
MCMix: Anonymous Messaging via Secure Multiparty
Computation

Nikolaos Alexopoulos1, Aggelos Kiayias2, Riivo Talviste3, and Thomas Zacharias2

1Technische Universität Darmstadt
2School of Informatics, University of Edinburgh, UK

3Cybernetica AS, Estonia

{alexopoulos@tk.tu-darmstadt.de, akiayias@inf.ed.ac.uk, riivo@cyber.ee,

tzachari@inf.ed.ac.uk}

Abstract

We present MCMix, an anonymous messaging system that completely hides communication
metadata and can scale in the order of hundreds of thousands of users. Our approach is to isolate
two suitable functionalities, called dialing and conversation, that when used in succession realize
anonymous messaging. With this as a starting point, we apply secure multiparty computation (“MC”
or MPC) and proceed to realize them. We present an implementation using a prevalent MPC system
(Sharemind) that is competitive in terms of latency with previous messaging systems that only offer
much weaker privacy guarantees. Our solution can be instantiated in a variety of different ways with
different MPC implementations, overall illustrating how MPC is a viable and competitive alternative
to mix-nets and DC-nets for anonymous communication.

1 Introduction

In an era in which privacy in communications is becoming increasingly important, it is often the case
that two parties want to communicate anonymously, that is to exchange messages while hiding the
very fact that they are in conversation. A major problem in this setting is hiding the communication
metadata: while existing cryptographic techniques (e.g., secure point-to-point channels implemented
with TLS) are sufficiently well developed to hide the communication content, they are not intended for
hiding the metadata of the communication such as its length, its directionality, and the identities of the
communicating end points. Metadata are particularly important, arguably some times as important to
protect as the communication content itself. The importance of metadata is reflected in General Michael
Hayden’s quote “We kill people based on metadata”1 and in the persistence of security agencies with
programs like PRISM (by the NSA) and TEMPORA (by the GCHQ) in collecting metadata for storage
and mining.

Anonymous communication has been pioneered in the work of Chaum, with mix-nets [Cha81] and
DC-nets [Cha88] providing the first solutions to the problem of sender-anonymous communication. In
particular, a mix-net enables the delivery of a set of messages from n senders to a recipient so that the
recipient is incapable of mapping outgoing messages to their respective senders. A DC-net on the other
hand, allows n parties to implement an anonymous broadcast channel so that any one of them can use it

1Complete quote: “We kill people based on metadata. But that’s not what we do with this metadata.” General M. Hayden.
The Johns Hopkins Foreign Affairs Symposium. 1/4/2014.

1

to broadcast a message to the set of parties without any participant being able to distinguish the source.
While initially posed as theoretical constructs, these works have evolved to actual systems that have
been implemented and tested, for instance in the case of Mixminion [DDM03], that applies the mix-net
concept to e-mail, in the case of Vuvuzela [VDHLZZ15] that applies the mix-nets concept to messaging
and in the case of Dissent [WCGFJ12] that implements DC-nets in a client-server model.

It is important to emphasize that the adversarial setting we wish to protect against is a model where
the adversary has a global view of the network, akin say to what a global eavesdropper would have
if they were passively observing the Internet backbone, rather than a localized view that a specific
server or sub-network may have. Furthermore, the adversary may manipulate messages as they are
transmitted and received from users as well as block users adaptively. Note that in a more “localized”
adversary setting one may apply concepts like Onion routing [SGR97], e.g., as implemented in the Tor
system [DMS04], or Freenet [CSWH01] to obtain a reasonable level of anonymity with very low latency.
Unfortunately such systems are susceptible to traffic analysis, see e.g., [JWJ+13], and, in principal, they
cannot withstand a global adversary.

Given the complexity of the anonymous communication problem in general, we focus our applica-
tion objective to the important special case of anonymous messaging, i.e., bidirectional communication
with both sender and receiver anonymity against a third party, that requires moderately low latency and
has relatively small payloads (akin to SMS text messaging). The question we ask is whether it is pos-
sible to achieve it with simulation-based security2 while scaling to hundreds of thousands of users. In
particular, we consider two types of entities in our problem specification, clients and servers, and we
ask how is it possible that the servers assist the clients that are online to communicate privately without
leaking any type of metadata to a global adversary, apart from the fact that they are using the system.
Furthermore, we seek a decentralized solution, specifically one where no single entity in the system can
break the privacy of the clients even if it is compromised. We allow the adversary to completely control
the network as well as a subset of the servers and adaptively drop clients’ messages or manipulate them
as it wishes.

Our Contributions. We present MCMix, the first anonymous messaging service that offers simulation-
based security, under a well specified set of assumptions, and can scale to hundreds of thousands of users.
In our solution, we adopt a different strategy compared to previous approaches to anonymous commu-
nication. Specifically, we provide a way to cast the problem of anonymous messaging natively in the
setting of secure multiparty computation (MPC). MPC, since its initial inception [GMW87], is known
to be able to distribute and compute securely any function, nevertheless, it is typically considered to be
not particularly efficient for a large number of parties and thus inconsistent with problems like anony-
mous messaging. However, the commodity-based approach for MPC [Bea97] (client-server model), and
more recent implementation efforts such as Fairplay [BDNP08], VIFF [DGKN09], Sharemind [Bog13],
PICCO [ZSB13], ObliVM [LWN+15], Araki et al. [AFL+16] and [FLNW17] increasingly suggest oth-
erwise.

We first propose two ideal functionalities that correspond to the dialing operation and the conversa-
tion operation. The MCMix system proceeds in rounds, where in each round an invocation of either the
dialing or the conversation ideal functionality is performed. The dialing functionality enables clients to
either choose to dial another client or check whether anyone is trying to dial them (in practice in most
dialing rounds the overwhelming majority of clients will be in dial-checking mode). If a matching pair
is determined by the ideal functionality, then the caller will be notified that the other client has accepted
their call and the callee will be notified about the caller. Moreover, the ideal functionality will deliver

2We use this term to refer to a level of metadata hiding that ensures, in a simulation based sense, that no information is
leaked to an adversary. This is distinguished from weaker levels of privacy, such as e.g., a differential privacy setting where
some controlled but non-trivial amount of information is leaked to the adversary.

2

to both clients a random tag that can be thought of as the equivalent of a “dead drop” or “rendezvous”
point. Subsequently, the clients can access the conversation functionality using the established random
tag. When two clients use the same random tag in the conversation functionality, their messages are
swapped and thus they can send messages to each other (even concurrently).

The two ideal functionalities provide a useful abstraction of the anonymous messaging problem.
We proceed now to describe how they can be implemented by an MPC system. It is easy to see that a
straightforward implementation of the functionality programs results in a circuit of size Θ(n2), where n
is the number of online users accessing the functionalities. Such a solution would clearly be not scalable.
We provide more efficient implementations that achieve O(n log n) complexity in both cases with very
efficient constants using state of the art oblivious sorting algorithms [HKI+12, BLT14].

Given our high level functionality realizations, we proceed to an explicit implementation in the
Sharemind system [Bog13] using its SecreC programming language [BLR14]. We provide benchmarks
for the Dialing and Conversation solutions. The Sharemind platform provides a 3-server implementation
of information theoretically secure MPC. Our results showcase that our system can handle hundreds of
thousands of users in a reasonable latency (little over a minute), that is consistent with messaging.

In order to provide theoretical evidence of further improving performance and scaling to even larger
anonymity sets, we provide a parallelized version of the conversation functionality. Parallelization is a
non-trivial problem in our setting since we would like to maintain anonymity across the whole user set;
thus, a simplistic approach that breaks users into chunks solving dialing and conversation independently
will isolate them to smaller “communication islands”; if two users have to be on the same island in order
to communicate, this will lead to privacy loss that is non-simulatable and we would like to avoid. Our
parallelized solution manages to make the interaction between islands, in a way that maintains strong
privacy guarantees, at the cost of a correctness error that can become arbitrarily small. In this way, by
utilizing a large number of servers, we provide evidence that the system can scale up to anonymity sets
of up to half a million of users. To sum up, our contributions can be expressed by the following points:

1. A model for simulation-based anonymous messaging.

2. A realization of this model with a set of programs that are provably secure and expressed in a way
so that they can be implemented in any MPC platform.

3. An implementation of our programs in Sharemind that can accomodate anonymity sets of hun-
dreds of thousands of users.

4. A novel parallelization technique that allows our system to scale, in theory, even beyond the order
of hundreds of thousands of users.

Organization. After shortly presenting some preliminary topics in section 2, we formalize the concept
of anonymous messaging via an ideal MPC functionality and introduce the Dialing and Conversation
programs in an abstract form that together solve the sender and receiver anonymous messaging problem
(cf. Section 3). In Section 4, we present the general architecture of MCMix and in Sections 5 and 6, we
propose a way to realize the Dialing and Conversation programs, using MPC. Then, in Section 7, we give
more details regarding how the MCMix system implements anonymous messaging in a provably secure
and privacy-preserving way. In Section 8, we present the results of benchmarking our prototype and in
Section 9, we account for the client-side load of our system. In Section 11, we introduce a novel way to
parallelize our conversation protocol in order to achieve even better scalability. Finally, in Section 10,
we provide an overview of noticeable anonymous communication systems and when applicable, we
compare their performance and security level to MCMix. Our concluding remarks are in Section 12.

3

2 Background

2.1 Secure Multiparty Computation and the Sharemind framework

Secure Multiparty Computation (MPC), is an area of cryptography concerned with methods and pro-
tocols that enable a set of users U = u1, . . . , un with private data d1, . . . , dn from a domain set D, to
compute the result of a public function f(d1, . . . , dn) in a range set Y , without revealing their private
inputs. For clarity, we assume that D consists only of actual messages, but f accepts also ⊥ as input,
which denotes abstain behavior.

Sharemind. Sharemind [Bog13] is an MPC framework that offers a higher level representation of
the circuit being computed in the form of a program written in a C-like language, namely the SecreC
language [BLR14]. It uses three-server protocols that offer security in the presence of an honest server
majority. That is, we assume that no two servers will collude in order to break the systems privacy. Our
implementation is designed over the Sharemind system, but the general approach that we introduce for
anonymous messaging can also be deployed over other MPC protocols. The security of Sharemind has
been analyzed several settings including semi-honest and active attacks (e.g., [Bog13, PL15]).

2.2 Oblivious sorting

Sorting is used as a vital part of many algorithms. In the context of secure multiparty computation,
sorting an array of values without revealing their final position, is called oblivious sorting. The first
approach to sorting obliviously is using a data-independent algorithm and performing each compare
and exchange execution obliviously. This approach uses sorting networks to perform oblivious sorting.
Sorting networks are circuits that solve the sorting problem on any set with an order relation. What
sets sorting networks apart from general comparison sorts is that their sequence of comparisons is set
in advance, regardless of the outcome of previous comparisons. Various algorithms exist to construct
simple and efficient networks of depth O(log2 n) and size O(n log2 n). The three more used ones are
Batcher’s odd-even mergesort and bitonic sort [Bat68] and Shellsort [She59]. All three of these networks
are simple in principle and efficient. Sorting networks that achieve the theoretically optimal O(log n) and
O(n log n) complexity in depth and total number of comparisons, such as the AKS-network [AKS83]
exist, but the constants involved are so large that make them impractical for use. Note that even for 1
billion values, i.e., n = 109, it holds that log n < 30 so, in practice, the extra log factor is preferable to
the large constants. A major drawback of all sorting network approaches is that sorting a matrix by one
of its columns would require oblivious exchange operations of complete matrix rows, which would be
very expensive.

In recent years techniques have been proposed from Hamada et. al [HKI+12] to use well known
data-dependent algorithms such as quicksort in an oblivious manner to achieve very efficient implemen-
tations, especially when considering a small number of MPC servers, which is very often the case. This
approach uses the “shuffling before sorting“ idea, which means that if a vector has already been ran-
domly permuted, information leaked about the outcome of comparisons does not leak information about
the initial and final position of any element of the vector. More specifically, the variant of quicksort
proposed in [HKI+12], needs on average O(log n) rounds and a total of O(n log n) oblivious compar-
isons. Complete privacy is guaranteed when the input vector contains no equal sorting keys, and in the
case of equal keys, their number leaks. Furthermore, performance of the algorithm is data-dependent
and generally depends on the number of equal elements, with the optimal case being that no equal pairs
exist. Practical results have shown [BLT14] that this quicksort variant is the most efficient oblivious
sorting algorithm available, when the input keys are constructed in a way that makes them unique.

In our algorithms we use the Quicksort algorithm together with a secret-shared index vector as

4

described in [BLT14]. This way, each sortable element becomes a unique value-index pair, providing
us the optimal Quicksort performance and complete privacy. It also has the added benefit of making the
sorting algorithm stable.

2.3 Identity-Based Key Agreement Protocols

Like in [LZ16], we make use of identity-based cryptography [Sha84] to circumvent the need for a Public
Key Infrastructure (PKI), here, for the computation of the dead drops3. In identity-based cryptography,
a Key Generation Center (KGC) using a master secret key, generates the users’ secret keys, while the
users’ public keys are a deterministic function of their identity. In an identity-based key agreement
(ID-KA) protocol (e.g. [Gün89,SKO00,Sma01,CK03,YL05,FG10,Wan13]), after receiving their secret
keys, the users can mutually agree on shared keys given their secret keys and the other user’s identity.

In our setting, we will apply ID-KA for the computation of the dead drops, where now the users
compute their secret keys by combining partial secret keys issued by the MPC servers. Therefore, we
adjust ID-KA to a multiple KGC setting where each MPC server plays the role of a KGC. In general,
we can manage distributed key generation in a fault tolerant manner, using threshold secret-sharing
techniques. However, since our threat model considers a passive (semi-honest adversary), we consider
an m-out-of-m instantiation, keeping protocol description simple. In particular, we naturally extend a
pairing-based single KGC ID-KA protocol to a setting with m KGCs denoted by KGC1, . . . ,KGCm. A
cryptographic pairing e : G1×G2 −→ GT , where G1,G2,GT are multiplicative cyclic groups of prime
order q, is an efficiently computable function such that for every pair of generators g1 ∈ G1, g2 ∈ G2

and every pair of exponents x, y ∈ Zq it holds that:

1. e(gx1 , g
y
2) = e(g1, g2)xy (bilinearity).

2. e(g1, g2)xy is a generator of GT (non-degeneracy).

The pairing e is called symmetric if G1 = G2 = G, and asymmetric otherwise.
We provide two secure constructions of multiple KGC ID-KA protocol. The second construction

additionally achieves forward secrecy, i.e. if the users’ secret keys are compromised then past session
keys are not leaked.

Construction 1: Multiple KGC ID-KA. We build upon the SOK ID-KA protocol introduced in [SKO00]
proven secure in [PS09]. Our multiple KGC ID-KA protocol consists of the following algorithms:
– Setup: On common input 1λ, where λ is the security parameter, KGC1, . . . ,KGCm agree on a sym-
metric cryptographic pairing e with parameters (e,G,GT , q, g), where g is a generator of G, and two
cryptographic hash functions H1 : {0, 1}∗ −→ G and H2 : {0, 1}∗ −→ {0, 1}λ.

Next, each KGCj , j ∈ [m] randomly chooses a partial master secret key mskj = xj
$← Zq and

publishes its partial public key mpkj = gxj that are combined in the protocol’s public key pk :=∏
j∈[m] pkj . The public parameters of the protocol are params := (e,G,GT , q, g,H1, H2, pk).

– Secret Key Derivation: For every user ui with identity IDi, each KGCj , j ∈ [m], on input mskj
generates the partial secret key ski,j := H1(IDi)

xj and sends it to ui. Upon receiving ski,1, . . . , ski,m,
the user ui obtains its secret key ski by setting

ski :=
∏
j∈[m]

ski,j = H1(IDi)
∑
j∈[m] xj .

