implementation. Increasing the set size to n = 220 we see that our protocol require
12.6 seconds compared to 3.8 by [KKRT16], a 3.3× difference. For the largest set size of n = 224 we
see the difference increase further to a 4× overhead in the LAN setting. In the WAN setting we see
a greater difference of 25× which we attribute to the log n factor more communication/computation
that our protocol requires.
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A Commitment Properties

The encode-commit variant of our protocol requires a non-interactive commitment scheme. The
syntax is as follows:

• Setup(1κ): samples a random reference string crs.

• Comm(crs, x, r): generates a commitment to x with randomness r. Note that in the main
body, we omit the global argument crs.

• SimSetup(1κ): samples a reference string crs along with a trapdoor τ .

• Extract(crs, τ, c): extracts the committed plaintext value from a commitment c.

We require the scheme to satisfy the following security properties:

Definition 4. A commitment scheme is secure if the following are true:

1. (Extraction:) Define the following game:

ExtractionGame(1κ,A):

(crs, τ)← SimSetup(1κ)
(c, x′, r′)← A(crs)
if c = Comm(crs, x′, r′) and x′ 6= Extract(crs, τ, c):

return 1
else: return 0

The scheme has straight-line extraction if for every PPT A, ExtractionGame(1κ,A) outputs 1
with negligible probability.

2. (Hiding:) Define the following game:

HidingGame(1κ,A, b):
crs← Setup(1κ)
(x0, x1)← A(crs)
r ← {0, 1}κ
return Comm(crs, xb, r)

The scheme is hiding if, for all PPT A, the distributions HidingGame(1κ,A, 0) and HidingGame(1κ,A, 1)
are indistinguishable.

The definitions are each written in terms of a single commitment, but they apply simultaneously
to many commitments using a simple hybrid argument.

In the non-programmable random oracle model, the classical commitment scheme Comm(x, r) =
H(x‖r) satisfies these definitions. In the standard model, one can use any UC-secure non-interactive
commitment scheme, e.g., the efficient scheme of [FJNT16].
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B Formal Encode-Commit Protocol

Parameters: X is Alice’s input, Y is Bob’s input, where X,Y ⊆ {0, 1}σ. m is the number of bins and
µ is a bound on the number of items per bin. The protocol uses instances of Fencode with input length
σ − log n, and output length λ+ 2 log(nµ), where λ is the security parameter.

1. [Parameters] Parties agree on a random hash function h : {0, 1}σ → [m] and global parameters
for the commitment scheme, using a coin tossing protocol.

2. [Hashing]

(a) For x ∈ X, Alice computes (b, x′) = phaseh,m(x) and adds x′ to bin BX [b] at a random unused
position p ∈ [µ].

(b) For y ∈ Y , Bob computes (b, y′) = phaseh,m(y) and adds y′ to bin BY [b] at a random unused
position p ∈ [µ].

Both parties fill unused bin positions with the zero string.

3. [Encoding] For bin index b ∈ [m] and position p ∈ [µ]: Let y′ be the value in bin BY [b] at
position p. Bob sends (Encode, (sid,A, b, p), y′) to the Fencode functionality which responds with
(Output, (sid,A, b, p), Jy′KAb,p). Alice receives (Output, (sid,A, b, p)) from Fencode. Bob computes

Jy′Ktagb,p = PRF(Jy′KAb,p,tag)

Jy′Kencb,p = PRF(Jy′KAb,p,enc)

and constructs a hash table H mapping Jy′Ktagb,p to (Jy′Kencb,p , y).

4. [Output] For each x ∈ X, in random order, let b, p be the bin index and position that x′ was
placed in during Step 2a to represent x. For j ∈ [µ], Alice sends (Encode, (sid,A, b, j), x′) to
Fencode and receives (Output, (sid,A, b, j), Jx′KAb,j) in response. For each response Alice computes

Jx′Ktagb,j = PRF(Jx′KAb,j ,tag) and Jx′Kencb,j = PRF(Jx′KAb,j ,enc).

For each x Alice sends the tuple

Comm(x; rx), {Jx′Ktagb,j || Jx′Kencb,j ⊕ rx | j ∈ [µ]}

to Bob who outputs the union of all y such that ∃j : Jx′Ktagb,j ∈ H.keys and Comm(x, rx) =
Comm(y; (Jx′Kencb,j ⊕ rx)⊕ Jy′Kenc∗ ) where (Jy′Kenc∗ , y) := H[Jx′Ktagb,j ].

Figure 9: Our Encode-Commit PSI protocol.
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