– Key Agreement: Using their secret keys ska, skb, two users ua, ub agree on a key value K as follows:
3If preexisting PKI has already resolved the issue of users’ public key distribution, then we can turn to the easier solution

of classic Diffie-Hellman key exchange for dead drop computation (cf. Remark 6).

5

• ua computes the value Ka,b = e
(
ska, H1(IDb)

)
.

• ub computes the value Kb,a = e
(
skb, H1(IDa)

)
.

• ua and ub agree on the key K = H2(Ka,b) = H2(Kb,a).

The correctness of the protocol follows from the bilinearity property of e as shown below:

Ka,b = e
(
ska, H1(IDb)

)
= e
(
H1(IDa)

∑
j∈[m] xj , H1(IDb)

)
= e
(
H1(IDa), H1(IDb)

)∑
j∈[m] xj =

= e
(
H1(IDb), H1(IDa)

)∑
j∈[m] xj = e

(
H1(IDb)

∑
j∈[m] xj , H1(IDa)

)
= e
(
skb, H1(IDa)

)
= Kb,a .

The security of the original single SOK ID-KA protocol proven in [PS09], which is a special case of the
multiple KGC protocol described above for m = 1, holds under the assumptions that H1 and H2 are
modeled as random oracles and that the computational bilinear Diffie-Hellman problem (CBDH) is hard
for the group G of pairing e. Briefly, CBDH hardness assumption for G states that for a randomly chosen
triple of exponents x, y, z ∈ Zq and on input (gx, gy, gz) it is hard to compute the value e(g, g)xyz .

Given the security of the original ID-KA protocol for m = 1, it is straightforward that the mul-
tiple KGC ID-KA protocol described above is secure against any polynomially bounded semi-honest
adversary that corrupts all-but-one of the m KGCs.

Construction 2: Multiple KGC ID-KA with forward secrecy. We build upon the pairing-based ID-
KA protocol introduced in [Sma01] as modified in [CK03] that achieves security and forward secrecy as
proven in [CCS07]. Our multiple KGC ID-KA protocol with forward secrecy consists of the following
algorithms:

– Setup: On common input 1λ, KGC1, . . . ,KGCm agree on an asymmetric cryptographic pairing e with
parameters (e,G1,G2,GT , q, g1, g2) and two cryptographic hash functions H1 : {0, 1}∗ −→ G1 and
H2 : {0, 1}∗ × {0, 1}∗ ×G2 ×G2 ×GT −→ {0, 1}κ.

Next, each KGCj , j ∈ [m] randomly chooses a partial master secret key mskj = xj
$← Zq and

publishes its partial public key mpkj = g
xj
2 that are combined in the protocol’s public key pk :=∏

j∈[m] pkj . The public parameters of the protocol are params := (e,G1,G2,GT , q, g1, g2, H1, H2, pk).

– Secret Key Derivation: For every user ui with identity IDi, each KGCj , j ∈ [m], on input mskj
generates the partial secret key ski,j := H1(IDi)

xj and sends it to ui. Upon receiving ski,1, . . . , ski,m,
the user ui obtains its secret key ski by setting

ski :=
∏
j∈[m]

ski,j = H1(IDi)
∑
j∈[m] xj .

– Key Agreement: Using their secret keys ska := (sa, ra), skb := (sb, rb), two users ua, ub agree on a
key value Ka,b = Kb,a as follows:

• ua picks a random value ta
$← Zq and sends gta2 to ub;

• ub picks a random value tb
$← Zq and sends gtb2 to ua;

• ua computes the values Ka,1 = e
(
H1(IDb)

ta , pk
)
· e
(
ska, g

tb
2

)
and Ka,2 = (gtb2)ta ;

• ub computes the values Kb,1 = e
(
H1(IDa)

tb , pk
)
· e
(
skb, g

ta
2

)
and Kb,2 = (gta2)tb ;

• ua and ub agree on the key

Ka,b := H2(IDa, IDb, g
ta
2 , g

tb
2 ,Ka,2,Ka,1) = H2(IDa, IDb, g

ta
2 , g

tb
2 ,Kb,2,Kb,1) .

6

The correctness of the protocol follows from the bilinearity property of e as shown below:

Ka,1 = e
(
H1(IDb)

ta , pk
)
· e
(
ska, g

tb
2

)
= e
(
H1(IDb), g2

)ta∑j∈[m] xj · e
(
H1(IDa), g2

)tb∑j∈[m] xj =

= e
(
H1(IDb)H1(IDa), g2

)(ta+tb)
∑
j∈[m] xj = e

(
H1(IDa)H1(IDb), g2

)(tb+ta)
∑
j∈[m] xj =

= e
(
H1(IDa), g2

)tb∑j∈[m] xj · e
(
H1(IDb), g2

)ta∑j∈[m] xj = e
(
H1(IDa)

tb , pk
)
· e
(
skb, g

ta
2

)
= Kb,1

Ka,2 = (gta2)tb = (gtb2)ta = Kb,2 .

The security and forward secrecy of the original single KGC ID-KA protocol proven in [CK03], which
is a special case of the multiple KGC protocol described above for m = 1, holds under the assumptions
that H1 and H2 are modeled as random oracles and that CBDH is hard for the group pair (G2,G1) of
pairing e. Briefly, CBDH hardness assumption for (G2,G1) states that for a randomly chosen triple of
exponents x, y, z ∈ Zq and on input (gx2 , g

y
1 , g

z
2) it is hard to compute the value e(g1, g2)xyz .

Given the security and forward secrecy of the original ID-KA protocol for m = 1, it is straightfor-
ward that the multiple KGC ID-KA protocol described above preserves security and forward secrecy
against any polynomially bounded semi-honest adversary that corrupts all-but-one of the m KGCs.

3 Ideal Anonymous Messaging

We formalize the concept of anonymous messaging in line with standard MPC security modeling. In
particular, we capture the notion of an ideal MPC functionality F that in presence of an ideal adversary
S receives inputs from a number of n users and computes the desired result w.r.t. some program f . An
MPC protocol is said to be secure w.r.t. a class of programs, if its execution running in the presence of
a real-world adversary results in input/output transcripts that are indistinguishable from the ideal setting
that F specifies for program f .

Subsequently, inspired by Tor, Vuvuzela and other related systems, we make use of the “rendezvous
points” idea. Specifically, we instantiate F w.r.t. two distinct “abstract” programs DLNabs and CNVabs
that reflect the Dialing and Conversation functionalities respectively; the two programs are abstract
in the sense that, in this section, they will be described at a high level algorithmic way that we will
make concrete in the coming sections. The use of a random rendezvous point in the establishment of a
communication channel between two users averts any denial of service attacks targeting specific users
by other users at the conversation phase.

Notation. We write x $← X to denote that x is sampled uniformly at random from setX . For a positive
integer n, the set {1, . . . , n} is denoted by [n]. The j-th component of n-length tuple a is denoted by
a[j], i.e. a := (a[1], . . . , a[n]). We use

c
≈ to express indistinguishability between transcripts, seen as

random variables. By negl(·) we denote that a function is negligible, i.e. asymptotically smaller than the
inverse of any polynomial. We use λ as the security parameter.

Let x = 〈x1, . . . , xn〉 be a vector of users’ inputs. We denote by EXECF,f
S,x (λ) the transcript of

input/outputs in an ideal MPC execution of F interacting with the ideal adversary S, and by EXECP,f
A,x(λ)

the transcript of inputs/outputs in a real-world execution of MPC protocol P w.r.t. f under the presence
of adversary A. By PPT, we mean that A runs in probabilistic polynomial time.

3.1 Entities and threat model

We consider a client-server MPC setting. Namely, the entities involved in an MPC protocol P are (i)
a number of n users u1, . . . , un that provide their inputs 〈x1, . . . , xn〉 and (ii) a number of m servers
Ser1, . . . ,Serm that collectively compute an evaluation on the users’ inputs w.r.t. a program f . The users

7

engaged in a specific MPC execution form an active set Uact. We consider an ad-hoc setting [BGIK16]
of secure computation, where the program f is known in advance, but not the active user set Uact.

An adversary against P is allowed to have a global view of the protocol network. In addition, it
may corrupt up to a fixed subset of θ servers and has limited computational resources preventing it from
breaking the security of the underlying cryptographic primitives.

In standard MPC cryptographic modeling, the security of P is argued w.r.t. the functionality F that
specifies an “ideal” evaluation of f , where the privacy leakage is the minimum possible for the honest
users. Thus, indistinguishability between the ideal and the real world setting implies that an adversary
against P obtains essentially no more information than this minimum leakage. In our description, F
merely leaks whether an honest user is online or not. This information is impossible to hide against
a network adversary and hence it is a minimum level of leakage. On the other hand, information that
can be typically inferred by traffic analysis, is totally protected by F. This level of anonymity, some-
times referred to as unobservability, requires the participation of all online parties and the generation of
“dummy traffic” independently of whether or not they wish to send a message in a particular round. As
a result, any protocol P that securely realizes F where f represents a dialing or conversation program,
should incorporate such a methodology. As we demonstrate, using MPC to realize P is a natural way to
determine the appropriate level and form of “dummy traffic” needed to realize this level of anonymity.

3.2 An ideal MPC functionality with adversarial influence for a family of programs

In a messaging system, dialing and conversation among users are operations where conflicts are likely
to appear, e.g. two users may dial the same person, or conversation may be accidentally established
on colluding communication channels (three equal rendezvous points are computed). One can think
several other examples of operations where conflicts are possible, such as election tally where exactly
one out of multiple ballots per voter must be counted, or deciding on the valid sequence of transactions
on a blockchain ledger when forking occurs. Any program implementing this type of an operation
must be able to resolve these conflicts. The way that conflict resolution is achieved, may depend on
parameters like computation efficiency, communication complexity or user priority, yet in any case, a
set of programs that implement the same operation are in some sense equivalent and may be clustered
under the same family. A plausible requirement is that the choice of the family member that will be
utilized should not affect the security standards of the operation implementation.

Consequently, in an MPC setting that supports the realization of any program in the family, it is
desirable that security is preserved w.r.t. to the entire family, so that one can choose the family member
that suits their custom requirements. To express this formally, we introduce a relaxation of the usual
MPC functionality. Namely, the relaxed ideal MPC functionality F is for a family of programs {fz}z
in the presence of an ideal adversary S that chooses the index z (this is the relaxation), where z can
be parsed as the “code” that determines the family member fz . We call this MPC with adversarial
influence. The program fz accepts as input a vector x = 〈x1, . . . , xn〉 of (i) valid messages from some
domain D or (ii) ⊥, if the user is inactive, i.e. not in Uact. In our description, computation takes place
even when a subset of users abstain from the specific execution by not providing inputs. To formalize
the abstain behavior of user ui, for every i ∈ [n] we define an ‘abstaini(·)’ predicate over D ∪ {⊥} as
follows:

abstaini(xi) :=

{
1, if xi = ⊥
0, if xi ∈ D

(1)

The ideal MPC functionality F is presented in Fig. 1. Note that the relaxation suggests that the users
will receive output from a program fz for z that will be the ideal adversary’s choosing.

The security of a real-world MPC protocol P is defined w.r.t. a class of programs F as well as a
family selected from F as follows:

8

Ideal MPC functionality F with adversarial influence for programs {fz}z

– Upon receiving ‘start’ from S, it sets the status to ‘input’ and initializes two lists Linput and Lcorr

as empty.
– Upon receiving (corrupt, ui) from S, it adds ui to Lcorr.
– Upon receiving (send input, xi) from ui, if ui ∈ Lcorr, then it sends (send input, ui, xi) to S.
If ui /∈ Lcorr, then it sends (i)

(
send input, ui, abstaini(xi)

)
to S, where abstaini(·) is defined in

Eq. (1).
– Upon receiving (receive input, ui, x̂i) from S, if (i) the status is ‘input’ and (ii) (ui, ·) /∈ Linput,
then if ui /∈ Lcorr, it sets x̃i := xi, else it sets x̃i := x̂i. Next, it adds (ui, x̃i) to Linput.
– Upon receiving (compute, z) from S, if Linput contains records for all users in U, it executes the
following steps: first, then it computes the value vector

y = 〈y1, . . . , yn〉 ← fz(x̃1, . . . , x̃n) .

Then, it sends yi to ui for i, . . . , n, (hence, S obtains {yi}ui∈Lcorr).

Figure 1: The ideal MPC functionality F with adversarial influence for a family of programs {fz :(
D ∪ {⊥}

)n −→ Y }z on input x = 〈x1, . . . , xn〉, interacting with the ideal adversary S.

Definition 1. Let P be an MPC protocol with n users and m servers and let F be a class of programs.
We say that P is a (θ,m)-secure MPC protocol w.r.t. {fz}z ⊆ F, if for every active user set Uact ∈ U

and every PPT adversary A corrupting up to θ out of m servers, there is an ideal adversary S s.t. for
every input vector x = 〈x, . . . , xn〉,

EXECF
S,x(λ)

c
≈ EXECP

A,x(λ) .

3.3 The families of programs DLNabs and CNVabs

An anonymous messaging scheme comprises the following two functionalities: (i) the Dialing func-
tionality, which consists of the computation of a rendezvous point for a given pair of users who want
to communicate, and (ii) the Conversation functionality, which represents the actual exchange of mes-
sages. For the families DLNabs and CNVabs, the parameter z, enables the adversary to choose (i) how to
handle collisions between multiple dialers in the case of DLNabs, and (ii) how to handle the presence of
three or more equal dead drops in the case CNVabs (which happens only in the case of malicious users).
We note that this minimum level of adversarial manipulation does not affect the security features of the
anonymity system, yet it allows for substantial performance gains in terms of the implementation.

We formally express the above functionalities by instantiating the generic MPC functionality F w.r.t.
the Dialing program family DLNabs and the Conversation program family CNVabs (i.e. we set f as DLNabs
and CNVabs). We note that for both the dialing and conversation program families, the verification that
the parameter z has the proper structure can be suitably restricted so that it is tested efficiently by the
program. For brevity, we omit further details.

3.3.1 The Dialing program family DLNabs

In the Dialing functionality, a rendezvous point for users ui and uj is set when two requests of the form
(DIAL, ui, uj) and (DIALCHECK, uj) have been produced. Thus, the Dialing program family DLNabs
receives inputs that are vectors of (DIAL, ·, ·) or (DIALCHECK, ·) requests, as well as ⊥ to denote
user inactivity. That is, Uact is the set of users that do not provide a ⊥ input. The program DLNabs is

9

Program family DLNabs parameterized by z

– Domain: (DDLNabs ∪ {⊥})n, where

DDLNabs :=
{{

(DIAL, ui, uj)
}
, (DIALCHECK, ui)

}
ui 6=uj∈U

Namely, let Uact := {ui ∈ U | xi 6= ⊥}; a valid input xi for user ui ∈ Uact consists of either (i) a
(DIAL, ui, uj) request for some user uj that ui wants to dial, or (ii) a (DIALCHECK, ui) request.
For a vector of inputs x = 〈x1, . . . , xn〉, if xi = (DIALCHECK, ui) then Mi(x) = {j | xj =
(DIAL, uj , ui)}, else is ∅. Parse z as a deterministic programRz

DLN, such that for any x ifMi(x) 6= ∅,
then Rz

DLN(i,x) ∈Mi(x), else it is equal to ⊥.
– Range: YDLNabs := 〈{yi | yi ∈ [a, b]}〉ui∈Uact , where [a, b] is a predetermined integer interval.
– Function: On input a vector x = 〈x1, . . . , xn〉 where each non-⊥ value xi is either a
(DIAL, ui, uj) request, or a (DIALCHECK, ui) request, DLNabs computes a vector y = 〈yi〉ui∈Uact ,
as follows:
• Let Iact := {i | ui ∈ Uact} be the set of indices that refer to active users. For i, j ∈ Iact, DLNabs
samples distinct random integers ti,j from range [a, b].
• For every i ∈ Iact:
◦ If xi = (DIAL, ui, uj), then if there is a j ∈ Iact such that xj = (DIALCHECK, uj) and
i = Rz

DLN(j,x), then it sets ti = ti,j . Otherwise (i.e., there is no such j), it sets ti = ti,i. In both
cases, it sets yi = ti.
◦ If xi = (DIALCHECK, uj), then if there is a j ∈ Iact such that j = Rz

DLN(i,x) 6= ⊥, then it sets
ti = ti,j and a bit ci = 1. Otherwise (i.e., there is no such j), it sets ti = ti,i and a bit ci = 0. In
both cases, it sets yi = (ti, ci).
• It returns the value vector y := 〈yi〉ui∈Uact .

Figure 2: The Dialing program family DLNabs : (DDLNabs ∪ {⊥})n −→ YDLNabs with parameter z, where
non-⊥ range values are integers sampled from range [a, b].

parameterized by z, that specifies a deterministic program RzDLN(·, ·) over pairs of inputs to resolve the
case where more than one dial requests address the same user/dial checker. The Dialing program family
DLNabs is presented formally in Figure 2.

By the definition of DLNabs, two active users ui, uj that have submitted matching dialing and dial
check requests are going to be provided the same random integer ti = tj ∈ {ti,j , tj,i}, which establishes
a rendezvous point. We will refer to these non-⊥ values in t1, . . . , tn as dead drops. In addition, DLNabs
returns to each dialchecker ui a bit ci which is 1 iff ui has succesfully established a rendezvous with
some dialer. Such information is reasonable to be provided to a dialchecker, as ti might be a random
value that is not an actual dead-drop. Hence, the bit ci communicates to the dialchecker that she has an
incoming call (if nobody calls the dialchecker, then a random dead drop value is returned that nobody
else shares with her). On the other hand, a dialer should not be able to infer information about the
dial traffic and availability concerning some dialchecker, therefore DLNabs does not provide this success
check to the dialers.

3.3.2 The Conversation program family CNVabs

Given the establishment of the dead drops, as set by DLNabs, the Conversation program family CNVabs
realizes the operation of message exchange, where messages lie in some space M. The program family
CNVabs is presented in Figure 3.

10

By the definition of CNVabs, if every dead drop is not shared among three or more users, then two
users ui, uj are going to exchange their messages mi,mj only if they provide the same dead drop
ti = tj . Recall that if the dead drops are computed as outputs of the Dialing program family DLNabs
w.r.t. the same active set Uact, then no more than two users share the same dead drop, which implies the
correctness of CNVabs. In the other cases, either (i) there is no matching dead drop or (ii) more than 2
matching dead drops exist. In case (ii), the parameter z specifies a deterministic program RzCNV among
inputs which in turn determines the pair of matching dead drops. In any case, when a message exchange
fails for some user, then CNVabs returns back this message to the user for resubmission in an upcoming
round.

Program family CNVabs parameterized by z

– Domain: (DCNVabs ∪ {⊥})n, where

DCNVabs :=
{

(CONV, ti,mi)
}ti∈[a,b],mi∈M
ui∈U

Namely, let Uact := {ui ∈ U | xi 6= ⊥}; a valid input for user ui consists of a (CONV, ti,mi)
request for rendezvous point tagged by ti for sending message mi.
For a vector of inputs x, define Ni(x) = {j | xj = (CONV, ti,mj)}. Parse z as a deterministic
program Rz

CNV, such that for any x if Ni(x) 6= ∅ then Rz
CNV(i,x) ∈ Ni(x), else it is equal to ⊥.

– Range: 〈{mi | mi ∈ Uact}〉ui∈Uact .
– Function: On input a vector 〈x1, . . . , xn〉where each non-⊥ value xi is a (CONV, ti,mi) request,
CNVabs returns a value y = 〈yi〉ui∈Uact , as follows:
• Let Iact := {i | ui ∈ Uact} be the set of indices that refer to active users. For every i ∈ Iact: if
j = Rz

CNV(i,x) 6= ⊥, then it sets yi = mj . Otherwise, it sets yi = mi.
• It returns the value vector y = 〈yi〉ui∈Uact .

Figure 3: The Conversation program family CNVabs : (DCNVabs ∪ {⊥})n −→ YCNVabs with parameter z,
where non-⊥ dead drop values are integers sampled from a predetermined interval [a, b] and messages
are taken from space M.

3.4 Anonymous Messaging Systems

An anonymous messaging system is a pair of protocols that realize any two members of the families
DLNabs and CNVabs under the security guarantee provided in Definition 1. Given such realization, anony-
mous communication can be achieved as a continuous sequence of interleaved invocations of dialing and
conversation. In principle, dialing can be more infrequent compared to conversation, e.g., perform only
a single dialing every certain number of conversation “rounds.” We note that the value of our relaxation
of MPC security is on the fact that we can realize any member of the respective families.

3.5 Sharemind as a secure MPC platform

As already discussed, Sharemind will be the building platform for the implementation of our anony-
mous messaging scheme. As shown in [Bog13], Sharemind is information theoretically secure against a
passive (honest-but-curious) adversary that corrupts 1-out-of-3 MPC servers. Subsequent work [PL15]
provides interesting directions regarding the active security of Sharemind, even specifically for novel
oblivious sorting algorithms [LP16]. However, in our implementation, we consider the case of passive
security.

11

In more detail, let S be the class of programs that can be written in Sharemind’s supporting language
SecreC. In our analysis, we claim that Sharemind operates as a (1, 3)-secure MPC platform for any
program family member of the class S against passive adversaries, as in Definition 1. Using the above
claim, we provide two SecreC programs and prove that they realize two members of the families DLNabs
and CNVabs, (cf. Sections 5 and 6) hence obtaining an anonymous messaging system.

3.6 Alternative MPC platforms

For the purpose of the proposed anonymous messaging, Sharemind can be viewed as a black box provid-
ing MPC functionality. Hence, it is also possible to swap Sharemind for another MPC implementation
providing different deployment or security properties. For example, recently, Furukawa et al. pro-
posed a highly-optimised protocol for computation with an honest majority and security for malicious
adversaries [FLNW17], that was further improved by Araki et al. [ABF+17]. Similarly, it is possible
to support more than three computation parties. SPDZ [DPSZ12] is a practical MPC implementation
that provides statistical security against an active adversary that corrupts up to m − 1 parties. Its on-
line computation and communication complexities are both O(m |C| + m3), where |C| stands for the
computable arithmetic circuit size. In our setting, the lower bound for this circuit size is the number
of users, n. Both actively secure MPC implementations mentioned here work in a preprocessing (i.e.
offline/online) model.

4 System Architecture

Our work is presented in a manner that makes it easy to implement using any of the aforementioned
MPC protocols in Section 2 and with any number of servers. However, for the sake of presentation, we
assume three MPC servers, denoted by Ser1,Ser2,Ser3. As a general idea, the protocol works in rounds,
where in each round users break their input into shares and forward the shares to the servers, with each
server receiving one share. Then, the servers interactively compute the desired output shares, which
are in turn returned to the respective users. In our description, for simplicity we choose additive secret
sharing, but other sharing schemes would not affect the functionality of our architecture.

Besides the MPC servers, the complete architecture of our system comprises an entry and an output
server used to handle user requests. The entry and output servers may be located on the same or on
different physical machines and are only trusted to relay messages.

Figure 4: MCMix abstract architecture.

12

The complete architecture of our system, as shown in Fig. 4 includes the secure MPC servers, as
well as entry and an output server used to handle user requests. The entry and output servers may be
located on the same or on different physical machines and are only trusted to relay messages.

4.1 Registration phase

At the beginning, the MPC servers Ser1,Ser2,Ser3 run the Setup phase of the secure multiple KGC
ID-KA protocol (cf. Section 2.3) playing the role of three KGCs: KGC1,KGC1,KGC3 generating their
partial master secret keys msk1,msk2,msk3.

Before starting to use the system, each user ui registers with a unique username UNi of 64 bits.
Then, each MPC server Ser`, ` ∈ {1, 2, 3} generates ui’s partial secret key ski,` and sends it ui. Upon
receiving ski,1, ski,2, ski,3, ui combines the partial keys to obtain her ID-KA secret key ski as output
of the secret key derivation algorithm. In addition, by performing standard key exchange operation,
ui obtains a symmetric key ki,` for communication with each of Ser`, ` ∈ {1, 2, 3}. From this point
on, any authentication and communication between ui and the servers is performed using symmetric
key cryptography. In the client-side, ui can compute uj’s ID-KA public key pkj as a function of her
username UNj and agree on the ID-KA key Ki,`. In the rest of this paper, we set the length of the
usernames UN1, . . . ,UNn ∈ UN to be 64 bits.

4.2 Main phase

The main phase of the protocol for each round r, consists of the following steps:

1. Encoding: Each user ui generates a request ai, as input to the MPC that is to be executed. All
requests are padded to a fixed length specified by the running protocol to hide the content size.

2. Secret sharing: Each user ui creates three shares of the request using additive secret sharing, so
that ai = ai,Ser1 + ai,Ser2 + ai,Ser3 holds. Note that the subscripts denote the MPC server that will
process the share. Then each of the three shares intended for one of the MPC servers is encrypted
with the respective symmetric key ki,` using authenticated encryption. The result is a triple of the form
a′i = (a′i,Ser1, a

′
i,Ser2, a

′
i,Ser3), where a′i,Ser` := Enkki,`(ai,Ser`), ` = {1, 2, 3}. Then each user sends the

encrypted shares along with her username UNi, as a package to the entry server.

3. MPC input preparation: Before the start of round r, the entry server groups the packages received
already and sends each share along with its associated username to the respective MPC servers. It is
important to note that the use of an entry server is only to synchronize the MPC servers and to provide
the shares in the same order to each of them. For notation simplicity and without loss of generality, we
assume that the entry server arranges ui as the user that submitted the i-th input. Then, each MPC server
Ser` receives a sequence of the form a′Ser` = 〈a′1,Ser` , · · · , a

′
n,Ser`

〉. We denote as n the number of users
that provided an input in round r. In addition to a′Ser` , the MPC servers also receive a sequence of the
users’ usernames in corresponding order, that is a sequence of the form UN = 〈UN1, · · · ,UNn〉, where
UNi is the registered username of the user that provided input i.

4. Order check: Each MPC server computes a hash of the usernames in the order they appear in its
input sequence, as H(UN1|| · · · ||UNn), and exchanges it with the other MPC servers. In case the three
hashes do not match, it is implied that the order of the usernames provided to the three servers was
different. Thus, a denial of service attack has taken place by either the entry server or one of the MPC
servers (considering they reported a false hash). This step is optional when considering only privacy
implications of a malicious entry server.

5. Decryption and authentication: At this point, authentication is performed implicitly by each server
via decrypting the received share with the symmetric key corresponding to the username that came with

13

the share. Thus shares aSer` = 〈aSer`,1, · · · , aSer`,n〉, with aSer`,i := Decki,`(a
′
Ser`,i

) are ready for the
MPC.
6. MPC algorithm: The MPC servers execute the MPC protocol.
7. Encryption and return: Each MPC server encrypts each output share with the respective symmetric

key and forwards shares of the form b′Ser` = 〈b′1,Ser` , · · · , b
′
n,Ser`

〉, where each share b′i,Ser` is paired with
the username UNi of ui, to the output server. The output server collects the shares corresponding to the
same user and returns a package of the form (b′i,Ser1 , b

′
i,Ser2

, b′i,Ser3) to each user ui.

8. Decryption and reconstruction: Each user decrypts the received shares with the respective sym-
metric key and adds them, resulting in bi = bi,Ser1 + bi,Ser2 + bi,Ser3 , where bi,Ser` = Decki,`(b

′
i,Ser`

).
The value bi is the final output of the MPC protocol for each user ui for round r.

Remark 1. The entry and output servers are used for practical reasons. The main function they perform
is grouping the received packages of shares and forwarding them to/from the servers. As they have no
information about the symmetric keys exchanged between users and servers at the registration phase,
they schedule the traffic consisting of encrypted shared data. Hence, if entry and output servers are
malicious, they can do no more than an adversary controlling the network.

5 The Dialing Protocol

The dialing protocol enables a user ui to notify another user uj that she wants to start a conversation,
much like how the telephone protocol works. The protocol runs in rounds to deter possible timing
attacks, where in each round, every online active user will either send a DIAL request or a DIALCHECK
request. All requests are mutually indiscriminate. For clarity, we first provide a description of the Dialing
protocol steps. Then, we proceed with the efficient program DLNsort implementing it.

5.1 Protocol description

The protocol runs in seven steps, where steps 2-6 are executed by the MPC servers. Steps 1 and 7 are
executed locally by each user.
1. Encoding: The inputs x1, . . . , xn are of the form of (DIAL, ui, uj) requests, (DIALCHECK, ui)

requests, or ⊥, representing the action each user takes for this dialing round. For simplicity, assume
that the users are enumerated as u1, . . . , un consistently with the input sequence x1, . . . , xn, i.e. ui is
the user that submitted the i-th input. As a result, the active users that submitted non-⊥ values, are
enumerated as u1, . . . , uact, where act is the size of the active set Uact. The inputs of the active users
are encoded as triples of the form ai := (ai[1], ai[2], ai[3]) where the third component is an input wire
ID widi. The wire IDs are initially set to zero, but in the following Step 2, widi will be set unique for ui.

In particular, if ui wants to dial uj , then the (DIAL, ui, uj) request is encoded as (UNi,UNj , 0)
where UNi and UNj are the usernames of the dialer and the dialee respectively. If ui is a dial checker,
then the (DIALCHECK, ui) request is encoded as (C,UNj , 0), where (i)C is a special value designated
to denote a dial check and is different from any possible username value, and (ii) UNj is the checker’s
own username.
2. Assigning wire ID values: As a first step, the MPC protocol assigns unique wire IDs for each

user. This is done by setting the third component ai[3] of the encoded triple ai to i. Given the order
u1, . . . , uact, for each ui, we have that widi := i. These wire IDs are needed internally for the MPC
calculation and express the order in which the inputs were received so that the respective outputs will be
delivered in the same order.
3. Checking input validity: The protocol then checks if any of the first two members of each triple,

denoted by ai[1] and ai[2], is equal to the submitter’s username. This check ensures that inputs are

14

encoded in a way that does not compromise the security of the system. The threat here is that a user
ui might try to impersonate a user uj by encoding a DIALCHECK input as ai = (C,UNj ,widi). That
attack would allow user ui to receive a dial request that was intended for user uj . A similar problem
arises when considering a user ui encoding a DIAL input as ai = (UNl,UNj ,widi). In this case, user uj
will think the dial originated from user ul. To avert such impersonation attacks, it is enough for the MPC
protocol to check that either the first or the second member of an input tuple is equal to the username of
the user that submitted that input. This, along with the fact that the input is sent from the user to each
MPC server using authenticated encryption (cf. step 2 of the architecture in section 4) guarantees that
no impersonation attack can take place.

In more detail, if the input is a DIALCHECK request, then this check ensures that the second member
of the tuple is the user’s own username. In the case of a DIAL request, the check ensures that a user can
only impersonate another user when she dials herself, that is a request of the form ai = (UNj ,UNi,widi)
is created by user ui. In this case, this request does not affect the protocol. If the check fails for the
encoded input ai, then the input is set to ai = (0, 0,widi) and does not affect the protocol.
4. Sorting by usernames: The encoded input triples are first sorted according to their second compo-

nents using the oblivious Quicksort algorithm of [HKI+12], implemented according to [BLT14]. Ob-
serve that every non-zero second component is either (i) the username UNj of dialee uj in a dial request
from some user ui, or (ii) the username UNj from dial checker uj . Thus, when a triple (C,UNj ,widj) is
adjacent to some triple (UNi,UNj ,widi) with a non-zero second component, this determines a dial pair
between ui, uj . We note that two special conflict cases may appear:
I. (C,UNj ,widj) is adjacent to two dial triples as
. . . , (UNi,UNj ,widi), (C,UNj ,widj), (UNi′ ,UNj ,widi′), . . .

II. Two or more adjacent dial triples correspond to (C,UNj ,widj). The sorting would then appear as
. . . , (UNi′ ,UNj ,widi′), (UNi,UNj ,widi), (C,UNj ,widj), . . .

5. Connecting neighbors: Next, requests are processed individually by looking at both their neigh-
bors’ triples to determine if there is a dial for any given dial check request. Of course, requests at the
first and last place of the sorted vector need only look at one neighbor. Thus, we can claim that any dial
check request will have a suitable dial request as its neighbor or not at all.

In more detail, for every user ui, the protocol produces a pair b := (bi[1], bi[2]), where bi[2] is widi
and bi[1] is either (i) the username UNj of some user uj that dialed ui, or (ii) 0, if no dial request has
been made for ui, or ui has made a dial request.
6. Sorting by wire IDs: As a final sorting step, the protocol needs to sort the processed requests ac-

cording to their wire IDs in order for the correct requests to be forwarded to each user. The latter sort,
performed on 〈b1, . . . , bact〉 according to the wire IDs can again be implemented by the Quicksort algo-
rithm of [HKI+12]. The result of the last sorting is a vector 〈b̂1, . . . , b̂act〉 where b̂i is a pair (b̂i[1], b̂i[2])
that corresponds to ui and b̂1 is essentially either (i) a username UNj or (ii) a zero value, in both cases
indexed by b̂2 := widi.
7. Computing the dead drops: After the Quicksort algorithm is completed, the active users u1, . . . , uact

are delivered the values b̂1[1], . . . , b̂1[act] respectively. Then, dialer ui that knows UNj , and dial checker
uj that obtained UNi, can calculate their shared dead drop value for dialing round r as follows:

ti := H
(
Ki,j , r

)
, if b̂i[1] = 0

tj := H
(
Kj,i, r

)
, if b̂i[1] = UNj

Above,H is a standard cryptographic hash function, and r is the round number. The valuesKi,j ,Kj,i

are the ID-KA keys that ui and uj compute by running the key agreement algorithm GenerateKey on
input (ski,UNj) and (skj ,UNi) respectively (cf. Section 2), where ski, skj are the secret keys of ui and
uj . Recall that ID-KA operations are over a finite multiplicative group of prime order q.

15

The Dialing Program DLNsort

Input: a sequence 〈x1, . . . , xn〉 where xi is either a (DIAL, ui, uj) request, a (DIALCHECK, ui)
request, or ⊥. All ⊥ inputs are stacked last.

Output: a sequence 〈yi〉i:xi 6=⊥, where yi either is a κ-bit integer ti, if xi = (DIAL, ui, uj), or a
pair of a κ-bit integer ti and a bit ci, if xi = (DIALCHECK, ui).

1. For each i← 1, . . . , n
if xi = ⊥ then

Set act := i− 1 ;
Break loop ;

else if xi = (DIAL, ui, uj) then
Set ai := (ai[1], ai[2], ai[3])← (UNi,UNj , 0) ;

else if xi = (DIALCHECK, ui) then
Set ai := (ai[1], ai[2], ai[3])← (C,UNi, 0) ;

end if
2. For each i← 1, . . . , act

Set widi as ai[3]← i ;

3. For each i← 1, . . . , act
if ai[1] 6= UNi AND ai[2] 6= UNi then

Set ai[1] = ai[2] = 0 ;
end if
4. 〈ai〉i:xi 6=⊥ according to second coordinate using Quicksort;

5. For each i← 1, . . . , act
if ai[1] = C AND ai[2] = ai−1[2] then

Set bi := (bi[1], bi[2])← (ai−1[1], ai[3]) ;
else if ai[1] = C AND ai[2] = ai+1[2] then

Set bi := (bi[1], bi[2])← (ai+1[1], ai[3]) ;
else

Set bi := (bi[1], bi[2])← (0, ai[3]) ;
end if
6. Sort tuples 〈bi〉i:xi 6=⊥ according to second coordinate using Quicksort;
7. For each i← 1, . . . , act

if ai[1] = UNi then
Set ti ← H

(
GenerateKey(ai[1], ai[2]), r

)
;

Set yi ← ti ;
else if ai[1] = C AND bi[1] ∈ UN then

Set ti ← H
(
GenerateKey(ai[1], bi[1]), r

)
;

Set yi ← (ti, 1) ;
else if ai[1] = C AND bi[1] = 0 then

Pick ρi
$← {0, 1}64 ;

Set ti ← H
(
GenerateKey(ski, ρi), r

)
;

Set yi ← (ti, 0) ;
end if
return y := 〈yi〉i:xi 6=⊥ .

Figure 5: The Dialing program DLNsort realizing the Dialing program DLNabs for dialing round r, and
users u1, . . . , un with usernames UN1, . . . ,UNn ∈ {0, 1}64. The value C denotes a dial check request.

16

We stress that the dead drop value is at least 64 bits long to make accidental collisions unlikely,
although our system can tolerate them. By the correctness of the ID-KA protocol, it holds that Ki,j =
Kj,i, hence we have that ti = tj .

On the other hand, if user ui dial checked but b̂i[1] = 0 (no one dialed ui), then for uniformity
reasons, she computes a random dead drop as above by inserting a random value ρi in place of UNj , i.e.
she sets ti := H

(
GenerateKey(ski, ρi), r

)
.

Note that if ui has dialchecked, then either (i) she established a rendezvous point with uj , if b̂1 =

UNj , or (ii) no one dialed her, if b̂1 = 0. Thus, she can set a “success” bit ci to 1 or 0 respectively,
indicating her successful engagement in the dialing round r. Besides, if ui is a dialer that dialed uj ,
then she always computes the value ti := H

(
GenerateKey(ski,UNj), r

)
, regardless of the success of

her dialing request. Hence, she can not infer a success bit.

5.2 The Dialing program DLNsort

The program DLNsort implementing the Dialing protocol is presented in Fig. 5.
Following Subsection 3.3.1, we show that DLNsort realizes the member of the Dialing program family

DLNabs that corresponds to our sorting process. Namely, in Step 4 of DLNsort (Sorting by usernames),
the inputs are arranged according to an ordering of their second coordinate. Thus, we set the index z
that parameterizes the family DLNabs to be the string zqs2 as follows: zqs2 is parsed as the deterministic
program R

zqs2
DLN that takes as takes as input an index i and array of triples x in encoded form, and outputs

the index j so that when the array is sorted according to Quicksort ordering on the second coordinate, xi
is the left neighbor of the encoded xj . We prove the correctness of the Dialing program in the following
theorem:

Theorem 1. Let n be the number of users, κ ≥ 64 be the dead drop string length and q be the prime
order of the underlying ID-KA group. Let H be the cryptographic hash function modeled as a random
oracle. Then, the Dialing program DLNsort described in Fig. 5 implements the member of the Dialing
program family DLNabs described in Fig. 2 for parameter zqs2 with correctness error n4

4q + n
2κ .

Proof. By the fact that in the arrangement of input sequence 〈x1, . . . , xn〉 the ⊥ values are stacked last,
if the first⊥ input corresponds to index i, then all users u1, . . . , ui−1 are exactly the ones that are active.
Therefore, the set of indices Iact referring to active users is set simply as {1, . . . , act}.

The inputs of all active users u1, . . . , uact are encoded into triples a1, . . . , aact. Observe that input
validity (Step 3) always holds in the correctness setting. Besides, by the correctness of Quicksort, if ui
is a dial checker and at least one user has made a dial request for ui, then ui will receive the username
of the dialer whose encoded input is at an adjacent position,By the symmetric property of ID-KA key
generation algorithm, we have that if ui, uj have received each others public keys, then

ti : = H
(
GenerateKey(ski,UNj), r

)
=

= H
(
GenerateKey(skj ,UNi), r

)
= tj .

Let x = 〈xi, . . . , xn〉 be an input vector and let Mi(x) := {j | xj = (DIAL, uj , ui)}. By the above, we
have that for every i ∈ Iact, the program DLNsort sets ti such that

- If xi = (DIAL, ui, uj), and running Quicksort on the second coordinate of the encoded triples
sets xi as the left neighbor of the dial checker xj , then it sets ti = tj . The latter is equivalent to
i = R

zqs2
DLN(j,x). Otherwise, it sets ti to be a pseudorandom value.

- If xi = (DIALCHECK, ui) and for some j ∈ Mi(x), the encoded triple of dialer uj is the left
neighbor of the encoded xi when running Quicksort on the second coordinate, then it sets ti = tj and a
bit ci = 1. The latter is equivalent to j = R

zqs2
DLN(i,x). Otherwise, it sets ti to be a pseudorandom value

and a bit ci = 0.

17

Hence, in both cases, ti is computed consistently with the description of the Dialing program family
DLNabs in Fig. 2 for parameter zqs2. The implementation is perfect (no error) if all the dead drops are
distinct, so it remains to bound the probability that the bad event of dead drop collision does not happen.

Since the hash function H is modeled as a random oracle, the computed dead drops are not distinct
only if

1. Two distinct user pairs ui, uj and ui′ , uj′ agree on the same key value. Here, we make use of the
fact that in the multiple KGC version of the SOK ID-KA protocol that we apply (cf. Section 2.3,
Construction 1), key agreement is generated as shown below:

ski := H1(UNi)
x = gxyi , ski := H1(UNj)

x = gxyj
SOK

7−−−−−→ e(g, g)xyiyj ,

where (i) g is a generator of the cyclic group G of pairing e : G×G −→ GT with order q, (ii) x
is the combined master secret key from all KGCs partial master secret keys, and (iii) yi, yj ∈ Z1

are the unique exponents s.t. H1(UNi) = gyi and H1(UNj) = gyj respectively.

By the fact that the group is prime order cyclic, distinct user pairs ui, uj and ui′ , uj′ agree on the
same key value when for the respective secret keys ski = gxyi , skj = gxyj , ski′ = gxyi′ , skj′ =
gxyj′ it holds that

xyiyj ≡ xyi′yj′ modq
x 6=0⇔ yiyj ≡ yi′yj′ modq (2)

Since H1 is modeled as random oracle, the exponents yi, yj , yi′ , yj′ are randomly selected, thus
the probability that Eq. (2) holds for some fixed i, j, i′, j′ is 1

q . By the union bound, the probability
that there exist distinct i, j, i′, j′ ∈ [n] s.t. Eq. (2) holds is upper bounded by∑

({i,j},{i′,j′})

1

q
=
n(n− 1)

2
· (n− 2)(n− 3)

2
· 1

q
=

n!

4q(n− 4)!
.

2. A dial checker ui that did not pair with any dialer chooses a random value ρi s.t. GenerateKey(pki, ρi)
matches some other key value. Since the group is cyclic, the probability that this happens is no
more than n

q .

3. All agreed key values are distinct but two of them have the same hash for round r. The probability
that this happens is no more than n

2κ .

We conclude that the overall correctness error is no more than

n!

4q(n− 4)!
+
n

q
+

n

2κ
≤ n4

4q
+

n

2κ
.

Remark 2. The correctness error n4

4q + n
2κ is typically a negligible value in our setting. To provide

intuition, consider the case with a number of n = 100000 < 217 users, dead drop size κ = 64 bits and
group size q ≥ 2128. The error for this case is less than 217·4

2128
+ 217

264
≈ 2−47 .

6 The Conversation Protocol

The Conversation protocol facilitates the actual exchange of messages associated with the same t dead
drop value, which represents a rendezvous point computed in the final step of a Dialing protocol execu-
tion. It is expected that no more than two messages will have the same t value due to its large bit-size,

18

although our system can handle collisions as we will see later. As in the previous section, we first pro-
vide a description of the Conversation protocol and then the corresponding program labeled CNVsort that
implements it. At this point, we have to highlight our assumption that a valid message mi at the input
has its least significant bit (LSB) equal to 0. This flag which could also be a discrete fourth member
of our tuple, is useful at (i) conflict resolution when more than two dead drops are identical and (ii) the
parallelization of our protocol discussed in Section 10.

6.1 Protocol description

The protocol is executed via the following steps, where steps 2-6 are executed by the MPC servers. Step
1 is executed locally by each user.
1. Encoding: The inputs are of the form of (CONV, ti,mi) requests, or ⊥. Again, we assume that

the users are enumerated as u1, . . . , un consistently with the order they submitted their input sequence
x1, . . . , xn, hence all ⊥ values are stacked last. Active users’ inputs are encoded as triples of the form
ai := (ai[1], ai[2], ai[3]) where the third component is an input wire ID widi that will be uniquely as-
signed in the following step. In particular, if ui wants to engage in conversation, then the (CONV, ti,mi)
request is encoded as (ti,mi, 0). In case ui is not engaging in conversation the request will use a random
dead drop value and a random message.

2. Assigning wire ID values: As a first step, the MPC protocol assigns unique wire IDs for each user.
This is done by setting the third component ai[3] of the encoded triple ai to i. Thus, for each ui, we have
that widi := i.

3. Sorting by dead drops: The encoded input triples are first sorted according to their first components
using the oblivious Quicksort algorithm of [HKI+12]. As a result, the inputs of any two users that share
the same dead drop value will become adjacent.
4. Exchanging adjacent messages: By construction, two inputs with the same dead drop value in-

dicate a pair of users ui and uj that wish to communicate. Thus, the protocol generates a vector
〈b1, . . . , bn〉, where each bi is a pair (bi[1], bi[2]), of which the second component is widi and the first
component is either (i) the message of some adjacent encoded input, or (ii) the original message mi, if
message exchange did not take place for ui because there was no matching dead drop or due to conflict
(three or more equal dead drops). As already mentioned, the LSB of two exchanged messages is set to
1. In the special conflict case where three or more values share the same dead drop t, an arrangement
would be as follows:

. . . , (t′,mk, k), (t,mj , j), (t,mi, i), (t,mi′ , i
′), . . .

In this case, the messages of ui and uj will be exchanged and ui′ will obtain back his message at the end
of the protocol, notifying him to resubmit.
5. Sorting by wire IDs: As in the Dialing protocol (Step 5), the Conversation protocol performs a

Quicksort on the processed requests according to their mutually distinct wire IDs in order for the correct
requests to be forwarded to each user. The result is a vector 〈b̂1, . . . , b̂n〉 where b̂i is a pair (b̂i[1], b̂i[2])
that corresponds to ui and is either (i) a message mj from some user uj or (ii) the original message mi,
in both cases indexed by widi.

6. Forwarding messages: At the end, the protocol discards the wire IDs and creates the output vector
y = 〈y1, . . . , yn〉 := 〈b̂1[1], . . . , b̂n[1]〉. Thus, each yi is either (i) a message mj from some user uj or
(ii) the self-generated message mi. Finally, the users u1, . . . , un are delivered the values y1, . . . , yn.

Remark 3. In reality, the dead drop value ti of some user ui is not exactly the value she received from
a dialing protocol execution. For conversation round r it is computed as ti := H(t(dialing)i, r), where
t(dialing)i is the dead drop for ui, generated by the dialing protocol and acts as the seed for the creation
of an ephemeral dead drop for each conversation round.

19

Remark 4. Due to the size of dead drops values, the probability that a collision on randomly generated
dead drop values will occur can be made very small. Even in the case of a collision, the client of the
user that was affected would just resend that message in the next round, as it would know that a collision
occurred because it received a message it could not decrypt.

The Conversation Program CNVsort

Input: a sequence 〈x1, . . . , xn〉 where xi is either a (CONV, ti,mi) request, or ⊥. All ⊥ inputs
are stacked last.

Output: a sequence of messages 〈yi〉xi 6=⊥.

1. For each i← 1, . . . , n
if xi = ⊥ then

Set act := i− 1 ;
Break loop ;

end if
if xi = (CONV, ti,mi) then

Set a := (ai[1], ai[2], ai[3])← (ti,mi, 0) ;
end if
2. For each i← 1, . . . , act

Set widi as ai[3]← i ;

3. Sort tuples 〈ai〉xi 6=⊥ according to first coordinate ai[1] using Quicksort;

4. For each i← 1, . . . , act− 1
if ai[1] = ai+1[1] AND LSB(ai[2]) = LSB(ai+1[2]) = 0 then

Set the LSB of ai[2] and ai+1[2] to 1 ;
Set bi ← (ai+1[2], ai[3]) ;
Set bi+1 ← (ai[2], ai+1[3]) ;

end if
5. Sort tuples 〈bi〉i:xi 6=⊥ according to second coordinate (which is the wire id) using Quicksort;

6. For each i← 1, . . . , act
Set yi ← bi[1] ;
return y := 〈yi〉i:xi 6=⊥ .

Figure 6: The Conversation program CNVsort realizing the Conversation program CNVabs for conversation
round r, dead drop size κ ≥ 64 and users u1, . . . , un with messages taken from space M.

6.1.1 The Conversation program CNVsort

The program CNVsort implementing the Conversation protocol is presented in Fig. 6.
Following Section 3.3.2, we show that CNVsort realizes the member of the Conversation program

family CNVabs that corresponds to our sorting process. Namely, in Step 3 of CNVsort (Sorting by dead
drops), the inputs are arranged according to an ordering of their first coordinate. Thus, we set the index
z that parameterizes the family CNVabs to be the string zqs1 as follows: zqs1 is parsed as the deterministic
programR

zqs1
CNV that takes as input an index i and array of triples x in encoded form, and outputs the index

j so that when the array is sorted according to Quicksort ordering on the first coordinate, the encoded
triple of ui (or resp. uj) has no neighbors on the left of the sorted array and the encoded triple of uj (or
resp. ui) is the right neighbor of the encoded triple of ui (or resp. uj). Formally, we prove the following
theorem.

20

Theorem 2. Let n be the number of users and κ ≥ 64 be the dead drop string length. The Conversation
program CNVsort described in Fig. 6 implements the member of the Conversation program family CNVabs
described in Fig. 3 for parameter zqs1.

Proof. By the fact that⊥ values are stacked last, if the first⊥ input corresponds to index i, then all users
u1, . . . , ui−1 are exactly the ones that are active. Therefore, the set of indices Iact referring to active
users is set simply as {1, . . . , act}.

The rest of the proof follows by the correctness of the Quicksort algorithm. Specifically, if for two
user ui, uj it holds that when sorted according to first coordinate the encoded triple of ui (resp. uj) is the
leftmost (resp. rightmost) neighbor of the encoded triple of uj (resp. ui), then ui and uj constitute the
first pair that share the same dead drop value t and will exchange their messages. The latter is equivalent
to j = R

zqs1
CNV(i,x) and i = R

zqs1
CNV(j,x). In any other case, ui and uj will receive back their messages mi,

mj .
As a result, in both cases message exchange is done consistently with the description of the Conver-

sation program family CNVabs in Fig. 3 for parameter zqs1. The implementation is perfect.

7 The MCMix Anonymous Messaging System

Having presented the general architecture of our system in Section 4 and the Dialing and Conversation
protocols and programs in Sections 5 and 6 respectively, we now show how these programs are imple-
mented in our architecture. Our system consists of two MPC instances of the general architecture in
Section 4, executing one after the other or independently in parallel. One implements the Dialing proto-
col and the other the Conversation protocol. Below, we specify the operations of general architecture for
each of our two protocols. We note with the prime symbol, e.g. 1’. , the specification of the respective
step, e.g. 1. , of the general architecture.

7.1 Dialing

The execution of the Dialing protocol for round r follows the steps of section 4 with the following
particularities:

1’. Encoding: The input of user ui is encoded as ai = (UNi,UNj , 0), in the case of a dial to user uj ,
or as ai = (C,UNi, 0) in the case of a dial request, as specified by Step 1 of the Dialing program DLNsort
in Fig. 5.

6’. MPC algorithm: The MPC server secure computation consists of Steps 2-6 of DLNsort.

8’. Decryption and reconstruction: The reconstructed value bi received by user ui is the output bi of
Step 6 of DLNsort.

9’. Dead drop calculation: As an extra step, the dead drop value ti is calculated by each user by
performing Step 7 of DLNsort.

7.2 Conversation

The execution of the conversation protocol for round r follows the steps of Section 4 with the following
particularities:

1’. Encoding: Input is encoded as ai = (ti,mi, 0), with ti being a dead drop calculated by the final
step of a previous dialing round in the case of a real conversation request (also taking into account
Remark 3), or a random value in the case the user does not want to send a message (but still wants to
protect her privacy), according to the Conversation program CNVsort in Fig. 6.

6’. MPC algorithm: The MPC server secure computation consists of Steps 2-6 of CNVsort.

21

8’. Decryption and reconstruction: The reconstructed value bi received by the user that provided
input i is the output yi of Step 6 of CNVsort and is the message intended for this user.

7.3 Security of MCMix

We prove our security theorem for the general θ-out-of-m case, as in Definition 1, using the parameters
zqs2 and zqs1 defined in Sections 5 and 6 respectively. We first remark that in the Dialing program DLNsort
described in Fig. 2 and in the Conversation program CNVsort described in Fig. 3, the server computation
part that we implement in an MPC manner consists of the Steps 2-6 of these programs. Therefore, for
the clarity of the statement and proof of our theorem we define the following programs and their related
abstracted program families.

• The program DLN2−6
sort , which executes the Steps 2-6 of DLNsort.

• The program family DLN2−6
abs parameterized by z that has as input a sequence of encoded triples

a1, . . . , aact as in Step 2 of DLNsort, and returns a sequence of pairs 〈b1, . . . , bact〉, where bi[2] =
widi := i and

– If ai = (UNi,UNj , i), then it sets bi[1] = ai[2].

– If ai = (C,UNi, i), then if there is a j ∈ Iact such that j = RzDLN(i,x) 6= ⊥, then it sets
bi[1] = aj [1]. Otherwise (i.e., there is no such j), it sets bi[1] = 0.

• The program CNV2−6
sort , which executes the Steps 2-6 of CNVsort.

• The program family CNV2−6
abs parameterized by z that has as input a sequence of encoded triples

a1, . . . , aact of the form ai = (ti,mi, 0) as in Step 2 of CNVsort, and outputs a value vector
〈y1, . . . , yact〉 as CNVabs on parameter z. Namely, if there is a j ∈ Iact such that j = RzCNV(i,x) 6=
⊥, then it sets yi = aj [2]. Otherwise, it sets yi = ai[2].

Theorem 3. Let κ be the dead drop size, n be the number of users, m be the number of servers and q the
size of the underlying Diffie-Hellman group, where n,m are polynomial in λ, κ = Θ(λ) and q = Ω(2λ).
Let P be am MPC protocol with n users and m servers (θ,m)-secure MPC protocol w.r.t. program
families DLN2−6

sort and CNV2−6
sort . Then, MCMix implemented over P is an anonymous messaging system by

securely realizing the program families DLNabs and CNVabs for parameters zqs2 and zqs1 respectively.

Proof. We denote by DLN
zqs1
abs and CNV

zqs2
abs the members of the families DLNabs and CNVabs for parameters

zqs1 and zqs2, respectively. The proof consists of two parts as follows:

I. Security of the Dialing Protocol DLNsort: Let ADLN be a passive adversary against the security
of DLNsort in a dialing round r that corrupts the input and output server and up to θ servers of the
MPC protocol P. We will show that there exists an ideal adversary SDLN s.t. for every input vector
x = (x1, . . . , xn),

EXECF
SDLN,x(λ)

c
≈ EXEC

P[DLNsort]
ADLN,x

(λ) ,

where P[DLNsort] denotes the implementation of DLNsort over P.
The program DLN2−6

sort consists of the following steps:

– It receives an input of triples 〈ai := (ai[1], ai[2], ai[3] := 0)〉i∈[act], that encode dial or dialcheck
requests as described in Step 1 of DLNsort.

– It executes the Steps 2-6 of DLNsort.

22

– It outputs the vector of pairs 〈b1, . . . , bact〉 sorted according to the second coordinate using Quick-
sort, where bi[2] = widi and

· If ai = (UNi,UNj , 0), then it sets bi[1] = ai[2].

· If ai = (C,UNi, 0), then if there is a j ∈ Iact such that j = R
zqs2
DLN(i,x) 6= ⊥, then it sets

bi[1] = aj [1]. Otherwise (i.e., there is no such j), it sets bi[1] = 0.

Given DLN2−6
sort , we write the realization of DLNsort compatibly with the MCMix architecture as follows:

let P[DLN2−6
sort] be the implementation of DLN2−6

sort in the MPC protocol P. Let πd be a protocol that
“completes” the description of DLNsort, by having access to DLN2−6

sort and defining the steps run in the
users’ side, as well as in the entry and output servers. The communication among the MPC servers
and the users via the entry and output servers is done in a share-wise authenticated encryption manner
described in Section 4.

An execution of the above protocol, denoted by πP[DLN2−6
sort]

d , for some round r, is as follows:

– Upon receiving (send input, xi), each user ui encodes xi as ai := (ai[1], ai[2], 0) according to
Step 1 of DLNsort and sends (ai,UNi) to the entry server.

– The entry server packs the messages provided by the active users a1, . . . , aact and forwards them
as the message 〈(UN1, a1), . . . , (UNact, aact)〉 to the MPC servers. Next, the MPC servers in P
perform the order check for the matching of H(UN1|| · · · ||UNact) described in Section 4.2 (Step
4). If the check is successful, then the servers initiate an MPC execution of P[DLN2−6

sort] on input
〈a1, . . . , aact〉.

– Upon finishing computation, P[DLN2−6
sort] sends its output 〈(UN1, b1), . . . , (UNact, bact〉 to the out-

put server which in turn, issues b1, . . . , bact to the users u1, . . . , uact.

– Upon receiving bi, each user ui can compute her dead drop as an ID-KA session key, like it is
described in Step 7 of DLNsort.

By the parameter setting of the statement of Theorem 1, DLNsort realizes the program DLNabs with
parameter zqs1 with error no more than

n4

4q
+

n

2κ
=

poly(λ)

Ω(2λ)
+

poly(λ)

2Θ(λ)
= negl(λ) .

The above equation implies that DLN2−6
sort realizes DLN2−6

abs for parameter zqs2 except some negl(λ) correct-
ness error. Therefore, since P is a (θ,m)-secure MPC protocol that implements DLN2−6

sort , by Definition 1,
we can “replace” P[DLN2−6

sort] with F for the program family DLN2−6
abs , denoted by F[DLN2−6

abs]. In more de-

tail, the hybrid F[DLN2−6
abs]-protocol π

F[DLN2−6
abs

d] operates similar to π
F[DLN2−6

abs]

d , with the difference that
instead of interacting with P[DLN2−6

sort], it does so with F[DLN2−6
abs]. The functionality F[DLN2−6

abs] that con-
siders a single user Uin for receiving input and a single user Uout for providing output (in real-world,
realized by the entry and output servers) and is described as follows:

– Upon receiving ‘start’ from S, it sets the status to ‘input’ and initializes two lists Linput and Lcorr

as empty. It forwards the message

– Upon receiving (corrupt, ui) from S, it adds ui to Lcorr.

– Upon receiving (send input, 〈(u1, a1), . . . , (uact, aact)〉) from Uin, it sets Uact = {1, . . . , act}.
For every ui ∈ U, if ui ∈ Lcorr, then it sends (send input, ui, ai) to S. If ui /∈ Lcorr, then it sends
(i)
(
send input, ui, abstaini(ai)

)
to S, where abstaini(·) is defined in Eq. (1).

23

– Upon receiving (receive input, ui, ãi) from S, if (i) the status is ‘input’ and (ii) (ui, ·) /∈ Linput,
then if ui /∈ Lcorr, it adds (ui, ai) to Linput, else it adds (ui, ãi) to Linput.

– Upon receiving (compute, z) from S, it runs DLN2−6
abs with parameter z and on input 〈a1, . . . , aact〉.

– It returns the vector of pairs 〈(u1, b1), . . . , (un, bact)〉 to Uout, where bi := (bi[1], bi[2]) is defined
as in DLN2−6

sort , and also sends 〈(ui, bi)〉ui∈Lcorr to S.

By the security of P, there is an adversary S2−6
DLN s.t.

EXEC
π
F[DLN2−6

abs
]

d

S2−6
DLN ,x

(λ)
c
≈ EXEC

π
P[DLN2−6

sort]

d
ADLN,x

(λ) ≡ EXEC
P[DLNsort]
ADLN,x

(λ) . (3)

We now construct the ideal adversary SDLN for ADLN. Namely, SDLN interacts with F for the program

family DLNabs, invokes S2−6
DLN and simulates an interaction of S2−6

DLN with π
F[DLN2−6

abs]

d as follows:

– Upon receiving ‘start’ from S2−6
DLN , it forwards ‘start’ to F and initializes two lists L2−6

input and L2−6
corr

as empty, playing the role of F[DLN2−6
abs].

– Upon receiving (corrupt, ui) from S2−6
DLN , it forwards ‘(corrupt, ui)’ to F and adds ui to L2−6

corr . In
addition, since ADLN corrupts the entry and output servers, then so will S2−6

DLN in the simulation of

π
F[DLN2−6

abs]

d .

– Upon receiving (send input, ui, xi) from F for some ui ∈ Lcorr, it adds ui to Uact and encodes xi
to the triple ai := (ai[1], ai[2], 0).

– Upon receiving
(
send input, ui, Qi

)
from F or some ui /∈ Lcorr, where Qi is the abstain bit for

ui, if Qi = 1, then it adds ui to Uact, and sets a simulated encoded triple ai := (C,UNi, 0) as the
input for ui. Namely, it sets any active honest user to be a dialchecker by default.

– Upon receiving (receive input, ui, âi) from S2−6
DLN , if (ui, ·) /∈ Linput, then

· If ui /∈ Lcorr, then it sets ãi := ai and adds (ui, ãi) to L2−6
input.

· If ui ∈ Lcorr, then it sets ãi := âi and adds (ui, ãi) to L2−6
input.

We note that the above operation, captures the adversarial power of S2−6
DLN , controlling a part of the

user set and passively corrupting the entry server. Namely, the adversary may choose the inputs
of the users it controls, but when the round begins (see below), the users’ inputs will be delivered
to F[DLN2−6

abs].

Next, SDLN decodes âi to x̂i (if decoding is not a dial or dialcheck request for ui, then it sets
x̂i = ⊥) and sends (receive input, ui, x̂i) to F.

– Upon receiving (send input, 〈(u1, a1), . . . , (uact, aact)〉) from S2−6
DLN , where the latter acts as Uin

by corrupting the entry server, SDLN plays the role of F[DLN2−6
abs] with the following modification;

it first runs the order check H(UN1|| · · · ||UNact) as the honest MPC servers would do in the real-
world setting, and if it fails, then it aborts simulation. Otherwise, it continues normally as dictated
by F[DLN2−6

abs].

– Upon receiving (compute, z) from S2−6
DLN , it first sends the message (send input, 〈(u1, ã1), . . . ,

(uact, ãact)〉) on behalf of Uin to the (simulated) F[DLN2−6
abs]. Then, it forwards the message

(compute, z) to F.

24

– Upon receiving the value vector 〈(u1, b1), . . . , (uact, bact)〉 from F[DLN2−6
abs] on behalf of Uin, it

forwards 〈(ui, bi)〉ui∈Lcorr to S2−6
DLN .

– It returns the output of S2−6
DLN .

By the description of the simulation above, we have that, except some negligible error of the order check

that SDLN performs, for input vector x and corrupted set Lcorr, SDLN simulates an execution of π
F[DLN2−6

abs]

d

for the input vector x̃ = 〈x̃1, . . . , x̃n〉 defined as follows:

x̃i :=

{
(DIALCHECK, ui), if ui /∈ Lcorr and xi 6= ⊥
xi, otherwise

Let M be the number of users s.t. ui /∈ Lcorr and xi 6= ⊥. We consider a sequence of “hybrid”
inputs h0,h1, . . . ,hM , where h0 := x and for j = 1, . . . ,M , hj derives by replacing the input of the
j-th user uij Lcorr and xij 6= ⊥ (arranged w.r.t. some order) in hj−1 with the pair (DIALCHECK, uij).
Clearly, it holds that hM = x̃.

Let OUTπ
S,w̃(λ) denote the output of adversary S when interacting with protocol π on input w,

parameterized by λ. Assume for the sake of contradiction, that for some j ∈ [M], it holds that

OUT
π
F[DLN2−6

abs
]

d

S2−6
DLN ,hj−1

(λ)
c
6≈ OUT

π
F[DLN2−6

abs
]

d

S2−6
DLN ,hj

(λ) ,

and let D be a distinguisher for the above random variables. Given D, we can construct an algorithm B

that attacks the authenticated encryption used for message communication in the MCMix architecture.
In particular, B receives as input a triple of authenticated encryption shares of the input of uij that refer
to either (i) hj or (ii) hj−1. Observe that by definition, the hybrid inputs hj and hj−1 differ only for

uij . Then, B simulates an execution of π
F[DLN2−6

abs]

d (λ) in the presence of S2−6
DLN and returns the output of

D, when the latter is given the output of S2−6
DLN . Therefore, depending on its input, B provides D with

either an input following OUT
π
F[DLN2−6

abs
]

d

S2−6
DLN ,hj

(λ) or (ii) OUT
π
F[DLN2−6

abs
]

d

S2−6
DLN ,hj−1

(λ). Thus, by a standard reduction

argument, B has a non-negligible advantage of distinguishing its input, which contradicts the security
of the applied authenticated encryption scheme.

By the above and the transitive property of
c
≈ we have that

OUT
π
F[DLN2−6

abs
]

d

S2−6
DLN ,h0

(λ)
c
≈ OUT

π
F[DLN2−6

abs
]

d

S2−6
DLN ,hM

(λ)⇔ OUT
π
F[DLN2−6

abs
]

d

S2−6
DLN ,x

(λ)
c
≈ OUT

π
F[DLN2−6

abs
]

d

S2−6
DLN ,x̃

(λ) (4)

By the description of SDLN and Eq. (4), we have that

OUTF
SDLN,x(λ)

c
≈ OUT

π
F[DLN2−6

abs
]

d

S2−6
DLN ,x

(λ) . (5)

Recall that the transcripts EXECF
SDLN,x

(λ) and EXEC
π
F[DLN2−6

abs
]

d

S2−6
DLN ,x

(λ) consist of the inputs and outputs of

the users, along with OUTF
SDLN,x

(λ) and OUT
π
F[DLN2−6

abs
]

d

S2−6
DLN ,x

(λ) respectively. Since the initial input vector is

x and SDLN forwards to F the exact adversarial inputs that S2−6
DLN dictates in decoded form, we have that F

and π
F[DLN2−6

abs]

d are going to be executed on the same inputs. By the security of the ID-KA scheme used

for the dead drop computation the outputs of the users in EXEC
π
F[DLN2−6

abs
]

d

S2−6
DLN ,x

(λ) include pseudorandom

25

values in Zq, where as in EXECF
SDLN,x

(λ) the respective values are truly random from the same group.
By the latter fact and Eq. 5, we have that

EXECF
SDLN,x(λ)

c
≈ EXEC

π
F[DLN2−6

abs
]

d

S2−6
DLN ,x

(λ) . (6)

Finally, by the transitive property of
c
≈ and Eq. (3) and (6), we conclude that

EXECF
SDLN,x(λ)

c
≈ EXEC

P[DLNsort]
ADLN,x

(λ) . (7)

2). Security of the Conversation Protocol CNVsort: The proof for the security of CNVsort is simi-

lar. Briefly, let P[CNVsort] denote the implementation of CNVsort over P, that is expressed as πP[CNV2−6
sort]

c ,
where πc is a protocol completing the non-MPC part (Step 1) of CNVsort run in the users’ client and the
communication handled by entry and output servers.

By Theorem 2, we have that CNV2−6
sort realizes CNV2−6

abs for parameter zqs1. As a result the security of
P implies that for any passive adversary ACNV corrupting θ-out-of-m servers, there is an adversary S2−6

CNV

such that for every input vector x,

EXECπ
F[CNV2−6

abs
]

c

S2−6
CNV ,x

(λ)
c
≈ EXECπ

P[CNV2−6
sort]

c
ACNV,x

(λ) ≡ EXEC
P[CNVsort]
ACNV,x

(λ) .

Subsequently, we can construct an ideal adversary SCNV that interacts with F for the program family

CNVabs, invokes S2−6
CNV and simulates an interaction of S2−6

CNV with π
F[DLN2−6

abs]
c . As previously, based on the

security of the authenticated encryption scheme, we can show that

EXECF
SCNV,x(λ)

c
≈ EXECπ

F[CNV2−6
abs

]
c

S2−6
CNV ,x

(λ) .

Finally, by the transitive property of
c
≈, we conclude that

EXECF
SCNV,x(λ)

c
≈ EXEC

P[CNVsort]
ACNV,x

(λ) . (8)

Eq. (7) and Eq. (8) imply the security of MCMix, which completes the proof.

Remark 5 (On forward security of MCMix). MCMix in its current form does not offer forward secu-
rity. Nevertheless, it is possible to provide forward security as follows. First, clients could refresh their
exchanged keys with the servers in regular time intervals, e.g., once a day. Alternatively, to avoid interac-
tion, forward secure encryption can be used, e.g., see [BY03]. With respect to the dead drop calculation
we can obtain forward security by applying our second ID-KA construction with forward secrecy (cf.
Section 2.3, Construction 2). The additional communication cost to the Dialing protocol would be one
extra random group element per user as now the active inputs x1, . . . , xn for dialing need to be used for
the first round of the exchange; they are of the form of (DIAL, ui, uj , ri) and (DIALCHECK, ui, rj),
where ri, rj are random elements from the ID-KA cyclic group. Sorting would still be executed on the
users’ usernames and the wire IDs as before thus incurring no additional overhead. We omit further
details.

Remark 6 (End-to-end encryption of MCMix). In our architecture, we made no assumptions about a
pre-existing PKI such that each user could securely obtain each other user’s public key. Thus, in order
to enable encryption on the client side, users need to exchange public keys. To make this exchange as
lightweight as possible, we turned to ID-based cryptography where it is sufficient that the dialer knows
the dialee’s 64bit username (the way this knowledge is established is outside the scope of our construc-
tion). By the nature of our ID-based solution, if at least one of the KGCs (MPC servers) is honest, then

26

an active adversary controlling the other KGCs can not infer any information about messages encrypted
under an ID-based key. However, if all KGCs are corrupted, then even a passive adversary can recon-
struct all users’ secret keys and thus decrypt any transferred ID-based ciphertext. Consequently, when
instantiated as above, MCMix supports end-to-end encryption security as long as a single MPC server
remains honest.

Following an alternative approach, we could build upon a public-key setting where the MPC servers
realize a distributed authority responsible for forwarding the correct public keys to the users. In more de-
tail, during registration, each user ui generates a private and public key pair (ski, pki) and uploads pki to
the MPC system. During the Dialing protocol, if ui wishes to dial user uj , then it sends a (DIAL, ui, uj)
request encoded as follows (pki,UNj , 0, 0), while if uj dialchecks then it sends a (DIALCHECK, uj)
request now encoded as (C,UNj , pkj , 0). In the end of the MPC protocol execution uj would receive
pki and ui will receive pkj and they will complete the dialing protocol by a standard Diffie Hellman key
exchange. Note that this will require a “swapping” public-keys step to be executed as part of the MPC
protocol which can be achieved as in the case of the conversation protocol. In this way MCMix can
support end-to-end encryption security even if all servers are passively corrupted.

8 Implementation and Benchmarking

We implemented a prototype of our system using the Sharemind platform and performed extensive
evaluation.

102 103 104 105

100

101

102

103

No. of users

R
un

ni
ng

tim
e

[s
ec

s]

L = 0ms
L = 2ms
L = 10ms
L = 20ms

Figure 7: Running time in secs of the Dialing protocol implementation for a number of n = 100, 500,
1K, 5K, 10K, 50K, 100K, 500K users and latency L = 0, 2, 10, 20 ms. The benchmarks were run with
username size 8 Bytes and 1 Gbps network bandwidth.

8.1 Experiment setting

Benchmarks were run on a cluster of three machines with point-to-point 1 Gbps network connections
using various profiles for network latency aiming to simulate WAN behavior. Each machine has a 12-
core 3 GHz Hyper-Threading CPU and 48 GB of RAM. However, even though the hardware supports it,
Sharemind MPC protocols are not optimized to use multiple CPU cores or the network layer in a parallel
manner. The servers running Sharemind employ only 2 cores, one for executing the computations and
another for pseudo-random number generation. To simulate real-world environment, we use the tc
tool to manipulate the operating system’s network traffic control settings. This tool is used to cap the
available network bandwidth and introduce communication latency by adding round-trip delay (ping).

27

8.2 Dialing protocol

We benchmarked our dialing protocol for various numbers of users and various latency values. The
results are presented in Fig. 7. As we can see, the dialing protocol has a runtime for each round of
around one minute for 100,000 users and around 300 seconds for 500,000 users, considering the worst
case of 20 ms of latency. The latter value might still be considered acceptable for some settings, as
dialing rounds need not be executed very often. Another interesting observation is that the effect of
latency diminishes as the number of users increases, due to the fact that the number of communication
rounds of our algorithm scales logarithmically to the number of inputs. This in turn happens because
Quicksort needs O(log(n)) steps to sort n inputs when executed in parallel. The vectorized nature of
our implementation succeeds in taking advantage of the parallelizable nature of the algorithm. The time
a user needs to encode her request and send it, as well as the time required by each MPC server to
decrypt the requests it received, have no effect on the per round runtime of our system. This is because
these operations are performed in a pipelined fashion. This means that the encoding, encryption and
decryption of the requests for round r + 1 takes place while the MPC servers perform the computations
for round r. In the dialing protocol this is acceptable as a user’s intent on whether to dial or perform a
dial check might not depend on the output of the previous dialing round.

102 103 104 105

100

101

102

103

No. of users

R
un

ni
ng

tim
e

[s
ec

s]

L = 0ms
L = 2ms
L = 10ms
L = 20ms

Figure 8: Running time in secs of the Conversation protocol implementation for a number of n = 100,
500, 1K, 5K, 10K, 50K, 100K, 500K users and latency L = 0, 2, 10, 20 ms. The benchmarks were run
with message size 8 Bytes and 1 Gbps network bandwidth.

8.3 Conversation protocol

For the conversation protocol we provide extensive benchmarks considering the number of users, the
latency of the network, as well as the message size. In Fig. 8, we can see that the running time of the
conversation protocol with a very small message size of 8 Bytes (B) is similar to the running time of the
dialing protocol. That is, the system can serve 100,000 users in around one minute for maximum latency
of 20 ms. Again, we see that latency is a minor performance factor for a large number of users. This fact
enables us to claim that our system will have similar running times even with greater latency values.

In Fig. 9, we consider how the message size affects performance. We have benchmarked various
message sizes ranging from 8 B to 1 KB messages. No artificial latency has been injected for these
experiments. We see that message size affects performance in a significant way as opposed to latency,
but the system can still support anonymity sets of tens of thousands of users even with 1KB messages
and certainly SMS long messages for hundreds of thousands.

28

102 103 104 105

100

101

102

No. of users

R
un

ni
ng

tim
e

[s
ec

s]

|M | =8B
|M | =144B
|M | =256B
|M | =1KB

Figure 9: Running time in secs of the Conversation protocol implementation for a number of n = 100,
500, 1K, 5K, 10K, 50K, 100K users and message size |M | = 8, 144, 256, 1K Bytes. The benchmarks
were run with no latency and 1 Gbps network bandwidth.

102 103 104 105

101

102

No. of users

Pe
ak

ne
tw

or
k

ba
nd

w
id

th
[M

bp
s] |M | =8B

|M | =144B
|M | =256B
|M | =1KB
|UN| =64bit

Figure 10: The peak network bandwidth consumption in Mbps during the Dialing protocol for usernames
(UNs) of 64bits and the Conversation protocol for message size |M | = 8B, 144B, 256B, 1KB, given a
number of n = 100, 500, 1K, 5K, 10K, 50K, 100K users. The benchmarks were run with no latency and
1 Gbps network bandwidth.

Finally, in Fig. 10, we provide the peak network bandwidth consumption during the Dialing and
Conversation protocols. We note that the total bandwidth is shown, i.e. bytes sent and received and to
both other computing nodes. We observe that in both protocols the bandwidth consumption remains
at a low level of less than 100Mbps for the Dialing protocol for (usernames of 64bits) as well as the
Conversation protocol for messages of up to SMS size. For bigger message sizes and 100,000 users,
we get that the total consumption is roughly 150Mbps and 300Mbps for messages of 256B and 1KB
respectively, which can be realistic for a large scale setting.

29

9 Client load and adoption incentives

Anonymous communication systems critically rely on having adequately large anonymity sets to be ef-
fective. In other words: “Anonymity Loves Company” [DM06], and the usability aspects of anonymous
communication systems should be an important design consideration. MCMix strives to offer strong
adoption incentives by offering strong security, while minimizing the computation and communication
load on the client side.
Computation load: For the Dialing protocol, each client performs an ID-KA operation (see section 2)
to compute the dead drop value, plus a few symmetric operations to encrypt/decrypt the shares. The
Key Exchange operation consists of a single billinear pairing computation. The computation burden
of pairings is an ongoing research topic and recent work [AKL+11] using elliptic curves, has offered
significant improvements, allowing pairing to be computed in under 2 million cpu cycles in commodity
desktop computers. In [AGH15], symmetric pairing time is estimated at 14.9 ms running on a com-
modity device, or around three times the time needed for a modular exponentation in the corresponding
cyclic group. For the Conversation protocol, the load is very low, with the client symmetrically encrypt-
ing the shares to the MPC servers and being additionally able to encrypt/decrypt the message sent with
the shared ID-KA key agreed in the dialing phase. Assuming Dialing and Conversation rounds are exe-
cuted once per minute, the computational cost on the client is expected to be minimal and easily handled
by a mobile device.
Communication load: For the Dialing protocol, each client sends 3 encrypted shares containing 128
bits of information, plus her 64 bit username, one to each server. Given that the fixed block size for AES
is 128 bits, we can assume each packet payload is 32 B in size. As output, each client receives three
shares carrying 64 bits of information (the username of a possible caller). Taking into account the block
size of AES, this results in packets with a payload of 128 bits, or 16 B. We additionally assume a TCP
header of 20 B [Pos81b], along with an IP header again of 20 B [Pos81a], resulting in a single packet
of 72 B and 56 B for the input and output shares of the Dialing protocol respectively. In addition a
SHA-256 HMAC (32 B) is assumed as the authentication mechanism. Therefore, in total, a client needs
3 · (72 + 32) + 3 · (56 + 32) = 576 B of bandwidth for each dialing round. Assuming dialing rounds
every 1 minute, the bandwidth cost for each client would be in the order of 24 MB per month. For the
Conversation protocol, with a variable message size |M | B, each client sends tuples of the form (ti,mi)
and receives some mj . Therefore, assuming a joint TCP/IP header overhead of 40 B and 32 B HMAC,
the total bandwidth cost per round of conversation is 3 · (8 + |M |+ 40 + 32) + 3 · (|M |+ 40 + 32) =
6 · |M | + 456 B. The message size is padded so as to be a multiple of 128 bits (AES block size).
Taking as an example SMS length messages of 140 B (padded to 144 B due to AES), each conversation
round would cost 1320 B, resulting in a monthly bandwidth need of around 54 MB when a client is
constantly online. An overview of the total monthly bandwidth costs of the clients is available in Table
1. Dialing and conversation rounds are assumed to be executed every one minute (simultaneously), and
MB conversions are base 2. The theoretical analysis of the computational and communication overhead

|M | (B) bandwidth per month (MB)
8 47

144 78
256 106
1K 296

Table 1: Communication costs of clients (Dialing and Conversation combined) w.r.t. message size.

of our system shows, that it is lightweight on the client side and the bandwidth needs of a device to be
constantly connected are in the range of tens of MB per month, which we consider easily manageable.

30

The low communication overhead of MCMix is due to the fact that each client only sends/receives
one share to/from each MPC server per round. As a result of the relatively small costs, users can be
expected to remain online even if they are not actively using the service, resulting in bigger anonymity
sets. While we expect MCMix to be practical for mobile users, further experiments may be needed to
compute actual battery consumption and bandwidth usage in a real-world setting. Our theoretical results
presented above do not take into account factors like packet loss and network-level packet padding but
serve as a guideline.

10 Parallelizing the Conversation protocol

As discussed in previous sections, our protocols are provably secure assuming a secure MPC framework
and are also scalable enough to support hundreds of thousands of users. While these anonymity sets
can accommodate a lot of use cases, we recognize the need for anonymity systems to offer as large
an anonymity set as possible. Therefore, we propose a technique that leads to an even more scalable
system, by describing a parallel realization of the Conversation protocol, as this is the latency-critical
component of our system. The Dialing protocol can be executed independently of the Conversation one,
and in much longer time intervals, e.g. every five minutes. Therefore, the implementation of Dialing on
a single MPC instance can cover very large anonymity sets, e.g. 500,000 users as seen in Fig. 7.

10.1 General Idea

Our main challenge is to come up with a protocol that can run in different MPC instances (islands)
in parallel, with minimal communication between those islands, and that achieves very strong privacy.
Additionally, the anonymity set should be the whole client population. The problem of anonymous
communication, where two users who want to communicate may submit their messages to different
islands and still expect to communicate with perfect correctness, while leaking no information at all,
is hard to parallelize. In our approach, we choose to maintain the strongest possible privacy standards.
As a result, in our parallelized version of MCMix, we relax our quality of service (qos) guarantees.
That is, in each round, an adjustably small number of requests that would have been served when using
the algorithm of Fig. 6, will fail to do so; a message exchange that would have been performed by our
original algorithm will not take place, and the affected clients will have to resend their messages in
the next round. The probability of this phenomenon can be made arbitrarily small in the expense of
performance, as described later in this section. As evident by the algorithmic representation of our two
protocols, the integral part of their function is matching equal values in pairs and performing an action
on these pairs (a swap). In this section, we introduce a parallelizable approach to performing this action
that benefits from the fact that the values in question (dead drops) are uniformly distributed, being the
output of a hash function.

The parallel protocol will not have the correctness property of the non-parallel one. The system will
(with high probability) never produce a correct output, meaning that there will exist a very small portion
of the users that will need to resend their messages in the next round.

In our approach, requests are split obliviously between MPC islands based on the fact that equal
dead drop values are likely to be located at roughly the same indexes of different arrays after sorting,
considering these values are uniformly distributed. In our illustrations, we use two MPC islands, each
one consisting of an MPC system (e.g., a three-server Sharemind implementation), but the method can
be applied to any number of islands. The notion of an island is a logical and not a geographical char-
acterization. Islands are MPC systems with each of their servers ideally spread around the world. An
MPC island and its clients interact in the same way we have described in the previous sections, i.e. it is
transparent to the clients whether or not a parallelized protocol is running.

31

Figure 11: Parallel operation of two MPC islands performing the Conversation Protocol.

10.2 Parallelizing the Conversation protocol

In Fig. 11, we can see how we can combine two MPC islands. In our illustration we use two MPC
islands, and assign half of the incoming requests (n2) of the form (ti,mi, widi) to each of them. Without
generality loss, the first island gets requests from clients with wid ∈ {1, . . . , n2 } and the second with
wid ∈ {n2 + 1, . . . , n}.

The parallelized protocol is executed via the following steps:

1. Independent dead drop sort: Each island independently sorts its requests obliviously, according
to their t coordinate. Having assumed a uniform distribution of those values, small (respectively high)
values of t will end up at the lower (upper) half of the sorted sequences.

2. First inter-island communication: The first island keeps the lower half (plus δ n4) of its sorted
requests and receives the lower half (plus δ n4) of the sorted requests of the second island. The second
island does the opposite, keeping the upper half of its requests and receiving the upper half of the first
island’s requests. Due to the fact that these t values are uniformly distributed, equal pairs will end up
in the same island with a high probability. Practically, this transmission of data is made on a peer to
peer level between each of the servers of the two islands. In detail, the first server of the first island
communicates through a secure channel with the first server of the second island etc. The additional
(d = δ n2) requests, apart from the halves assigned to each island, serve the purpose of calibrating the
quality of service parameter of the protocol. The bigger the value of d, the less likely it is that two
requests with the same t values will end up in different islands and communication will not take place.

3. Merge sub-sequences: Each island obliviously merges the two sorted sequences according to their
t values. The result is a fully sorted sequence for each island.

4. Exchange messages: Each island performs the exchange of messages as described in Step 4 of

32

CNVsort in Fig. 6. After this step, the message exchange has been performed and the messages must
reach their intended recipients, based on their wire ID. The t values of each tuple are ignored from this
step onwards.

5. Independent wire ID sort: Each island obliviously sorts its requests independently according to
their wid coordinate. After this step, it is guaranteed that the first n

4 + δ n4 requests of the first island
originated from the first island and the rest n4 + δ n4 from the second. The same is true for the second
island.

6. Second inter-island communication: Each message request is sent back to the island it originated
from, again using direct secure channels between the respective servers of each island.

7. Merge sub-sequences: Each island obliviously merges the requests designated for it, according to
their wid, and ends up with n

2 + d requests, some of which have duplicate wire IDs. The duplicate
requests must then be combined in a meaningful way before proceeding with the algorithm.

8. Eliminate duplicates: (Obsolete if d = 0) For a pair of messages m1 and m2 that are part of tuples
with the same wire ID, one of the following must be true:

• m1 = m2, either both of them are carrying the result of a succesful message exchange or none of
them.

• m1 6= m2, that is one of the two messages carries the result of a succesful message exchange and
the other an original message that was not exchanged.

So to eliminate duplicates, we apply the algorithm of Fig. 12. This algorithm eliminates duplicates by
combining two requests of the form (m1, wid), (m2, wid) with the same wire ID, so that if one of them
carries a message that was the result of an exchange operation (LSB=1, see step 4 of CNVsort), then this
is the message that makes it to the receiver. At the end of this combination we have the valid message
form a tuple of the form (m,wid) and the invalid one a tuple (m′, 0), which is discarded at the end.

Eliminate Duplicates Algorithm

Input: a sequence of n + d tuples 〈a1, . . . , an+d} = 〈(m1, wid1), (m2, wid2), . . . , (mn, widn)〉,
which is the sorted output (according to the wire IDs) of the merge step of the algorithm and
contains d duplicates.

Output: a sequence b of size n, that is the output of the protocol.

For each i← 1, . . . , n+ d− 1
if ai[2] = ai+1[2] then

if ai.[1] mod 2 = 0 then
ai.[1] = ai+1[1]

end if
ai+1[1] = 0

end if
Sort sequence a according to ai[2] using Quicksort. Sorted sequence is a′.
return sequence b = 〈a′d+1, . . . , a

′
n〉

Figure 12: Eliminate Duplicates Algorithm used in step 8 of the parallel conversation protocol

9. Independent wire ID sort: (Obsolete if d = 0) Finally, each island obliviously sorts its requests
according to their wire IDs. Then the valid messages are forwarded to their recipients.

33

Remark 7. The combination of two islands, as explained above, can be generalized to the combination
of S islands with each one handling n

S of the requests. The range of the possible values for t is therefore
also implicitly partitioned in S. Quality of service may decline with increased island numbers but it
can be controlled and is predicted to remain at a very high level. The work done by each island is
roughly double the work an MPC system processing the same of amount of requests would do. Such an
overhead may sound big, but it is actually reasonable, as it is independent of the number of islands that
are used. As a consequence of the above, using 2 islands, as illustrated in our figure, will yield no extra
performance, and is expected to be even worse than the non-parallel version of our protocol. However,
by having 10 islands we would theoretically have a performance gain that would allow us to support
anonymity sets 5 times larger that the ones of a single MPC system.

10.3 Quality of Service Analysis

As mentioned before, for parallel MCMix, there is a (non negligible) probability that a user’s message
will not get exchanged, even if there exists a request with a matching dead drop. An analysis of the
probability of such an event taking place in the two island case, follows:

Let n be an even number, representing the number of users, and C an arbitrary set of disjoint subsets
from

(
[n]
2

)
, representing the pairs of users currently in conversation. Consider the following probabilistic

procedure of assigning rendezvous points to the users in each round: for each i ∈ [n], pick a random
value vi ← {0, 1}λ and if it happens that i ∈ P = {i, j} ∈ C such that tj is defined already, set ti = tj ;
Else, set ti = vi. Consider now the vector 〈t1, . . . , tn〉 and sort it, resulting to the vector 〈t′1, . . . , t′n〉.
Define the event BADδ to be the event that MSB(t′i) = 1 for some i ≤ (1− δ)n/2 where δ ∈ (0, 1) is a
parameter, or that MSB(t′i) = 0 for some i ≥ (1 + δ)n/2.

If C = ∅, it holds that the most significant bit is uniformly distributed over {0, 1} in each draw ti and
it follows that the mean of number of times it will be selected to be 1 is n/2. We recall the two-sided
Chernoff bound Pr[|X − µ| ≤ δµ] ≤ 2 exp(−δ2µ/3) where X is the Binomial distribution with mean
µ and δ ∈ (0, 1). Consider Xi to be equal to MSB(ti) = 1 and we let X =

∑n
i=1Xi. Observe that

indeed X is following the Binomial distribution with mean µ = n/2 and that the event BADδ can only
happen if the number of ti’s with MSB(ti) = 1 deviate by a factor (1 − δ) below or (1 + δ) above the
mean. It follows immediately that Pr[BADδ] ≤ 2 exp(−δ2n/6).

In the general case, for arbitrary C, observe that the most significant bit for each draw ti is uniformly
selected unless it happens that {i, j} ∈ C. It follows we have n′ = n − |C| draws, where 0 ≤ |C| ≤
n/2 since the elements of C are subsets of size 2 that are disjoint. The i-th draw selects element tf(i)

where f is a mapping from [n′] to a subset of equal size in [n] that drops the largest element from each
conversation pair. We denote by P the set of all elements of [n′] so that f(i) participates in a conversation
in C. We now define the random variable Yi as the most significant bit of the i-th draw among the n′

ones we perform and we let Y =
∑n′

i=1 ci · Yi where ci = 2 if i ∈ P and ci = 1 otherwise. Observe
that if the event BADδ happens it should be that Y 6∈ [(1− δ)n/2, (1 + δ)n/2]. Note that by linearity of
expectation it holds that E[Y] = n/2 hence the mean, compared to the previous case, has not changed.
It is easy to extend the Chernoff tail bound to a tail bound and obtain a tail bound for Y that will be
exponentially decreasing with n′ (alternatively one may use the Hoeffding bound). Specifically we can
prove the following.

Proposition 1. For any n ∈ N, any δ ∈ (0, 1) and any set C of disjoint subsets of cardinality 2 from [n],
it holds that Pr[BADδ] ≤ 2 exp(−δ2n/12).

So, for instance, for a total of ten thousand users and two servers and with δ = 0.08, the probability
that someone will not be served is less than one percent.

However, this is an upper bound and in practice the quality of service is much better. To better
assess it we ran experiments on the Sage platform [Sag16] for n = 100, 000 users and S = 10, 20

34

servers, with each experiment run 200 times. These parameters were chosen as they express a possible
usage scenario. An assumption made when running the experiments was that half of the clients were
communicating with someone and half were idle. This parameter, however did not seem to influence the
results in a substantial way. The quality of service for a 10 island system with each island processing
10000 requests is very high (96%) even when no extra requests are taken. With an overhead of 10%
(11000 requests per server), the possibility of even a single failure is very close to zero. The 20 island
scenario naturally lags behind in the quality of service when no extra requests are taken, beginning at
88%. Nearly perfect service is achieved with an overhead of 40%, that is 7000 requests per server
compared to the original 5000.

10.4 Performance of the parallelized protocol

Considering the fact that we did not have access to a great number of physical machines, in order to
run the parallelized protocol with a variety of island numbers, we ran the parallel algorithm on a sin-
gle island for different user numbers and then extrapolated to give predictions for a real multi-island
implementation. Except of the running time of the MPC that we measured, we also added the commu-
nication time calculated by assuming commodity 100Mbps connections between the islands. Because
inter-island communication consists of only two rounds of transmitting comparatively large chunks of
data, the latency of the connection becomes irrelevant. In both inter-island communication rounds, each
party sends and receives in total n/m ·(m−1)/m elements to/from other parties, where n is the number
of messages and m is the number of islands. Also, we have not added any overhead for symmetric en-
cryption between the islands, as even a commodity laptop can keep up with encrypting and decrypting
data at a rate of 100Mbps. Taking into account the above, we consider the results presented in Fig. 13
closely depict reality for inter-island communication bandwidth 1Gbps and 100Mbps respectively.

105 106

102

103

No. of users

R
un

ni
ng

tim
e

[s
ec

s]

1 island
2 islands
4 islands
8 islands

Figure 13: Running time in secs of the Conversation protocol implemented in 1,2,4,8 island setting. The
benchmarks were run with no latency, 1Gbps network bandwidth (intra-island) and 64 bit message size.
Bandwidth between the islands was modeled at 100Mbps.

From the results of Fig. 13, we can see that as predicted (see Remark 7), employing our system over
2 islands does not provide any additional performance. However, when using 4 or more islands, our
parallelization technique yields significant rewards. In the case of 8 islands, the system can support an
anonymity set of 500,000 users with a latency of 60 seconds. We expect this trend in performance to
continue for even more than 8 islands, thus enabling even larger anonymity sets.

Remark 8. A message size of only 64 bits, as benchmarked in this section is not representative of a

35

realistic deployment. However, the results presented in this section aim at highlighting the scalability of
the system

Remark 9. An important note is that for the parallel system to be secure, assuming the use of Share-
mind as the MPC platform, a non-colluding server majority is needed in every island. The proposed
deployment scenario is one in which a single entity, e.g. a university, operates a number of servers that
are located in different locations (campuses), which are only connected with commodity internet band-
widths, and one of them is part of each island. In this scenario, the trust model requires that no 2 entities
collude to break the privacy of the system.

11 Related Work and Comparison

This section attempts to place our work in relation to the state of the art in the expanding field of
anonymity-preserving communication systems.

First, regarding Onion-routing based approaches, like POND [Lan15] which uses the Tor network
[DMS04], we emphasize that they do not fit the model of a global adversary who can easily defeat them,
see e.g., [JWJ+13]. Systems that attempt to defeat global adversaries operate in rounds and expect each
online user to send encrypted messages in each round. Furthermore, our interpretation of anonymous
messaging is one of unobservable bilateral communication. Therefore, unilateral shuffling mechanisms
based on mixnets or recent MPC constructions [MSZ15] do not satisfy our application scenario.

Our work is most closely related to the Vuvuzela system [VDHLZZ15] that uses mixnets in ad-
dition to dummy messages, to add noise and achieve a differentially private (cf. [Dwo06]) solution to
anonymous messaging. By definition, differential privacy protects users as individuals and also allows
for some (albeit small) leakage to an observer and thus it is weaker than the simulation-based privacy
that we achieve. For example, when all users talk to each other compared to when no user is talking to
anyone is completely distinguishable in Vuvuzela, but indistinguishable for MCMix that does not leak
any metadata at all. Furthermore, Vuvuzela puts a burden on the client side that requires to finish the
dial protocol by downloading a substantial amount of user data (or losing substantially in terms privacy);
note that using Bloom filters as described in [LZ16] can help in making this a one time cost. Another
drawback of this system is that it cannot scale down in a tight way, due to the burden imposed by the
added noise that needs to be always added to maintain acceptable privacy guarantees. On the up side,
the system has good architecture and is extremely scalable to millions of users under the assumption
of a single honest server, whereas (non-parallelized) MCMix can scale to 100,000 users with similar
latency and assuming an honest server majority. However, our parallelized MPC approach can reach
that level of performance and in any case, we anticipate that further advances in secure MPC protocols
can improve performance substantially even in the non-parallelized version.

Riffle [KLDF15], uses hybrid mixnets and private information retrieval (PIR, [CKGS98]) techniques
to implement anonymous messaging. It offers good privacy guarantees, but unlike MCMix and Vu-
vuzela, it can not handle network churn. During the setup phase of the protocol, client keys are verifiably
shuffled by a mixnet. During each communication phase, the same permutations as the ones established
in the setup phase are applied to the clients’ authenticated messages by the mix servers. As a result
of this setup, a single client momentarily leaving or entering the system would require to re-run the
expensive setup phase of the protocol.

cMix [CJK+16] introduces a mixnet design that can shuffle messages faster than previous work by
avoiding public key operations in the real-time phase. cMix provides sender anonymity, yet it may leak
the number of messages received by each user, exhibiting a similar security performance as Vuvuzela’s
dialing protocol.

Dissent [CGF10,WCGFJ12] is based on DC-nets and achieves anonymity sets up to a few thousand
users, in an anonymous broadcasting scenario. Riposte [CGBM15] uses PIR techniques to implement a

36

distributed database that users can anonymously write and read from, assuming no two servers collude
(in the efficient scheme). Specifically, the authors implement the write stage on the database as a “re-
verse” PIR, where a client spreads suitable information for writing in the database. Subsequently, when
used for messaging, users can read using PIR from the position in the database that the sender wrote
the message (which can be a random position calculated from key information available to the users).
Riposte can scale to millions of users but it requires many hours to perform a complete operation; a
significant bottleneck is the write-operation that requires O(

√
L) client communication for an L-long

database which is proportional to the number of users. In contrast, in our system, client bandwidth is
minimal, i.e. a single message per server is sent by each user. Additionally, the application scenario is
more related to that of Dissent, rather than ours, i.e. anonymous broadcasting, instead of private point
to point message exchange, as the authors specify that their approach is suitable “for latency-tolerant
workloads with many more readers than writers”. Finally, our technical approach is very different com-
pared to Riposte, as Riposte uses MPC techniques only to detect and exclude malformed client requests,
while MCMix offers a native MPC solution for the complete messaging functionality.

BAR [KCB17] uses a “broadcast to all” approach to achieve perfect privacy. A central untrusted
server receives all messages in each round and then broadcasts them to all participants. This approach
induces a very large communication overhead and therefore anonymity sets are limited to hundreds of
users. Pung [AS16] is a system that like BAR operates on fully untrusted setting, while it uses state-
of-the-art PIR techniques and smart database organization to scale to a much larger number of users.
However, Pung can only implement the equivalent of our conversation functionality and not the dialing
functionality, and exhibits substantial client load.

12 Conclusions

We presented MCMix the first anonymous real-time point-to-point messaging system that can scale to
hundreds of thousands of users, while maintaining security at cryptographic standards. To achieve this,
we utilized MPC to securely implement oblivious sorting for (i) establishing the rendezvous points at
the dialing round and (ii) pairing the messages that are to be exchanged. In our construction, we ap-
plied Sharemind as a secure platform and the oblivious Quicksort algorithm for sorting. We argued
about the security of our system under a robust cryptographic framework and implemented a prototype
of our system in Sharemind for extensive evaluation and benchmarks. We discussed and compared our
system with state-of-the-art related work. Finally, we provided a parallelized implementation of our
conversation protocol as theoretical evidence for further improving performance. We strongly believe
that MCMix can be seen as a proof of concept for the potential of MPC-based privacy-enhancing tech-
nologies that can be applicable in real-world scenarios at a large scale.

Acknowledgements

Alexopoulos, Kiayias and Zacharias were supported by the Horizon 2020 PANORAMIX project (Grant
Agreement No. 653497). Alexopoulos was also supported by the DFG as part of project S1 within the
CRC 1119 CROSSING. Talviste was supported by the Estonian Research Council (Grant No. IUT27-
1). The authors would like to thank Tim Grube and Chris Campbell for their comments on a previous
version of this paper.

References

[ABF+17] Toshinori Araki, Assi Barak, Jun Furukawa, Tamar Lichter, Yehuda Lindell, Ariel Nof,
Kazuma Ohara, Adi Watzman, and Or Weinstein. Optimized Honest-Majority MPC

37

for Malicious Adversaries – Breaking the 1 Billion-Gate Per Second Barrier. In IEEE
Symposium on Security and Privacy, pages 843–862, 2017.

[AFL+16] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara. High-
throughput semi-honest secure three-party computation with an honest majority. In ACM
CCS, pages 805–817, 2016.

[AGH15] Joseph A Akinyele, Christina Garman, and Susan Hohenberger. Automating fast and
secure translations from type-I to type-III pairing schemes. In ACM CCS, pages 1370–
1381, 2015.

[AKL+11] Diego F Aranha, Koray Karabina, Patrick Longa, Catherine H Gebotys, and Julio López.
Faster explicit formulas for computing pairings over ordinary curves. In EUROCRYPT,
pages 48–68, 2011.

[AKS83] Miklós Ajtai, János Komlós, and Endre Szemerédi. An O(n log n) sorting network. In
ACM STOC, pages 1–9, 1983.

[AS16] Sebastian Angel and Srinath Setty. Unobservable communication over fully untrusted
infrastructure. In OSDI, pages 551–569, 2016.

[Bat68] Kenneth E Batcher. Sorting networks and their applications. In Proceedings of the April
30–May 2, 1968, spring joint computer conference, pages 307–314. ACM, 1968.

[BDNP08] Assaf Ben-David, Noam Nisan, and Benny Pinkas. Fairplaymp: a system for secure
multi-party computation. In ACM CCS, pages 257–266, 2008.

[Bea97] Donald Beaver. Commodity-based cryptography. In ACM STOC, pages 446–455, 1997.

[BGIK16] Amos Beimel, Ariel Gabizon, Yuval Ishai, and Eyal Kushilevitz. Distribution design. In
ITCS, pages 81–92, 2016.

[BLR14] Dan Bogdanov, Peeter Laud, and Jaak Randmets. Domain-polymorphic programming
of privacy-preserving applications. In PLAS, pages 53–65, 2014.

[BLT14] Dan Bogdanov, Sven Laur, and Riivo Talviste. A Practical Analysis of Oblivious Sorting
Algorithms for Secure Multi-party Computation. In Proceedings of the 19th Nordic
Conference on Secure IT Systems, NordSec 2014, volume 8788 of LNCS, pages 59–74.
Springer, 2014.

[Bog13] Dan Bogdanov. Sharemind: programmable secure computations with practical applica-
tions. PhD thesis, University of Tartu, 2013.

[BY03] Mihir Bellare and Bennet S. Yee. Forward-security in private-key cryptography. In CT-
RSA, pages 1–18, 2003.

[CCS07] Liqun Chen, Zhaohui Cheng, and Nigel P. Smart. Identity-based key agreement protocols
from pairings. Int. J. Inf. Sec., 6(4):213–241, 2007.

[CGBM15] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. Riposte: An anonymous mes-
saging system handling millions of users. In IEEE Symposium on Security and Privacy,
pages 321–338, 2015.

[CGF10] Henry Corrigan-Gibbs and Bryan Ford. Dissent: accountable anonymous group messag-
ing. In ACM CCS, pages 340–350, 2010.

38

[Cha81] David L Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM, 24(2):84–90, 1981.

[Cha88] David Chaum. The dining cryptographers problem: Unconditional sender and recipient
untraceability. Journal of cryptology, 1(1):65–75, 1988.

[CJK+16] David Chaum, Farid Javani, Aniket Kate, Anna Krasnova, Joeri de Ruiter, and Alan T.
Sherman. cMix: Anonymization by high-performance scalable mixing. IACR Cryptol-
ogy ePrint Archive, 2016.

[CK03] Liqun Chen and Caroline Kudla. Identity based authenticated key agreement protocols
from pairings. In CSFW-16, pages 219–233, 2003.

[CKGS98] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private information
retrieval. Journal of the ACM (JACM), 45(6):965–981, 1998.

[CSWH01] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W Hong. Freenet: A dis-
tributed anonymous information storage and retrieval system. In Designing Privacy En-
hancing Technologies, pages 46–66. Springer, 2001.

[DDM03] George Danezis, Roger Dingledine, and Nick Mathewson. Mixminion: Design of a type
III anonymous remailer protocol. In IEEE Symposium on Security and Privacy, pages
2–15, 2003.

[DGKN09] Ivan Damgård, Martin Geisler, Mikkel Krøigaard, and Jesper Buus Nielsen. Asyn-
chronous multiparty computation: Theory and implementation. In PKC, pages 160–179,
2009.

[DM06] Roger Dingledine and Nick Mathewson. Anonymity loves company: Usability and the
network effect. In WEIS, 2006.

[DMS04] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-generation
onion router. Technical report, DTIC Document, 2004.

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multiparty computation
from somewhat homomorphic encryption. In CRYPTO, pages 643–662, 2012.

[Dwo06] Cynthia Dwork. Differential privacy. In Automata, languages and programming, pages
1–12. Springer, 2006.

[FG10] Dario Fiore and Rosario Gennaro. Identity-based key exchange protocols without pair-
ings. Trans. Computational Science, 10:42–77, 2010.

[FLNW17] Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. High-throughput secure
three-party computation for malicious adversaries and an honest majority. In EURO-
CRYPT, pages 225–255, 2017.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game. In
ACM STOC, pages 218–229, 1987.

[Gün89] Christoph G. Günther. An identity-based key-exchange protocol. In EUROCRYPT, pages
29–37, 1989.

39

[HKI+12] Koki Hamada, Ryo Kikuchi, Dai Ikarashi, Koji Chida, and Katsumi Takahashi. Practi-
cally efficient multi-party sorting protocols from comparison sort algorithms. In Infor-
mation Security and Cryptology–ICISC 2012, pages 202–216. Springer, 2012.

[JWJ+13] Aaron Johnson, Chris Wacek, Rob Jansen, Micah Sherr, and Paul Syverson. Users get
routed: Traffic correlation on tor by realistic adversaries. In ACM CCS, pages 337–348,
2013.

[KCB17] Panayiotis Kotzanikolaou, George Chatzisofroniou, and Mike Burmester. Broadcast
anonymous routing (BAR): scalable real-time anonymous communication. Int. J. Inf.
Sec., 16(3):313–326, 2017.

[KLDF15] Albert Kwon, David Lazar, Srinivas Devadas, and Bryan Ford. Riffle: An efficient
communication system with strong anonymity. PoPETS, 2016(2):115–134, 2015.

[Lan15] A Langley. Pond (v0.1.1). https://github.com/agl/pond, 2015.

[LP16] Peeter Laud and Martin Pettai. Secure multiparty sorting protocols with covert privacy.
In NordSec, pages 216–231, 2016.

[LWN+15] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi. Oblivm: A
programming framework for secure computation. In IEEE Symposium on Security and
Privacy, pages 359–376, 2015.

[LZ16] David Lazar and Nickolai Zeldovich. Alpenhorn: Bootstrapping secure communication
without leaking metadata. In OSDI, pages 571–586, 2016.

[MSZ15] Mahnush Movahedi, Jared Saia, and Mahdi Zamani. Shuffle to baffle: Towards scalable
protocols for secure multi-party shuffling. In ICDCS, pages 800–801, 2015.

[PL15] Martin Pettai and Peeter Laud. Automatic proofs of privacy of secure multi-party com-
putation protocols against active adversaries. In CSF, pages 75–89, 2015.

[Pos81a] Jon Postel. Internet protocol. RFC, 1981.

[Pos81b] Jon Postel. Transmission control protocol. RFC, 1981.

[PS09] Kenneth G. Paterson and Sriramkrishnan Srinivasan. On the relations between non-
interactive key distribution, identity-based encryption and trapdoor discrete log groups.
Des. Codes Cryptography, 52(2):219–241, 2009.

[Sag16] Sage Developers. SageMath, the Sage Mathematics Software System (Version 7.2), 2016.
http://www.sagemath.org.

[SGR97] Paul F Syverson, David M Goldschlag, and Michael G Reed. Anonymous connections
and onion routing. In IEEE Symposium on Security and Privacy, pages 44–54, 1997.

[Sha84] Adi Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO, pages
47–53, 1984.

[She59] Donald L. Shell. A high-speed sorting procedure. Communications of the ACM, 2(7):30–
32, 1959.

[SKO00] Ryuichi Sakai, Masao Kasahara, and K Oghishi. Cryptosystems based on pairing. SCIS,
Okinawa, Japan, 2000.

40

https://github.com/agl/pond

[Sma01] Nigel P. Smart. An identity based authenticated key agreement protocol based on the
weil pairing. IACR Cryptology ePrint Archive, 2001.

[VDHLZZ15] Jelle Van Den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich. Vuvuzela:
Scalable private messaging resistant to traffic analysis. In SOSP, pages 137–152, 2015.

[Wan13] Yongge Wang. Efficient identity-based and authenticated key agreement protocol. Trans.
Computational Science, 17:172–197, 2013.

[WCGFJ12] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan Ford, and Aaron Johnson. Dissent
in numbers: Making strong anonymity scale. In OSDI, pages 179–182, 2012.

[YL05] Quan Yuan and Songping Li. A new efficient id-based authenticated key agreement
protocol. IACR Cryptology ePrint Archive, 2005.

[ZSB13] Yihua Zhang, Aaron Steele, and Marina Blanton. Picco: a general-purpose compiler for
private distributed computation. In ACM CCS, pages 813–826, 2013.

41

	Introduction
	Background
	Secure Multiparty Computation and the Sharemind framework
	Oblivious sorting
	Identity-Based Key Agreement Protocols

	Ideal Anonymous Messaging
	Entities and threat model
	An ideal MPC functionality with adversarial influence for a family of programs
	The families of programs DLNabs and CNVabs
	The Dialing program family DLNabs
	The Conversation program family CNVabs

	Anonymous Messaging Systems
	Sharemind as a secure MPC platform
	Alternative MPC platforms

	System Architecture
	Registration phase
	Main phase

	The Dialing Protocol
	Protocol description
	The Dialing program DLNsort

	The Conversation Protocol
	Protocol description
	The Conversation program CNVsort

	The MCMix Anonymous Messaging System
	Dialing
	Conversation
	Security of MCMix

	Implementation and Benchmarking
	Experiment setting
	Dialing protocol
	Conversation protocol

	Client load and adoption incentives
	Parallelizing the Conversation protocol
	General Idea
	Parallelizing the Conversation protocol
	Quality of Service Analysis
	Performance of the parallelized protocol

	Related Work and Comparison
	Conclusions

